ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 33 (1997), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : We have developed an approach which examines ecosystem function and the potential effects of climatic shifts. The Lake McDonald watershed of Glacier National Park was the focus for two linked research activities: acquisition of baseline data on hydrologic, chemical and aquatic organism attributes that characterize this pristine northern rocky mountain watershed, and further developing the Regional Hydro-Ecosystem Simulation System (RHESSys), a collection of integrated models which collectively provide spatially explicit, mechanistically-derived outputs of ecosystem processes, including hydrologic outflow, soil moisture, and snow-pack water equivalence. In this unique setting field validation of RHESSys, outputs demonstrated that reasonable estimates of SWE and streamflow are being produced. RHESSys was used to predict annual stream discharge and temperature. The predictions, in conjunction with the field data, indicated that aquatic resources of the park may be significantly affected. Utilizing RHESSys to predict potential climate scenarios and response of other key ecosystem components can provide scientific insights as well as proactive guidelines for national park management.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The phenological state of vegetation significantly affects exchanges of heat, mass, and momentum between the Earth's surface and the atmosphere. Although current patterns can be estimated from satellites, we lack the ability to predict future trends in response to climate change. We searched the literature for a common set of variables that might be combined into an index to quantify the greenness of vegetation throughout the year. We selected as variables: daylength (photoperiod), evaporative demand (vapor pressure deficit), and suboptimal (minimum) temperatures. For each variable we set threshold limits, within which the relative phenological performance of the vegetation was assumed to vary from inactive (0) to unconstrained (1). A combined Growing Season Index (GSI) was derived as the product of the three indices. Ten-day mean GSI values for nine widely dispersed ecosystems showed good agreement (r〉0.8) with the satellite-derived Normalized Difference Vegetation Index (NDVI). We also tested the model at a temperate deciduous forest by comparing model estimates with average field observations of leaf flush and leaf coloration. The mean absolute error of predictions at this site was 3 days for average leaf flush dates and 2 days for leaf coloration dates. Finally, we used this model to produce a global map that distinguishes major differences in regional phenological controls. The model appears sufficiently robust to reconstruct historical variation as well as to forecast future phenological responses to changing climatic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We utilized an ecosystem process model to investigate the influence of precipitation and soil water potential on vegetation phenology in the semi-arid, drought-deciduous ecosystems in the Kalahari region of South Africa. The timing of leaf flush was assumed to be the first day during which a rainfall event exceeded that day's estimate of potential evapotranspiration after a defined dry season. Leaf senescence was assumed to be a dynamic feedback between soil water potential and net plant carbon gain and was determined by dynamically modeling the effects of concomitant trends in soil water potential and net primary production on leaf area index (LAI). Model predictions of LAI were compared with satellite-derived normalized difference vegetation indices (NDVI) for 3 years at two sites along the Kalahari transect. The mean absolute error for the prediction of modeled leaf flush date compared with leaf flush dates estimated from NDVI were 10.0 days for the Maun site and 39.3 days for the Tshane site. Correlations between model predicted 10-day average LAI and 10-day composite NDVI for both Maun and Tshane were high (ρ=0.67 and 0.74, respectively, P〈0.001), suggesting that this method adequately predicts intra-annual leaf area dynamics in these dry tropical ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bradford, West Yorkshire : Emerald
    Management of environmental quality 14 (2003), S. 99-107 
    ISSN: 1477-7835
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Economics
    Notes: In the last 50 years, the Mediterranean Basin has experienced a doubling of its population. This demographic growth has been the cause of extensive land use changes that have undermined the ecological stability of large portions of its fragile ecosystems. The population of the Mediterranean countries is expected to grow by another 20 percent in the next 25 years, further increasing the pressure on the natural resources. In this paper, we present a methodology combining photosynthetic activity and human settlements both derived from satellite data for monitoring the effects of human settlements on the environment. We found photosynthesis decreasing as one moves from rural to urban settings in the north and increasing in the south Mediterranean countries. Regional scale assessments using this approach may help policy makers in designing appropriate measures to combat further environmental degradation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Ecosystems 1 (1998), S. 206-215 
    ISSN: 1435-0629
    Keywords: Key words: climatic controls; net primary productivity; ecosystem process model.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Net primary productivity (NPP) represents the greatest annual carbon flux from the atmosphere to the biosphere, is an important component of seasonal fluctuations in atmospheric CO2 concentrations, and is the most critical biotic component of the global carbon cycle. NPP measures products of major economic and social importance, such as crop yield and forest production. Given that global NPP can not be measured directly, model simulations must provide understanding of its global spatial and temporal dynamics. In this study, we used the biogeochemical model BIOME-BGC to simulate global terrestrial NPP and assessed relative importance of climatic controls (temperature, water availability, and radiation) in limiting NPP in the array of climatic combinations found globally. The degree of limitation on NPP by climatic controls was defined by using an empirical membership function. Results showed that temperature or water availability limited NPP over larger land areas (31% and 52%, respectively) than did radiation limitation (5%). Climatic controls appeared to be important in limiting productivity in most vegetation biomes, except for evergreen broadleaf forests. Nevertheless, there were areas of the globe (12%) where none of the climatic factors appeared to limit NPP. Our research has suggested that other environmental controls, such as nutrient availability or biological constraints, should then be considered. The wide distribution of NPP between zero and the upper boundary values in the correlation plots indicated that multivariate environmental balances, not single limiting factors, controlled biospheric productivity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Maintenance respiration ; Woody-tissue respiration ; Carbon budgets ; Temperature response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We estimate maintenance respiration for boles of four temperate conifers (ponderosa pine, western hemlock, red pine, and slash pine) from CO2 efflux measurements in autumn, when construction respiration is low or negligible. Maintenance respiration of stems was linearly related to sapwood volume for all species; at 10°C, respiration per unit sapwood volume ranged from 4.8 to 8.3 μmol CO2 m−3 s−1. For all sites combined, respiration increased exponentially with temperature (Q 10 =1.7, r 2=0.78). We estimate that maintenance respiration of aboveground woody tissues of these conifers consumes 52–162 g C m−2 y−1, or 5–13% of net daytime carbon assimilation annually. The fraction of annual net daytime carbon fixation used for stem maintenance respiration increased linearly with the average annual temperature of the site.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Keywords: Key words Global change ; Carbon dioxide ; Biogeochemistry ; Net primary production (NPP) ; Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although there is a great deal of information concerning responses to increases in atmospheric CO2 at the tissue and plant levels, there are substantially fewer studies that have investigated ecosystem-level responses in the context of integrated carbon, water, and nutrient cycles. Because our understanding of ecosystem responses to elevated CO2 is incomplete, modeling is a tool that can be used to investigate the role of plant and soil interactions in the response of terrestrial ecosystems to elevated CO2. In this study, we analyze the responses of net primary production (NPP) to doubled CO2 from 355 to 710 ppmv among three biogeochemistry models in the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): BIOME-BGC (BioGeochemical Cycles), Century, and the Terrestrial Ecosystem Model (TEM). For the conterminous United States, doubled atmospheric CO2 causes NPP to increase by 5% in Century, 8% in TEM, and 11% in BIOME-BGC. Multiple regression analyses between the NPP response to doubled CO2 and the mean annual temperature and annual precipitation of biomes or grid cells indicate that there are negative relationships between precipitation and the response of NPP to doubled CO2 for all three models. In contrast, there are different relationships between temperature and the response of NPP to doubled CO2 for the three models: there is a negative relationship in the responses of BIOME-BGC, no relationship in the responses of Century, and a positive relationship in the responses of TEM. In BIOME-BGC, the NPP response to doubled CO2 is controlled by the change in transpiration associated with reduced leaf conductance to water vapor. This change affects soil water, then leaf area development and, finally, NPP. In Century, the response of NPP to doubled CO2 is controlled by changes in decomposition rates associated with increased soil moisture that results from reduced evapotranspiration. This change affects nitrogen availability for plants, which influences NPP. In TEM, the NPP response to doubled CO2 is controlled by increased carboxylation which is modified by canopy conductance and the degree to which nitrogen constraints cause down-regulation of photosynthesis. The implementation of these different mechanisms has consequences for the spatial pattern of NPP responses, and represents, in part, conceptual uncertainty about controls over NPP responses. Progress in reducing these uncertainties requires research focused at the ecosystem level to understand how interactions between the carbon, nitrogen, and water cycles influence the response of NPP to elevated atmospheric CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-9761
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We present a simple and generalized method to predict Available Soil Water Capacity (ASWC-TOP) for a given area using a topographic index, defined as ln(α/tanβ), where α is the upslope area draining past a certain point per unit width of slope, and β is the local surface slope angle. The estimated results (ASWC-TOP) were then compared with the available soil water capacity calculated from soil series information provided by Soil Conservation Service, U.S. Department of Agriculture (ASWC-SCS). The model implementation was tested with three study cases: the Seeley-Swan valley, Montana, with pixel resolutions of 100 m and 1 km, respectively; and the state of Montana, U.S.A., with a pixel resolution of 1 km. A linear relationship exists between ASWC-SCS and ln(α/tanβ). Standard errors between ASWC-TOP and ASWC-SCS were about 4.4 cm in the Seeley-Swan valley and 5.5 cm in the state. The number of pixels with absolute residuals ≤ 4 cm between ASWC-TOP and ASWC-SCS accounted for 68.2, 64.4, and 51.9% for the valley 100 m, valley 1 km, and the state respectively. Some of the mismatches between ASWC-TOP and ASWC-SCS may indicate an improvement using this method compared to existing data because the topographic method reflects the higher spatial variation of the inputs. The increasing availability of digital elevation data, at various resolutions, may provide an alternative to soil series for estimating ASWC. The accuracy of ASWC-TOP depends on estimation of mean and maximum ASWC for a study area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9761
    Keywords: snow ; model ; regional simulation ; forest ; remote sensing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A general snow accumulation and melt model was developed to (1)determine how accurately snow accumulation and ablation can bemodeled over heterogeneous landscapes with routinely available climatologic, topographic, and vegetation data, and (2) improveestimates of annual forest snow hydrology for point and regionalcalculations of annual forest productivity. The snow model wasdesigned to operate within the Regional HydroecologicalSimulation System (RHESSys), a GIS based modeling system tomanage spatial data for distributed computer simulations onwatershed scales. One feature of the RHESSys Snow Model (RSM) isit can use satellite derived forest leaf area index (LAI) torepresent catchment forest cover; difficult to obtain in adequatecover and resolution by any other means. The model was testedover 3 water years (October to September) with data recorded by10 snow telemetry stations (SNOTEL) in 5 states ranging inmeso-climate and elevations from a coastal Oregon site (1067 m)to a continental Colorado site (3261 m). Predictions for the 10 sites were made with identicalparameter values and only site climate varied for all sites. Theaverage difference between observed and predicted snow depletiondates for all sites and water years was 6.2 days and 8 of the 30simulations were within ± 2 days (R2 = 0.91). Radiation melt wasthe dominate snow ablation component at the Colorado site wheresublimation was 10% (LAI = 0) to 20% (LAI = 6) ofsnow loss while air temperature was the dominate component at theOregon site with sublimation reduced to 1% (LAI = 0) to6% (LAI = 6) of snow loss. LAI had a greater effectdetermining snow depletion than site aspect. Aspect increased inimportance if the snow depletion occurred during early springwhen solar insolation differences between hillslopes is greaterthan in the late spring. An accurate prediction of daily snowpack water equivalent(SWE) was not a strong determinant for making an accurateprediction of snowpack depletion date. Predicted snowpackdepletion dates were more sensitive to timing when the snowpackreached an isothermal condition. Daily estimates of SWE were mostsensitive to correctly estimating snowfall from SNOTEL data. Thismeans that for purposes of determining the snow depletion dateswhich are useful for forest ecosystem modeling, tracking SWE isless important then triggering snowmelt. Comparisons ofsimulations to published snow depletion dates show that RSMpredicted the relative ranking and magnitude of depletion fordifferent combinations of forest cover, elevation, and aspect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1572-9761
    Keywords: net primary production ; landscape aggregation ; ecosystem process model ; bias
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The use of large grid cell databases (1/2° to 5°) to drive nonlinear ecosystem process models may create an incompatibility of scales which can often lead to biased outputs. Global simulations of net primary production (NPP) often assume that bias due to averaging of sub-grid variations in climate, topography, soils, and vegetation is minimal, yet the magnitude and behavior of this bias on estimates of NPP are largely unknown. The effects of averaging sub-grid land surface variations on NPP estimates were evaluated by simulating a 1° × 1° land surface area as represented by four successive levels of landscape complexity, ranging from a single computation to 8,456 computations of NPP for the study area. Averaging sub-grid cell landscape variations typical of the northern US Rocky Mountains can result in overestimates of NPP as large as 30 %. Aggregating climate within the 1° cell contributed up to 50 % of the bias to NPP estimates, while aggregating topography, soils, and vegetation was of secondary importance. Careful partitioning of complex landscapes can efficiently reduce the magnitude of this overestimation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...