ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019
    Description: 〈span〉Sediment routing systems (SRSs) are a critical element of the global response to ongoing climate change. However SRS response to climate forcing is complex, fragmentary, and obscured when viewed over short, human time scales (10〈sup〉–1〈/sup〉–10〈sup〉2〈/sup〉 yr). Over long time scales (〉10〈sup〉2〈/sup〉–10〈sup〉3〈/sup〉 yr), the aggregated, system-wide response of SRSs to climate forcing can be gleaned with more confidence from the sedimentary record, but the nature and time scales of this aggregated response to abrupt climate change are still poorly understood. Here, we investigate the aggregated temporal response of a SRS in northern Spain to abrupt climate warming at the Paleocene-Eocene thermal maximum (PETM). Our results show that terrestrial sites in northern Spain record a temporal lag of 16.5 ± 7.5 k.y. between the onset of the PETM, defined by an abrupt negative excursion in the δ〈sup〉13〈/sup〉C profile, and the onset of coarse-grained deposition. Within the same SRS at a deep marine site 500 km to the west, we observe a temporal lag of 16.5 ± 1.5 k.y. using an age model that is independent of that used for the terrestrial sites. These results suggest that the aggregated, system-wide response of SRSs to present-day global warming—if we take the PETM as an appropriate modern-day analogue—may persist for many millennia into the future.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Sediment routing systems (SRSs) are a critical element of the global response to ongoing climate change. However SRS response to climate forcing is complex, fragmentary, and obscured when viewed over short, human time scales (10〈sup〉−1〈/sup〉–10〈sup〉2〈/sup〉 yr). Over long time scales (〉10〈sup〉2〈/sup〉–10〈sup〉3〈/sup〉 yr), the aggregated, system-wide response of SRSs to climate forcing can be gleaned with more confidence from the sedimentary record, but the nature and time scales of this aggregated response to abrupt climate change are still poorly understood. Here, we investigate the aggregated temporal response of a SRS in northern Spain to abrupt climate warming at the Paleocene-Eocene thermal maximum (PETM). Our results show that terrestrial sites in northern Spain record a temporal lag of 16.5 ± 7.5 k.y. between the onset of the PETM, defined by an abrupt negative excursion in the δ〈sup〉13〈/sup〉C profile, and the onset of coarse-grained deposition. Within the same SRS at a deep marine site 500 km to the west, we observe a temporal lag of 16.5 ± 1.5 k.y. using an age model that is independent of that used for the terrestrial sites. These results suggest that the aggregated, system-wide response of SRSs to present-day global warming—if we take the PETM as an appropriate modern-day analogue—may persist for many millennia into the future.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-03
    Description: Dissimilatory iron reduction (DIR) is suggested to be one of the earliest forms of microbial respiration. It plays an important role in the biogeochemical cycling of iron in modern and ancient sediments. Since microbial iron cycling is typically accompanied by iron isotope fractionation, stable iron isotopes are used as tracer for biological activity. Here we present iron isotope data for dissolved and sequentially extracted sedimentary iron pools from deep and hot subseafloor sediments retrieved in the Nankai Trough off Japan. Dissolved iron (Fe(II)aq) is isotopically light throughout the ferruginous sediment interval but some samples have exceptionally light isotope values. Such light values have never been reported in natural marine environments and cannot be solely attributed to DIR. We show that the light isotope values are best explained by a Rayleigh distillation model where Fe(II)aq is continuously removed from the pore water by adsorption onto iron (oxyhydr)oxide surfaces. While the microbially mediated Fe(II)aq release has ceased due to an increase in temperature beyond the threshold of mesophilic microorganisms, the abiotic adsorptive Fe(II)aq removal continued, leading to uniquely light isotope values. These findings have important implications for the interpretation of dissolved iron isotope data especially in deep subseafloor sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...