ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fan, S., Cross, A. J., Prior, D. J., Goldsby, D. L., Hager, T. F., Negrini, M., & Qi, C. Crystallographic preferred orientation (CPO) development governs strain weakening in ice: insights from high-temperature deformation experiments. Journal of Geophysical Research: Solid Earth, 126(12), (2021): e2021JB023173, https://doi.org/10.1029/2021JB023173.
    Description: Strain weakening leads to the formation of high-strain shear zones and strongly influences terrestrial ice discharge. In glacial flow models, strain weakening is assumed to arise from the alignment of weak basal planes—the development of a crystallographic preferred orientation, CPO—during flow. However, in experiments, ice strain weakening also coincides with grain size reduction, which has been invoked as a weakening mechanism in other minerals. To interrogate the relative contributions of CPO development and grain size reduction toward ice strain weakening, we deformed initially isotropic polycrystalline ice samples to progressively higher strains between −4 and −30°C. Microstructural measurements were subsequently combined with flow laws to separately model the mechanical response expected to arise from CPO development and grain size reduction. Magnitudes of strain weakening predicted by the constitutive flow laws were then compared with the experimental measurements. Flow laws that only consider grain size do not predict weakening with strain despite grain size reduction. In contrast, flow laws solely considering CPO effects can reproduce the measured strain weakening. Thus, it is reasonable to assume that strain weakening in ice is dominated by CPO development, at least under high temperature (Th ≥ 0.9) and high stress (〉1 MPa), like those in our experiments. We speculate that at high homologous temperatures (Th ≥ 0.9), CPO development will also govern the strain weakening behavior of other viscously anisotropic minerals, like olivine and quartz. Overall, we emphasize that geodynamic and glaciological models should incorporate CPOs to account for strain weakening, especially at high homologous temperatures.
    Description: This work was supported by a NASA fund (grant no. NNX15AM69G) to David L. Goldsby and two Marsden Funds of the Royal Society of New Zealand (grant nos. UOO1116, UOO052) to David J. Prior. Sheng Fan was supported by the University of Otago doctoral scholarship, the Antarctica New Zealand doctoral scholarship, a research grant from New Zealand Ministry of Business, Innovation and Employment through the Antarctic Science Platform (ANTA1801) (grant no. ASP-023-03), and a New Zealand Antarctic Research Institute (NZARI) Early Career Researcher Seed Grant (grant no. NZARI 2020-1-5).
    Keywords: High-temperature deformation ; Ice ; Strain weakening ; Grain size ; Crystallographic preferred orientation (CPO) ; Electron backscatter diffraction (EBSD)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-21
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 127(8), (2022): e2022JB024497, https://doi.org/10.1029/2022JB024497.
    Description: During plastic deformation, strain weakening can be achieved, in part, via strain energy reduction associated with intragranular boundary development and grain boundary formation. Grain boundaries (in 2D) are segments between triple junctions, that connect to encircle grains; every boundary segment in the encircling loop has a high (〉10°) misorientation angle. Intragranular boundaries terminate within grains or dissect grains, usually containing boundary segments with a low (〈10°) misorientation angle. We analyze electron backscatter diffraction (EBSD) data from ice deformed at −30°C (Th≈ 0.9). Misorientation and weighted Burgers vector (WBV) statistics are calculated along planar intragranular boundaries. Misorientation angles change markedly along each intragranular boundary, linking low- (〈10°) and high-angle (10–38°) segments that exhibit distinct misorientation axes and WBV directions. We suggest that these boundaries might be produced by the growth and intersection of individual intragranular boundary segments comprising dislocations with distinct slip systems. There is a fundamental difference between misorientation axis distributions of intragranular boundaries (misorientation axes mostly confined to ice basal plane) and grain boundaries (no preferred misorientation axis). These observations suggest during progressive subgrain rotation, intragranular boundaries remain crystallographically controlled up to large misorientation angles (〉〉10°). In contrast, the apparent lack of crystallographic control for grain boundaries suggests misorientation axes become randomized, likely due to the activation of additional mechanisms (such as grain boundary sliding) after grain boundary formation, linking boundary segments to encircle a grain. Our findings on ice intragranular boundary development and grain boundary formation may apply more broadly to other rock-forming minerals (e.g., olivine, quartz).
    Description: This work was supported by a NASA fund (Grant No. NNX15AM69G) to David L. Goldsby and two Marsden Funds of the Royal Society of New Zealand (Grant Nos. UOO1116, UOO052) to David J. Prior. Sheng Fan was supported by the University of Otago doctoral scholarship, the Antarctica New Zealand doctoral scholarship, a research grant from New Zealand Ministry of Business, Innovation and Employment through the Antarctic Science Platform (ANTA1801) (Grant No. ASP-023-03), and a New Zealand Antarctic Research Institute (NZARI) Early Career Researcher Seed Grant (Grant No. NZARI 2020-1-5). Open access publishing facilitated by University of Otago, as part of the Wiley – University of Otago agreement via the Council of Australian University Librarians.
    Keywords: High temperature deformation ; Misorientation ; Weighted Burgers vector ; Intragranular boundary ; Grain boundary ; Boundary geometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Vast amounts of solid CO2 reside in topographic basins of the south polar layered deposits (SPLD) on Mars and exhibit morphological features indicative of glacial flow. Previous experimental studies showed that coarse-grained CO2 ice is 1–2 orders of magnitude weaker than water ice under Martian polar conditions. Here we present data from a series of deformation experiments on high-purity, fine-grained CO2 ice over a broader range of temperatures than previously explored (158–213 K). The experiments confirm previous observations of highly non-linear power-law creep at larger stresses, but also show a transition to a previously-unseen linear-viscous creep regime at lower stresses. We examine the viscosity of CO2 within the SPLD and predict that the CO2-rich layers may be stronger than previously thought. We also predict that CO2 ice flows much more readily than H2O ice on steep flanks of SPLD topographic basins, allowing the CO2 to pond as observed.
    Description: National Aeronautics and Space Administration (NASA) NNH16ZDA001N-SSW
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(22), (2020): e2020GL090431, doi:10.1029/2020GL090431.
    Description: Vast quantities of solid CO2 reside in topographic basins of the south polar layered deposits (SPLD) on Mars and exhibit morphological features indicative of glacial flow. Previous experimental studies showed that CO2 ice is 1–2 orders of magnitude weaker than water ice under Martian polar conditions. Here we present data from deformation experiments on pure, fine‐grained CO2 ice, over a broader range of temperatures than previously explored (158–213 K). The experiments confirm previous observations of highly nonlinear power law creep at larger stresses, but also show a transition to a previously unseen linear‐viscous creep regime at lower stresses. We examine the viscosity of CO2 within the SPLD and predict that the CO2‐rich deposits are modestly stronger than previously thought. Nevertheless, CO2 ice flows much more readily than H2O ice, particularly on the steep flanks of SPLD topographic basins, allowing the CO2 to pond as observed.
    Description: This work was funded by NASA grant NNH16ZDA001N‐SSW awarded to Smith and Goldsby. Additional salary support for Cross was provided by the WHOI Investment in Science Fund.
    Description: 2021-04-29
    Keywords: SPLD ; Mars ; Glacier ; Carbon dioxide ; Flow law ; Creep
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fan, S., Hager, T. F., Prior, D. J., Cross, A. J., Goldsby, D. L., Qi, C., Negrini, M., & Wheeler, J. Temperature and strain controls on ice deformation mechanisms: Insights from the microstructures of samples deformed to progressively higher strains at-10,-20 and-30 degrees C. Cryosphere, 14(11), (2020): 3875-3905, doi:10.5194/tc-14-3875-2020.
    Description: In order to better understand ice deformation mechanisms, we document the microstructural evolution of ice with increasing strain. We include data from experiments at relatively low temperatures (−20 and −30 ∘C), where the microstructural evolution with axial strain has never before been documented. Polycrystalline pure water ice was deformed under a constant displacement rate (strain rate ∼1.0×10−5 s−1) to progressively higher strains (∼ 3 %, 5 %, 8 %, 12 % and 20 %) at temperatures of −10, −20 and −30 ∘C. Microstructural data were generated from cryogenic electron backscattered diffraction (cryo-EBSD) analyses. All deformed samples contain subgrain (low-angle misorientations) structures with misorientation axes that lie dominantly in the basal plane, suggesting the activity of dislocation creep (glide primarily on the basal plane), recovery and subgrain rotation. Grain boundaries are lobate in all experiments, suggesting the operation of strain-induced grain boundary migration (GBM). Deformed ice samples are characterized by interlocking big and small grains and are, on average, finer grained than undeformed samples. Misorientation analyses between nearby grains in 2-D EBSD maps are consistent with some 2-D grains being different limbs of the same irregular grain in the 3-D volume. The proportion of repeated (i.e. interconnected) grains is greater in the higher-temperature experiments suggesting that grains have more irregular shapes, probably because GBM is more widespread at higher temperatures. The number of grains per unit area (accounting for multiple occurrences of the same 3-D grain) is higher in deformed samples than undeformed samples, and it increases with strain, suggesting that nucleation is involved in recrystallization. “Core-and-mantle” structures (rings of small grains surrounding big grains) occur in −20 and −30 ∘C experiments, suggesting that subgrain rotation recrystallization is active. At temperatures warmer than −20 ∘C, c axes develop a crystallographic preferred orientation (CPO) characterized by a cone (i.e. small circle) around the compression axis. We suggest the c-axis cone forms via the selective growth of grains in easy slip orientations (i.e. ∼ 45∘ to shortening direction) by GBM. The opening angle of the c-axis cone decreases with strain, suggesting strain-induced GBM is balanced by grain rotation. Furthermore, the opening angle of the c-axis cone decreases with temperature. At −30 ∘C, the c-axis CPO changes from a narrow cone to a cluster, parallel to compression, with increasing strain. This closure of the c-axis cone is interpreted as the result of a more active grain rotation together with a less effective GBM. We suggest that lattice rotation, facilitated by intracrystalline dislocation glide on the basal plane, is the dominant mechanism controlling grain rotation. Low-angle neighbour-pair misorientations, relating to subgrain boundaries, are more extensive and extend to higher misorientation angles at lower temperatures and higher strains supporting a relative increase in the importance of dislocation activity. As the temperature decreases, the overall CPO intensity decreases, primarily because the CPO of small grains is weaker. High-angle grain boundaries between small grains have misorientation axes that have distributed crystallographic orientations. This implies that, in contrast to subgrain boundaries, grain boundary misorientation is not controlled by crystallography. Nucleation during recrystallization cannot be explained by subgrain rotation recrystallization alone. Grain boundary sliding of finer grains or a different nucleation mechanism that generates grains with random orientations could explain the weaker CPO of the fine-grained fraction and the lack of crystallographic control on high-angle grain boundaries.
    Description: This research has been supported by the NASA Fund (grant no. NNX15AM69G) and the Marsden Fund of the Royal Society of New Zealand (grant nos. UOO1116, UOO052).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2020-11-10
    Description: In order to better understand ice deformation mechanisms, we document the microstructural evolution of ice with increasing strain. We include data from experiments at relatively low temperatures (−20 and −30 ∘C), where the microstructural evolution with axial strain has never before been documented. Polycrystalline pure water ice was deformed under a constant displacement rate (strain rate ∼1.0×10-5 s−1) to progressively higher strains (∼ 3 %, 5 %, 8 %, 12 % and 20 %) at temperatures of −10, −20 and −30 ∘C. Microstructural data were generated from cryogenic electron backscattered diffraction (cryo-EBSD) analyses. All deformed samples contain subgrain (low-angle misorientations) structures with misorientation axes that lie dominantly in the basal plane, suggesting the activity of dislocation creep (glide primarily on the basal plane), recovery and subgrain rotation. Grain boundaries are lobate in all experiments, suggesting the operation of strain-induced grain boundary migration (GBM). Deformed ice samples are characterized by interlocking big and small grains and are, on average, finer grained than undeformed samples. Misorientation analyses between nearby grains in 2-D EBSD maps are consistent with some 2-D grains being different limbs of the same irregular grain in the 3-D volume. The proportion of repeated (i.e. interconnected) grains is greater in the higher-temperature experiments suggesting that grains have more irregular shapes, probably because GBM is more widespread at higher temperatures. The number of grains per unit area (accounting for multiple occurrences of the same 3-D grain) is higher in deformed samples than undeformed samples, and it increases with strain, suggesting that nucleation is involved in recrystallization. “Core-and-mantle” structures (rings of small grains surrounding big grains) occur in −20 and −30 ∘C experiments, suggesting that subgrain rotation recrystallization is active. At temperatures warmer than −20 ∘C, c axes develop a crystallographic preferred orientation (CPO) characterized by a cone (i.e. small circle) around the compression axis. We suggest the c-axis cone forms via the selective growth of grains in easy slip orientations (i.e. ∼ 45∘ to shortening direction) by GBM. The opening angle of the c-axis cone decreases with strain, suggesting strain-induced GBM is balanced by grain rotation. Furthermore, the opening angle of the c-axis cone decreases with temperature. At −30 ∘C, the c-axis CPO changes from a narrow cone to a cluster, parallel to compression, with increasing strain. This closure of the c-axis cone is interpreted as the result of a more active grain rotation together with a less effective GBM. We suggest that lattice rotation, facilitated by intracrystalline dislocation glide on the basal plane, is the dominant mechanism controlling grain rotation. Low-angle neighbour-pair misorientations, relating to subgrain boundaries, are more extensive and extend to higher misorientation angles at lower temperatures and higher strains supporting a relative increase in the importance of dislocation activity. As the temperature decreases, the overall CPO intensity decreases, primarily because the CPO of small grains is weaker. High-angle grain boundaries between small grains have misorientation axes that have distributed crystallographic orientations. This implies that, in contrast to subgrain boundaries, grain boundary misorientation is not controlled by crystallography. Nucleation during recrystallization cannot be explained by subgrain rotation recrystallization alone. Grain boundary sliding of finer grains or a different nucleation mechanism that generates grains with random orientations could explain the weaker CPO of the fine-grained fraction and the lack of crystallographic control on high-angle grain boundaries.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-01
    Print ISSN: 1359-6454
    Electronic ISSN: 1873-2453
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...