ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,020)
  • Wiley  (644)
  • Copernicus Publications (EGU)  (371)
  • American Institute of Physics
  • American Physical Society
  • Cell Press
  • 2015-2019  (1,005)
  • 1980-1984  (15)
  • 1945-1949
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  Chichester, Wiley, vol. 231, no. 3, pp. 2-203, (ISBN 0-470-02298-1)
    Publication Date: 1982
    Keywords: Data analysis / ~ processing ; Correlation ; Seismic stratigraphy ; Seismics (controlled source seismology)
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley
    In:  New York, 2nd Edition, 709 pp., Wiley, vol. 75, no. 2, pp. 2-203, (ISBN: 3-7643-7143-9)
    Publication Date: 1981
    Keywords: Correlation ; Data analysis / ~ processing ; fit ; Textbook of mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-13
    Description: Experimental studies linking community composition to functioning are typically confined to small and closed micro- or mesocosms. Such restricted conditions may affect both species’ biology and their environment. Yet, targeting simple features in the behaviour of species may circumvent these constraints. Focusing on ecological functions provided by dung beetles, we test whether large, open-top cages – MESOCLOSURES – will intercept the flight trajectories of beetles, thereby allowing manipulation of local community composition. MESOCLOSURES were built in both tropical forest (Brazil) and temperate grasslands (Finland), thus testing their general efficiency. Within the respective environments, we varied different aspects of MESOCLOSURE design: in the tropical forest, we examined the impact of MESOCLOSURE dimensions on exclusion efficiency, whereas in the temperate grassland, we assessed the potential for selectively excluding and including community members by different mesh sizes. In the temperate environment, we also went from method to application, using MESOCLOSURES to relate community composition to functioning under two simulated grazing regimes. MESOCLOSURES allowed efficient manipulation of dung beetle communities, maintaining dung beetle densities at intended levels in both temperate and tropical systems. In the tropics, the smallest cages (1 × 1 m) offered the highest contrast in beetle densities inside vs. outside of the fence, whereas the largest cages (9 × 9 m) offered the lowest. Nonetheless, densities inside cages never exceed one-fifth of those outside. At the temperate site, manipulations of community structure through mesh size yielded significant differences in functioning and suggested an interaction between small dung-dwelling species and large tunnelling species. Within cages, higher grazing was reflected in augmented dung removal. We conclude that MESOCLOSURES can be effectively used to study dung beetle functions across habitats and latitudes. As applied insights, the present study adds resolution to the significance of different functional groups of dung beetles and shows that grazing pressure may have an important impact on the ecosystem functions that they provide. Overall, this study suggests that targeted manipulation of dispersal may offer new solutions for linking fauna to ecosystem functions with minimal impact on the processes measured.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The Denmark Strait Overflow (DSO) contributes roughly half to the total volume transport of the Nordic overflows. The overflow increases its volume by entraining ambient water as it descends into the subpolar North Atlantic, feeding into the deep branch of the Atlantic Meridional Overturning Circulation. In June 2012, a multiplatform experiment was carried out in the DSO plume on the continental slope off Greenland (180 km downstream of the sill in Denmark Strait), to observe the variability associated with the entrainment of ambient waters into the DSO plume. In this study, we report on two high-dissipation events captured by an autonomous underwater vehicle (AUV) by horizontal profiling in the interfacial layer between the DSO plume and the ambient water. Strong dissipation of turbulent kinetic energy of O( math formula) W kg−1 was associated with enhanced small-scale temperature variance at wavelengths between 0.05 and 500 m as deduced from a fast-response thermistor. Isotherm displacement slope spectra reveal a wave number-dependence characteristic of turbulence in the inertial-convective subrange ( math formula) at wavelengths between 0.14 and 100 m. The first event captured by the AUV was transient, and occurred near the edge of a bottom-intensified energetic eddy. Our observations imply that both horizontal advection of warm water and vertical mixing of it into the plume are eddy-driven and go hand in hand in entraining ambient water into the DSO plume. The second event was found to be a stationary feature on the upstream side of a topographic elevation located in the plume pathway. Flow-topography interaction is suggested to drive the intense mixing at this site.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-26
    Description: Male secondary sexual traits are targets of inter- and/or intrasexual selection, but can vary due to a correlation with life-history traits or as by-product of adaptation to distinct environments. Trade-offs contributing to this variation may comprise conspicuousness towards conspecifics versus inconspicuousness towards predators, or between allocating resources into coloration versus the immune system. Here, we examine variation in expression of a carotenoid-based visual signal, anal-fin egg-spots, along a replicate environmental gradient in the haplochromine cichlid fish Astatotilapia burtoni. We quantified egg-spot number, area, and coloration; applied visual models to estimate the trait's conspicuousness when perceived against the surrounding tissue under natural conditions; and used the lymphocyte ratio as a measure for immune activity. We find that (i) males possess larger and more conspicuous egg-spots than females, which is likely explained by their function in sexual selection; (ii) riverine fish generally feature fewer but larger and/or more intensively colored egg-spots, which is probably to maintain signal efficiency in intraspecific interactions in long-wavelength shifted riverine light conditions; and (iii) egg-spot number and relative area correlate with immune defense, suggesting a trade-off in the allocation of carotenoids. Taken together, haplochromine egg-spots feature the potential to adapt to the respective underwater light environment, and are traded-off with investment into the immune system
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimates
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-23
    Description: Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment. However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering such studies. Here, we present stable Cd isotope data for aerosols collected over the Tropical Atlantic Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit similar isotope compositions, thus negating the distinction of these Cd sources using isotopic signatures in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other areas, and thus warrants further investigation. Regardless, these data provide important initial constraints on the isotope composition of atmospheric Cd inputs to the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: Aim: The lives of juvenile leatherback turtles are amongst the most enigmatic of all marine mega-vertebrates. For these cryptic organisms, ocean models provide important insights into their dispersion from natal sites. Here, corroborated by fisheries bycatch data, we simulate spatio-temporal variation in hatchling dispersion patterns over five decades from the World's largest leatherback turtle nesting region. Location: Equatorial Central West Africa (3.5°N to −6°S) spanning the Gulf of Guinea in the North, Gabon and the Republic/Democratic Republic of the Congo in the South. Results: Due to dynamic oceanic conditions at these equatorial latitudes, dispersion scenarios differed significantly: (1) along the north to south gradient of the study region, (2) seasonally and (3) between years. From rookeries to the north of the equator, simulated hatchling retention rates within the Gulf of Guinea were very high (〉99%) after 6 months of drift, whilst south of the equator, retention rates were as low as c. 6% with the majority of simulated hatchlings dispersing west into the South Atlantic Ocean with the South Equatorial Current. Seasonal dispersion variability was driven by wind changes arising from the yearly north/southward migration of the intertropical convergence zone resulting in the increasing westerly dispersion of hatchlings throughout the hatching season. Annual variability in wind stress drove a long-term trend for decreased retention within the Gulf of Guinea and increased westerly dispersion into habitats in the South Atlantic Ocean. Main conclusions: Shifts in dispersion habitats arising from spatio-temporal oceanic variability expose hatchlings to different environments and threats that will influence important life history attributes such as juvenile growth/survival rates; anticipated to impact the population dynamics and size/age structure of populations into adulthood. The impacts of local and dynamic oceanic conditions thus require careful considerations, such as subregional management, when managing marine populations of conservation concern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: The waning stage(s) of the Tethyan ocean(s) in the Balkans are not well understood. Controversy centres on the origin and life-span of the Cretaceous Sava Zone, which is allegedly a remnant of the last oceanic domain in the Balkan Peninsula, defining the youngest suture between Eurasia- and Adria-derived plates. In order to investigate to what extent late-Cretaceous volcanism within the Sava zone is consistent with this model, we present new age data together with trace-element and Sr–Nd–Pb isotope data for the Klepa basaltic lavas from the central Balkan Peninsula. Our new geochemical data show marked differences between the Cretaceous Klepa basalts (Sava Zone) and the rocks of other volcanic sequences from the Jurassic ophiolites of the Balkans. The Klepa basalts mostly have Sr–Nd–Pb isotopic and trace-element signatures that resemble enriched within-plate basalts, substantially different from Jurassic ophiolite basalts with MORB, BAB and IAV affinities. Trace-element modelling of the Klepa rocks indicates 2–20% polybaric melting of a relatively homogeneously metasomatised mantle source that ranges in composition from garnet lherzolite to ilmenite+apatite bearing spinel–amphibole lherzolite. Thus, the residual mineralogy is characteristic of a continental rather than oceanic lithospheric mantle source, suggesting an intracontinental within-plate origin for the Klepa basalts. Two alternative geodynamic models are internally consistent with our new findings: i) if the Sava Zone represents remnants of the youngest Neotethyan Ocean, magmatism along this zone would be situated within the forearc region and triggered by ridge subduction; ii) if the Sava Zone delimits a diffuse tectonic boundary between Adria and Europe, which had already collided in the Late Jurassic, the Klepa basalts together with a number of other magmatic centres represent volcanism related to transtensional tectonics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). 2830-2846 .
    Publication Date: 2020-02-06
    Description: The upstream sources and pathways of the Denmark Strait Overflow Water and their variability have been investigated using a high-resolution model hindcast. This global simulation covers the period from 1948 to 2009 and uses a fine model mesh (1/20°) to resolve mesoscale features and the complex current structure north of Iceland explicitly. The three sources of the Denmark Strait Overflow, the shelfbreak East Greenland Current (EGC), the separated EGC, and the North Icelandic Jet, have been analyzed using Eulerian and Lagrangian diagnostics. The shelfbreak EGC contributes the largest fraction in terms of volume and freshwater transport to the Denmark Strait Overflow and is the main driver of the overflow variability. The North Icelandic Jet contributes the densest water to the Denmark Strait Overflow and shows only small temporal transport variations. During summer, the net volume and freshwater transports to the south are reduced. On interannual time scales, these transports are highly correlated with the large-scale wind stress curl around Iceland and, to some extent, influenced by the North Atlantic Oscillation, with enhanced southward transports during positive phases. The Lagrangian trajectories support the existence of a hypothesized overturning loop along the shelfbreak north of Iceland, where water carried by the North Icelandic Irminger Current is transformed and feeds the North Icelandic Jet. Monitoring these two currents and the region north of the Iceland shelfbreak could provide the potential to track long-term changes in the Denmark Strait Overflow and thus also the AMOC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-06
    Description: The North Atlantic Current (NAC) is subject to variability on multiannual to decadal time scales, influencing the transport of volume, heat, and freshwater from the subtropical to the eastern subpolar North Atlantic (NA). Current observational time series are either too short or too episodic to study the processes involved. Here we compare the observed continuous NAC transport time series at the western flank of the Mid-Atlantic Ridge (MAR) and repeat hydrographic measurements at the OVIDE line in the eastern Atlantic with the NAC transport and circulation in the high-resolution (1/20°) ocean model configuration VIKING20 (1960–2008). The modeled baroclinic NAC transport relative to 3400 m (24.5 ± 7.1 Sv) at the MAR is only slightly lower than the observed baroclinic mean of 27.4 ± 4.7 Sv from 1993 to 2008, and extends further north by about 0.5°. In the eastern Atlantic, the western NAC (WNAC) carries the bulk of the transport in the model, while transport estimates based on hydrographic measurements from five repeated sections point to a preference for the eastern NAC (ENAC). The model is able to simulate the main features of the subpolar NA, providing confidence to use the model output to analyze the influence of the North Atlantic Oscillation (NAO). Model based velocity composites reveal an enhanced NAC transport across the MAR of up to 6.7 Sv during positive NAO phases. Most of that signal (5.4 Sv) is added to the ENAC transport, while the transport of the WNAC was independent of the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (9). pp. 4246-4255.
    Publication Date: 2020-02-06
    Description: While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (4). pp. 3481-3499.
    Publication Date: 2020-02-06
    Description: We examine the mean pathways, transit timescales, and transformation of waters flowing from the Pacific and the marginal seas through the Indian Ocean (IO) on their way toward the South Atlantic within a high-resolution ocean/sea-ice model. The model fields are analyzed from a Lagrangian perspective where water volumes are tracked as they enter the IO. The IO contributes 12.6 Sv to Agulhas leakage, which within the model is 14.1 ± 2.2 Sv, the rest originates from the South Atlantic. The Indonesian Through-flow constitutes about half of the IO contribution, is surface bound, cools and salinificates as it leaves the basin within 10–30 years. Waters entering the IO south of Australia are at intermediate depths and maintain their temperature-salinity properties as they exit the basin within 15–35 years. Of these waters, the contribution from Tasman leakage is 1.4 Sv. The rest stem from recirculation from the frontal regions of the Southern Ocean. The marginal seas export 1.0 Sv into the Atlantic within 15–40 years, and the waters cool and freshen on-route. However, the model's simulation of waters from the Gulfs of Aden and Oman are too light and hence overly influenced by upper ocean circulations. In the Cape Basin, Agulhas leakage is well mixed. On-route, temperature-salinity transformations occur predominantly in the Arabian Sea and within the greater Agulhas Current region. Overall, the IO exports at least 7.9 Sv from the Pacific to the Atlantic, thereby quantifying the strength of the upper cell of the global conveyor belt.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Wiley
    In:  Journal of Microscopy, 131 (2). pp. 173-186.
    Publication Date: 2017-07-13
    Description: Many of the difficulties of staining plastic embedded tissues for light and electron microscopy derive from physical exclusion of hydrophilic staining reagents by hydrophobic embedding media. Structures which stain most intensely with hydrophilic reagents usually contain less hydrophobic plastic than do non-staining structures. Such incomplete infiltration is apparently caused by exclusion of viscous, hydrophobic monomers by physically dense and/or well hydrated tissue elements. In keeping with this, generalized staining of tissues embedded in hydrophobic media does occur when hydrophobic reagents are used. Staining of plastic-free structures with single hydrophilic reagents or with sequences of such reagents, is, however, largely rate-controlled. The surprising similarity of hydrophilic and hydrophobic plastic embedding media is discussed. Limits of this simple model are explored, with a consideration of the roles of fixative and of monomer-tissue reactions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-06-15
    Description: At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from equilibrium arise from the transient response of landscape denudation to climatic and tectonic perturbations. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. We synthesize weathering fluxes, global sedimentation rates, sediment yields and tectonic motions to show a remarkable constancy in the pace of Earth-surface evolution over the last 10 Ma and support the null hypothesis – that global rates of landscape change have remained constant over this time period, despite global climate change and mountain building events. This work undermines the hypothesis that increased weathering due to mountain building or climate change was the primary agent for a decrease in global temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-06
    Description: The potential of mining seafloor massive sulfide deposits for metals such as Cu, Zn, and Au is currently debated. One key challenge is to predict where the largest deposits worth mining might form, which in turn requires understanding the pattern of subseafloor hydrothermal mass and energy transport. Numerical models of heat and fluid flow are applied to illustrate the important role of fault zone properties (permeability and width) in controlling mass accumulation at hydrothermal vents at slow spreading ridges. We combine modeled mass-flow rates, vent temperatures, and vent field dimensions with the known fluid chemistry at the fault-controlled Logatchev 1 hydrothermal field of the Mid-Atlantic Ridge. We predict that the 135 kilotons of SMS at this site (estimated by other studies) can have accumulated with a minimum depositional efficiency of 5% in the known duration of hydrothermal venting (58,200 year age of the deposit). In general, the most productive faults must provide an efficient fluid pathway while at the same time limit cooling due to mixing with entrained cold seawater. This balance is best met by faults that are just wide and permeable enough to control a hydrothermal plume rising through the oceanic crust. Model runs with increased basal heat input, mimicking a heat flow contribution from along-axis, lead to higher mass fluxes and vent temperatures, capable of significantly higher SMS accumulation rates. Nonsteady state conditions, such as the influence of a cooling magmatic intrusion beneath the fault zone, also can temporarily increase the mass flux while sustaining high vent temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-02-06
    Description: Diazotrophic dinitrogen (N2) fixation contributes ~76% to "new" nitrogen inputs to the sunlit open ocean, but environmental factors determining N2 fixation rates are not well constrained. Excess phosphate (phosphate-nitrate/16 〉 0) and iron availability control N2 fixation rates in the eastern tropical North Atlantic (ETNA), but it remains an open question how excess phosphate is generated within or supplied to the phosphate-depleted sunlit layer. Our observations in the ETNA region (8°N-15°N, 19°W-23°W) suggest that Prochlorococcus and Synechococcus, the two ubiquitous non-diazotrophic cyanobacteria with cellular N:P ratios higher than the Redfield ratio, create an environment of excess phosphate, which cannot be explained by diapycnal mixing, atmospheric, and riverine inputs. Thus, our results unveil a new biogeochemical niche construction mechanism by non-diazotrophic cyanobacteria for their diazotrophic phylum group members (N2 fixers). Our observations may help to understand the prevalence of diazotrophy in low-phosphate, oligotrophic regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-06
    Description: We present bathymetry and hydrological observations collected in the summer of 2014 from two fjord systems in southeastern Greenland with a multibeam sonar system. Our results provide a detailed bathymetric map of the fjord complex around the island of Skjoldungen in Skjoldungen Fjord and the outer part of Timmiarmiut Fjord and show far greater depths compared to the International Bathymetric Chart of the Arctic Ocean. The hydrography collected shows different properties in the fjords with the bottom water masses below 240 m in Timmiarmiut Fjord being 1–2 °C warmer than in the two fjords around Skjoldungen, but data also illustrate the influence of sills on the exchange of deeper water masses within fjords. Moreover, evidence of subglacial discharge in Timmiarmiut Fjord, which is consistent with satellite observations of ice mélange set into motion, adds to our increasing understanding of the distribution of subglacial meltwater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-02-06
    Description: Oceanographic observations from the Eurasian Basin north of Svalbard collected between January and June 2015 from the N-ICE2015 drifting expedition are presented. The unique winter observations are a key contribution to existing climatologies of the Arctic Ocean, and show a ∼100 m deep winter mixed layer likely due to high sea ice growth rates in local leads. Current observations for the upper ∼200 m show mostly a barotropic flow, enhanced over the shallow Yermak Plateau. The two branches of inflowing Atlantic Water are partly captured, confirming that the outer Yermak Branch follows the perimeter of the plateau, and the inner Svalbard Branch the coast. Atlantic Water observed to be warmer and shallower than in the climatology, is found directly below the mixed layer down to 800 m depth, and is warmest along the slope, while its properties inside the basin are quite homogeneous. From late May onwards, the drift was continually close to the ice edge and a thinner surface mixed layer and shallower Atlantic Water coincided with significant sea ice melt being observed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-04-23
    Description: Our study followed the seasonal cycling of soluble (SFe), colloidal (CFe), dissolved (DFe), total dissolvable (TDFe), labile particulate (LPFe) and total particulate (TPFe) iron in the Celtic Sea (NE Atlantic Ocean). Preferential uptake of SFe occurred during the spring bloom, preceding the removal of CFe. Uptake and export of Fe during the spring bloom, coupled with a reduction in vertical exchange, led to Fe deplete surface waters (〈0.2 nM DFe; 0.11 nM LPFe, 0.45 nM TDFe, 1.84 nM TPFe) during summer stratification. Below the seasonal thermocline, DFe concentrations increased from spring to autumn, mirroring NO3- and consistent with supply from remineralised sinking organic material, and cycled independently of particulate Fe over seasonal timescales. These results demonstrate that summer Fe availability is comparable to the seasonally Fe limited Ross Sea shelf, and therefore is likely low enough to affect phytoplankton growth and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-12-17
    Description: Current climate models disagree on how much carbon dioxide land ecosystems take up for photosynthesis. Tracking the stronger carbonyl sulfide signal could help.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-02-06
    Description: Oceanic dimethyl sulfide (DMS) is of interest due to its critical influence on atmospheric sulfur compounds in the marine atmosphere and its hypothesized significant role in global climate. High-resolution shipboard underway measurements of surface seawater DMS and the partial pressure of carbon dioxide (pCO2) were conducted in the Atlantic Ocean and Indian Ocean sectors of the Southern Ocean (SO), the southeast Indian Ocean, and the northwest Pacific Ocean from February to April 2014 during the 30th Chinese Antarctic Research Expedition. The SO, particularly in the region south of 58°S, had the highest mean surface seawater DMS concentration of 4.1 ± 8.3 nM (ranged from 0.1 to 73.2 nM) and lowest mean seawater pCO2 level of 337 ± 50 μatm (ranged from 221 to 411 μatm) over the entire cruise. Significant variations of surface seawater DMS and pCO2 in the seasonal ice zone (SIZ) of SO were observed, which are mainly controlled by biological process and sea ice activity. We found a significant negative relationship between DMS and pCO2 in the SO SIZ using 0.1° resolution, [DMS] seawater = -0.160 [pCO2] seawater + 61.3 (r2 = 0.594, n = 924, p 〈 0.001). We anticipate that the relationship may possibly be utilized to reconstruct the surface seawater DMS climatology in the SO SIZ. Further studies are necessary to improve the universality of this approach. Key Points: • The characteristics of surface water DMS and pCO2 distributions from the Southern Ocean to northwest Pacific Ocean are investigated • The correlations between DMS, pCO2, and environmental parameters are analyzed • Anticorrelation between DMS and pCO2 is found in the seasonal ice zone of the Southern Ocean
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-02-06
    Description: Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( 〈  20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-02-06
    Description: Natural gas hydrates are considered a potential resource for gas production on industrial scales. Gas hydrates contribute to the strength and stiffness of the hydrate-bearing sediments. During gas production, the geomechanical stability of the sediment is compromised. Due to the potential geotechnical risks and process management issues, the mechanical behavior of the gas hydrate-bearing sediments needs to be carefully considered. In this study, we describe a coupling concept that simplifies the mathematical description of the complex interactions occurring during gas production by isolating the effects of sediment deformation and hydrate phase changes. Central to this coupling concept is the assumption that the soil grains form the load-bearing solid skeleton, while the gas hydrate enhances the mechanical properties of this skeleton. We focus on testing this coupling concept in capturing the overall impact of geomechanics on gas production behavior though numerical simulation of a high-pressure isotropic compression experiment combined with methane hydrate formation and dissociation. We consider a linear-elastic stress-strain relationship because it is uniquely defined and easy to calibrate. Since, in reality, the geomechanical response of the hydrate-bearing sediment is typically inelastic and is characterized by a significant shear-volumetric coupling, we control the experiment very carefully in order to keep the sample deformations small and well within the assumptions of poroelasticity. The closely coordinated experimental and numerical procedures enable us to validate the proposed simplified geomechanics-to-flow coupling, and set an important precursor toward enhancing our coupled hydro-geomechanical hydrate reservoir simulator with more suitable elastoplastic constitutive models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (21). 11,166-11,173.
    Publication Date: 2020-06-29
    Description: The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing ENSO phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SST) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-10-11
    Description: Intercellular adhesion molecule-1 (ICAM-1) is distributed and expressed on cell surface and is present in circulation as soluble form (sICAM-1). Tumor necrosis factor-alpha (TNFα) and radical oxygen species (ROS) up-regulate the expression of ICAM-1. This study demonstrates for the first time in 18 Co cells, a myofibroblast cell line derived from human colonic mucosa, an up-regulation of ICAM-1 expression and sICAM-1 release induced by oxidative stress and TNFα stimulation. The intracellular redox state was modulated by L-buthionine-S,R-sulfoximine (BSO) or N-acetylcysteine (NAC), inhibitor and precursor respectively of GSH synthesis. ROS production increases in cells treated with BSO or TNFα, and this has been related to an up-regulation of ICAM-1 expression and sICAM-1 release. The involvement of metalloproteinases in ICAM-1 release has been demonstrated. Moreover, also expression and activation of A disintegrin and metalloproteinase 17, a membrane-bound enzyme known as TNFα-converting enzyme (TACE), have been related to ROS levels. This suggests the possible involvement of TACE in the cleavage of ICAM-1 on cell surface in condition of oxidative stress. NAC down-regulates the expression and release of ICAM-1 as well as the expression and activation of TACE. However, in TNFα stimulated cells NAC treatment reduces only in part ICAM-1 expression and sICAM-1 release. Given this TNFα may also act on these events by a redox-independent mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 11 (3). pp. 1181-1198.
    Publication Date: 2021-02-08
    Description: Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-10-17
    Description: Polyextremophiles are present in a wide variety of extreme environments in which they must overcome various hostile conditions simultaneously such as high UVB radiation, extreme pHs and temperatures, elevated salt and heavy-metal concentration, low-oxygen pressure and scarce nutrients. High-altitude Andean lakes (HAALs; between 2000 and 4000 m) are one example of these kinds of ecosystems suffering from the highest total solar and UVB radiation on Earth where an abundant and diverse polyextremophilic microbiota was reported. In this work, we performed the first extensive isolation of UV-resistant actinobacteria from soils, water, sediments and modern stromatolites at HAALs. Based on the 16S rRNA sequence, the strains were identified as members of the genera Streptomyces, Micrococcus, Nesterenkonia, Rhodococcus, Microbacterium, Kocuria, Arthrobacter, Micromonospora, Blastococcus, Citrococcus and Brevibacterium. Most isolates displayed resistance to multiple environmental stress factors confirming their polyextremophilic nature and were able to produce effective antimicrobial compounds. HAALs constitute a largely unexplored repository of UV-resistant actinobacteria, with high potential for the biodiscovery of novel natural products.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 (18). pp. 11313-11329.
    Publication Date: 2020-02-06
    Description: Very short-lived substances (VSLS) contribute as source gases significantly to the tropospheric and stratospheric bromine loading. At present, an estimated 25% of stratospheric bromine is of oceanic origin. In this study, we investigate how climate change may impact the ocean- atmosphere flux of brominated VSLS, their atmospheric transport, and chemical transformations and evaluate how these changes will affect stratospheric ozone over the 21st century. Under the assumption of fixed ocean water concentrations and RCP6.0 scenario, we find an increase of the ocean- atmosphere flux of brominated VSLS of about 8-10% by the end of the 21st century compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Our model simulations reveal that this increase is counteracted by a corresponding reduction of inorganic bromine. Therefore the total amount of bromine from VSLS in the stratosphere will not be changed by an increase in upwelling. Part of the increase of VSLS in the tropical lower stratosphere results from an increase in the corresponding tropopause height. As the depletion of stratospheric ozone due to bromine depends also on the availability of chlorine, we find the impact of bromine on stratospheric ozone at the end of the 21st century reduced compared to present day. Thus, these studies highlight the different factors influencing the role of brominated VSLS in a future climate
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-02-06
    Description: Two variants of sea-surface temperature (SST) dipole indices for the South Atlantic Ocean (SAO) has been previously described representing: (1) the South Atlantic subtropical dipole (SASD) supposedly peaking in austral summer and (2) the SAO dipole (SAOD) in winter. In this study, we present the analysis of observational data sets (1985–2014) showing the SASD and SAOD as largely constituting the same mode of ocean–atmosphere interaction reminiscent of the SAOD structure peaking in winter. Indeed, winter is the only season in which the inverse correlation between the northern and southern poles of both indices is statistically significant. The observed SASD and SAOD indices exhibit robust correlations (P ≤ 0.001) in all seasons and these are reproduced by 54 of the 63 different models of the Coupled Models Intercomparison Project analysed. Their robust correlations notwithstanding the SASD and SAOD indices appear to better capture different aspects of SAO climate variability and teleconnections
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-10-27
    Description: Throughout at least the past several centuries, El Niño-Southern Oscillation (ENSO) has played a significant role in human response to climate. Over time, increased attention on ENSO has led to a better understanding of both the physical mechanisms, and the environmental and societal consequences of the phenomenon. The prospects for seasonal climate forecasting emerged from ENSO studies, and were first pursued in ENSO studies. In this paper, we review ENSO's impact on society, specifically with regard to agriculture, water, and health; we also explore the extent to which ENSO-related forecasts are used to inform decision making in these sectors. We find that there are significant differences in the uptake of forecasts across sectors, with the highest use in agriculture, intermediate use in water resources management, and the lowest in health. Forecast use is low in areas where ENSO linkages to climate are weak, but the strength of this linkage alone does not guarantee use. Moreover, the differential use of ENSO forecasts by sector shows the critical role of institutions that work at the boundary between science and society. In a long-term iterative process requiring continual maintenance, these organizations serve to enhance the salience, credibility, and legitimacy of forecasts and related climate services. WIREs Clim Change 2015, 6:17–34. doi: 10.1002/wcc.294.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-02-06
    Description: Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-02-08
    Description: Coccolithophores belong to the most abundant calcium carbonate mineralizing organisms. Coccolithophore biomineralization is a complex and highly regulated process, resulting in a product that strongly differs in its intricate morphology from the abiogenically produced mineral equivalent. Moreover, unlike extracellularly formed biological carbonate hard tissues, coccolith calcite is neither a hybrid composite, nor is it distinguished by a hierarchical microstructure. This is remarkable as the key to optimizing crystalline biomaterials for mechanical strength and toughness lies in the composite nature of the biological hard tissue and the utilization of specific microstructures. To obtain insight into the pathway of biomineralization of Emiliania huxleyi coccoliths, we examine intracrystalline nanostructural features of the coccolith calcite in combination with cell ultrastructural observations related to the formation of the calcite in the coccolith vesicle within the cell. With TEM diffraction and annular dark-field imaging, we prove the presence of planar imperfections in the calcite crystals such as planar mosaic block boundaries. As only minor misorientations occur, we attribute them to dislocation networks creating small-angle boundaries. Intracrystalline occluded biopolymers are not observed. Hence, in E. huxleyi calcite mosaicity is not caused by occluded biopolymers, as it is the case in extracellularly formed hard tissues of marine invertebrates, but by planar defects and dislocations which are typical for crystals formed by classical ion-by-ion growth mechanisms. Using cryo-preparation techniques for SEM and TEM, we found that the membrane of the coccolith vesicle and the outer membrane of the nuclear envelope are in tight proximity, with a well-controlled constant gap of ~4 nm between them. We describe this conspicuous connection as a not yet described interorganelle junction, the “nuclear envelope junction”. The narrow gap of this junction likely facilitates transport of Ca2+ ions from the nuclear envelope to the coccolith vesicle. On the basis of our observations, we propose that formation of the coccolith utilizes the nuclear envelope–endoplasmic reticulum Ca2+-store of the cell for the transport of Ca2+ ions from the external medium to the coccolith vesicle and that E. huxleyi calcite forms by ion-by-ion growth rather than by a nanoparticle accretion mechanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-02-06
    Description: Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields. The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses. In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the physical drivers that influence stratospheric WV, such as temperatures in the tropical tropopause layer, methane oxidation, and the stratospheric overturning circulation. The lack of assimilated observations and known deficiencies in the representation of stratospheric transport in reanalyses result in much poorer agreement amongst observational and reanalysis estimates of stratospheric WV. Hence, stratospheric WV products from the current generation of reanalyses should generally not be used in scientific studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-03-19
    Description: The Sumatran subduction zone exhibits strong seismic and tsunamogenic potential with the prominent examples of the 2004, 2005 and 2007 earthquakes. Here, we invert travel time data of local earthquakes for vp and vp/vs velocity models of the central Sumatran forearc. Data were acquired by an amphibious seismometer network consisting of 52 land stations and 10 ocean bottom seismometers located on a segment of the Sumatran subduction zone that had not ruptured in a great earthquake since 1797 but witnessed recent ruptures to the north in 2005 (Nias earthquake, Mw = 8.7) and to the south in 2007 (Bengkulu earthquake, Mw = 8.5). 2D and 3D vp velocity anomalies reveal the downgoing slab and the sedimentary basins. Although the seismicity pattern in the study area appears to be strongly influenced by the obliquely subducting Investigator Fracture Zone to at least 200 km depth, the 3D velocity model shows prevailing trench parallel structures at depths of the plate interface. The tomographic model suggests a thinned crust below the basin east of the forearc islands (Nias, Pulau Batu, Siberut) at ~ 180 km distance to the trench. Vp velocities beneath the magmatic arc and the Sumatran fault zone SFZ are around 5 km/s at 10 km depth and the vp/vs ratios in the uppermost 10 km are low, indicating the presence of felsic lithologies typical for continental crust. We find moderately elevated vp/vs values of 1.85 at ~ 150 km distance to the trench in the region of the Mentawai fault. Vp/vs ratios suggest absence of large scale alteration of the mantle wedge and might explain why the seismogenic plate interface (observed as a locked zone from geodetic data) extends below the continental forearc Moho in Sumatra. Reduced vp velocities beneath the forearc basin covering the region between Mentawai Islands and the Sumatra mainland possibly reflect a reduced thickness of the overriding crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (4). pp. 1046-1052.
    Publication Date: 2017-11-22
    Description: The analysis of high-resolution vector magnetic data acquired by deep-sea submersibles (DSSs) requires the development of specific approaches adapted to their uneven tracks. We present a method that takes advantage of (1) the varying altitude of the DSS above the seafloor and (2) high-resolution multibeam bathymetric data acquired separately, at higher altitude, by an Autonomous Underwater Vehicle, to estimate the absolute magnetization intensity and the magnetic polarity of the shallow subseafloor along the DSS path. We apply this method to data collected by DSS Nautile on a small active basalt-hosted hydrothermal site. The site is associated with a lack of magnetization, in agreement with previous findings at the same kind of sites: the contrast between nonmagnetic sulfide deposits/stockwork zone and strongly magnetized basalt is sufficient to explain the magnetic signal observed at such a low altitude. Both normal and reversed polarities are observed in the lava flows surrounding the site, suggesting complex history of accumulating volcanic flows.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-12-14
    Description: Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-03-18
    Description: In this study ship- and AUV-based multibeam data from the German Mn-nodule license area in the Clarion-Clipperton Zone (CCZ; eastern Pacific) are linked to ground truth data from optical imaging. Photographs obtained by an AUV enable semi-quantitative assessments of nodule coverage at a spatial resolution in the range of meters. Together with high resolution AUV bathymetry this revealed a correlation of small-scale terrain variations (〈 5 m horizontally, 〈 1 m vertically) with nodule abundance. In the presented data set, increased nodule coverage could be correlated with slopes 〉 1.8° and concave terrain. On a more regional scale, factors such as the geological setting (existence of horst and graben structures, sediment thickness, outcropping basement) and influence of bottom currents seem to play an essential role for the spatial variation of nodule abundance and the related hard substrate habitat. AUV imagery was also successfully employed to map the distribution of re-settled sediment following a disturbance and sediment cloud generation during a sampling deployment of an Epibenthic Sledge. Data from before and after the "disturbance" allows a direct assessment of the impact. Automated image processing analyzed the nodule coverage at the seafloor, revealing nodule blanketing by resettling of suspended sediment within 16 hours after the disturbance. The visually detectable impact was spatially limited to a maximum of 100m distance from the disturbance track, downstream of the bottom water current. A correlation with high resolution AUV bathymetry reveals that the blanketing pattern varies in extent by tens of meters, strictly following the bathymetry, even in areas of only slightly undulating seafloor (〈 1 m vertical change). These results highlight the importance of detailed terrain knowledge when engaging in resource assessment studies for nodule abundance estimates and defining minable areas. At the same time, it shows the importance of high resolution mapping for detailed benthic habitat studies that show a heterogeneity at scales of 10 m to 100 m. Terrain knowledge is also needed to determine the scale of the impact by seafloor sediment blanketing during mining-operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 6 (3). pp. 565-582.
    Publication Date: 2021-02-08
    Description: To maintain the chance of keeping the average global temperature increase below 2 degrees C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2 degrees C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-02-08
    Description: Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (12). pp. 9795-9813.
    Publication Date: 2020-02-06
    Description: The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N–45°N and 130°E–180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-03-19
    Description: During the summer monsoon, the western tropical Indian Ocean is predicted to be a hot spot for dimethylsulfide emissions, the major marine sulfur source to the atmosphere, and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea spray, should also be enhanced, due to the steady strong winds during the monsoon. Marine air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the SO234-2/235 cruise in the western tropical Indian Ocean from July to August 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (cruise average 9.1 μmol m−2 d−1). The directly measured fluxes, as well as computed isoprene and sea spray fluxes, were combined with FLEXPART backward and forward trajectories to track the emissions in space and time. The fluxes show a significant positive correlation with aerosol data from the Terra and Suomi-NPP satellites, indicating a local influence of marine emissions on atmospheric aerosol numbers.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-02-08
    Description: Climate-driven changes in environmental conditions have significant and complex effects on marine ecosystems. Variability in phytoplankton elements and biochemicals can be important for global ocean biogeochemistry and ecological functions, while there is currently limited understanding on how elements and biochemicals respond to the changing environments in key coccolithophore species such as Emiliania huxleyi. We investigated responses of elemental stoichiometry and fatty acids (FAs) in a strain of E. huxleyi under three temperatures (12, 18 and 24 °C), three N : P supply ratios (molar ratios 10:1, 24:1 and 63:1) and two pCO2 levels (560 and 2400 µatm). Overall, C : N : P stoichiometry showed the most pronounced response to N : P supply ratios, with high ratios of particulate organic carbon vs. particulate organic nitrogen (POC : PON) and low ratios of PON vs. particulate organic phosphorus (PON : POP) in low-N media, and high POC : POP and PON : POP in low-P media. The ratio of particulate inorganic carbon vs. POC (PIC : POC) and polyunsaturated fatty acid proportions strongly responded to temperature and pCO2, both being lower under high pCO2 and higher with warming. We observed synergistic interactions between warming and nutrient deficiency (and high pCO2) on elemental cellular contents and docosahexaenoic acid (DHA) proportion in most cases, indicating the enhanced effect of warming under nutrient deficiency (and high pCO2). Our results suggest differential sensitivity of elements and FAs to the changes in temperature, nutrient availability and pCO2 in E. huxleyi, which is to some extent unique compared to non-calcifying algal classes. Thus, simultaneous changes of elements and FAs should be considered when predicting future roles of E. huxleyi in the biotic-mediated connection between biogeochemical cycles, ecological functions and climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-02-06
    Description: The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-02-08
    Description: Air masses in the convective outflows of four large convective systems near Borneo Island in Malaysia were sampled in the height range 11–13 km within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) FP7 European project in November and December 2011. Correlated enhancements of CO, CH4 and the short-lived halogen species (CH3I and CHBr3) were detected when the aircraft crossed the anvils of the four systems. These enhancements were interpreted as the fingerprint of vertical transport from the boundary layer by the convective updraft and then horizontal advection in the outflow. For the four observations, the fraction f of air from the boundary layer ranged between 15 and 67%, showing the variability in transport efficiency depending on the dynamics of the convective system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-12-17
    Description: The discovery of known bioactive chemical leads from microbial monocultures hinders the efficiency of drug discovery programmes. Therefore, in recent years, the use of fungal–bacterial coculture experiments has gained considerable attention due to their ability to generate new bioactive leads. In this work, fungal strain Setophoma terrestris was cocultured with Bacillus amyloliquifaciens to discover novel bioactive compounds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 15 . pp. 4781-4798.
    Publication Date: 2021-03-18
    Description: Although mesoscale ocean eddies are ubiquitous in the Southern Ocean, their average regional and seasonal association with phytoplankton has not been quantified systematically yet. To this end, we identify over 100000 mesoscale eddies with diameters of 50km and more in the Southern Ocean and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll-a (Chl) as a proxy. The mean Chl anomalies, δChl, associated with these eddies, comprising the upper echelon of the oceanic mesoscale, exceed ±10% over wide regions. The structure of these anomalies is largely zonal, with cyclonic, thermocline lifted, eddies having positive anomalies in the subtropical waters north of the Antarctic Circumpolar Current (ACC) and negative anomalies along its main flow path. The pattern is similar, but reversed for anticyclonic, thermocline deepened eddies. The seasonality of δChl is weak in subtropical waters, but pronounced along the ACC, featuring a seasonal sign switch. The spatial structure and seasonality of the mesoscale δChl can be explained largely by lateral advection, especially local eddy-stirring. A prominent exception is the ACC region in winter, where δChl is consistent with a modulation of phytoplankton light exposure caused by an eddy-induced modification of the mixed layer depth. The clear impact of mesoscale eddies on phytoplankton may implicate a downstream effect on Southern Ocean biogeochemical properties, such as mode water nutrient contents.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-02-08
    Description: The 1Myr tephra records of IODP (International Ocean Discovery Program) Holes U1436A and U1437B in the Izu-Bonin fore- and reararc were investigated in order to assess provenance and eruptive volumes, respectively. In total, 304 tephra samples were examined and 260 primary tephra layers were identified. Tephra provenance was determined by means of major and trace element compositions of glass shards and distinguished between Japan and Izu-Bonin arc origin of the tephra layers. A total of 33 marine tephra compositions were correlated to the Japan arc and 227 to the Izu arc. Twenty marine tephra layers were correlated between the two drilling sites. Additionally, we defined eleven correlations of marine tephra deposits to major widespread Japanese eruptions; from the 1.05Ma Shishimuta-Pink Tephra to the 30ka Aira-Tn Tephra, both from Kyushu Island. These eruptions provide independent time markers within the sediment record and six correlations were used to date tephra layers from Japan in Hole U1436A to establish an alternative age model for this hole. Furthermore, the minimum distal tephra volumes of all detected events were calculated, which enabled the comparison of the tephra volumes that derived from the Japan and the Izu-Bonin arcs. For some of the major Japanese eruptions these are the first volume estimations that also include distal deposits. All of the Japanese tephras derived from events with eruption magnitude Mv≥5.6 and three of the investigated eruptions reach magnitudes Mv≥7. Volcanic events of the Izu-Bonin arc have mostly eruption magnitudes Mv≤5.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-04-21
    Description: Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here, we present the first combined dissolved (DPb), labile (LpPb) and particulate (PPb) Pb dataset from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by 4-fold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (〉2500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to ‘buffer’ the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 123 (2). pp. 1471-1484.
    Publication Date: 2021-02-08
    Description: The variability of the Atlantic Meridional Overturning Circulation (AMOC) may play a role in sea surface temperature predictions on seasonal to decadal time scales. Therefore, AMOC seasonal cycles are a potential baseline for interpreting predictions. Here we present estimates for the seasonal cycle of transports of volume, temperature, and freshwater associated with the upper limb of the AMOC in the eastern subpolar North Atlantic on the Extended Ellett Line hydrographic section between Scotland and Iceland. Due to weather, ship‐based observations are primarily in summer. Recent glider observations during other seasons present an opportunity to investigate the seasonal variability in the upper layer of the AMOC. First, we document a new method to quality control and merge ship, float, and glider hydrographic observations. This method accounts for the different spatial sampling rates of the three platforms. The merged observations are used to compute seasonal cycles of volume, temperature, and freshwater transports in the Rockall Trough. These estimates are similar to the seasonal cycles in two eddy‐resolving ocean models. Volume transport appears to be the primary factor modulating other Rockall Trough transports. Finally, we show that the weakest transports occur in summer, consistent with seasonal changes in the regional‐scale wind stress curl. Although the seasonal cycle is weak compared to other variability in this region, the amplitude of the seasonal cycle in the Rockall Trough, roughly 0.5–1 Sv about a mean of 3.4 Sv, may account for up to 7–14% of the heat flux between Scotland and Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-03-26
    Description: The diversity of stony corals displays one of the most exemplary latitudinal gradients on the planet, yet the evolutionary dynamics that produced this pattern remains unclear. Using both paleontological and distributional data, we compare the origination, extinction and immigration levels between low and high latitudes since the earliest proliferation of the group during the mid‐Triassic. Altogether, first and last occurrence localities in the fossil record do not support a positive preference towards either latitudinal bin. Nonetheless, considering past and present scleractinian fauna, the process of extinction has been apparently more pronounced at higher latitudes based on face values and correlation coefficients. Far above these differences, immigration of extant taxa has been substantially higher towards the tropics than to temperate regions. While the net dispersal toward low latitudes persists in all temporal intervals, the gradient of diversity was largely built up during the Cenozoic Era and only becomes significantly steep from the Neogene Period onwards. This dynamic supports the ‘into the tropical museum’ model, which suggests that tropics have historically acted as a center of accumulation for marine biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-02-08
    Description: Marine life is controlled by multiple physical and chemical drivers and by diverse ecological processes. Many of these oceanic properties are being altered by climate change and other anthropogenic pressures. Hence, identifying the influences of multifaceted ocean change, from local to global scales, is a complex task. To guide policy-making and make projections of the future of the marine biosphere, it is essential to understand biological responses at physiological, evolutionary and ecological levels. Here, we contrast and compare different approaches to multiple driver experiments that aim to elucidate biological responses to a complex matrix of ocean global change. We present the benefits and the challenges of each approach with a focus on marine research, and guidelines to navigate through these different categories to help identify strategies that might best address research questions in fundamental physiology, experimental evolutionary biology and community ecology. Our review reveals that the field of multiple driver research is being pulled in complementary directions: the need for reductionist approaches to obtain process-oriented, mechanistic understanding and a requirement to quantify responses to projected future scenarios of ocean change. We conclude the review with recommendations on how best to align different experimental approaches to contribute fundamental information needed for science-based policy formulation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-12-17
    Description: We report a new method for calibrating the current gain of 1013 Ω amplifiers in both positive and negative mode used in thermal ionisation mass spectrometry (TIMS). This method uses any isotopic standard or sample to calibrate the gain factor as long as it can produce a stable current signal. It is simpler and more flexible than that recommended by Thermo‐Fisher (the manufacture of the TIMS). In these analyses, the gains of five 1013 Ω amplifiers were assessed. The precision of gain factors was better than 100 ppm (2 RSD) in a day, and the long‐term reproducibility was better than 300 ppm (2 RSD) within 2 to 8 months. After a gain was calibrated, the ratio accuracy and precision in the positive mode for 87Sr/88Sr of NIST 987 Sr and 143Nd/144Nd of La Jolla Nd were 0.710242 ± 60 (2 SD, n = 14) and 0.511842 ± 10 (2 SD, n = 22), respectively, at intensities of 88Sr 0.3 V and 142Nd 0.4 V, while in the negative mode for 187Os/188Os of Merck Os was 0.120229 ± 34 (2 SD, n = 23) at an intensity of 187OsO3 0.01 mV. In addition, a difference in the gain factors between the negative mode TIMS (NTIMS) and positive mode TIMS (PTIMS) has been recognized. The values of the gain factor for NTIMS and PTIMS show a deviation of 0.54% on the Triton and 0.31% on the Triton Plus TIMS in this study; therefore, gain calibration should be carried out on both NTIMS and PTIMS. Moreover, a bias of ~ 1.5 × 10−5 between H and L Faraday cups for the same 1013 Ω amplifier has been detected, hinting that the efficiency of different Faraday cups may affect the gain factors, which can be eliminated through the new method of “cross‐calibration” discribed in this study.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-02-08
    Description: Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Journal of Micropalaeontology, 37 (1). pp. 383-393.
    Publication Date: 2021-03-19
    Description: Benthic foraminifera from Bottsand coastal lagoon, western Baltic Sea, have been studied since the mid-1960s. They were monitored annually in late autumn since 2003 at the terminal ditch of the lagoon. There were 12 different species recognised, of which three have not been recorded during earlier investigations. Dominant species showed strong interannual fluctuations and a steady increase in population densities over the last decade. Elphidium incertum, a stenohaline species of the Baltic deep water fauna, colonised the Bottsand lagoon in 2016, most likely during a period of salinities 〉19 units and water temperatures of 18 °C on average in early autumn. The high salinities probably triggered their germination from a propagule bank in the ditch bottom sediment. The new E. incertum population showed densities higher by an order of magnitude than those of the indigenous species. The latter did not decline, revealing that E. incertum used another food source or occupied a different microhabitat. Elphidium incertum survived transient periods of lower salinities in late autumn 2017, though with reduced abundances, and became a regular faunal constituent at the Bottsand lagoon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-03-18
    Description: The quantitative reconstruction of past seawater salinity has yet to be achieved and the search for a direct and independent salinity proxy is ongoing. Recent culture and field studies show a significant positive correlation of Na/Ca with salinity in benthic and planktonic foraminiferal calcite. For accurate paleoceanographic reconstructions, consistent and reliable calibrations are necessary, which are still missing. In order to assess the reliability of foraminiferal Na/Ca as a direct proxy for seawater salinity, this study presents electron microprobe Na/Ca data, measured on cultured specimens of Trilobatus sacculifer. The culture experiments were conducted over a wide salinity range of 26 to 45, while temperature was kept constant. To further understand potential controlling factors of Na incorporation, measurements were also performed on foraminifera cultured at various temperatures in the range of 19.5 °C to 29.5 °C under constant salinity conditions. Foraminiferal Na/Ca ratios positively correlate with seawater salinity (Na/Caforam = 0.97 + 0.115 ⋅ Salinity, R = 0.97, p 〈 0.005). Temperature on the other hand exhibits no statistically significant relationship with Na/Ca ratios indicating salinity to be the dominant factor controlling Na incorporation. The culturing results are corroborated by measurements on T. sacculifer from Caribbean and Gulf of Guinea surface sediments. In conclusion, planktonic foraminiferal Na/Ca can be applied as a reliable proxy for reconstructing sea surface salinities, albeit species-specific calibrations might be necessary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-02-08
    Description: We report here the results of total mercury (HgT) determinations along the 2014 Geotraces Geovide cruise (GA01 transect) in the North Atlantic Ocean (NA) from Lisbon (Portugal) to the coast of Labrador (Canada). HgT concentrations in unfiltered samples (HgTUNF) were log-normally distributed and ranged between 0.16 and 1.54 pmol L−1, with a geometric mean of 0.51 pmol L−1 for the 535 samples analysed. The dissolved fraction (〈 0.45 µm) of HgT (HgTF), determined on 141 samples, averaged 78 % of the HgTUNF for the entire data set, 84 % for open seawaters (below 100 m) and 91 % if the Labrador Sea data are excluded, where the primary production was high (with a winter convection down to 1400 m). HgTUNF concentrations increased eastwards and with depth from Greenland to Europe and from subsurface to bottom waters. The HgTUNF concentrations were similarly low in the subpolar gyre waters ( ∼  0.45 pmol L−1), whereas they exceeded 0.60 pmol L−1 in the subtropical gyre waters. The HgTUNF distribution mirrored that of dissolved oxygen concentration, with highest concentration levels associated with oxygen-depleted zones. The relationship between HgTF and the apparent oxygen utilization confirms the nutrient-like behaviour of Hg in the NA. An extended optimum multiparameter analysis allowed us to characterize HgTUNF concentrations in the different source water types (SWTs) present along the transect. The distribution pattern of HgTUNF, modelled by the mixing of SWTs, show Hg enrichment in Mediterranean waters and North East Atlantic Deep Water and low concentrations in young waters formed in the subpolar gyre and Nordic seas. The change in anthropogenic Hg concentrations in the Labrador Sea Water during its eastward journey suggests a continuous decrease in Hg content in this water mass over the last decades. Calculation of the water transport driven by the Atlantic Meridional Overturning Circulation across the Portugal–Greenland transect indicates northward Hg transport within the upper limb and southward Hg transport within the lower limb, with resulting net northward transport of about 97.2 kmol yr−1.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-02-08
    Description: The chemistry–climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols using either a modal scheme (M7) or a bin scheme (SALSA). This article describes and evaluates the model version ECHAM6.3-HAM2.3-MOZ1.0 with a focus on the tropospheric gas-phase chemistry. A 10-year model simulation was performed to test the stability of the model and provide data for its evaluation. The comparison to observations concentrates on the year 2008 and includes total column observations of ozone and CO from IASI and OMI, Aura MLS observations of temperature, HNO3, ClO, and O3 for the evaluation of polar stratospheric processes, an ozonesonde climatology, surface ozone observations from the TOAR database, and surface CO data from the Global Atmosphere Watch network. Global budgets of ozone, OH, NOx, aerosols, clouds, and radiation are analyzed and compared to the literature. ECHAM-HAMMOZ performs well in many aspects. However, in the base simulation, lightning NOx emissions are very low, and the impact of the heterogeneous reaction of HNO3 on dust and sea salt aerosol is too strong. Sensitivity simulations with increased lightning NOx or modified heterogeneous chemistry deteriorate the comparison with observations and yield excessively large ozone budget terms and too much OH. We hypothesize that this is an impact of potential issues with tropical convection in the ECHAM model.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-02-08
    Description: We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modeling uses the joint refraction/reflection tomography approach where co-located multi-channel seismic reflection data constrain the sedimentary structure. Further, forward gravity modeling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure. Our model reveals a complex crustal structure of the Baltic Shield to Barents shelf transition zone, as well as strong structural variability on the shelf itself. We document large volumes of pre-Carboniferous sedimentary strata in the transition zone which reach a total thickness of 10 km. A high-velocity crustal domain found below the Varanger Peninsula likely represents an independent crustal block. Large lower crustal bodies with very high velocity and density below the Varanger Peninsula and the Fedynsky High are interpreted as underplated material that may have fed mafic dykes in the Devonian. We speculate that these lower crustal bodies are linked to the Devonian rifting processes in the East European Craton, or belonging to the integral part of the Timanides, as observed onshore in the Pechora Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-26
    Description: The movement of magma through the shallow crust and the impact of subsurface sill complexes on the hydrocarbon systems of prospective sedimentary basins has long been an area of interest and debate. Based on 3D seismic reflection and well data, we present a regional analysis of the emplacement and magmatic plumbing system of the Palaeogene Faroe‐Shetland Sill Complex (FSSC), which is intruded into the Mesozoic and Cenozoic sequences of the Faroe‐Shetland Basin (FSB). Identification of magma flow directions through detailed seismic interpretation of approximately 100 sills indicates that the main magma input zones into the FSB were controlled primarily by the NE–SW basin structure that compartmentalise the FSB into its constituent sub‐basins. An analysis of well data shows that potentially up to 88% of sills in the FSSC are 〈40 m in thickness, and thus below the vertical resolution limit of seismic data at depths at which most sills occur. This resolution limitation suggests that caution needs to be exercised when interpreting magmatic systems from seismic data alone, as a large amount of intrusive material could potentially be missed. The interaction of the FSSC with the petroleum systems of the FSB is not well understood. Given the close association between the FSSC and potential petroleum migration routes into some of the oil/gas fields (e.g. Tormore), the role the intrusions may have played in compartmentalisation of basin fill needs to be taken fully into account to further unlock the future petroleum potential of the FSB.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-02-08
    Description: We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state‐dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land‐ice sheet growth and sea level fall) the multi‐millennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction‐based extrapolation of S for the future we exclude intervals with strong ΔTg‐CO2 divergence and find that S is less state‐dependent, or even constant (state‐independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-02-01
    Description: Chlorophyll (Chl) is a distinctive component of autotrophic organisms, often used as an indicator of phytoplankton biomass in the ocean. However, assessment of phytoplankton biomass from Chl relies on the accurate estimation of the Chl:carbon(C) ratio. Here we present global patterns of Chl:C ratios in the surface ocean obtained from a phytoplankton growth model that accounts for the optimal acclimation of phytoplankton to ambient nutrient, light, and temperature conditions. The model agrees largely with observed/expected global patterns of Chl:C. Combining our Chl:C estimates with satellite Chl and particulate organic carbon (POC), we infer phytoplankton C concentration in the surface ocean and its contribution to the total POC pool. Our results suggest that the portion of POC corresponding to living phytoplankton is higher in subtropical latitudes and less productive regions (∼30–70%) and decreases to ∼10–30% toward high latitudes and productive regions. An important caveat of our model is the lack of iron limiting effects on phytoplankton physiology. Comparison of our predicted phytoplankton biomass with an independent estimate of total POC reveals a positive correlation between nitrate concentrations and nonphotosynthetic POC in the surface ocean. This correlation disappears when a constant Chl:C is applied. Our analysis is not constrained by assumptions of constant Chl:C or phytoplankton:POC ratio, providing a novel independent analysis of phytoplankton biomass in the surface ocean. These results highlight the importance of accounting for the variability in Chl:C and its application in distinguishing the autotrophic and heterotrophic components in the assemblage of the marine plankton ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-05-23
    Description: Lakes and reservoirs play an important role in the carbon cycle, and therefore monitoring their metabolic rates is essential. The triple oxygen-isotope anomaly of dissolved O2 [17Δ =  ln(1+δ17O) − 0.518  ×  ln(1 + δ18O)] offers a new, in situ, perspective on primary production, yet little is known about 17Δ from freshwater systems. We investigated the 17Δ together with the oxygen : argon ratio [Δ(O2 ∕ Ar)] in the subtropical Feitsui Reservoir in Taiwan from June 2014 to July 2015. Here, we present the seasonal variations in 17Δ, GP (gross production), NP (net production) and the NP ∕ GP (net to gross ratio) in association with environmental parameters. The 17Δ varied with depth and season, with values ranging between 26 and 205 per meg. The GP rates were observed to be higher (702 ± 107 mg C m−2 d−1) in winter than those (303 ± 66 mg C m−2 d−1) recorded during the summer. The overall averaged GP was 220 g C m−2 yr−1 and NP was −3 g C m−2 yr−1, implying the reservoir was net heterotrophic on an annual basis. This is due to negative NP rates from October to February (−198 ± 78 mg C m−2 d−1). Comparisons between GP rates obtained from the isotope mass balance approach and 14C bottle incubation method (14C–GP) showed consistent values on the same order of magnitude with a GP ∕ 14C–GP ratio of 1.2 ± 1.1. Finally we noted that, although typhoon occurrences were scarce, higher than average 17Δ values and GP rates were recorded after typhoon events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Earth's Future, 5 (1). pp. 128-134.
    Publication Date: 2020-02-06
    Description: The historical developments are reviewed that have led from a bottom-up responsibility initiative of concerned scientists to the emergence of a nationwide interdisciplinary Priority Program on the assessment of Climate Engineering (CE), funded by the German Research Foundation (DFG). Given the perceived lack of comprehensive and comparative appraisals of different CE methods, the Priority Program was designed to encompass both solar radiation management (SRM) and carbon dioxide removal (CDR) ideas, and to cover the atmospheric, terrestrial and oceanic realm. First key findings obtained by the ongoing Priority Program are summarized and reveal that compared to earlier assessments, such as the 2009 Royal Society report, more detailed investigations tend to indicate less efficiency, lower effectiveness and often lower safety. Emerging research trends are discussed in the context of the recent Paris agreement to limit global warming to less than two degrees and the associated increasing reliance on negative emission technologies. Our results show then when deployed at scales large enough to have a significant impact on atmospheric CO2, even CDR methods such as afforestation – often perceived as ‘benign’ – can have substantial side effects and may raise severe ethical, legal and governance issues. We suppose that before being deployed at climatically relevant scales, any negative-emission or climate engineering method will require careful analysis of efficiency, effectiveness and undesired side effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-02-06
    Description: Oxygen optode measurements on floats and gliders suffer from a slow time response and various sources of drift in the calibration coefficients. Based on two dual-O2 Argo floats, we show how to post-correct for the effect of the optode's time response and give an update on optode in situ drift stability and in-air calibration. Both floats are equipped with an unpumped Aanderaa 4330 optode and a pumped Sea-Bird SBE63 optode. Response times for the pumped SBE63 were derived following Bittig et al. (2014) and the same methods were used to correct the time response bias. Using both optodes on each float, the time response regime of the unpumped Aanderaa optode was characterized more accurately than previously possible. Response times for the pumped SBE63 on profiling floats are in the range of 25–40 s, while they are between 60 and 95 s for the unpumped 4330 optode. Our parameterization can be employed to post-correct the slow optode time response on floats and gliders. After correction, both sensors agree to within 2–3 µmol kg−1 (median difference) in the strongest gradients (120 µmol kg−1 change over 8 min or 20 dbar) and better elsewhere. However, time response correction is only possible if measurement times are known, i.e., provided by the platform as well as transmitted and stored with the data. The O2 in-air measurements show a significant in situ optode drift of −0.40 and −0.27 % yr−1 over the available 2 and 3 years of deployment, respectively. Optode in-air measurements are systematically biased high during midday surfacings compared to dusk, dawn, and nighttime. While preference can be given to nighttime surfacings to avoid this in-air calibration bias, we suggest a parameterization of the daytime effect as a function of the Sun's elevation to be able to use all data and to better constrain the result. Taking all effects into account, calibration factors have an uncertainty of 0.1 %. In addition, in-air calibration factors vary by 0.1–0.2 % when using different reanalysis models as a reference. The overall accuracy that can be achieved following the proposed correction routines is better than 1 µmol kg−1.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-02-06
    Description: Selecting appropriate indicators is essential to aggregate the information provided by climate model outputs into a manageable set of relevant metrics on which assessments of climate engineering (CE) can be based. From all the variables potentially available from climate models, indicators need to be selected that are able to inform scientists and society on the development of the Earth system under CE, as well as on possible impacts and side effects of various ways of deploying CE or not. However, the indicators used so far have been largely identical to those used in climate change assessments and do not visibly reflect the fact that indicators for assessing CE (and thus the metrics composed of these indicators) may be different from those used to assess global warming. Until now, there has been little dedicated effort to identifying specific indicators and metrics for assessing CE. We here propose that such an effort should be facilitated by a more decision-oriented approach and an iterative procedure in close interaction between academia, decision makers, and stakeholders. Specifically, synergies and trade-offs between social objectives reflected by individual indicators, as well as decision-relevant uncertainties should be considered in the development of metrics, so that society can take informed decisions about climate policy measures under the impression of the options available, their likely effects and side effects, and the quality of the underlying knowledge base.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-02-06
    Description: The consequences of emerging marine diseases on the evolutionary trajectories of affected host populations in the marine realm are largely unexplored. Evolution in response to natural selection depends on the genetic variation of the traits under selection and the interaction of these traits with the environment (GxE). However, in the case of diseases, genotypes of pathogens add another dimension to this interaction. Therefore, the study of disease resistance needs to be extended to the interaction of host genotype, pathogen genotype and environment (GxGxE). In the present study we used a full-sib breeding design crossing two genetically differentiated populations of the Pacific oyster Crassostrea gigas (Thunberg, 1793), to determine the influence of host genotype, pathogen genotype and temperature on disease resistance. Based on a controlled infection experiment on two early life stages, i.e. D-larvae and Pediveliger larvae at elevated and ambient water temperatures we estimated disease resistance to allopatric and sympatric Vibrio sp. by measuring survival and growth within and between genetically differentiated oyster populations. In both populations survival was higher upon infection with sympatric Vibrio sp. indicating that disease resistance has a genetic basis and is dependent on host genotype. In addition we observed a significant GxGxE effect in D-larvae, where contrary to expectations, disease resistance was higher at warm than at cold temperatures. Using thermal reaction norms, we could further show, that disease resistance is an environment dependent trait with high plasticity, which indicates the potential for a fast acclimatization to changing environmental conditions. These population specific reaction norms disappeared in hybrid crosses between both populations which demonstrates that admixture between genetically differentiated populations can influence GxGxE interactions on larger scales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 10 . pp. 2425-2445.
    Publication Date: 2020-02-06
    Description: Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. "Offline" numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the "transport matrix method" (TMM), which represents tracer transport as a sequence of sparse matrix–vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their "online" counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can be run on a parallel machine with no change to the underlying biogeochemical code, thus providing orders of magnitude speed-up over the online model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 120 (11). pp. 7413-7449.
    Publication Date: 2018-05-29
    Description: Mesoscale eddies are ubiquitous features in the Southern Ocean, yet their phenomenology is not well quantified. To tackle this task, we use satellite observations of sea level anomalies and sea surface temperature (SST) as well as in situ temperature and salinity measurements from profiling floats. Over the period 1997–2010, we identified over a million mesoscale eddy instances and were able to track about 105 of them over 1 month or more. The Antarctic Circumpolar Current (ACC), the boundary current systems, and the regions where they interact are hot spots of eddy presence, representing also the birth places and graveyards of most eddies. These hot spots contrast strongly to areas shallower than about 2000 m, where mesoscale eddies are essentially absent, likely due to topographical steering. Anticyclones tend to dominate the southern subtropical gyres, and cyclones the northern flank of the ACC. Major causes of regional polarity dominance are larger formation numbers and lifespans, with a contribution of differential propagation pathways of long-lived eddies. Areas of dominance of one polarity are generally congruent with the same polarity being longer-lived, bigger, of larger amplitude, and more intense. Eddies extend down to at least 2000 m. In the ACC, eddies show near surface temperature and salinity maxima, whereas eddies in the subtropical areas generally have deeper anomaly maxima, presumably inherited from their origin in the boundary currents. The temperature and salinity signatures of the average eddy suggest that their tracer anomalies are a result of both trapping in the eddy core and stirring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Wiley
    In:  Methods in Ecology and Evolution, 6 (11). pp. 1248-1258.
    Publication Date: 2017-02-16
    Description: Genome-scan methods are used for screening genomewide patterns of DNA polymorphism to detect signatures of positive selection. There are two main types of methods: (i) ‘outlier’ detection methods based on inline image that detect loci with high differentiation compared to the rest of the genome and (ii) environmental association methods that test the association between allele frequencies and environmental variables. We present a new inline image-based genome-scan method, BayeScEnv, which incorporates environmental information in the form of ‘environmental differentiation’. It is based on the F model, but, as opposed to existing approaches, it considers two locus-specific effects: one due to divergent selection and the other due to various other processes different from local adaptation (e.g. range expansions, differences in mutation rates across loci or background selection). The method was developped in C++ and is available at http://github.com/devillemereuil/bayescenv. A simulation study shows that our method has a much lower false positive rate than an existing inline image-based method, BayeScan, under a wide range of demographic scenarios. Although it has lower power, it leads to a better compromise between power and false positive rate. We apply our method to a human data set and show that it can be used successfully to study local adaptation. We discuss its scope and compare it to other existing methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 . pp. 4965-4984.
    Publication Date: 2020-02-06
    Description: The assessment of the ocean biota's role in climate climate change is often carried out with global biogeochemical ocean models that contain many components, and involve a high level of parametric uncertainty. Examination the models' fit to climatologies of inorganic tracers, after the models have been spun up to steady state, is a common, but computationally expensive procedure to assess model performance and reliability. Using new tools that have become available for global model assessment and calibration in steady state, this paper examines two different model types – a complex seven-component model (MOPS), and a very simple two-component model (RetroMOPS) – for their fit to dissolved quantities. Before comparing the models, a subset of their biogeochemical parameters has been optimised against annual mean nutrients and oxygen. Both model types fit the observations almost equally well. The simple model, which contains only nutrients and dissolved organic phosphorus (DOP), is sensitive to the parameterisation of DOP production and decay. The spatio-temporal decoupling of nitrogen and oxygen, and processes involved in their uptake and release, renders oxygen and nitrate valuable tracers for model calibration. In addition, the non-conservative nature of these tracers (with respect to their upper boundary condition) introduces the global bias as a useful additional constraint on model parameters. Dissolved organic phosphorous at the surface behaves antagonistically to phosphate, and suggests that observations of this tracer – although difficult to measure – may be an important asset for model calibration
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Institute of Physics
    In:  The Journal of the Acoustical Society of America, 138 (3). pp. 1253-1267.
    Publication Date: 2020-05-11
    Description: Responses obtained in consonant perception experiments typically show a large variability across stimuli of the same phonetic identity. The present study investigated the influence of different potential sources of this response variability. It was distinguished between source-induced variability, referring to perceptual differences caused by acoustical differences in the speech tokens and/or the masking noise tokens, and receiver-related variability, referring to perceptual differences caused by within- and across-listener uncertainty. Consonant-vowel combinations consisting of 15 consonants followed by the vowel /i/ were spoken by two talkers and presented to eight normal-hearing listeners both in quiet and in white noise at six different signal-to-noise ratios. The obtained responses were analyzed with respect to the different sources of variability using a measure of the perceptual distance between responses. The speech-induced variability across and within talkers and the across-listener variability were substantial and of similar magnitude. The noise-induced variability, obtained with time-shifted realizations of the same random process, was smaller but significantly larger than the amount of within-listener variability, which represented the smallest effect. The results have implications for the design of consonant perception experiments and provide constraints for future models of consonant perception.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-03-18
    Description: Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0–30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area "Boknis Eck" quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular analyses were conducted to identify key functional methanogenic groups during methylotrophic methanogenesis. To also compare the magnitudes of SRZ methanogenesis with methanogenesis below the sulfate reduction zone (〉 30 cm b.s.f.), hydrogenotrophic methanogenesis was determined by 14C-bicarbonate radiotracer incubation in samples collected in September 2013. SRZ methanogenesis changed seasonally in the upper 30 cm b.s.f. with rates increasing from March (0.2 nmol cm−3 d−1) to November (1.3 nmol cm−3 d−1) 2013 and March (0.2 nmol cm−3 d−1) to September (0.4 nmol cm−3 d−1) 2014. Its magnitude and distribution appeared to be controlled by organic matter availability, C / N, temperature, and oxygen in the water column, revealing higher rates in the warm, stratified, hypoxic seasons (September–November) compared to the colder, oxygenated seasons (March–June) of each year. The majority of SRZ methanogenesis was likely driven by the usage of noncompetitive substrates (e.g., methanol and methylated compounds) to avoid competition with sulfate reducers, as was indicated by the 1000–3000-fold increase in potential methanogenesis activity observed after methanol addition. Accordingly, competitive hydrogenotrophic methanogenesis increased in the sediment only below the depth of sulfate penetration (〉 30 cm b.s.f.). Members of the family Methanosarcinaceae, which are known for methylotrophic methanogenesis, were detected by PCR using Methanosarcinaceae-specific primers and are likely to be responsible for the observed SRZ methanogenesis. The present study indicates that SRZ methanogenesis is an important component of the benthic methane budget and carbon cycling in Eckernförde Bay. Although its contributions to methane emissions from the sediment into the water column are probably minor, SRZ methanogenesis could directly feed into methane oxidation above the sulfate–methane transition zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (3). pp. 1724-1748.
    Publication Date: 2020-02-06
    Description: Over the past 17 years, the western boundary current system of the Labrador Sea has been closely observed by maintaining the 53°N observatory (moorings and shipboard station data) measuring the top-to-bottom flow field offshore from the Labrador shelf break. Volume transports for the North Atlantic Deep Water (NADW) components were calculated using different methods, including gap filling procedures for deployment periods with suboptimal instrument coverage. On average the Deep Western Boundary Current (DWBC) carries 30.2 ± 6.6 Sv of NADW southward, which are almost equally partitioned between Labrador Sea Water (LSW, 14.9 ± 3.9 Sv) and Lower North Atlantic Deep Water (LNADW, 15.3 ± 3.8 Sv). The transport variability ranges from days to decades, with the most prominent multiyear fluctuations at interannual to near decadal time scales (±5 Sv) in the LNADW overflow water mass. These long-term fluctuations appear to be in phase with the NAO-modulated wind fluctuations. The boundary current system off Labrador occurs as a conglomerate of nearly independent components, namely, the shallow Labrador Current, the weakly sheared LSW range, and the deep baroclinic, bottom-intensified current core of the LNADW, all of which are part of the cyclonic Labrador Sea circulation. This structure is relatively stable over time, and the 120 km wide boundary current is constrained seaward by a weak counterflow which reduces the deep water export by 10–15%.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-02-06
    Description: The balance in microbial net consumption of nitrogen and phosphorus was investigated in samples collected in two mesotrophic coastal environments: the Baltic Sea (Tvärminne field station) and the North Sea (Espegrend field station). For this, we have refined a bioassay based on the response in alkaline phosphatase activity (APA) over a matrix of combinations in nitrogen and phosphorus additions. This assay not only provides information on which element (N or P) is the primary limiting nutrient, but also gives a quantitative estimate for the excess of the secondary limiting element (P+ or N+, respectively), as well as the ratio of balanced net consumption of added N and P over short timescales (days). As expected for a Baltic Sea late spring–early summer situation, the Tvärminne assays (n =  5) indicated N limitation with an average P+ =  0.30 ± 0.10 µM-P, when incubated for 4 days. For short incubations (1–2 days), the Espegrend assays indicated P limitation, but the shape of the response surface changed with incubation time, resulting in a drift in parameter estimates toward N limitation. Extrapolating back to zero incubation time gave P limitation with N+ ≈  0.9 µM-N. The N : P ratio (molar) of nutrient net consumption varied considerably between investigated locations: from 2.3 ± 0.4 in the Tvärminne samples to 13 ± 5 and 32 ± 3 in two samples from Espegrend. Our assays included samples from mesocosm acidification experiments, but statistically significant effects of ocean acidification were not found by this method.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-02-06
    Description: Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three-spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three-spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Wiley
    In:  Evolutionary Applications, 10 (5). pp. 514-528.
    Publication Date: 2020-02-06
    Description: Trans-generational plasticity is the adjustment of phenotypes to changing habitat conditions that persist longer than the individual lifetime. Fitness benefits (adaptive TGP) are expected upon matching parent-offspring environments. In a global change scenario, several performance-related environmental factors are changing simultaneously. This lowers the predictability of offspring environmental conditions, potentially hampering the benefits of trans-generational plasticity. For the first time, we here explore how the combination of an abiotic and a biotic environmental factor in the parental generation plays out as trans-generational effect in the offspring. We fully reciprocally exposed the parental generation of the pipefish Syngnathus typhle to an immune challenge and elevated temperatures simulating a naturally occurring heatwave. Upon mating and male pregnancy, offspring were kept in ambient or elevated temperature regimes combined with a heat-killed bacterial epitope treatment. Differential gene expression (immune genes and DNA- and histone-modification genes) suggests that the combined change of an abiotic and a biotic factor in the parental generation had interactive effects on offspring performance, the temperature effect dominated over the immune challenge impact. The benefits of certain parental environmental conditions on offspring performance did not sum up when abiotic and biotic factors were changed simultaneously supporting that available resources that can be allocated to phenotypic trans-generational effects are limited. Temperature is the master regulator of trans-generational phenotypic plasticity, which potentially implies a conflict in the allocation of resources towards several environmental factors. This asks for a reassessment of trans-generational plasticity as a short-term option to buffer environmental variation in the light of climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Wiley
    In:  In: The last great ice sheets. , ed. by Denton, G. H. and Hughes, T. J. Wiley, New York, pp. 179-206. ISBN 0-471-06006-2
    Publication Date: 2017-04-10
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (5). pp. 836-849.
    Publication Date: 2020-02-06
    Description: Primary productivity is limited by the availability of nitrogen (N) in most of the coastal Arctic, as a large portion of N is released by the spring freshet and completely consumed during the following summer. Thus, understanding the fate of riverine nitrogen is critical to identify the link between dissolved nitrogen dynamic and coastal primary productivity to foresee upcoming changes in the Arctic seas, such as increase riverine discharge and permafrost thaw. Here, we provide a field-based study of nitrogen dynamic over the Laptev Sea shelf based on isotope geochemistry. We demonstrate that while most of the nitrate found under the surface fresh water layer is of remineralized origin, some of the nitrate originates from atmospheric input and was probably transported at depth by the mixing of brine-enriched denser water during sea-ice formation. Moreover, our results suggest that riverine dissolved organic nitrogen (DON) represents up to 6 times the total riverine release of nitrate and that about 62 to 76% of the DON is removed within the shelf waters. This is a crucial information regarding the near-future impact of climate change on primary productivity in the Eurasian coastal Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-02-06
    Description: The identification of native sources and vectors of introduced species informs their ecological and evolutionary history and may guide policies that seek to prevent future introductions. Population genetics provides a powerful set of tools to identify origins and vectors. However, these tools can mislead when the native range is poorly sampled or few molecular markers are used. Here, we traced the introduction of the Asian seaweed Gracilaria vermiculophylla (Rhodophyta) into estuaries in coastal western North America, the eastern United States, Europe, and northwestern Africa by genotyping more than 2,500 thalli from 37 native and 53 non-native sites at mitochondrial cox1 and 10 nuclear microsatellite loci. Overall, greater than 90% of introduced thalli had a genetic signature similar to thalli sampled from the coastline of northeastern Japan, strongly indicating this region served as the principal source of the invasion. Notably, northeastern Japan exported the vast majority of the oyster Crassostrea gigas during the 20th century. The preponderance of evidence suggests G. vermiculophylla may have been inadvertently introduced with C. gigas shipments and that northeastern Japan is a common source region for estuarine invaders. Each invaded coastline reflected a complex mix of direct introductions from Japan and secondary introductions from other invaded coastlines. The spread of G. vermiculophylla along each coastline was likely facilitated by aquaculture, fishing, and boating activities. Our ability to document a source region was enabled by a robust sampling of locations and loci that previous studies lacked and strong phylogeographic structure along native coastlines.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 122 (5). pp. 3334-3350.
    Publication Date: 2020-02-06
    Description: Marine controlled source electromagnetic (CSEM) data have been collected to investigate methane seep sites and associated gas hydrate deposits at Opouawe Bank on the southern tip of the Hikurangi Margin, New Zealand. The bank is located in about 1000 m water depth within the gas hydrate stability field. The seep sites are characterized by active venting and typical methane seep fauna accompanied with patchy carbonate outcrops at the seafloor. Below the seeps, gas migration pathways reach from below the bottom-simulating reflector (at around 380 m sediment depth) toward the seafloor, indicating free gas transport into the shallow hydrate stability field. The CSEM data have been acquired with a seafloor-towed, electric multi-dipole system measuring the inline component of the electric field. CSEM data from three profiles have been analyzed by using 1-D and 2-D inversion techniques. High-resolution 2-D and 3-D multichannel seismic data have been collected in the same area. The electrical resistivity models show several zones of highly anomalous resistivities (〉50 Ωm) which correlate with high amplitude reflections located on top of narrow vertical gas conduits, indicating the coexistence of free gas and gas hydrates within the hydrate stability zone. Away from the seeps the CSEM models show normal background resistivities between ~1 and 2 Ωm. Archie's law has been applied to estimate gas/gas hydrate saturations below the seeps. At intermediate depths between 50 and 200 m below seafloor, saturations are between 40 and 80% and gas hydrate may be the dominating pore filling constituent. At shallow depths from 10 m to the seafloor, free gas dominates as seismic data and gas plumes suggest.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-02-06
    Description: Many species of Indo-Pacific holobenthic foraminifera have been introduced and successfully established sustainable populations in the Mediterranean Sea over the past few decades. However, known natural and anthropogenic vectors do not explain how these species were introduced long distances from their origin. We present evidence for a novel marine bioinvasion vector explaining this long-distance transport and introduction using both contemporary field and historical analyses. In 2015–2016, we found living specimens of 29 foraminiferal species in the fecal pellets of two Red Sea herbivorous rabbitfish—Siganus rivulatus and Siganus luridus in the Mediterranean. In our historical analysis, we found 34 foraminiferal species in preserved Red Sea rabbitfish specimens, dating between 1967 and 1975. In addition, we found congruent propagation patterns of the non-indigenous rabbitfish and foraminifera, lagging 4–11 yrs between discoveries, respectively. Predation of marine benthos by non-indigenous fish, followed by incomplete digestion and defecation of viable individuals, comprise the main introduction vector of these organisms into novel environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2017-12-14
    Description: In a recent letter, Thomsen and Wernberg (2015) reanalyzed data compiled for our recent paper (Lyons et al. 2014). In that paper, we examined the effects of macroalgal blooms and macroalgal mats on seven important measures of community structure and ecosystem functioning, and explored several ecological and methodological factors that might explain some of the variation in the observed effects. Thomsen and Wernberg (2015) reanalyzed two small subsets of the data, focusing on experimental studies examining effects of blooms/mats on invertebrate abundance. Their analyses revealed two interesting patterns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-02-06
    Description: The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 9 . pp. 809-831.
    Publication Date: 2020-02-06
    Description: The injection of sulphur into the stratosphere by explosive volcanic eruptions is the cause of significant climate variability. Based on sulphate records from a suite of ice cores from Greenland and Antarctica, the eVolv2k database includes estimates of the magnitudes and approximate source latitudes of major volcanic stratospheric sulphur injection (VSSI) events from 500 BCE to 1900 CE, constituting an update of prior reconstructions and an extension of the record by 1000 years. The VSSI estimates incorporate improvements to the ice core records in terms of synchronization and dating, refinements to the methods used to estimate VSSI from ice core records, and includes first estimates of the random uncertainties in VSSI values. VSSI estimates for many of the largest eruptions, including Samalas (1257), Tambora (1815) and Laki (1783) are within 10% of prior estimates. A number of strong events are included in eVolv2k which are largely underestimated or not included in earlier VSSI reconstructions, including events in 540, 574, 682 and 1108 CE. The long term annual mean VSSI from major volcanic eruptions is estimated to be ∼ 0.5 Tg [S] yr−1, ∼ 50 % greater than a prior reconstruction, due to the identification of more events and an increase in the magnitude of many intermediate events. A long-term, latitudinally and monthly resolved stratospheric aerosol optical depth (SAOD) time series is reconstructed from the eVolv2k VSSI estimates, and the resulting global mean SAOD is found to be similar (within 33%) to a prior reconstruction for most of the largest eruptions. The long-term (500 BCE–900 CE) average global mean SAOD estimated from the eVolv2k VSSI estimates and including a constant "background" injection of stratospheric sulphur is ∼ 0.014, 30 % greater than a prior reconstruction. These new long-term reconstructions of past VSSI and SAOD variability give context to recent volcanic forcing, suggesting that the 20th century was a period of somewhat weaker than average volcanic forcing, with current best estimates of 20th century mean VSSI and SAOD values being 25 and 14 % less, respectively, than the mean of the 500 BCE to 1900 CE period. The reconstructed VSSI and SAOD data are available at https://doi.org/10.1594/WDCC/eVolv2k_v2〉.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-02-06
    Description: The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae. Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-02-06
    Description: The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO–LIM3.6-based ocean–sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961–2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-02-06
    Description: Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non-native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine-scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA-COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders (Gammarus tigrinus, Pontogammarus maeoticus, and Obesogammarus crassus) and strictly restricted to their native regions (Gammarus locusta, Gammarus salinus, Gammarus zaddachi, and Gammarus oceanicus). Despite that genetic diversity did not differ between invasive and non-invasive species, we observed that populations of non-invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non-native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage divergence holds an important role in the distribution of neutral genetic diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Solid Earth, 122 (10). pp. 7927-7950.
    Publication Date: 2020-02-06
    Description: Receiver functions (RF) have been used for several decades to study structures beneath seismic stations. Although most available stations are deployed on-shore, the number of ocean bottom station (OBS) experiments has increased in recent years. Almost all OBSs have to deal with higher noise levels and a limited deployment time (∼1 year), resulting in a small number of usable records of teleseismic earthquakes. Here, we use OBSs deployed as mid-aperture array in the deep ocean (4.5-5.5 km water depth) of the eastern mid-Atlantic. We use evaluation criteria for OBS data and beam forming to enhance the quality of the RFs. Although some stations show reverberations caused by sedimentary cover, we are able to identify the Moho signal, indicating a normal thickness (5-8 km) of oceanic crust. Observations at single stations with thin sediments (300-400 m) indicate that a probable sharp lithosphere-asthenosphere boundary (LAB) might exist at a depth of ∼70-80 km which is in line with LAB depth estimates for similar lithospheric ages in the Pacific. The mantle discontinuities at ∼410 km and ∼660 km are clearly identifiable. Their delay times are in agreement with PREM. Overall the usage of beam formed earthquake recordings for OBS RF analysis is an excellent way to increase the signal quality and the number of usable events.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-02-06
    Description: We developed a new method for the determination of dissolved nitric oxide (NO) in discrete seawater samples based on the combination of a purge-and-trap setup and a fluorometric detection of NO. 2,3-diaminonaphthalene (DAN) reacts with NO in seawater to form the highly fluorescent 2,3-naphthotriazole (NAT). The fluorescence intensity was linear for NO concentrations in the range from 0.14 to 19 nmol L−1. We determined a detection limit of 0.068 nmol L−1, an average recovery coefficient of 83.8 % (80.2–90.0 %), and a relative standard deviation of ±7.2 %. With our method we determined for the first time the temporal and spatial distributions of NO surface concentrations in coastal waters of the Yellow Sea off Qingdao and in Jiaozhou Bay during a cruise in November 2009. The concentrations of NO varied from below the detection limit to 0.50 nmol L−1 with an average of 0.26 ± 0.14 nmol L−1. NO surface concentrations were generally enhanced significantly during daytime, implying that NO formation processes such as NO2− photolysis are much higher during daytime than chemical NO consumption, which, in turn, lead to a significant decrease in NO concentrations during nighttime. In general, NO surface concentrations and measured NO production rates were higher compared to previously reported measurements. This might be caused by the high NO2− surface concentrations encountered during the cruise. Moreover, additional measurements of NO production rates implied that the occurrence of particles and a temperature increase can enhance NO production rates. With the method introduced here, we have a reliable and comparably easy to use method at hand to measure oceanic NO surface concentrations, which can be used to decipher both its temporal and spatial distributions as well as its biogeochemical pathways in the oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1236-1255.
    Publication Date: 2020-02-06
    Description: There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition. Our simulations suggest that anthropogenic perturbations cause only a small imbalance to the N cycle relative to preindustrial conditions (∼+5 Tg N y−1 in 2100). More N loss from water column denitrification in expanded oxygen minimum zones (OMZs) is counteracted by less benthic denitrification, due to the stratification-induced reduction in organic matter export. The larger atmospheric N load is offset by reduced N inputs by marine N2 fixation. Our model predicts a decline in oceanic N2O emissions by 2100. This is induced by the decrease in organic matter export and associated N2O production and by the anthropogenically driven changes in ocean circulation and atmospheric N2O concentrations. After comprehensively accounting for a series of complex physical-biogeochemical interactions, this study suggests that N flux imbalances are limited by biogeochemical feedbacks that help stabilize the marine N inventory against anthropogenic changes. These findings support the hypothesis that strong negative feedbacks regulate the marine N inventory on centennial time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 44 (19). pp. 9957-9966.
    Publication Date: 2020-02-06
    Description: Proxy data suggest the onset of Northern Hemisphere glaciation during the Plio-Pleistocene transition from 3.2 to 2.5 Ma resulted in enhanced climate variability at the obliquity (41 kyr) frequency. Here, we investigate the influence of the expanding Greenland ice sheet (GrIS) on the mean climate and obliquity-related variability in a series of climate model simulations. These suggest that an expanding GrIS weakens the Atlantic Meridional Overturning Circulation (AMOC) by ~1 Sv, mainly due to reduced heat loss in the Greenland-Iceland-Norwegian Sea. Moreover, the growing GrIS amplifies the Hadley circulation response to obliquity forcing driving variations in freshwater export from the tropical Atlantic and in turn variations of the AMOC. The stronger AMOC response to obliquity forcing, by about a factor of two, results in a stronger global-mean near-surface temperature response. We conclude that the AMOC response to obliquity forcing is important to understand the enhanced climate variability at the obliquity frequency during the Plio-Pleistocene transition.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    In:  Limnology and Oceanography, 63 (2). pp. 968-984.
    Publication Date: 2021-06-23
    Description: Overfishing, excess nutrient load, and invasion of Mnemiopsis leidyi acted on the Black Sea from 1960s to 1990s. Under the effect of these drivers, the ecosystem underwent several transformations that culminated in the shift from a planktonic food chain to a network with most of the energy diverted to jellyfish. The interplay between multiple stressors and the intricate web of trophic interactions make it difficult to understand which causative mechanisms linked the sources of change to the observed variations. To study such interplay, we focused on the structure of the trophic interactions and applied loop analysis to qualitatively predict the response of variables to stressors. Significant variations in biomass trends were identified with statistical analysis and considered as benchmark to validate loop analysis predictions. The results of the comparisons were used to select the most influential trophic interactions that explain the changes observed between 1960 and 1990. The models were applied to test (1) the importance of various environmental drivers and (2) the mechanisms that produced the observed changes. The results suggested that the changes observed before M. leidyi invasion were strongly influenced by the excess nutrient addition, an outcome that challenges the relevance of the trophic cascade as described in literature. The concurrent effect of overfishing, climate, and nutrient enrichment likely triggered the outburst of M. leidyi in the late 1980s. Our work shows the potential of loop analysis to grasp the causal relationships between the drivers, the structure of the interactions, and the responses of the variables.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (11). pp. 1656-1673.
    Publication Date: 2020-02-06
    Description: In this pilot study we link the yield of industrial fisheries to changes in the zooplankton mortality in an idealized way accounting for different target species (planktivorous fish—decreased zooplankton mortality; large predators—increased zooplankton mortality). This indirect approach is used in a global coupled biogeochemistry circulation model to estimate the range of the potential impact of industrial fisheries on marine biogeochemistry. The simulated globally integrated response on phytoplankton and primary production is in line with expectations—a high (low) zooplankton mortality results in a decrease (increase) of zooplankton and an increase (decrease) of phytoplankton. In contrast, the local response of zooplankton and phytoplankton depends on the region under consideration: In nutrient-limited regions, an increase (decrease) in zooplankton mortality leads to a decrease (increase) in both zooplankton and phytoplankton biomass. In contrast, in nutrient-replete regions, such as upwelling regions, we find an opposing response: an increase (decrease) of the zooplankton mortality leads to an increase (decrease) in both zooplankton and phytoplankton biomass. The results are further evaluated by relating the potential fisheries-induced changes in zooplankton mortality to those driven by CO2 emissions in a business-as-usual 21st century emission scenario. In our idealized case, the potential fisheries-induced impact can be of similar size as warming-induced changes in marine biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-02-06
    Description: Back-arc spreading centers (BASCs) form a distinct class of ocean spreading ridges distinguished by steep along-axis gradients in spreading rate and by additional magma supplied through subduction. These characteristics can affect the population and distribution of hydrothermal activity on BASCs compared to mid-ocean ridges (MORs). To investigate this hypothesis, we comprehensively explored 600 km of the southern half of the Mariana BASC. We used water column mapping and seafloor imaging to identify 19 active vent sites, an increase of 13 over the current listing in the InterRidge Database (IRDB), on the bathymetric highs of 7 of the 11 segments. We identified both high and low (i.e., characterized by a weak or negligible particle plume) temperature discharge occurring on segment types spanning dominantly magmatic to dominantly tectonic. Active sites are concentrated on the two southernmost segments, where distance to the adjacent arc is shortest (〈40 km), spreading rate is highest (〉48 mm/yr), and tectonic extension is pervasive. Re-examination of hydrothermal data from other BASCs supports the generalization that hydrothermal site density increases on segments 〈90 km from an adjacent arc. Although exploration quality varies greatly among BASCs, present data suggest that, for a given spreading rate, the mean spatial density of hydrothermal activity varies little between MORs and BASCs. The present global database, however, may be misleading. On both BASCs and MORs, the spatial density of hydrothermal sites mapped by high-quality water-column surveys is 2–7 times greater than predicted by the existing IRDB trend of site density versus spreading rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-03-19
    Description: Provenance studies of widely distributed tephras, integrated within a well-defined temporal framework, are important to deduce systematic changes in the source, scale, distribution and changes in regional explosive volcanism. Here, we establish a robust tephro-chronostratigraphy for a total of 157 marine tephra layers collected during IODP Expedition 352. We infer at least three major phases of highly explosive volcanism during Oligocene to Pleistocene time. Provenance analysis based on glass composition assigns 56 of the tephras to a Japan source, including correlations with 12 major and widespread tephra layers resulting from individual eruptions in Kyushu, Central Japan and North Japan between 115 ka and 3.5 Ma. The remaining 101 tephras are assigned to four source regions along the Izu-Bonin arc. One, of exclusively Oligocene age, is proximal to the Bonin Ridge islands; two reflect eruptions within the volcanic front and back-arc of the central Izu-Bonin arc, and a fourth region corresponds to the Northern Izu-Bonin arc source. First-order volume estimates imply eruptive magnitudes ranging from 6.3 to 7.6 for Japan-related eruptions and between 5.5 and 6.5 for IBM eruptions. Our results suggest tephras between 30 and 22 Ma that show a subtly different Izu-Bonin chemical signature compared to the recent arc. After a ∼11 m.y. gap in eruption, tephra supply from the Izu-Bonin arc predominates from 15 to 5 Ma, and finally a subequal mixture of tephra sources from the (palaeo)Honshu and Izu-Bonin arcs occurs within the last ∼5 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 11 (1). pp. 43-60.
    Publication Date: 2021-03-19
    Description: Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion is of significant interest to the energy industry. In this paper, we present a user-friendly 1D FEM based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin offshore Norway. Input data for the model is the present-day well log or sedimentary column with an Excel input file and includes rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity, and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time, and the changes that take place following sill emplacement such as TOC changes, thermal maturity, and the amount of organic and carbonate-derived CO2. The TOC and vitrinite results can be readily benchmarked within the tool to present-day values measured within the sedimentary column. This allows the user to determine the conditions required to obtain results that match observables and leads to a better understanding of metamorphic processes in sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-02-06
    Description: Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( 〉  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-02-08
    Description: Rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction and magnitude of phenotypic evolution during invasion has been underestimated. We explored the utility of niche-shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe and northwestern Africa within the last 100 years. A genetically-informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations and as predicted, non-native populations had greater tolerance for ecologically-relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically-informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions, and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...