ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-27
    Description: We quantify the stratospheric injection of brominated very short-lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC-11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry-Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer-lived chemicals as a surrogate for VSLS. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-06
    Description: We present novel measurements of five short-lived brominated source gases (CH2Br2, CHBr3, CH2ClBr, CHCl2Br and CHClBr2). These rather short-lived gases are an important source of bromine to the stratosphere, where they can lead to depletion of ozone. The measurements have been obtained using an in situ gas chromatography and mass spectrometry (GC–MS) system on board the High Altitude and Long Range Research Aircraft (HALO). The instrument is extremely sensitive due to the use of chemical ionization, allowing detection limits in the lower parts per quadrillion (ppq, 10−15) range. Data from three campaigns using HALO are presented, where the upper troposphere and lower stratosphere (UTLS) of the northern hemispheric mid-to-high latitudes were sampled during winter and during late summer to early fall. We show that an observed decrease with altitude in the stratosphere is consistent with the relative lifetimes of the different compounds. Distributions of the five source gases and total organic bromine just below the tropopause show an increase in mixing ratio with latitude, in particular during polar winter. This increase in mixing ratio is explained by increasing lifetimes at higher latitudes during winter. As the mixing ratios at the extratropical tropopause are generally higher than those derived for the tropical tropopause, extratropical troposphere-to-stratosphere transport will result in elevated levels of organic bromine in comparison to air transported over the tropical tropopause. The observations are compared to model estimates using different emission scenarios. A scenario with emissions mainly confined to low latitudes cannot reproduce the observed latitudinal distributions and will tend to overestimate organic bromine input through the tropical tropopause from CH2Br2 and CHBr3. Consequently, the scenario also overestimates the amount of brominated organic gases in the stratosphere. The two scenarios with the highest overall emissions of CH2Br2 tend to overestimate mixing ratios at the tropical tropopause, but they are in much better agreement with extratropical tropopause mixing ratios. This shows that not only total emissions but also latitudinal distributions in the emissions are of importance. While an increase in tropopause mixing ratios with latitude is reproduced with all emission scenarios during winter, the simulated extratropical tropopause mixing ratios are on average lower than the observations during late summer to fall. We show that a good knowledge of the latitudinal distribution of tropopause mixing ratios and of the fractional contributions of tropical and extratropical air is needed to derive stratospheric inorganic bromine in the lowermost stratosphere from observations. In a sensitivity study we find maximum differences of a factor 2 in inorganic bromine in the lowermost stratosphere from source gas injection derived from observations and model outputs. The discrepancies depend on the emission scenarios and the assumed contributions from different source regions. Using better emission scenarios and reasonable assumptions on fractional contribution from the different source regions, the differences in inorganic bromine from source gas injection between model and observations is usually on the order of 1 ppt or less. We conclude that a good representation of the contributions of different source regions is required in models for a robust assessment of the role of short-lived halogen source gases on ozone depletion in the UTLS.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-04-24
    Description: This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The observations were obtained during the Earth System Model Validation (ESMVal) campaign in September 2012. Observed and simulated tracer–tracer relations reflect photochemical O3 production as well as in-mixing from the lower troposphere and the tropopause layer. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from those in the rest of the year, and the measurements reflect the main processes acting throughout the monsoon season. Net photochemical O3 production is significantly enhanced in the ASMA, where uplifted precursors meet increased NOx, mainly produced by lightning. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank and then transported in the southern fringe around the interior region. Radial transport barriers of the circulation are effectively overcome by subseasonal dynamical instabilities of the anticyclone, which occur quite frequently and are of paramount importance for the trace gas composition of the ASMA. Both the isentropic entrainment of O3-rich air and the photochemical conversion of uplifted O3-poor air tend to increase O3 in the ASMA outflow.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-25
    Description: Very short-lived substances (VSLS) contribute as source gases significantly to the tropospheric and stratospheric bromine loading. At present, an estimated 25 % of stratospheric bromine is of oceanic origin. In this study, we investigate how climate change may impact the ocean–atmosphere flux of brominated VSLS, their atmospheric transport, and chemical transformations and evaluate how these changes will affect stratospheric ozone over the 21st century. Under the assumption of fixed ocean water concentrations and RCP6.0 scenario, we find an increase of the ocean–atmosphere flux of brominated VSLS of about 8–10 % by the end of the 21st century compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Our model simulations reveal that this increase is counteracted by a corresponding reduction of inorganic bromine. Therefore the total amount of bromine from VSLS in the stratosphere will not be changed by an increase in upwelling. Part of the increase of VSLS in the tropical lower stratosphere results from an increase in the corresponding tropopause height. As the depletion of stratospheric ozone due to bromine depends also on the availability of chlorine, we find the impact of bromine on stratospheric ozone at the end of the 21st century reduced compared to present day. Thus, these studies highlight the different factors influencing the role of brominated VSLS in a future climate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-23
    Description: This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) obtained during the Earth System Model Validation (ESMVal) campaign in September 2012 into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from the rest of the year. Air uplifted from the lower troposphere to the tropopause layer dominates the eastern part of the ASMA’s interior, while the western part is characterised by subsidence down to the mid-troposphere. Soluble compounds are being washed out when uplifted by convection in the eastern part, where lightning simultaneously replenishes reactive nitrogen in the upper troposphere. Net photochemical ozone production is significantly enhanced in the ASMA, contrasted by an ozone depleting regime in the mid-troposphere and more neutral conditions in autumn and winter. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank, and then transported in the southern fringe around the interior region. Observed and simulated tracer-tracer relations reflect photochemical O3 production, as well as in-mixing from the lower troposphere and the tropopause layer. The simulation additionally shows entrainment of clean air from the equatorial region by northerly winds at the western ASMA flank. Although the in situ measurements were performed towards the end of summer, the main ingredients needed for their interpretation are present throughout the monsoon season. A transition between two dynamical modes of the ASMA took place during the HALO ESMVal campaign. Transport barriers of the original anticyclone are overcome effectively when it splits up. Air from the fringe is stirred into the interiors of the new anticyclones and vice versa. Instabilities of this and other types occur quite frequently. Our study emphasises their paramountcy for the trace gas composition of the ASMA and its outflow into regions around the world.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-26
    Description: In this study the stratospheric variability is analysed from decadal to seasonal timescales. Relevant processes for the decadal timescale are identified by means of power spectral analysis. The inspection of the ERA-Interim reanalysis data set shows considerably high variability at the 12 and 6 months period. But also in the extra tropical region at intra-annual to seasonal timescales clear peaks in the power spectrum arise. In addition to that, the quasi-biennial oscillation (QBO) obviously contributes to the stratospheric variability at decadal timescales. Regarding the power spectrum of EMAC 2.52 model simulations, only a model configuration with a vertical resolution smaller than 1 km in the stratosphere is capable to capture the relevant features of the spectrum. In particular, the model with a coarser distribution of vertical levels cannot reproduce the QBO signal. The analysis of the corresponding wave spectra reveals that, if the vertical resolution is insufficient, primarily the Mixed-Rossby-Gravity waves cannot be adequately reproduced. Estimates made by linear wave theory show that for reanalysis data the Mixed-Rossby-Gravity waves with equivalent depths between 50 m to 250 m are relevant for the QBO. In order to resolve these relevant waves, model simulations need to consider a vertical resolution of at least 1 km.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-03
    Description: Very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. At present, an estimated 25 % of stratospheric bromine is of oceanic origin. In this study, we investigate how climate change may impact the ocean-atmosphere flux of brominated VSLS, their atmospheric transport, chemical transformations, and evaluate how these changes will affect stratospheric ozone over the 21st century. Under the assumption of fixed ocean water concentrations and RCP6.0 scenario, we find an increase of the ocean-atmosphere flux of brominated VSLS of about 8–10 % by the end of the 21st century compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Our model simulations reveal that, in line with the reduction in the troposphere, the total amount of bromine from VSLS in the stratosphere will decrease during the 21st century. Part of the apparent increase of VSLS in the tropical lower stratosphere results from an increase in the corresponding tropopause height. As the depletion of stratospheric ozone due to bromine depends also on the availability of chlorine, we find the impact of bromine on stratospheric ozone at the end of the 21st century reduced compared to present day. Thus, these studies highlight the different factors influencing the role of brominated VSLS in a future climate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-31
    Description: Three types of reference simulations, as recommended by the Chemistry–Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950–2011), hindcast simulations with specified dynamics (1979–2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950–2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 (18). pp. 11313-11329.
    Publication Date: 2020-02-06
    Description: Very short-lived substances (VSLS) contribute as source gases significantly to the tropospheric and stratospheric bromine loading. At present, an estimated 25% of stratospheric bromine is of oceanic origin. In this study, we investigate how climate change may impact the ocean- atmosphere flux of brominated VSLS, their atmospheric transport, and chemical transformations and evaluate how these changes will affect stratospheric ozone over the 21st century. Under the assumption of fixed ocean water concentrations and RCP6.0 scenario, we find an increase of the ocean- atmosphere flux of brominated VSLS of about 8-10% by the end of the 21st century compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Our model simulations reveal that this increase is counteracted by a corresponding reduction of inorganic bromine. Therefore the total amount of bromine from VSLS in the stratosphere will not be changed by an increase in upwelling. Part of the increase of VSLS in the tropical lower stratosphere results from an increase in the corresponding tropopause height. As the depletion of stratospheric ozone due to bromine depends also on the availability of chlorine, we find the impact of bromine on stratospheric ozone at the end of the 21st century reduced compared to present day. Thus, these studies highlight the different factors influencing the role of brominated VSLS in a future climate
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...