ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (265)
  • Chemistry  (231)
  • Development
  • American Association for the Advancement of Science (AAAS)  (562)
  • Institute of Physics
  • 2015-2019  (338)
  • 2010-2014  (224)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-08
    Description: Separation and purification are critical industrial processes for separating components of chemical mixtures, and these processes account for about half of industrial energy usage (1). Gas mixtures of compounds with very similar physical properties are particularly difficult to separate. On pages 137 and 141 of this issue, Cadiau et al. (2) and Cui et al. (3), respectively, show that microporous materials can be designed to have high adsorption capacity and selectivity for particular hydrocarbons, enabling energy-efficient separation. Author: Jerry Y. S. Lin
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-27
    Description: Biomass-degrading microorganisms use lytic polysaccharide monooxygenase (LPMO) enzymes to help digest cellulose, chitin, and starch. By cleaving otherwise inaccessible crystalline cellulose chains, these enzymes provide access to hydrolytic enzymes. LPMOs are of interest to biotechnology because efficient depolymerization of cellulose is a major bottleneck for the production of biologically based chemicals and fuels. On page 1098 of this issue, Kracher et al. (1) compare LPMO-reducing substrates in fungi from different taxonomic groups and lifestyles, based on both biochemical and genomic evidence. The results provide insights into reductive activation of LPMO that are important for developing more efficient industrial enzymes for lignocellulose biorefineries. Author: Angel T. Martínez
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-03-25
    Description: Author: Marc S. Lavine
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-06-10
    Description: Author: Beverly A. Purnell
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-06-03
    Description: Two teams have developed innovative new applications of the popular genome-editing method CRISPR. One of the groups has used it to mark and trace cells in a developing animal. In the method's first test, described online today in Science, the researchers reveal that many tissues and organs in adult zebrafish form from just a few embryonic cells. Other researchers are already looking to adapt the method to mice, or to exploit it to trace the evolution of tumors. The second group found a way to use CRISPR-guided mutations to record a cell's history—for example, the environmental signals that influence it. Author: Kai Kupferschmidt
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-03
    Description: Author: Valda Vinson
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-02-16
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-02-16
    Description: The comment and response concerning the report of oxidation of methane to methanol by water (Reports, 5 May 2017, p. 523) do not fully capture the implications of thermodynamic limitations. A nonisothermal process in which each cycle requires a large temperature swing and permits only substoichiometric methane conversion surely could not be carried out on any practical scale.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-02-16
    Description: Labinger argues that stepwise reaction of methane with water to produce methanol and hydrogen will never be commercially feasible because of its substoichiometric basis with respect to the active site and the requirement of a large temperature swing. This comment is not touching any new ground, beyond describing the thermodynamic feasibility, thermal cycling, and the role of water as discussed previously. Most important, it does not have a solid numerical basis.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-07-27
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-07-27
    Description: Vinyl carbocations have been the subject of extensive experimental and theoretical studies over the past five decades. Despite this long history in chemistry, the utility of vinyl cations in chemical synthesis has been limited, with most reactivity studies focusing on solvolysis reactions or intramolecular processes. Here we report synthetic and mechanistic studies of vinyl cations generated through silylium–weakly coordinating anion catalysis. We find that these reactive intermediates undergo mild intermolecular carbon-carbon bond–forming reactions, including carbon-hydrogen (C–H) insertion into unactivated sp 3 C–H bonds and reductive Friedel-Crafts reactions with arenes. Moreover, we conducted computational studies of these alkane C–H functionalization reactions and discovered that they proceed through nonclassical, ambimodal transition structures. This reaction manifold provides a framework for the catalytic functionalization of hydrocarbons using simple ketone derivatives.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-22
    Description: It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-06-29
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-12-14
    Description: Theory has established the importance of geometric phase (GP) effects in the adiabatic dynamics of molecular systems with a conical intersection connecting the ground- and excited-state potential energy surfaces, but direct observation of their manifestation in chemical reactions remains a major challenge. Here, we report a high-resolution crossed molecular beams study of the H + HD -〉 H 2 + D reaction at a collision energy slightly above the conical intersection. Velocity map ion imaging revealed fast angular oscillations in product quantum state–resolved differential cross sections in the forward scattering direction for H 2 products at specific rovibrational levels. The experimental results agree with adiabatic quantum dynamical calculations only when the GP effect is included.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Description: Mutations in the fragile X mental retardation 1 gene ( FMR1 ) cause the most common inherited human autism spectrum disorder. FMR1 influences messenger RNA (mRNA) translation, but identifying functional targets has been difficult. We analyzed quiescent Drosophila oocytes, which, like neural synapses, depend heavily on translating stored mRNA. Ribosome profiling revealed that FMR1 enhances rather than represses the translation of mRNAs that overlap previously identified FMR1 targets, and acts preferentially on large proteins. Human homologs of at least 20 targets are associated with dominant intellectual disability, and 30 others with recessive neurodevelopmental dysfunction. Stored oocytes lacking FMR1 usually generate embryos with severe neural defects, unlike stored wild-type oocytes, which suggests that translation of multiple large proteins by stored mRNAs is defective in fragile X syndrome and possibly other autism spectrum disorders.
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Description: The chemistry of the carbonyl group is essential to modern organic synthesis. The preparation of substituted, enantioenriched 1,3- or 1,5-dicarbonyls is well developed, as their disconnection naturally follows from the intrinsic polarity of the carbonyl group. By contrast, a general enantioselective access to quaternary stereocenters in acyclic 1,4-dicarbonyl systems remains an unresolved problem, despite the tremendous importance of 2,3-substituted 1,4-dicarbonyl motifs in natural products and drug scaffolds. Here we present a broad enantioselective and stereodivergent strategy to access acyclic, polysubstituted 1,4-dicarbonyls via acid-catalyzed [3,3]-sulfonium rearrangement starting from vinyl sulfoxides and ynamides. The stereochemistry at sulfur governs the absolute sense of chiral induction, whereas the double bond geometry dictates the relative configuration of the final products.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-17
    Description: With the recent soaring production of natural gas, the use of methane and other light hydrocarbon feedstocks as starting materials in synthetic transformations is becoming increasingly economically attractive, although it remains chemically challenging. We report the development of photocatalytic C–H amination, alkylation, and arylation of methane, ethane, and higher alkanes under visible light irradiation at ambient temperature. High catalytic efficiency (turnover numbers up to 2900 for methane and 9700 for ethane) and selectivity were achieved using abundant, inexpensive cerium salts as photocatalysts. Ligand-to-metal charge transfer excitation generated alkoxy radicals from simple alcohols that in turn acted as hydrogen atom transfer catalysts. The mixed-phase gas/liquid reaction was adapted to continuous flow, enabling the efficient use of gaseous feedstocks in scalable photocatalytic transformations.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-24
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-24
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-24
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-31
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-08-31
    Description: Intrigued by the potential of nanoscale machines, scientists have long attempted to control molecular motion. We monitored the individual 0.7-nanometer steps of a single molecular hopper as it moved in an electric field along a track in a nanopore controlled by a chemical ratchet. The hopper demonstrated characteristics desired in a moving molecule: defined start and end points, processivity, no chemical fuel requirement, directional motion, and external control. The hopper was readily functionalized to carry cargos. For example, a DNA molecule could be ratcheted along the track in either direction, a prerequisite for nanopore sequencing.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-09-21
    Description: Phosphorothioate nucleotides have emerged as powerful pharmacological substitutes of their native phosphodiester analogs with important translational applications in antisense oligonucleotide (ASO) therapeutics and cyclic dinucleotide (CDN) synthesis. Stereocontrolled installation of this chiral motif has long been hampered by the systemic use of phosphorus(III) [P(III)]–based reagent systems as the sole practical means of oligonucleotide assembly. A fundamentally different approach is described herein: the invention of a P(V)-based reagent platform for programmable, traceless, diastereoselective phosphorus-sulfur incorporation. The power of this reagent system is demonstrated through the robust and stereocontrolled synthesis of various nucleotidic architectures, including ASOs and CDNs, via an efficient, inexpensive, and operationally simple protocol.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-09-21
    Description: Here we report an anomalous porous molecular crystal built of C–H···N-bonded double-layered roof-floor components and wall components of a segregatively interdigitated architecture. This complicated porous structure consists of only one type of fully aromatic multijoint molecule carrying three identical dipyridylphenyl wedges. Despite its high symmetry, this molecule accomplishes difficult tasks by using two of its three wedges for roof-floor formation and using its other wedge for wall formation. Although a C–H···N bond is extremely labile, the porous crystal maintains its porosity until thermal breakdown of the C–H···N bonds at 202°C occurs, affording a nonporous polymorph. Though this nonporous crystal survives even at 325°C, it can retrieve the parent porosity under acetonitrile vapor. These findings show how one can translate simplicity into ultrahigh complexity.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-21
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-09-28
    Description: Some of the simplest and most powerful carbon-carbon bond forming strategies take advantage of readily accessible ubiquitous motifs: carbonyls and olefins. Here we report a fundamentally distinct mode of reactivity between carbonyls and olefins that differs from established acid-catalyzed carbonyl-ene, Prins, and carbonyl-olefin metathesis reaction paths. A range of epsilon, zeta-unsaturated ketones undergo Brønsted acid–catalyzed intramolecular cyclization to provide tetrahydrofluorene products via the formation of two new carbon-carbon bonds. Theoretical calculations and accompanying mechanistic studies suggest that this carbocyclization reaction proceeds through the intermediacy of a transient oxetane formed by oxygen atom transfer. The complex polycyclic frameworks in this product class appear as common substructures in organic materials, bioactive natural products, and recently developed pharmaceuticals.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-09-28
    Description: Alkene aminoarylation with a single, bifunctional reagent is a concise synthetic strategy. We report a catalytic protocol for the addition of arylsulfonylacetamides across electron-rich alkenes with complete anti-Markovnikov regioselectivity and excellent diastereoselectivity to provide 2,2-diarylethylamines. In this process, single-electron alkene oxidation enables carbon-nitrogen bond formation to provide a key benzylic radical poised for a Smiles-Truce 1,5-aryl shift. This reaction is redox-neutral, exhibits broad functional group compatibility, and occurs at room temperature with loss of sulfur dioxide. As this process is driven by visible light, uses readily available starting materials, and demonstrates convergent synthesis, it is well suited for use in a variety of synthetic endeavors.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-05
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-05
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-10-05
    Description: Photocatalysis based on optically active, "plasmonic" metal nanoparticles has emerged as a promising approach to facilitate light-driven chemical conversions under far milder conditions than thermal catalysis. However, an understanding of the relation between thermal and electronic excitations has been lacking. We report the substantial light-induced reduction of the thermal activation barrier for ammonia decomposition on a plasmonic photocatalyst. We introduce the concept of a light-dependent activation barrier to account for the effect of light illumination on electronic and thermal excitations in a single unified picture. This framework provides insight into the specific role of hot carriers in plasmon-mediated photochemistry, which is critically important for designing energy-efficient plasmonic photocatalysts.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Keywords: Development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-12
    Description: Single-electron reduction of a carbonyl to a ketyl enables access to a polarity-reversed platform of reactivity for this cornerstone functional group. However, the synthetic utility of the ketyl radical is hindered by the strong reductants necessary for its generation, which also limit its reactivity to net reductive mechanisms. We report a strategy for net redox-neutral generation and reaction of ketyl radicals. The in situ conversion of aldehydes to α-acetoxy iodides lowers their reduction potential by more than 1 volt, allowing for milder access to the corresponding ketyl radicals and an oxidative termination event. Upon subjecting these iodides to a dimanganese decacarbonyl precatalyst and visible light irradiation, an atom transfer radical addition (ATRA) mechanism affords a broad scope of vinyl iodide products with high Z -selectivity.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-10-12
    Description: Reactions that form a product with the same reactive functionality as that of one of the starting compounds frequently end in oligomerization. As a salient example, selective aldol coupling of the smallest, though arguably most useful, enolizable aldehyde, acetaldehyde, with just one partner substrate has proven to be extremely challenging. Here, we report a highly enantioselective Mukaiyama aldol reaction with the simple triethylsilyl (TES) and tert -butyldimethylsilyl (TBS) enolates of acetaldehyde and various aliphatic and aromatic acceptor aldehydes. The reaction is catalyzed by recently developed, strongly acidic imidodiphosphorimidates (IDPi), which, like enzymes, display a confined active site but, like small-molecule catalysts, have a broad substrate scope. The process is scalable, fast, efficient (0.5 to 1.5 mole % catalyst loading), and greatly simplifies access to highly valuable silylated acetaldehyde aldols.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-12-21
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-12-21
    Description: Single-molecule magnets (SMMs) containing only one metal center may represent the lower size limit for molecule-based magnetic information storage materials. Their current drawback is that all SMMs require liquid-helium cooling to show magnetic memory effects. We now report a chemical strategy to access the dysprosium metallocene cation [(Cp i Pr5 )Dy(Cp*)] + (Cp i Pr5 , penta-iso-propylcyclopentadienyl; Cp *, pentamethylcyclopentadienyl), which displays magnetic hysteresis above liquid-nitrogen temperatures. An effective energy barrier to reversal of the magnetization of U eff = 1541 wave number is also measured. The magnetic blocking temperature of T B = 80 kelvin for this cation overcomes an essential barrier toward the development of nanomagnet devices that function at practical temperatures.
    Keywords: Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2010-01-02
    Description: Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudat, F -- Buard, J -- Grey, C -- Fledel-Alon, A -- Ober, C -- Przeworski, M -- Coop, G -- de Massy, B -- 03S1/PHS HHS/ -- GM83098/GM/NIGMS NIH HHS/ -- HD21244/HD/NICHD NIH HHS/ -- HL085197/HL/NHLBI NIH HHS/ -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 HD021244/HD/NICHD NIH HHS/ -- R01 HL085197/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):836-40. doi: 10.1126/science.1183439. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique Humaine, UPR1142, CNRS, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Genome ; Genome, Human ; Genotype ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/*metabolism ; Humans ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phenotype ; *Recombination, Genetic ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2010-09-18
    Description: The mammalian cytoskeletal proteins beta- and gamma-actin are highly homologous, but only beta-actin is amino-terminally arginylated in vivo, which regulates its function. We examined the metabolic fate of exogenously expressed arginylated and nonarginylated actin isoforms. Arginylated gamma-actin, unlike beta-, was highly unstable and was selectively ubiquitinated and degraded in vivo. This instability was regulated by the differences in the nucleotide coding sequence between the two actin isoforms, which conferred different translation rates. gamma-actin was translated more slowly than beta-actin, and this slower processing resulted in the exposure of a normally hidden lysine residue for ubiquitination, leading to the preferential degradation of gamma-actin upon arginylation. This degradation mechanism, coupled to nucleotide coding sequence, may regulate protein arginylation in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941909/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2941909/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Fangliang -- Saha, Sougata -- Shabalina, Svetlana A -- Kashina, Anna -- 5R01HL084419/HL/NHLBI NIH HHS/ -- R01 HL084419/HL/NHLBI NIH HHS/ -- R01 HL084419-03/HL/NHLBI NIH HHS/ -- R01 HL084419-03S1/HL/NHLBI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 17;329(5998):1534-7. doi: 10.1126/science.1191701.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20847274" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry/genetics/*metabolism ; Amino Acid Sequence ; Animals ; Arginine/*metabolism ; Cell Line ; Cell Line, Tumor ; *Codon ; Humans ; Lysine/metabolism ; Mice ; Nucleic Acid Conformation ; Proteasome Endopeptidase Complex/metabolism ; Protein Biosynthesis ; Protein Folding ; Protein Isoforms/chemistry/genetics/metabolism ; *Protein Modification, Translational ; Protein Stability ; RNA, Messenger/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2010-12-15
    Description: Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971456/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, Laura -- Tripathy, Sucheta -- Ishaque, Naveed -- Boot, Nico -- Cabral, Adriana -- Kemen, Eric -- Thines, Marco -- Ah-Fong, Audrey -- Anderson, Ryan -- Badejoko, Wole -- Bittner-Eddy, Peter -- Boore, Jeffrey L -- Chibucos, Marcus C -- Coates, Mary -- Dehal, Paramvir -- Delehaunty, Kim -- Dong, Suomeng -- Downton, Polly -- Dumas, Bernard -- Fabro, Georgina -- Fronick, Catrina -- Fuerstenberg, Susan I -- Fulton, Lucinda -- Gaulin, Elodie -- Govers, Francine -- Hughes, Linda -- Humphray, Sean -- Jiang, Rays H Y -- Judelson, Howard -- Kamoun, Sophien -- Kyung, Kim -- Meijer, Harold -- Minx, Patrick -- Morris, Paul -- Nelson, Joanne -- Phuntumart, Vipa -- Qutob, Dinah -- Rehmany, Anne -- Rougon-Cardoso, Alejandra -- Ryden, Peter -- Torto-Alalibo, Trudy -- Studholme, David -- Wang, Yuanchao -- Win, Joe -- Wood, Jo -- Clifton, Sandra W -- Rogers, Jane -- Van den Ackerveken, Guido -- Jones, Jonathan D G -- McDowell, John M -- Beynon, Jim -- Tyler, Brett M -- 079643/Wellcome Trust/United Kingdom -- BB/C509123/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E007120/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024815/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E024882/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F0161901/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G015244/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- EP/F500025/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- T12144/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1549-51. doi: 10.1126/science.1195203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Warwick University, Wellesbourne, CV35 9EF, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148394" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Arabidopsis/*parasitology ; Enzymes/genetics ; *Evolution, Molecular ; Gene Dosage ; Genes ; *Genome ; Host-Pathogen Interactions ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Data ; Oomycetes/*genetics/*growth & development/pathogenicity/physiology ; Phytophthora/genetics ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Spores/physiology ; Synteny ; Virulence Factors/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2010-07-31
    Description: Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ting -- Ghosal, Gargi -- Yuan, Jingsong -- Chen, Junjie -- Huang, Jun -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):693-6. doi: 10.1126/science.1192656. Epub 2010 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; Exodeoxyribonucleases/chemistry/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/*metabolism ; Fanconi Anemia Complementation Group Proteins/*metabolism ; Gene Knockdown Techniques ; HeLa Cells ; Humans ; Mitomycin/pharmacology ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Protein Binding ; Ubiquitinated Proteins/metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2010-12-15
    Description: The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bloomfield, Gareth -- Skelton, Jason -- Ivens, Alasdair -- Tanaka, Yoshimasa -- Kay, Robert R -- 06724/Wellcome Trust/United Kingdom -- 076964/Wellcome Trust/United Kingdom -- MC_U105115237/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1533-6. doi: 10.1126/science.1197423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK. garethb@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Dictyostelium/*genetics/growth & development/*physiology ; Gene Deletion ; *Genes, Protozoan ; Genetic Loci ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Peptides/chemistry/genetics/physiology ; Protozoan Proteins/chemistry/*genetics/*physiology ; Reproduction/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2010-07-31
    Description: During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onodera, Tomohiro -- Sakai, Takayoshi -- Hsu, Jeff Chi-feng -- Matsumoto, Kazue -- Chiorini, John A -- Yamada, Kenneth M -- ZIA DE000525-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):562-5. doi: 10.1126/science.1191880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cadherins/metabolism ; Cell Adhesion ; Cell Line ; Cell Movement ; Dogs ; Epithelial Cells/*physiology ; Fibronectins/genetics/metabolism ; Genes, Regulator ; Lung/*embryology/metabolism ; Mice ; Mice, Inbred ICR ; Models, Biological ; Molecular Sequence Data ; *Morphogenesis ; Nuclear Proteins ; Organ Culture Techniques ; Proteins/chemistry/*genetics/*physiology ; RNA, Small Interfering ; Salivary Glands/*embryology/metabolism ; Submandibular Gland/embryology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2010-01-02
    Description: Mammalian meiotic recombination, which preferentially occurs at specialized sites called hotspots, ensures the orderly segregation of meiotic chromosomes and creates genetic variation among offspring. A locus on mouse chromosome 17, which controls activation of recombination at multiple distant hotspots, has been mapped within a 181-kilobase interval, three of whose genes can be eliminated as candidates. The remaining gene, Prdm9, codes for a zinc finger containing histone H3K4 trimethylase that is expressed in early meiosis and whose deficiency results in sterility in both sexes. Mus musculus exhibits five alleles of Prdm9; human populations exhibit two predominant alleles and multiple minor alleles. The identification of Prdm9 as a protein regulating mammalian recombination hotspots initiates molecular studies of this important biological control system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821451/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parvanov, Emil D -- Petkov, Petko M -- Paigen, Kenneth -- 076468/PHS HHS/ -- 078452/PHS HHS/ -- 083408/PHS HHS/ -- CA 34196/CA/NCI NIH HHS/ -- GM 078643/GM/NIGMS NIH HHS/ -- P30 CA034196-26/CA/NCI NIH HHS/ -- P50 GM076468/GM/NIGMS NIH HHS/ -- P50 GM076468-030004/GM/NIGMS NIH HHS/ -- R01 GM078452/GM/NIGMS NIH HHS/ -- R01 GM078452-02/GM/NIGMS NIH HHS/ -- R01 GM078643/GM/NIGMS NIH HHS/ -- R01 GM078643-03/GM/NIGMS NIH HHS/ -- R01 GM083408/GM/NIGMS NIH HHS/ -- R01 GM083408-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):835. doi: 10.1126/science.1181495. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory, Bar Harbor, ME 04609, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044538" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Chromosome Mapping ; Female ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/metabolism ; Humans ; Male ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Recombination, Genetic ; Sequence Analysis, DNA ; Testis/metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2010-08-28
    Description: The organized societies of ants include short-lived worker castes displaying specialized behavior and morphology and long-lived queens dedicated to reproduction. We sequenced and compared the genomes of two socially divergent ant species: Camponotus floridanus and Harpegnathos saltator. Both genomes contained high amounts of CpG, despite the presence of DNA methylation, which in non-Hymenoptera correlates with CpG depletion. Comparison of gene expression in different castes identified up-regulation of telomerase and sirtuin deacetylases in longer-lived H. saltator reproductives, caste-specific expression of microRNAs and SMYD histone methyltransferases, and differential regulation of genes implicated in neuronal function and chemical communication. Our findings provide clues on the molecular differences between castes in these two ants and establish a new experimental model to study epigenetics in aging and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772619/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772619/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonasio, Roberto -- Zhang, Guojie -- Ye, Chaoyang -- Mutti, Navdeep S -- Fang, Xiaodong -- Qin, Nan -- Donahue, Greg -- Yang, Pengcheng -- Li, Qiye -- Li, Cai -- Zhang, Pei -- Huang, Zhiyong -- Berger, Shelley L -- Reinberg, Danny -- Wang, Jun -- Liebig, Jurgen -- 2009005/Howard Hughes Medical Institute/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Aug 27;329(5995):1068-71. doi: 10.1126/science.1192428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798317" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Animals ; Ants/classification/*genetics/physiology ; Behavior, Animal ; DNA/chemistry/genetics ; Dinucleoside Phosphates/analysis ; *Epigenesis, Genetic ; Gene Expression Profiling ; Gene Expression Regulation ; *Genes, Insect ; *Genome ; Group III Histone Deacetylases/genetics/metabolism ; Hydrocarbons/metabolism ; Insect Proteins/chemistry/*genetics/metabolism ; MicroRNAs/genetics ; Molecular Sequence Data ; Protein Methyltransferases/genetics/metabolism ; Proteome ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Social Behavior ; Species Specificity ; Telomerase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2010-03-27
    Description: Shelterin is an essential telomeric protein complex that prevents DNA damage signaling and DNA repair at mammalian chromosome ends. Here we report on the role of the TRF2-interacting factor Rap1, a conserved shelterin subunit of unknown function. We removed Rap1 from mouse telomeres either through gene deletion or by replacing TRF2 with a mutant that does not bind Rap1. Rap1 was dispensable for the essential functions of TRF2--repression of ATM kinase signaling and nonhomologous end joining (NHEJ)--and mice lacking telomeric Rap1 were viable and fertile. However, Rap1 was critical for the repression of homology-directed repair (HDR), which can alter telomere length. The data reveal that HDR at telomeres can take place in the absence of DNA damage foci and underscore the functional compartmentalization within shelterin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sfeir, Agnel -- Kabir, Shaheen -- van Overbeek, Megan -- Celli, Giulia B -- de Lange, Titia -- AG016642/AG/NIA NIH HHS/ -- GM049046/GM/NIGMS NIH HHS/ -- R01 AG016642/AG/NIA NIH HHS/ -- R01 AG016642-01/AG/NIA NIH HHS/ -- R01 AG016642-02/AG/NIA NIH HHS/ -- R01 AG016642-03/AG/NIA NIH HHS/ -- R01 AG016642-04/AG/NIA NIH HHS/ -- R01 AG016642-05/AG/NIA NIH HHS/ -- R01 AG016642-06/AG/NIA NIH HHS/ -- R01 AG016642-07/AG/NIA NIH HHS/ -- R01 AG016642-08/AG/NIA NIH HHS/ -- R01 AG016642-09/AG/NIA NIH HHS/ -- R01 AG016642-10/AG/NIA NIH HHS/ -- R01 AG016642-11/AG/NIA NIH HHS/ -- R01 GM049046/GM/NIGMS NIH HHS/ -- R01 GM049046-07/GM/NIGMS NIH HHS/ -- R01 GM049046-08/GM/NIGMS NIH HHS/ -- R01 GM049046-09/GM/NIGMS NIH HHS/ -- R01 GM049046-10/GM/NIGMS NIH HHS/ -- R01 GM049046-11/GM/NIGMS NIH HHS/ -- R01 GM049046-12/GM/NIGMS NIH HHS/ -- R37 GM049046/GM/NIGMS NIH HHS/ -- R37 GM049046-13/GM/NIGMS NIH HHS/ -- R37 GM049046-14/GM/NIGMS NIH HHS/ -- R37 GM049046-15/GM/NIGMS NIH HHS/ -- R37 GM049046-16/GM/NIGMS NIH HHS/ -- R37 GM049046-17/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Mar 26;327(5973):1657-61. doi: 10.1126/science.1185100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339076" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Proliferation ; Cells, Cultured ; Checkpoint Kinase 2 ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Gene Deletion ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Recombination, Genetic ; Signal Transduction ; Sister Chromatid Exchange ; Telomere/*genetics/metabolism ; Telomere-Binding Proteins/chemistry/*genetics/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2010-02-27
    Description: Legume plants host nitrogen-fixing endosymbiotic Rhizobium bacteria in root nodules. In Medicago truncatula, the bacteria undergo an irreversible (terminal) differentiation mediated by hitherto unidentified plant factors. We demonstrated that these factors are nodule-specific cysteine-rich (NCR) peptides that are targeted to the bacteria and enter the bacterial membrane and cytosol. Obstruction of NCR transport in the dnf1-1 signal peptidase mutant correlated with the absence of terminal bacterial differentiation. On the contrary, ectopic expression of NCRs in legumes devoid of NCRs or challenge of cultured rhizobia with peptides provoked symptoms of terminal differentiation. Because NCRs resemble antimicrobial peptides, our findings reveal a previously unknown innovation of the host plant, which adopts effectors of the innate immune system for symbiosis to manipulate the cell fate of endosymbiotic bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Van de Velde, Willem -- Zehirov, Grigor -- Szatmari, Agnes -- Debreczeny, Monika -- Ishihara, Hironobu -- Kevei, Zoltan -- Farkas, Attila -- Mikulass, Kata -- Nagy, Andrea -- Tiricz, Hilda -- Satiat-Jeunemaitre, Beatrice -- Alunni, Benoit -- Bourge, Mickael -- Kucho, Ken-ichi -- Abe, Mikiko -- Kereszt, Attila -- Maroti, Gergely -- Uchiumi, Toshiki -- Kondorosi, Eva -- Mergaert, Peter -- New York, N.Y. -- Science. 2010 Feb 26;327(5969):1122-6. doi: 10.1126/science.1184057.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Sciences du Vegetal, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20185722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/pharmacology ; Cell Division ; Cell Membrane/metabolism ; Cytosol/metabolism ; Genes, Plant ; Lotus/genetics/metabolism/microbiology ; Medicago truncatula/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Nitrogen Fixation ; Peptides/chemistry/genetics/*metabolism/pharmacology ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Protein Transport ; Root Nodules, Plant/metabolism/microbiology ; Sinorhizobium meliloti/*cytology/drug effects/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2010-05-01
    Description: Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolodkin-Gal, Ilana -- Romero, Diego -- Cao, Shugeng -- Clardy, Jon -- Kolter, Roberto -- Losick, Richard -- CA24487/CA/NCI NIH HHS/ -- GM086258/GM/NIGMS NIH HHS/ -- GM18546/GM/NIGMS NIH HHS/ -- GM58213/GM/NIGMS NIH HHS/ -- R01 GM018568/GM/NIGMS NIH HHS/ -- R01 GM018568-39/GM/NIGMS NIH HHS/ -- R01 GM058213/GM/NIGMS NIH HHS/ -- R01 GM086258/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):627-9. doi: 10.1126/science.1188628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20431016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/*metabolism/pharmacology ; Bacillus subtilis/*physiology ; Bacterial Proteins/chemistry/metabolism ; *Biofilms/growth & development ; Cell Wall ; Culture Media, Conditioned ; Genes, Bacterial ; Leucine/metabolism/pharmacology ; Methionine/metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Pseudomonas aeruginosa/physiology ; Staphylococcus aureus/physiology ; Stereoisomerism ; Tryptophan/metabolism/pharmacology ; Tyrosine/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2010-06-26
    Description: The heme-copper oxidases (HCOs) accomplish the key event of aerobic respiration; they couple O2 reduction and transmembrane proton pumping. To gain new insights into the still enigmatic process, we structurally characterized a C-family HCO--essential for the pathogenicity of many bacteria--that differs from the two other HCO families, A and B, that have been structurally analyzed. The x-ray structure of the C-family cbb3 oxidase from Pseudomonas stutzeri at 3.2 angstrom resolution shows an electron supply system different from families A and B. Like family-B HCOs, C HCOs have only one pathway, which conducts protons via an alternative tyrosine-histidine cross-link. Structural differences around hemes b and b3 suggest a different redox-driven proton-pumping mechanism and provide clues to explain the higher activity of family-C HCOs at low oxygen concentrations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buschmann, Sabine -- Warkentin, Eberhard -- Xie, Hao -- Langer, Julian D -- Ermler, Ulrich -- Michel, Hartmut -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):327-30. doi: 10.1126/science.1187303. Epub 2010 Jun 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt/Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20576851" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Transport ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/chemistry ; Histidine/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxygen/metabolism ; Periplasm/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proton Pumps/*chemistry/*metabolism ; *Protons ; Pseudomonas stutzeri/*enzymology ; Tyrosine/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2010-11-06
    Description: Self-incompatibility in flowering plants prevents inbreeding and promotes outcrossing to generate genetic diversity. In Solanaceae, a multiallelic gene, S-locus F-box (SLF), was previously shown to encode the pollen determinant in self-incompatibility. It was postulated that an SLF allelic product specifically detoxifies its non-self S-ribonucleases (S-RNases), allelic products of the pistil determinant, inside pollen tubes via the ubiquitin-26S-proteasome system, thereby allowing compatible pollinations. However, it remained puzzling how SLF, with much lower allelic sequence diversity than S-RNase, might have the capacity to recognize a large repertoire of non-self S-RNases. We used in vivo functional assays and protein interaction assays to show that in Petunia, at least three types of divergent SLF proteins function as the pollen determinant, each recognizing a subset of non-self S-RNases. Our findings reveal a collaborative non-self recognition system in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kubo, Ken-ichi -- Entani, Tetsuyuki -- Takara, Akie -- Wang, Ning -- Fields, Allison M -- Hua, Zhihua -- Toyoda, Mamiko -- Kawashima, Shin-ichi -- Ando, Toshio -- Isogai, Akira -- Kao, Teh-hui -- Takayama, Seiji -- New York, N.Y. -- Science. 2010 Nov 5;330(6005):796-9. doi: 10.1126/science.1195243.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21051632" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Crosses, Genetic ; F-Box Proteins/chemistry/genetics/*physiology ; Flowers/genetics/physiology ; Gene Expression Profiling ; Genes, Plant ; Genetic Variation ; Haplotypes ; Models, Genetic ; Molecular Sequence Data ; Petunia/*genetics/*physiology ; Plant Proteins/chemistry/genetics/*physiology ; Plants, Genetically Modified ; Pollen/*genetics/*physiology ; Pollen Tube/physiology ; Pollination ; Protein Interaction Mapping ; Ribonucleases/genetics/*metabolism ; Self-Fertilization ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2010-07-03
    Description: Proton-pumping respiratory complex I is one of the largest and most complicated membrane protein complexes. Its function is critical for efficient energy supply in aerobic cells, and malfunctions are implicated in many neurodegenerative disorders. Here, we report an x-ray crystallographic analysis of mitochondrial complex I. The positions of all iron-sulfur clusters relative to the membrane arm were determined in the complete enzyme complex. The ubiquinone reduction site resides close to 30 angstroms above the membrane domain. The arrangement of functional modules suggests conformational coupling of redox chemistry with proton pumping and essentially excludes direct mechanisms. We suggest that a approximately 60-angstrom-long helical transmission element is critical for transducing conformational energy to proton-pumping elements in the distal module of the membrane arm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunte, Carola -- Zickermann, Volker -- Brandt, Ulrich -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):448-51. doi: 10.1126/science.1191046. Epub 2010 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry and Molecular Biology, Centre for Biological Signalling Studies (BIOSS), University of Freiburg, D-79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/*metabolism ; Fungal Proteins/chemistry/metabolism ; Iron/chemistry ; Mitochondria/enzymology ; Mitochondrial Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Sulfur/chemistry ; Ubiquinone/chemistry/metabolism ; Yarrowia/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2010-04-03
    Description: Semiconservative DNA replication ensures the faithful duplication of genetic information during cell divisions. However, how epigenetic information carried by histone modifications propagates through mitotic divisions remains elusive. To address this question, the DNA replication-dependent nucleosome partition pattern must be clarified. Here, we report significant amounts of H3.3-H4 tetramers split in vivo, whereas most H3.1-H4 tetramers remained intact. Inhibiting DNA replication-dependent deposition greatly reduced the level of splitting events, which suggests that (i) the replication-independent H3.3 deposition pathway proceeds largely by cooperatively incorporating two new H3.3-H4 dimers and (ii) the majority of splitting events occurred during replication-dependent deposition. Our results support the idea that "silent" histone modifications within large heterochromatic regions are maintained by copying modifications from neighboring preexisting histones without the need for H3-H4 splitting events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Mo -- Long, Chengzu -- Chen, Xiuzhen -- Huang, Chang -- Chen, She -- Zhu, Bing -- New York, N.Y. -- Science. 2010 Apr 2;328(5974):94-8. doi: 10.1126/science.1178994.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360108" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aphidicolin/pharmacology ; Cell Cycle ; Chromatin/metabolism ; *Chromatin Assembly and Disassembly ; *DNA Replication ; Epigenesis, Genetic ; HeLa Cells ; Heterochromatin/metabolism ; Histones/*chemistry/*metabolism ; Humans ; Hydroxyurea/pharmacology ; Mass Spectrometry ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Multimerization ; S Phase ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2010-03-27
    Description: The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897825/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897825/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- Ekiert, Damian C -- Krause, Jens C -- Hai, Rong -- Crowe, James E Jr -- Wilson, Ian A -- AI057157/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-050002/AI/NIAID NIH HHS/ -- T32 GM080209/GM/NIGMS NIH HHS/ -- T32 GM080209-01A2/GM/NIGMS NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057157-06/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Apr 16;328(5976):357-60. doi: 10.1126/science.1186430. Epub 2010 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339031" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/immunology ; Antibodies, Viral/chemistry/immunology ; Antigenic Variation ; Cross Reactions ; Crystallography, X-Ray ; Disease Outbreaks ; Epitopes ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*immunology ; Hemagglutinins, Viral/*chemistry/*immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Influenza A Virus, H1N1 Subtype/*immunology ; Influenza Vaccines/immunology ; Influenza, Human/epidemiology/*immunology/virology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2010-05-15
    Description: Prions are infectious proteins composed of the abnormal disease-causing isoform PrPSc, which induces conformational conversion of the host-encoded normal cellular prion protein PrPC to additional PrPSc. The mechanism underlying prion strain mutation in the absence of nucleic acids remains unresolved. Additionally, the frequency of strains causing chronic wasting disease (CWD), a burgeoning prion epidemic of cervids, is unknown. Using susceptible transgenic mice, we identified two prevalent CWD strains with divergent biological properties but composed of PrPSc with indistinguishable biochemical characteristics. Although CWD transmissions indicated stable, independent strain propagation by elk PrPC, strain coexistence in the brains of deer and transgenic mice demonstrated unstable strain propagation by deer PrPC. The primary structures of deer and elk prion proteins differ at residue 226, which, in concert with PrPSc conformational compatibility, determines prion strain mutation in these cervids.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097672/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097672/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Angers, Rachel C -- Kang, Hae-Eun -- Napier, Dana -- Browning, Shawn -- Seward, Tanya -- Mathiason, Candace -- Balachandran, Aru -- McKenzie, Debbie -- Castilla, Joaquin -- Soto, Claudio -- Jewell, Jean -- Graham, Catherine -- Hoover, Edward A -- Telling, Glenn C -- 1P01AI077774-01/AI/NIAID NIH HHS/ -- 2R01 NS040334-04/NS/NINDS NIH HHS/ -- N01-AI-25491/AI/NIAID NIH HHS/ -- P01 AI077774/AI/NIAID NIH HHS/ -- R01 NS049173/NS/NINDS NIH HHS/ -- T32 AI49795/AI/NIAID NIH HHS/ -- T32 DA022738/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2010 May 28;328(5982):1154-8. doi: 10.1126/science.1187107. Epub 2010 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, Lexington, KY 40536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20466881" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/pathology ; Brain Chemistry ; *Deer ; Disease Susceptibility ; Mice ; Mice, Transgenic ; Mutation ; PrPC Proteins/*chemistry/genetics ; PrPSc Proteins/analysis/*chemistry/genetics/pathogenicity ; Protein Conformation ; Protein Folding ; Selection, Genetic ; Serial Passage ; Species Specificity ; *Wasting Disease, Chronic/pathology/transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mogk, Axel -- Bukau, Bernd -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):966-7. doi: 10.1126/science.1187274.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20167776" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Homeostasis ; Humans ; Protein Processing, Post-Translational ; Protein Stability ; Proteins/chemistry/*metabolism ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2010-02-06
    Description: The cell surface receptor CED-1 mediates apoptotic cell recognition by phagocytic cells, enabling cell corpse clearance in Caenorhabditis elegans. Here, we found that the C. elegans intracellular protein sorting complex, retromer, was required for cell corpse clearance by mediating the recycling of CED-1. Retromer was recruited to the surfaces of phagosomes containing cell corpses, and its loss of function caused defective cell corpse removal. The retromer probably acted through direct interaction with CED-1 in the cell corpse recognition pathway. In the absence of retromer function, CED-1 associated with lysosomes and failed to recycle from phagosomes and cytosol to the plasma membrane. Thus, retromer is an essential mediator of apoptotic cell clearance by regulating phagocytic receptor(s) during cell corpse engulfment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Didi -- Xiao, Hui -- Zhang, Kai -- Wang, Bin -- Gao, Zhiyang -- Jian, Youli -- Qi, Xiaying -- Sun, Jianwei -- Miao, Long -- Yang, Chonglin -- New York, N.Y. -- Science. 2010 Mar 5;327(5970):1261-4. doi: 10.1126/science.1184840. Epub 2010 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20133524" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Caenorhabditis elegans/cytology/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Membrane/metabolism ; Lysosomes/metabolism ; Membrane Proteins/*metabolism ; Microscopy, Electron, Transmission ; Molecular Sequence Data ; *Phagocytosis ; Phagosomes/*metabolism ; *Protein Transport ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Sorting Nexins ; Vesicular Transport Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2010-12-15
    Description: Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raffaele, Sylvain -- Farrer, Rhys A -- Cano, Liliana M -- Studholme, David J -- MacLean, Daniel -- Thines, Marco -- Jiang, Rays H Y -- Zody, Michael C -- Kunjeti, Sridhara G -- Donofrio, Nicole M -- Meyers, Blake C -- Nusbaum, Chad -- Kamoun, Sophien -- New York, N.Y. -- Science. 2010 Dec 10;330(6010):1540-3. doi: 10.1126/science.1193070.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21148391" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics ; Amino Acid Sequence ; Computational Biology ; DNA Copy Number Variations ; Epistasis, Genetic ; *Evolution, Molecular ; Genes ; *Genome ; Host Specificity/*genetics ; Host-Parasite Interactions ; Lycopersicon esculentum/parasitology ; Molecular Sequence Data ; Phytophthora/classification/*genetics/pathogenicity/physiology ; Phytophthora infestans/classification/*genetics/*pathogenicity/physiology ; Plant Diseases/*parasitology ; Polymorphism, Single Nucleotide ; Proteins/chemistry/genetics/metabolism ; Selection, Genetic ; Sequence Analysis, DNA ; Solanum tuberosum/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2010-06-05
    Description: Staphylococcus aureus is a major human pathogen that is resistant to numerous antibiotics in clinical use. We found two nonribosomal peptide secondary metabolites--the aureusimines, made by S. aureus--that are not antibiotics, but function as regulators of virulence factor expression and are necessary for productive infections. In vivo mouse models of bacteremia showed that strains of S. aureus unable to produce aureusimines were attenuated and/or cleared from major organs, including the spleen, liver, and heart. Targeting aureusimine synthesis may offer novel leads for anti-infective drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wyatt, Morgan A -- Wang, Wenliang -- Roux, Christelle M -- Beasley, Federico C -- Heinrichs, David E -- Dunman, Paul M -- Magarvey, Nathan A -- MOP-38002/Canadian Institutes of Health Research/Canada -- RA107380/RA/ARRA NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):294-6. doi: 10.1126/science.1188888. Epub 2010 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacteremia/microbiology ; Dipeptides/chemistry/isolation & purification ; Heart/microbiology ; Hemolysis ; Liver/microbiology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Peptide Biosynthesis, Nucleic Acid-Independent ; Peptide Synthases/chemistry/genetics/metabolism ; Pyrazines/chemistry/*metabolism ; Spleen/microbiology ; Staphylococcal Infections/*microbiology ; Staphylococcus aureus/genetics/isolation & ; purification/*metabolism/*pathogenicity ; Virulence Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2010-08-28
    Description: Somatic loss of wild-type alleles can produce disease traits such as neoplasia. Conversely, somatic loss of disease-causing mutations can revert phenotypes; however, these events are infrequently observed. Here we show that ichthyosis with confetti, a severe, sporadic skin disease in humans, is associated with thousands of revertant clones of normal skin that arise from loss of heterozygosity on chromosome 17q via mitotic recombination. This allowed us to map and identify disease-causing mutations in the gene encoding keratin 10 (KRT10); all result in frameshifts into the same alternative reading frame, producing an arginine-rich C-terminal peptide that redirects keratin 10 from the cytokeratin filament network to the nucleolus. The high frequency of somatic reversion in ichthyosis with confetti suggests that revertant stem cell clones are under strong positive selection and/or that the rate of mitotic recombination is elevated in individuals with this disorder.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085938/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3085938/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choate, Keith A -- Lu, Yin -- Zhou, Jing -- Choi, Murim -- Elias, Peter M -- Farhi, Anita -- Nelson-Williams, Carol -- Crumrine, Debra -- Williams, Mary L -- Nopper, Amy J -- Bree, Alanna -- Milstone, Leonard M -- Lifton, Richard P -- K08 AR056305/AR/NIAMS NIH HHS/ -- K08 AR056305-01/AR/NIAMS NIH HHS/ -- K08 AR056305-02/AR/NIAMS NIH HHS/ -- K08 AR056305-03/AR/NIAMS NIH HHS/ -- K08 AR056305-04/AR/NIAMS NIH HHS/ -- T32 AR007016/AR/NIAMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):94-7. doi: 10.1126/science.1192280. Epub 2010 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20798280" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Nucleolus/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 17/*genetics ; Female ; *Frameshift Mutation ; Humans ; Ichthyosiform Erythroderma, Congenital/*genetics/pathology ; Intermediate Filaments/metabolism/ultrastructure ; Keratin-10/chemistry/*genetics/metabolism ; Keratins/metabolism ; Loss of Heterozygosity ; Male ; *Mitosis ; Molecular Sequence Data ; Mosaicism ; Mutant Proteins/chemistry/genetics/metabolism ; *Recombination, Genetic ; Selection, Genetic ; Skin/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2010-05-29
    Description: High-conductance voltage- and Ca2+-activated K+ (BK) channels encode negative feedback regulation of membrane voltage and Ca2+ signaling, playing a central role in numerous physiological processes. We determined the x-ray structure of the human BK Ca2+ gating apparatus at a resolution of 3.0 angstroms and deduced its tetrameric assembly by solving a 6 angstrom resolution structure of a Na+-activated homolog. Two tandem C-terminal regulator of K+ conductance (RCK) domains from each of four channel subunits form a 350-kilodalton gating ring at the intracellular membrane surface. A sequence of aspartic amino acids that is known as the Ca2+ bowl, and is located within the second of the tandem RCK domains, creates four Ca2+ binding sites on the outer perimeter of the gating ring at the "assembly interface" between RCK domains. Functionally important mutations cluster near the Ca2+ bowl, near the "flexible interface" between RCK domains, and on the surface of the gating ring that faces the voltage sensors. The structure suggests that the Ca2+ gating ring, in addition to regulating the pore directly, may also modulate the voltage sensor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022345/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Peng -- Leonetti, Manuel D -- Pico, Alexander R -- Hsiung, Yichun -- MacKinnon, Roderick -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM043949/GM/NIGMS NIH HHS/ -- R01 GM043949-20/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):182-6. doi: 10.1126/science.1190414. Epub 2010 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20508092" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Calcium/*metabolism ; Crystallography, X-Ray ; Humans ; *Ion Channel Gating ; Large-Conductance Calcium-Activated Potassium Channel alpha ; Subunits/*chemistry/genetics/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Patch-Clamp Techniques ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Sodium/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-10
    Description: DNA transposons are mobile genetic elements that have shaped the genomes of eukaryotes for millions of years, yet their origins remain obscure. We discovered a virophage that, on the basis of genetic homology, likely represents an evolutionary link between double-stranded DNA viruses and Maverick/Polinton eukaryotic DNA transposons. The Mavirus virophage parasitizes the giant Cafeteria roenbergensis virus and encodes 20 predicted proteins, including a retroviral integrase and a protein-primed DNA polymerase B. On the basis of our data, we conclude that Maverick/Polinton transposons may have originated from ancient relatives of Mavirus, and thereby influenced the evolution of eukaryotic genomes, although we cannot rule out alternative evolutionary scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, Matthias G -- Suttle, Curtis A -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):231-4. doi: 10.1126/science.1199412. Epub 2011 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, 1365-2350 Health Sciences Mall, University of British Columbia, Vancouver V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *DNA Transposable Elements ; DNA Viruses/*genetics/*physiology ; DNA, Viral/genetics ; DNA-Directed DNA Polymerase/genetics ; *Evolution, Molecular ; Genome, Viral ; Integrases/chemistry/genetics ; Molecular Sequence Data ; Phylogeny ; Satellite Viruses/*genetics/*physiology ; Stramenopiles/virology ; Viral Proteins/chemistry/genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2011-05-14
    Description: We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fleishman, Sarel J -- Whitehead, Timothy A -- Ekiert, Damian C -- Dreyfus, Cyrille -- Corn, Jacob E -- Strauch, Eva-Maria -- Wilson, Ian A -- Baker, David -- AI057141/AI/NIAID NIH HHS/ -- AI058113/AI/NIAID NIH HHS/ -- GM080209/GM/NIGMS NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P01 AI058113-07/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):816-21. doi: 10.1126/science.1202617.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566186" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Binding Sites ; Computational Biology ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; *Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-19
    Description: Dyneins are microtubule-based motor proteins that power ciliary beating, transport intracellular cargos, and help to construct the mitotic spindle. Evolved from ring-shaped hexameric AAA-family adenosine triphosphatases (ATPases), dynein's large size and complexity have posed challenges for understanding its structure and mechanism. Here, we present a 6 angstrom crystal structure of a functional dimer of two ~300-kilodalton motor domains of yeast cytoplasmic dynein. The structure reveals an unusual asymmetric arrangement of ATPase domains in the ring-shaped motor domain, the manner in which the mechanical element interacts with the ATPase ring, and an unexpected interaction between two coiled coils that create a base for the microtubule binding domain. The arrangement of these elements provides clues as to how adenosine triphosphate-driven conformational changes might be transmitted across the motor domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, Andrew P -- Cho, Carol -- Jin, Lan -- Vale, Ronald D -- MC_UP_A025_1011/Medical Research Council/United Kingdom -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01 GM097312-01/GM/NIGMS NIH HHS/ -- R01 GM097312-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 4;331(6021):1159-65. doi: 10.1126/science.1202393. Epub 2011 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California-San Francisco, 600 16th Street, San Francisco, CA 94158, USA. cartera@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330489" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Cytoplasmic Dyneins/*chemistry/*metabolism ; Methionine/chemistry ; Microtubules/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2011-05-21
    Description: The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Mingyao -- Wang, Isabel X -- Li, Yun -- Bruzel, Alan -- Richards, Allison L -- Toung, Jonathan M -- Cheung, Vivian G -- R01 HG005854/HG/NHGRI NIH HHS/ -- R01 HG005854-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):53-8. doi: 10.1126/science.1207018. Epub 2011 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596952" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; B-Lymphocytes ; Base Sequence ; Cell Line ; Cerebral Cortex/cytology ; DNA/chemistry/*genetics ; Exons ; Expressed Sequence Tags ; Fibroblasts ; Gene Expression Profiling ; *Genetic Variation ; *Genome, Human ; Genotype ; Humans ; Mass Spectrometry ; Middle Aged ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Proteins/chemistry ; Proteome/chemistry ; RNA, Messenger/chemistry/*genetics ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Skin/cytology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2011-07-23
    Description: Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonkin, Michelle L -- Roques, Magali -- Lamarque, Mauld H -- Pugniere, Martine -- Douguet, Dominique -- Crawford, Joanna -- Lebrun, Maryse -- Boulanger, Martin J -- MOP82915/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Jul 22;333(6041):463-7. doi: 10.1126/science.1204988.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778402" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antibodies, Monoclonal/immunology ; Antibodies, Protozoan/immunology ; Antigens, Protozoan/*chemistry/genetics/immunology/*metabolism ; *Host-Parasite Interactions ; Hydrophobic and Hydrophilic Interactions ; Membrane Proteins/chemistry/immunology/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Peptide Fragments/chemistry/metabolism ; Plasmodium falciparum/chemistry/metabolism/pathogenicity ; Protein Binding ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protozoan Proteins/*chemistry/immunology/*metabolism ; Toxoplasma/chemistry/*metabolism/*pathogenicity/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-04-02
    Description: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPsigma). Here we report that RPTPsigma acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPsigma ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPsigma and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154093/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coles, Charlotte H -- Shen, Yingjie -- Tenney, Alan P -- Siebold, Christian -- Sutton, Geoffrey C -- Lu, Weixian -- Gallagher, John T -- Jones, E Yvonne -- Flanagan, John G -- Aricescu, A Radu -- 090532/Wellcome Trust/United Kingdom -- 10976/Cancer Research UK/United Kingdom -- EY11559/EY/NEI NIH HHS/ -- G0700232/Medical Research Council/United Kingdom -- G0900084/Medical Research Council/United Kingdom -- HD29417/HD/NICHD NIH HHS/ -- R01 EY011559/EY/NEI NIH HHS/ -- R01 EY011559-19/EY/NEI NIH HHS/ -- R37 HD029417/HD/NICHD NIH HHS/ -- R37 HD029417-20/HD/NICHD NIH HHS/ -- Cancer Research UK/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):484-8. doi: 10.1126/science.1200840. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454754" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; Binding Sites ; Cell Membrane/metabolism ; Cells, Cultured ; Chondroitin Sulfate Proteoglycans/chemistry/*metabolism ; Chondroitin Sulfates/chemistry/metabolism ; Crystallography, X-Ray ; Extracellular Matrix ; Ganglia, Spinal ; Glypicans/metabolism ; Growth Cones/metabolism ; Heparan Sulfate Proteoglycans/chemistry/*metabolism ; Heparitin Sulfate/analogs & derivatives/chemistry/metabolism ; Humans ; Mice ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Neurites/physiology ; Neurocan/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*chemistry/*metabolism ; Sensory Receptor Cells/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-08-13
    Description: When not transporting cargo, kinesin-1 is autoinhibited by binding of a tail region to the motor domains, but the mechanism of inhibition is unclear. We report the crystal structure of a motor domain dimer in complex with its tail domain at 2.2 angstroms and compare it with a structure of the motor domain alone at 2.7 angstroms. These structures indicate that neither an induced conformational change nor steric blocking is the cause of inhibition. Instead, the tail cross-links the motor domains at a second position, in addition to the coiled coil. This "double lockdown," by cross-linking at two positions, prevents the movement of the motor domains that is needed to undock the neck linker and release adenosine diphosphate. This autoinhibition mechanism could extend to some other kinesins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339660/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaan, Hung Yi Kristal -- Hackney, David D -- Kozielski, Frank -- NS058848/NS/NINDS NIH HHS/ -- R01 NS058848/NS/NINDS NIH HHS/ -- R01 NS058848-01A2/NS/NINDS NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):883-5. doi: 10.1126/science.1204824.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836017" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Kinesin/*antagonists & inhibitors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-11-19
    Description: Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098850/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armache, Karim-Jean -- Garlick, Joseph D -- Canzio, Daniele -- Narlikar, Geeta J -- Kingston, Robert E -- GM043901/GM/NIGMS NIH HHS/ -- P41 RR012408/RR/NCRR NIH HHS/ -- R01 GM043901/GM/NIGMS NIH HHS/ -- R37 GM048405/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):977-82. doi: 10.1126/science.1210915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22096199" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; *Gene Silencing ; Histones/*chemistry/metabolism ; Hydrogen Bonding ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Mutant Proteins/chemistry/metabolism ; Nucleosomes/*chemistry/metabolism/ultrastructure ; Physicochemical Processes ; Protein Folding ; *Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Silent Information Regulator Proteins, Saccharomyces ; cerevisiae/*chemistry/genetics/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-06-18
    Description: Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLAGELLIN-SENSING 2 (FLS2) senses bacterial flagellin and initiates immune signaling through association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases, PUB12 and PUB13, to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12 and PUB13 and is required for FLS2-PUB12/13 association. PUB12 and PUB13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Dongping -- Lin, Wenwei -- Gao, Xiquan -- Wu, Shujing -- Cheng, Cheng -- Avila, Julian -- Heese, Antje -- Devarenne, Timothy P -- He, Ping -- Shan, Libo -- R01 GM092893/GM/NIGMS NIH HHS/ -- R01 GM092893-02/GM/NIGMS NIH HHS/ -- R01 GM097247/GM/NIGMS NIH HHS/ -- R01GM092893/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1439-42. doi: 10.1126/science.1204903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680842" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Peptide Fragments/immunology ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Interaction Domains and Motifs ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Pseudomonas syringae/growth & development/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-07-19
    Description: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351836/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scheid, Johannes F -- Mouquet, Hugo -- Ueberheide, Beatrix -- Diskin, Ron -- Klein, Florian -- Oliveira, Thiago Y K -- Pietzsch, John -- Fenyo, David -- Abadir, Alexander -- Velinzon, Klara -- Hurley, Arlene -- Myung, Sunnie -- Boulad, Farid -- Poignard, Pascal -- Burton, Dennis R -- Pereyra, Florencia -- Ho, David D -- Walker, Bruce D -- Seaman, Michael S -- Bjorkman, Pamela J -- Chait, Brian T -- Nussenzweig, Michel C -- P01 AI081677/AI/NIAID NIH HHS/ -- P30 AI060354/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1633-7. doi: 10.1126/science.1207227. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764753" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/immunology/*metabolism ; Binding Sites ; Binding Sites, Antibody ; Cloning, Molecular ; Consensus Sequence ; Crystallography, X-Ray ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Immunoglobulin Heavy Chains/chemistry ; Immunoglobulin Light Chains/chemistry ; Molecular Mimicry ; Molecular Sequence Data ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-03-26
    Description: Caenorhabditis elegans proteins AFF-1 and EFF-1 [C. elegans fusion family (CeFF) proteins] are essential for developmental cell-to-cell fusion and can merge insect cells. To study the structure and function of AFF-1, we constructed vesicular stomatitis virus (VSV) displaying AFF-1 on the viral envelope, substituting the native fusogen VSV glycoprotein. Electron microscopy and tomography revealed that AFF-1 formed distinct supercomplexes resembling pentameric and hexameric "flowers" on pseudoviruses. Viruses carrying AFF-1 infected mammalian cells only when CeFFs were on the target cell surface. Furthermore, we identified fusion family (FF) proteins within and beyond nematodes, and divergent members from the human parasitic nematode Trichinella spiralis and the chordate Branchiostoma floridae could also fuse mammalian cells. Thus, FF proteins are part of an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avinoam, Ori -- Fridman, Karen -- Valansi, Clari -- Abutbul, Inbal -- Zeev-Ben-Mordehai, Tzviya -- Maurer, Ulrike E -- Sapir, Amir -- Danino, Dganit -- Grunewald, Kay -- White, Judith M -- Podbilewicz, Benjamin -- 090532/Wellcome Trust/United Kingdom -- 090895/Wellcome Trust/United Kingdom -- AI22470/AI/NIAID NIH HHS/ -- R01 AI022470/AI/NIAID NIH HHS/ -- R01 AI022470-24/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):589-92. doi: 10.1126/science.1202333. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436398" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arthropods/chemistry ; Biological Evolution ; Caenorhabditis elegans/chemistry ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism/ultrastructure ; *Cell Fusion ; Cell Line ; Cell Membrane/*metabolism ; Chordata, Nonvertebrate/chemistry ; Ctenophora/chemistry ; *Membrane Fusion ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Naegleria fowleri/chemistry ; Nematoda/chemistry ; Recombinant Proteins/metabolism ; Recombination, Genetic ; Vesicular stomatitis Indiana virus/genetics/*physiology/ultrastructure ; Viral Envelope Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-01-08
    Description: NifEN plays an essential role in the biosynthesis of the nitrogenase iron-molybdenum (FeMo) cofactor (M cluster). It is an alpha(2)beta(2) tetramer that is homologous to the catalytic molybdenum-iron (MoFe) protein (NifDK) component of nitrogenase. NifEN serves as a scaffold for the conversion of an iron-only precursor to a matured form of the M cluster before delivering the latter to its target location within NifDK. Here, we present the structure of the precursor-bound NifEN of Azotobacter vinelandii at 2.6 angstrom resolution. From a structural comparison of NifEN with des-M-cluster NifDK and holo NifDK, we propose similar pathways of cluster insertion for the homologous NifEN and NifDK proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jens T -- Hu, Yilin -- Wiig, Jared A -- Rees, Douglas C -- Ribbe, Markus W -- GM-45162/GM/NIGMS NIH HHS/ -- GM-67626/GM/NIGMS NIH HHS/ -- R01 GM067626/GM/NIGMS NIH HHS/ -- R01 GM067626-09/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162-22/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):91-4. doi: 10.1126/science.1196954.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Mail Code 114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212358" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Azotobacter vinelandii/*chemistry/enzymology ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Molybdoferredoxin/*chemistry/metabolism ; Nitrogenase/*chemistry/metabolism ; Protein Multimerization ; Protein Precursors/chemistry/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-10-25
    Description: The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azoitei, Mihai L -- Correia, Bruno E -- Ban, Yih-En Andrew -- Carrico, Chris -- Kalyuzhniy, Oleksandr -- Chen, Lei -- Schroeter, Alexandria -- Huang, Po-Ssu -- McLellan, Jason S -- Kwong, Peter D -- Baker, David -- Strong, Roland K -- Schief, William R -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):373-6. doi: 10.1126/science.1209368.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021856" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibodies, Neutralizing/*chemistry/*immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Computational Biology ; Computer Simulation ; Crystallography, X-Ray ; Epitopes/immunology ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/*chemistry/*immunology/metabolism ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; *Protein Engineering ; Protein Interaction Domains and Motifs ; Surface Plasmon Resonance
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-01-06
    Description: Rhizobium-root nodule symbiosis is generally considered to be unique for legumes. However, there is one exception, and that is Parasponia. In this nonlegume, the rhizobial nodule symbiosis evolved independently and is, as in legumes, induced by rhizobium Nod factors. We used Parasponia andersonii to identify genetic constraints underlying evolution of Nod factor signaling. Part of the signaling cascade, downstream of Nod factor perception, has been recruited from the more-ancient arbuscular endomycorrhizal symbiosis. However, legume Nod factor receptors that activate this common signaling pathway are not essential for arbuscular endomycorrhizae. Here, we show that in Parasponia a single Nod factor-like receptor is indispensable for both symbiotic interactions. Therefore, we conclude that the Nod factor perception mechanism also is recruited from the widespread endomycorrhizal symbiosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Op den Camp, Rik -- Streng, Arend -- De Mita, Stephane -- Cao, Qingqin -- Polone, Elisa -- Liu, Wei -- Ammiraju, Jetty S S -- Kudrna, Dave -- Wing, Rod -- Untergasser, Andreas -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):909-12. doi: 10.1126/science.1198181. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, Wageningen University, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205637" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cloning, Molecular ; Evolution, Molecular ; Gene Duplication ; Genes, Plant ; Glomeromycota/physiology ; Lipopolysaccharides/*metabolism ; Molecular Sequence Data ; Mycorrhizae/*physiology ; Nitrogen Fixation ; Phylogeny ; Plant Proteins/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/genetics/*metabolism ; RNA Interference ; Root Nodules, Plant/microbiology/physiology ; Signal Transduction ; Sinorhizobium/*physiology ; *Symbiosis ; Ulmaceae/genetics/*microbiology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-02-19
    Description: Meiosis requires that each chromosome find its homologous partner and undergo at least one crossover. X-Y chromosome segregation hinges on efficient crossing-over in a very small region of homology, the pseudoautosomal region (PAR). We find that mouse PAR DNA occupies unusually long chromosome axes, potentially as shorter chromatin loops, predicted to promote double-strand break (DSB) formation. Most PARs show delayed appearance of RAD51/DMC1 foci, which mark DSB ends, and all PARs undergo delayed DSB-mediated homologous pairing. Analysis of Spo11beta isoform-specific transgenic mice revealed that late RAD51/DMC1 foci in the PAR are genetically distinct from both early PAR foci and global foci and that late PAR foci promote efficient X-Y pairing, recombination, and male fertility. Our findings uncover specific mechanisms that surmount the unique challenges of X-Y recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151169/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151169/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kauppi, Liisa -- Barchi, Marco -- Baudat, Frederic -- Romanienko, Peter J -- Keeney, Scott -- Jasin, Maria -- R01 HD040916/HD/NICHD NIH HHS/ -- R01 HD040916-01/HD/NICHD NIH HHS/ -- R01 HD040916-10/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):916-20. doi: 10.1126/science.1195774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330546" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/metabolism ; Chromatin/chemistry/metabolism ; *Chromosome Pairing ; Chromosome Segregation ; *Crossing Over, Genetic ; DNA Breaks, Double-Stranded ; Endodeoxyribonucleases/genetics/*metabolism ; Female ; In Situ Hybridization, Fluorescence ; Male ; *Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Protein Isoforms ; Rad51 Recombinase/metabolism ; X Chromosome/*physiology ; Y Chromosome/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-01-15
    Description: The synthesis of both proinflammatory leukotrienes and anti-inflammatory lipoxins requires the enzyme 5-lipoxygenase (5-LOX). 5-LOX activity is short-lived, apparently in part because of an intrinsic instability of the enzyme. We identified a 5-LOX-specific destabilizing sequence that is involved in orienting the carboxyl terminus, which binds the catalytic iron. Here, we report the crystal structure at 2.4 angstrom resolution of human 5-LOX stabilized by replacement of this sequence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Nathaniel C -- Bartlett, Sue G -- Waight, Maria T -- Neau, David B -- Boeglin, William E -- Brash, Alan R -- Newcomer, Marcia E -- GM-15431/GM/NIGMS NIH HHS/ -- P01 GM015431/GM/NIGMS NIH HHS/ -- P01 GM015431-44/GM/NIGMS NIH HHS/ -- R01 HL107887/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):217-9. doi: 10.1126/science.1197203.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233389" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonate 5-Lipoxygenase/*chemistry/genetics/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Stability ; Humans ; Iron/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-09-24
    Description: Although many eukaryotic proteins are amino (N)-terminally acetylated, structural mechanisms by which N-terminal acetylation mediates protein interactions are largely unknown. Here, we found that N-terminal acetylation of the E2 enzyme, Ubc12, dictates distinctive E3-dependent ligation of the ubiquitin-like protein Nedd8 to Cul1. Structural, biochemical, biophysical, and genetic analyses revealed how complete burial of Ubc12's N-acetyl-methionine in a hydrophobic pocket in the E3, Dcn1, promotes cullin neddylation. The results suggest that the N-terminal acetyl both directs Ubc12's interactions with Dcn1 and prevents repulsion of a charged N terminus. Our data provide a link between acetylation and ubiquitin-like protein conjugation and define a mechanism for N-terminal acetylation-dependent recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Daniel C -- Monda, Julie K -- Bennett, Eric J -- Harper, J Wade -- Schulman, Brenda A -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- R01 GM054137/GM/NIGMS NIH HHS/ -- R01 GM054137-13/GM/NIGMS NIH HHS/ -- R01 GM069530/GM/NIGMS NIH HHS/ -- R01 GM069530-10/GM/NIGMS NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):674-8. doi: 10.1126/science.1209307. Epub 2011 Sep 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Department, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21940857" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Cullin Proteins/metabolism ; Humans ; Molecular Sequence Data ; Multiprotein Complexes/*metabolism ; Protein Binding ; Saccharomyces cerevisiae Proteins/*metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-01-22
    Description: The NLR (nucleotide binding and oligomerization, leucine-rich repeat) family of proteins senses microbial infections and activates the inflammasome, a multiprotein complex that promotes microbial clearance. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked to several human malignancies. We found that KSHV Orf63 is a viral homolog of human NLRP1. Orf63 blocked NLRP1-dependent innate immune responses, including caspase-1 activation and processing of interleukins IL-1beta and IL-18. KSHV Orf63 interacted with NLRP1, NLRP3, and NOD2. Inhibition of Orf63 expression resulted in increased expression of IL-1beta during the KSHV life cycle. Furthermore, inhibition of NLRP1 was necessary for efficient reactivation and generation of progeny virus. The viral homolog subverts the function of cellular NLRs, which suggests that modulation of NLR-mediated innate immunity is important for the lifelong persistence of herpesviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregory, Sean M -- Davis, Beckley K -- West, John A -- Taxman, Debra J -- Matsuzawa, Shu-ichi -- Reed, John C -- Ting, Jenny P Y -- Damania, Blossom -- 5R21CA131645/CA/NCI NIH HHS/ -- AI057157/AI/NIAID NIH HHS/ -- AI077437/AI/NIAID NIH HHS/ -- AI56324/AI/NIAID NIH HHS/ -- AI91967/AI/NIAID NIH HHS/ -- CA096500/CA/NCI NIH HHS/ -- CA156330/CA/NCI NIH HHS/ -- DE018281/DE/NIDCR NIH HHS/ -- F32-AI78735/AI/NIAID NIH HHS/ -- R01 AI091967/AI/NIAID NIH HHS/ -- R01 CA096500/CA/NCI NIH HHS/ -- R01 CA096500-10/CA/NCI NIH HHS/ -- R01 DE018281/DE/NIDCR NIH HHS/ -- R01 DE018281-05/DE/NIDCR NIH HHS/ -- T32-AI007001/AI/NIAID NIH HHS/ -- T32-AI007419/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 21;331(6015):330-4. doi: 10.1126/science.1199478.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21252346" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Amino Acid Sequence ; Apoptosis ; Apoptosis Regulatory Proteins/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Carrier Proteins/metabolism ; Caspase 1/metabolism ; Caspase Inhibitors ; Cell Line ; Cell Line, Tumor ; Herpesvirus 8, Human/genetics/immunology/*physiology ; Humans ; *Immune Evasion ; *Immunity, Innate ; Inflammasomes/*antagonists & inhibitors/metabolism ; Interleukin-1beta/metabolism ; Molecular Sequence Data ; Monocytes/virology ; Nod2 Signaling Adaptor Protein/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Transfection ; Viral Proteins/chemistry/genetics/*metabolism ; Virus Activation ; Virus Latency ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-04-09
    Description: Conformational dynamics play a key role in enzyme catalysis. Although protein motions have clear implications for ligand flux, a role for dynamics in the chemical step of enzyme catalysis has not been clearly established. We generated a mutant of Escherichia coli dihydrofolate reductase that abrogates millisecond-time-scale fluctuations in the enzyme active site without perturbing its structural and electrostatic preorganization. This dynamic knockout severely impairs hydride transfer. Thus, we have found a link between conformational fluctuations on the millisecond time scale and the chemical step of an enzymatic reaction, with broad implications for our understanding of enzyme mechanisms and for design of novel protein catalysts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhabha, Gira -- Lee, Jeeyeon -- Ekiert, Damian C -- Gam, Jongsik -- Wilson, Ian A -- Dyson, H Jane -- Benkovic, Stephen J -- Wright, Peter E -- GM080209/GM/NIGMS NIH HHS/ -- GM75995/GM/NIGMS NIH HHS/ -- R01 GM075995/GM/NIGMS NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):234-8. doi: 10.1126/science.1198542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474759" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Folic Acid/chemistry ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; NADP/chemistry ; Protein Conformation ; Tetrahydrofolate Dehydrogenase/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-13
    Description: Pyrazinamide (PZA) is a first-line tuberculosis drug that plays a unique role in shortening the duration of tuberculosis chemotherapy. PZA is hydrolyzed intracellularly to pyrazinoic acid (POA) by pyrazinamidase (PZase, encoded by pncA), an enzyme frequently lost in PZA-resistant strains, but the target of POA in Mycobacterium tuberculosis has remained elusive. Here, we identify a previously unknown target of POA as the ribosomal protein S1 (RpsA), a vital protein involved in protein translation and the ribosome-sparing process of trans-translation. Three PZA-resistant clinical isolates without pncA mutation harbored RpsA mutations. RpsA overexpression conferred increased PZA resistance, and we confirmed that POA bound to RpsA (but not a clinically identified DeltaAla mutant) and subsequently inhibited trans-translation rather than canonical translation. Trans-translation is essential for freeing scarce ribosomes in nonreplicating organisms, and its inhibition may explain the ability of PZA to eradicate persisting organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Wanliang -- Zhang, Xuelian -- Jiang, Xin -- Yuan, Haiming -- Lee, Jong Seok -- Barry, Clifton E 3rd -- Wang, Honghai -- Zhang, Wenhong -- Zhang, Ying -- AI44063/AI/NIAID NIH HHS/ -- ZIA AI000783-16/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1630-2. doi: 10.1126/science.1208813. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835980" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/genetics/metabolism ; Amino Acid Sequence ; Antitubercular Agents/metabolism/*pharmacology ; Bacterial Proteins/chemistry/genetics/*metabolism ; Drug Resistance, Bacterial ; Molecular Sequence Data ; Mutant Proteins/metabolism ; Mutation ; Mycobacterium tuberculosis/*drug effects/genetics/metabolism ; Prodrugs/metabolism/pharmacology ; Protein Binding ; Protein Biosynthesis/drug effects ; Protein Structure, Tertiary ; Pyrazinamide/*analogs & derivatives/metabolism/*pharmacology ; RNA, Bacterial/metabolism ; RNA, Messenger/metabolism ; RNA, Transfer/metabolism ; Ribosomal Proteins/chemistry/genetics/*metabolism ; Ribosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-02-05
    Description: N-glycosylation of eukaryotic proteins helps them fold and traverse the cellular secretory pathway and can increase their stability, although the molecular basis for stabilization is poorly understood. Glycosylation of proteins at naive sites (ones that normally are not glycosylated) could be useful for therapeutic and research applications but currently results in unpredictable changes to protein stability. We show that placing a phenylalanine residue two or three positions before a glycosylated asparagine in distinct reverse turns facilitates stabilizing interactions between the aromatic side chain and the first N-acetylglucosamine of the glycan. Glycosylating this portable structural module, an enhanced aromatic sequon, in three different proteins stabilizes their native states by -0.7 to -2.0 kilocalories per mole and increases cellular glycosylation efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099596/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Culyba, Elizabeth K -- Price, Joshua L -- Hanson, Sarah R -- Dhar, Apratim -- Wong, Chi-Huey -- Gruebele, Martin -- Powers, Evan T -- Kelly, Jeffery W -- AI072155/AI/NIAID NIH HHS/ -- F32 GM086039/GM/NIGMS NIH HHS/ -- F32 GM086039-03/GM/NIGMS NIH HHS/ -- GM051105/GM/NIGMS NIH HHS/ -- R01 AI072155/AI/NIAID NIH HHS/ -- R01 AI072155-04/AI/NIAID NIH HHS/ -- R01 GM051105/GM/NIGMS NIH HHS/ -- R01 GM051105-15/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):571-5. doi: 10.1126/science.1198461.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292975" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry ; Acid Anhydride Hydrolases/*chemistry ; Amino Acid Sequence ; Animals ; Antigens, CD2/*chemistry ; Asparagine/chemistry ; Glycosylation ; Humans ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutant Proteins/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Phenylalanine/chemistry ; Polysaccharides/chemistry ; Protein Conformation ; Protein Engineering ; Protein Folding ; *Protein Stability ; Protein Structure, Tertiary ; Rats ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-06-11
    Description: Active nuclear import of soluble cargo involves transport factors that shuttle cargo through the nuclear pore complex (NPC) by binding to phenylalanine-glycine (FG) domains. How nuclear membrane proteins cross through the NPC to reach the inner membrane is presently unclear. We found that at least a 120-residue-long intrinsically disordered linker was required for the import of membrane proteins carrying a nuclear localization signal for the transport factor karyopherin-alpha. We propose an import mechanism for membrane proteins in which an unfolded linker slices through the NPC scaffold to enable binding between the transport factor and the FG domains in the center of the NPC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meinema, Anne C -- Laba, Justyna K -- Hapsari, Rizqiya A -- Otten, Renee -- Mulder, Frans A A -- Kralt, Annemarie -- van den Bogaart, Geert -- Lusk, C Patrick -- Poolman, Bert -- Veenhoff, Liesbeth M -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):90-3. doi: 10.1126/science.1205741. Epub 2011 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659568" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Endoplasmic Reticulum/metabolism ; Karyopherins/chemistry/metabolism ; Membrane Proteins/*chemistry/genetics/*metabolism ; Models, Biological ; Molecular Sequence Data ; Nuclear Envelope/*metabolism ; Nuclear Localization Signals ; Nuclear Pore/*metabolism ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism ; Nuclear Proteins/chemistry/genetics/metabolism ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-10-29
    Description: Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diskin, Ron -- Scheid, Johannes F -- Marcovecchio, Paola M -- West, Anthony P Jr -- Klein, Florian -- Gao, Han -- Gnanapragasam, Priyanthi N P -- Abadir, Alexander -- Seaman, Michael S -- Nussenzweig, Michel C -- Bjorkman, Pamela J -- P01 AI081677-01/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Dec 2;334(6060):1289-93. doi: 10.1126/science.1213782. Epub 2011 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22033520" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology/metabolism ; Antibody Affinity ; Antigens, CD4/chemistry/metabolism ; Binding Sites ; Complementarity Determining Regions ; Crystallography, X-Ray ; HIV Antibodies/chemistry/*immunology/metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology/metabolism ; Molecular Mimicry ; Molecular Sequence Data ; Mutant Proteins/chemistry/immunology/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-05-14
    Description: Regeneration requires initiation of programs tailored to the identity of missing parts. Head-versus-tail regeneration in planarians presents a paradigm for study of this phenomenon. After injury, Wnt signaling promotes tail regeneration. We report that wounding elicits expression of the Wnt inhibitor notum preferentially at anterior-facing wounds. This expression asymmetry occurs at essentially any wound, even if the anterior pole is intact. Inhibition of notum with RNA interference (RNAi) causes regeneration of an anterior-facing tail instead of a head, and double-RNAi experiments indicate that notum inhibits Wnt signaling to promote head regeneration. notum expression is itself controlled by Wnt signaling, suggesting that regulation of feedback inhibition controls the binary head-tail regeneration outcome. We conclude that local detection of wound orientation with respect to tissue axes results in distinct signaling environments that initiate appropriate regeneration responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petersen, Christian P -- Reddien, Peter W -- R01 GM080639/GM/NIGMS NIH HHS/ -- R01 GM080639-04/GM/NIGMS NIH HHS/ -- R01GM080639/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):852-5. doi: 10.1126/science.1202143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566195" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Feedback, Physiological ; Gene Expression Regulation ; Genes, Helminth ; Head ; Helminth Proteins/genetics/*metabolism ; Hydrolases/genetics/*metabolism ; Molecular Sequence Data ; Planarians/cytology/genetics/*physiology ; RNA Interference ; *Regeneration ; *Signal Transduction ; Tail ; Wnt Proteins/genetics/*metabolism ; Wnt1 Protein/genetics/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-01-06
    Description: Eukaryotic ribosomes are substantially larger and more complex than their bacterial counterparts. Although their core function is conserved, bacterial and eukaryotic protein synthesis differ considerably at the level of initiation. The eukaryotic small ribosomal subunit (40S) plays a central role in this process; it binds initiation factors that facilitate scanning of messenger RNAs and initiation of protein synthesis. We have determined the crystal structure of the Tetrahymena thermophila 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (eIF1) at a resolution of 3.9 angstroms. The structure reveals the fold of the entire 18S ribosomal RNA and of all ribosomal proteins of the 40S subunit, and defines the interactions with eIF1. It provides insights into the eukaryotic-specific aspects of protein synthesis, including the function of eIF1 as well as signaling and regulation mediated by the ribosomal proteins RACK1 and rpS6e.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabl, Julius -- Leibundgut, Marc -- Ataide, Sandro F -- Haag, Andrea -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):730-6. doi: 10.1126/science.1198308. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallization ; Crystallography, X-Ray ; Eukaryotic Initiation Factor-1/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Biosynthesis ; Protein Conformation ; Protein Folding ; Protozoan Proteins/chemistry/metabolism ; RNA, Messenger/chemistry ; RNA, Protozoan/chemistry ; RNA, Ribosomal, 18S/*chemistry ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Small, Eukaryotic/*chemistry/metabolism/*ultrastructure ; Signal Transduction ; Tetrahymena thermophila/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-07-02
    Description: Tail-anchored (TA) proteins are involved in cellular processes including trafficking, degradation, and apoptosis. They contain a C-terminal membrane anchor and are posttranslationally delivered to the endoplasmic reticulum (ER) membrane by the Get3 adenosine triphosphatase interacting with the hetero-oligomeric Get1/2 receptor. We have determined crystal structures of Get3 in complex with the cytosolic domains of Get1 and Get2 in different functional states at 3.0, 3.2, and 4.6 angstrom resolution. The structural data, together with biochemical experiments, show that Get1 and Get2 use adjacent, partially overlapping binding sites and that both can bind simultaneously to Get3. Docking to the Get1/2 complex allows for conformational changes in Get3 that are required for TA protein insertion. These data suggest a molecular mechanism for nucleotide-regulated delivery of TA proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601824/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601824/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stefer, Susanne -- Reitz, Simon -- Wang, Fei -- Wild, Klemens -- Pang, Yin-Yuin -- Schwarz, Daniel -- Bomke, Jorg -- Hein, Christopher -- Lohr, Frank -- Bernhard, Frank -- Denic, Vladimir -- Dotsch, Volker -- Sinning, Irmgard -- R01 GM099943/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):758-62. doi: 10.1126/science.1207125. Epub 2011 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, D-60325 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719644" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport/*chemistry/*metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Cytosol/chemistry ; Endoplasmic Reticulum/metabolism ; Guanine Nucleotide Exchange Factors/*chemistry/*metabolism ; Membrane Proteins/*chemistry/*metabolism ; Microsomes/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-05
    Description: Confinement of enzymes in protein nanocompartments represents a potentially powerful strategy for controlling catalytic activity in cells. By using a simple electrostatically based tagging system for protein encapsulation, we successfully sequestered HIV protease, a toxic enzyme when produced cytoplasmically, within an engineered lumazine synthase capsid. The growth advantage resulting from protecting the Escherichia coli host from the protease enabled directed evolution of improved capsids. After four rounds of mutagenesis and selection, we obtained a variant with a 5- to 10-fold higher loading capacity than the starting capsid, which permitted efficient growth even at high intracellular concentrations of HIV protease. The superior properties of the evolved capsid can be ascribed to multiple mutations that increase the net negative charge on its luminal surface and thereby enhance engineered Coulombic interactions between host and guest. Such structures could be used for diverse biotechnological applications in living cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Worsdorfer, Bigna -- Woycechowsky, Kenneth J -- Hilvert, Donald -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):589-92. doi: 10.1126/science.1199081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Organic Chemistry, Eidgenossische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292977" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA Shuffling ; *Directed Molecular Evolution ; *Escherichia coli/genetics/growth & development ; HIV Protease/chemistry/*metabolism ; Molecular Sequence Data ; Multienzyme Complexes/*chemistry/genetics ; Point Mutation ; *Protein Engineering ; Selection, Genetic ; Static Electricity ; Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-02-12
    Description: Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popow, Johannes -- Englert, Markus -- Weitzer, Stefan -- Schleiffer, Alexander -- Mierzwa, Beata -- Mechtler, Karl -- Trowitzsch, Simon -- Will, Cindy L -- Luhrmann, Reinhard -- Soll, Dieter -- Martinez, Javier -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):760-4. doi: 10.1126/science.1197847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311021" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Exons ; HeLa Cells ; Humans ; Introns ; Molecular Sequence Data ; Proteins/*chemistry/isolation & purification/*metabolism ; RNA Interference ; RNA Ligase (ATP)/*chemistry/isolation & purification/*metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Transfer/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-09-17
    Description: Eukaryotic and archaeal multisubunit RNA polymerases (Pols) are structurally related and require several similar components for transcription initiation. However, none of the Pol I factors were known to share homology with transcription factor IIB (TFIIB) or TFIIB-related proteins, key factors in the initiation mechanisms of the other Pols. Here we show that Rrn7, a subunit of the yeast Pol I core factor, and its human ortholog TAF1B are TFIIB-like factors. Although distantly related, Rrn7 shares many activities associated with TFIIB-like factors. Domain swaps between TFIIB-related factors show that Rrn7 is most closely related to the Pol III general factor Brf1. Our results point to the conservation of initiation mechanisms among multisubunit Pols and reveal a key function of yeast core factor/human SL1 in Pol I transcription.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319074/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319074/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knutson, Bruce A -- Hahn, Steven -- GM053451/GM/NIGMS NIH HHS/ -- R01 GM053451/GM/NIGMS NIH HHS/ -- R01 GM053451-17/GM/NIGMS NIH HHS/ -- T32 CA009657/CA/NCI NIH HHS/ -- T32 CA009657-22/CA/NCI NIH HHS/ -- T32 CA09657/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1637-40. doi: 10.1126/science.1207699.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fred Hutchinson Cancer Research Center, Division of Basic Sciences, 1100 Fairview Avenue N, Post Office Box 19024, Mailstop A1-162, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921198" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Humans ; Molecular Sequence Data ; Pol1 Transcription Initiation Complex Proteins/*chemistry/genetics/*metabolism ; Protein Folding ; Protein Interaction Domains and Motifs ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase I/*metabolism ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Sequence Alignment ; TATA-Box Binding Protein/metabolism ; Transcription Factor TFIIB/chemistry/metabolism ; Transcription Factor TFIIIB/chemistry/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-06-11
    Description: The evolutionarily conserved serine-threonine kinase mammalian target of rapamycin (mTOR) plays a critical role in regulating many pathophysiological processes. Functional characterization of the mTOR signaling pathways, however, has been hampered by the paucity of known substrates. We used large-scale quantitative phosphoproteomics experiments to define the signaling networks downstream of mTORC1 and mTORC2. Characterization of one mTORC1 substrate, the growth factor receptor-bound protein 10 (Grb10), showed that mTORC1-mediated phosphorylation stabilized Grb10, leading to feedback inhibition of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated, mitogen-activated protein kinase (ERK-MAPK) pathways. Grb10 expression is frequently down-regulated in various cancers, and loss of Grb10 and loss of the well-established tumor suppressor phosphatase PTEN appear to be mutually exclusive events, suggesting that Grb10 might be a tumor suppressor regulated by mTORC1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195509/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195509/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Yonghao -- Yoon, Sang-Oh -- Poulogiannis, George -- Yang, Qian -- Ma, Xiaoju Max -- Villen, Judit -- Kubica, Neil -- Hoffman, Gregory R -- Cantley, Lewis C -- Gygi, Steven P -- Blenis, John -- CA46595/CA/NCI NIH HHS/ -- GM051405/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- R00 CA140789/CA/NCI NIH HHS/ -- R00 CA140789-04/CA/NCI NIH HHS/ -- R00CA140789/CA/NCI NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- R01 GM051405/GM/NIGMS NIH HHS/ -- R01 GM051405-14/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 HG003456/HG/NHGRI NIH HHS/ -- R01 HG003456-07/HG/NHGRI NIH HHS/ -- R37 CA046595/CA/NCI NIH HHS/ -- R37 CA046595-22/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1322-6. doi: 10.1126/science.1199484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659605" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibiotics, Antineoplastic/pharmacology ; Cell Line ; GRB10 Adaptor Protein/*metabolism ; Humans ; Insulin/*metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphoproteins/metabolism ; Phosphorylation/drug effects ; Proteins/*metabolism ; Proteome/metabolism ; *Signal Transduction/drug effects ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-02-12
    Description: The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Lin -- Pan, Lifeng -- Wei, Zhiyi -- Zhang, Mingjie -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):757-60. doi: 10.1126/science.1198848.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Life Science, Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311020" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation, Missense ; Myosins/*chemistry/metabolism ; Nerve Tissue Proteins/*chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Der, Bryan S -- Kuhlman, Brian -- New York, N.Y. -- Science. 2011 May 13;332(6031):801-2. doi: 10.1126/science.1207082.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA. bder@email.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Computer Simulation ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Peptide Library ; Protein Binding ; Protein Conformation ; *Protein Engineering ; Proteins/*chemistry/genetics/*metabolism ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...