ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (424)
  • Copernicus Publications (EGU)  (323)
  • EuroSea  (61)
  • ACS (American Chemical Society)  (40)
  • 2020-2024  (424)
  • 1
    Publication Date: 2024-01-12
    Description: Ice calved from the Antarctic and Greenland Ice Sheets or tidewater glaciers ultimately melts in the ocean contributing to sea-level rise. Icebergs have also been described as biological hotspots due to their potential roles as platforms for marine mammals and birds, and as micronutrient fertilizing agents. Icebergs may be especially important in the Southern Ocean where availability of the micronutrients iron and manganese extensively limits marine primary production. Whilst icebergs have long been described as a source of iron to the ocean, their nutrient signature is poorly constrained and it is unclear if there are regional differences. Here we show that 589 ice fragments collected from floating ice in contrasting regions spanning the Antarctic Peninsula, Greenland, and smaller tidewater systems in Svalbard, Patagonia and Iceland have similar characteristic (micro)nutrient signatures with limited or no significant differences between regions. Icebergs are a minor or negligible source of macronutrients to the ocean with low concentrations of NOx (NO3 + NO2, median 0.51 µM), PO4 (median 0.04 µM), and dissolved Si (dSi, median 0.02 µM). In contrast, icebergs deliver elevated concentrations of dissolved Fe (dFe; mean 82 nM, median 12 nM) and Mn (dMn; mean 26 nM, median 2.6 nM). A tight correlation between total dissolvable Fe and Mn (R2 = 0.95) and a Mn:Fe ratio of 0.024 suggested a lithogenic origin for the majority of sediment present in ice. Total dissolvable Fe and Mn retained a strong relationship with sediment load (both R2 = 0.43, p〈0.001), whereas weaker relationships were observed for dFe, dMn and dSi. Sediment load for Antarctic ice (median 9 mg L-1, n=144) was low compared to prior reported values for the Arctic. A particularly curious incidental finding was that melting samples of ice were observed to rapidly lose their sediment load, even when sediment layers were embedded within the ice and stored in the dark. Our results demonstrated that the nutrient signature of icebergs is consistent with an atmospheric source of NOx and PO4. Conversely, high Fe and Mn, and modest dSi concentrations, are associated with englacial sediment, which experiences limited biogeochemical processing prior to release into the ocean.
    Type: Article , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-08
    Description: Riverine nutrient export is an important process in marine coastal biogeochemistry and also impacts global marine biology. The nitrogen cycle is a key player here. Internal feedbacks regulate not only nitrogen distribution, but also primary production and thereby oxygen concentrations. Phosphorus is another essential nutrient and interacts with the nitrogen cycle via different feedback mechanisms. After a previous study of the marine nitrogen cycle response to riverine nitrogen supply, we here additionally include phosphorus from river export with different phosphorus burial scenarios and study the impact of phosphorus alone and in combination with nitrogen in a global 3-D ocean biogeochemistry model. Again, we analyse the effects on near coastal and open ocean biogeochemistry. We find that the addition of bio-available riverine phosphorus alone or together with nitrogen affects marine biology on millennial timescales more than riverine nitrogen alone. Biogeochemical feedbacks in the marine nitrogen cycle are strongly influenced by the additional phosphorus. Where bio-available phosphorus is increased by river input, nitrogen concentrations increase as well, except for regions with high denitrification rates. High phosphorus burial rates decrease biological production significantly. Globally, riverine phosphorus leads to elevated primary production rates in the coastal and open oceans.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-27
    Description: Ocean alkalinity enhancement (OAE) stands as a promising carbon dioxide removal technology. Yet, this solution to climate change entails shifts in water chemistry with unknown consequences for marine fish that are critical to ecosystem health and food security. With a laboratory and mesocosm experiment, we show that early life stages of fish can be resistant to OAE. We examined metabolic rate, swimming behavior, growth and survival in Atlantic herring (Clupea harengus) and other temperate coastal fish species. Neither direct physiological nor indirect food web-mediated impacts of OAE were apparent. This was despite non-CO2-equilibrated OAE (ΔTA = +600 µmol kg-1) that induces strong perturbations (ΔpH = +0.7, pCO2 = 75 µatm) compared to alternative deployment scenarios. Whilst our results give cause for optimism regarding the large-scale application of OAE, other life history stages (embryos) and habitats (open ocean) may prove more vulnerable. Still, our study across ecological scales (organism to community) and exposure times (short- to long-term) suggests that some fish populations, including key fisheries species, may be resilient to the carbonate chemistry changes under OAE.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-05
    Description: Ocean alkalinity enhancement (OAE) is considered for the long-term removal of gigatons of carbon dioxide (CO2) from the atmosphere to achieve our climate goals. Little is known, however, about the ecosystem-level changes in biogeochemical functioning that may result from the chemical sequestration of CO2 in seawater, and how stable the sequestration is. We studied these two aspects in natural plankton communities under carbonate-based, CO2-equilibrated OAE in the nutrient-poor North Atlantic. During a month-long mesocosm experiment, the majority of biogeochemical pools, including inorganic nutrients, particulate organic carbon and phosphorus as well as biogenic silica, remained unaltered across all OAE levels of up to a doubling of ambient alkalinity (+2400 µeq kg-1). Noticeable exceptions were a minor decrease in particulate organic nitrogen and an increase in the carbon to nitrogen ratio (C:N) of particulate organic matter in response to OAE. Thus, in our nitrogen limited system, nitrogen turnover processes appear more susceptible than those of other elements leading to decreased food quality and increased organic carbon storage. However, alkalinity and chemical CO2 sequestration were not stable at all levels of OAE. Two weeks after alkalinity addition, we measured a loss of added alkalinity and of the initially stored CO2 in the mesocosm where alkalinity was highest (+2400 µeq kg-1, Ωaragonite ~10). The loss rate accelerated over time. Additional tests showed that such secondary precipitation can be initiated by particles acting as precipitation nuclei and that this process can occur even at lower levels of OAE. In conclusion, on the one hand, our study under carbonate-based OAE where the carbon is already sequestered, the risk of major and sustained impacts on biogeochemical functioning may be low in the nutrient-poor ocean. On the other hand, the durability of carbon sequestration using OAE could be constrained by alkalinity loss in supersaturated waters with precipitation nuclei present. Our study provides evaluation of ecosystem impacts of an idealised OAE deployment for monitoring, reporting and verification (MRV) in an oligotrophic system. Whether biogeochemical functioning is resilient to more technically simple and economically more viable approaches that induce stronger water chemistry perturbations remains to be seen.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-08
    Description: Circulation anomalies accompanying Sudden Stratospheric Warmings (SSWs) can have a significant impact on the troposphere. This surface response is observed for some but not all SSWs, and their downward coupling is not fully understood. We use an existing classification method to separate downward- and non-propagating SSWs (d/nSSWs) in ERA5 reanalysis data for the years 1979–2019. The differences in SSW downward propagation in composites of spatial patterns clearly show that dSSWs dominate the surface regional impacts following SSWs. During dSSWs, the upper-tropospheric jet stream is significantly displaced equatorward. Wave activity analysis shows remarkable differences between d/nSSWs for planetary and synoptic-scale waves. Enhanced stratospheric planetary eddy kinetic energy (EKE) and heat fluxes around the central date of dSSWs are followed by increased synoptic-scale wave activity and even surface coupling for synoptic-scale EKE. An observed significant reduction in upper-tropospheric synoptic-scale momentum fluxes following dSSWs confirms the important role of tropospheric eddy feedbacks for coupling to the surface. Our findings emphasize the role of the lower stratosphere and synoptic-scale waves in coupling the SSW signal to the surface and agree with mechanisms suggested in earlier modeling studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-11
    Description: Ocean alkalinity enhancement (OAE) is considered one of the most promising approaches to actively remove carbon dioxide (CO2) from the atmosphere by accelerating the natural process of rock weathering. This approach involves introducing alkaline substances sourced from natural mineral deposits such as olivine, basalt, and carbonates or obtained from industrial waste products such as steel slags, into seawater and dispersing them over coastal areas. Some of these natural and industrial substances contain trace metals, which would be released into the oceans along with the alkalinity enhancement. The trace metals could serve as micronutrients for marine organisms at low concentrations, but could potentially become toxic at high concentrations, adversely affecting marine biota. To comprehensively assess the feasibility of OAE, it is crucial to understand how the phytoplankton, which forms the base of marine food webs, responds to ocean alkalinization and associated trace metal perturbations. In this study, we investigated the toxicity of nickel on three representative phytoplankton species across a range of Ni concentrations (from 0 to 100 µmol L-1 with 12 µmol L-1 synthetic organic ligand). The results showed that the growth of the tested species was impacted differently. The low growth inhibition and high IC50 (concentration to inhibit growth rate by 50 %) revealed that both the coccolithophore Emiliania huxleyi and the dinoflagellate Amphidinium carterae were mildly impacted by the increase in Ni concentrations while the rapid response to exposure of Ni, high growth rate inhibition, and low IC50 of Thalassiosira weissflogii indicate low tolerance to Ni in this species. In conclusion, the variability in phytoplankton sensitivity to Ni suggests that for OAE applications with Ni-rich materials caution is required and critical toxic thresholds for Ni must be avoided.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-11
    Description: The central Arctic Ocean (CAO) plays an important role in the global carbon cycle, but the current and future exchange of the climate-forcing trace gases methane (CH4) and carbon dioxide (CO2) between the CAO and the atmosphere is highly uncertain. In particular, there are very few observations of near-surface gas concentrations or direct air–sea CO2 flux estimates and no previously reported direct air–sea CH4 flux estimates from the CAO. Furthermore, the effect of sea ice on the exchange is not well understood. We present direct measurements of the air–sea flux of CH4 and CO2, as well as air–snow fluxes of CO2 in the summertime CAO north of 82.5∘ N from the Synoptic Arctic Survey (SAS) expedition carried out on the Swedish icebreaker Oden in 2021. Measurements of air–sea CH4 and CO2 flux were made using floating chambers deployed in leads accessed from sea ice and from the side of Oden, and air–snow fluxes were determined from chambers deployed on sea ice. Gas transfer velocities determined from fluxes and surface-water-dissolved gas concentrations exhibited a weaker wind speed dependence than existing parameterisations, with a median sea-ice lead gas transfer rate of 2.5 cm h−1 applicable over the observed 10 m wind speed range (1–11 m s−1). The average observed air–sea CO2 flux was −7.6 ..., and the average air–snow CO2 flux was −1.1 . Extrapolating these fluxes and the corresponding sea-ice concentrations gives an August and September flux for the CAO of −1.75 ... , within the range of previous indirect estimates. The average observed air–sea CH4 flux of 3.5 ..., accounting for sea-ice concentration, equates to an August and September CAO flux of 0.35 , lower than previous estimates and implying that the CAO is a very small (≪ 1 %) contributor to the Arctic flux of CH4 to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-12
    Description: Identification of seismically active fault zones and the definition of sufficiently large respect distances from these faults which enable avoiding the damaged rock zone surrounding the ruptured ground commonly are amongst the first steps to take in the geoscientific evaluation of sites suitable for nuclear waste disposal. In this work we present a GIS-based approach, using the earthquake-epicentre locations from the instrumental earthquake record of South-Korea to identify potentially active fault zones in the country, and compare different strategies for fault zone buffer creation as originally developed for site search in the high seismicity country Japan, and the low-to-moderate seismicity countries Germany and Sweden. In order to characterize the hazard potential of the Korean fault zones, we moreover conducted slip tendency analysis, here for the first time covering the fault zones of the entire Korean Peninsula. For our analyses we used the geo-spatial information from a new version of the Geological map of South-Korea, containing the outlines of 11 rock units, which we simplified to distinguish between 4 different rock types (granites, metamorphic rocks, sedimentary rocks and igneous rocks) and the surface traces of 1,528 fault zones and 6,654 lineaments identified through years of field work and data processing, a rich geo-dataset which we will publish along with this manuscript. Our approach for identification of active fault zones was developed without prior knowledge of already known seismically active fault zones, and as a proof of concept the results later were compared to a map containing already identified active fault zones. The comparison revealed that our approach identified 16 of the 21 known seismically active faults and added 472 previously unknown potentially active faults. The 5 seismically active fault zones which were not identified by our approach are located in the NE- and SW-sectors of the Korean Peninsula, which haven’t seen much recent seismic activity, and thus are not sufficiently well covered by the seismic record. The strike directions of fault zones identified as active are in good agreement with the orientation of the current stress field of the peninsula and slip tendency analysis provided first insights into subsurface geometry such as the dip angles of both active and inactive fault zones. The results of our work are of major importance for the early-stage seismic hazard assessment that has to be conducted in support of the nuclear waste disposal siting in South-Korea. Moreover, the GIS-based methods for identification of active fault zones and buffering of respect areas around fault zone traces presented here, are applicable also elsewhere.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-22
    Description: CO2 injection has been deemed a promising method for CH4 production from gas hydrate-bearing sediments for its potential in stabilizing the host sediments and balancing carbon emission. However, the process is yet to be fully understood, as it involves interactions of multi-physical and chemical processes including the generation of water-immiscible CH4–CO2 fluid mixtures, the evolution of chemical reaction kinetics for both CH4 and CO2 hydrates, heat emission and absorption during hydrate formation and dissociation, and stress redistribution caused by spatially evolving responses of CH4–CO2 hydrate-bearing sediments. This paper develops a coupled thermo-hydro-chemo-mechanical formulation that captures the complexity of these processes and applies it to investigate the behavior of CH4 hydrate-bearing sediments subjected to CO2 injection. The capabilities of this coupled formulation are validated through numerical simulations of laboratory experiments of CO2 injection into CH4 hydrate-bearing soil. Moreover, the application of this formulation in a field-scale scenario reveals insights into the efficiencies of CH4 production and CO2 storage and the geomechanical implications. Notably, the study finds that compared to the depressurization-only method, the combined hot CO2 injection and depressurization method could increase CH4 production by approximately 400%. In addition, this method could sequester about 70% of injected CO2 into solid hydrates, while exhibiting smaller maximum slope of differential displacement. These outcomes highlight the viability and benefits of CH4 hydrate production through CO2 injection, increasing the prospects of this approach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-25
    Description: Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a database of more than 44 400 AT and CT observations along with basic ancillary data (spatiotemporal location, depth, temperature and salinity) from various ocean regions obtained, mainly in the framework of French projects, since 1993. This includes both surface and water column data acquired in the open ocean, coastal zones and in the Mediterranean Sea and either from time series or dedicated one-off cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ±4 µmol kg−1 for both AT and CT. The data are provided in two separate datasets – for the Global Ocean and the Mediterranean Sea (https://doi.org/10.17882/95414, Metzl et al., 2023), respectively – that offer a direct use for regional or global purposes, e.g., AT–salinity relationships, long-term CT estimates, and constraint and validation of diagnostic CT and AT reconstructed fields or ocean carbon and coupled climate–carbon models simulations as well as data derived from Biogeochemical-Argo (BGC-Argo) floats. When associated with other properties, these data can also be used to calculate pH, the fugacity of CO2 (fCO2) and other carbon system properties to derive ocean acidification rates or air–sea CO2 fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-03-25
    Description: The upper wind-driven circulation in the tropical Atlantic Ocean plays a key role in the basin-wide distribution of water mass properties and affects the transport of heat, freshwater, and biogeochemical tracers such as oxygen or nutrients. It is crucial to improve our understanding of its long-term behaviour, which largely relies on model simulations and applied forcing due to sparse observational data coverage, especially before the mid-2000s. Here, we apply two different forcing products, the Coordinated Ocean-ice Reference Experiments (CORE) v2 and the Japanese 55-year Reanalysis (JRA55-do) surface dataset, to a high-resolution ocean model. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current field. In the CORE simulation, strong, large-scale wind stress curl amplitudes above the upwelling regions of the eastern tropical North Atlantic seem to cause an overestimation of the mean and seasonal variability in the eastward subsurface current just north of the Equator. The wind stress curl of JRA55-do forcing shows much finer structures, and the JRA55-do simulation is in better agreement with the mean and intraseasonal fluctuations in the subsurface current found in observations. The northern branch of the South Equatorial Current flows westward at the surface just north of the Equator. On interannual to decadal timescales, it shows a high correlation of R=0.9 with the zonal wind stress in the CORE simulation but only a weak correlation of R=0.35 in the JRA55-do simulation. We also identify similarities between the two simulations. The strength of the eastward-flowing North Equatorial Counter Current located between 3 and 10° N covaries with the strength of the meridional wind stress just north of the Equator on interannual to decadal timescales in the two simulations. Both simulations present a comparable mean, seasonal cycle and trend of the eastward off-equatorial subsurface current south of the Equator but underestimate the current strength by half compared to observations. In both simulations, the eastward-flowing Equatorial Undercurrent weakened between 1990 and 2009. In the JRA simulation, which covers the modern period of observations, the Equatorial Undercurrent strengthened again between 2008 to 2018, which agrees with observations, although the simulation underestimates the strengthening by over a third. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations. This study presents one step in this direction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-27
    Description: We conducted extensive sediment trap experiments in the Benguela Upwelling System (BUS) in the south-eastern Atlantic Ocean to study the influence of zooplankton on the flux of particulate organic carbon (POC) through the water column and its sedimentation. Two long term moored and sixteen short term free-floating sediment trap systems were deployed. The mooring experiments were conducted for several years and the sixteen drifters were deployed on three different research cruises between 2019 and 2021. Zooplankton was separated from the trapped material and divided into 8 different zooplankton groups. In contrast to zooplankton which actively carries POC into the traps in the form of biomass (active POC flux), the remaining fraction of the trapped material was assumed to fall passively into the traps along with sinking particles (passive POC flux). The results show, in line with other studies, that copepods dominate the active POC flux, with the active POC flux in the southern BUS (sBUS) being about three times higher than in the northern BUS (nBUS). In contrast, the differences between the passive POC fluxes in the nBUS and sBUS were small. Despite large variations, which reflected the variability within the two subsystems, the mean passive POC fluxes from the drifters and the moored traps could be described using a common POC flux attenuation equation. However, the almost equal passive POC flux, on the one hand, and large variations in the POC concentration in the surface sediments between the nBUS and sBUS, on the other hand, imply that factors others than the POC supply exert the main control on POC sedimentation in the BUS. The varying intensity of the near-bottom oxygen minimum zone (OMZ), which is more pronounced in the nBUS than in the sBUS, could in turn explain the differences in the sediments, as the lack of oxygen reduces the POC degradation. Hence, globally expanding OMZs might favour POC sedimentation in regions formerly exposed to oxygenated bottom water but bear the risk of increasing the frequency of anoxic events in the oxygen-poor upwelling systems. Apart from associated release of CH4, which is a much more potent greenhouse gas than CO2, such events pose a major threat to the pelagic ecosystem and fisheries.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-04-03
    Description: Here we present a confocal Fe K-edge μ-XANES method (where XANES stands for X-ray absorption near-edge spectroscopy) for the analysis of Fe oxidation state in heterogeneous and one-side-polished samples. The new technique allows for an analysis of small volumes with high spatial 3D resolution of 〈100 µm3. The probed volume is restricted to that just beneath the surface of the exposed object. This protocol avoids contamination of the signal by the host material and minimizes self-absorption effects. This technique has been tested on a set of experimental glasses with a wide range of Fe3+  ΣFe ratios. The method was applied to the analysis of natural melt inclusions trapped in forsteritic to fayalitic olivine crystals of the Hekla volcano, Iceland. Our measurements reveal changes in Fe3+  ΣFe from 0.17 in basaltic up to 0.45 in dacitic melts, whereas the magnetite–ilmenite equilibrium shows redox conditions with Fe3+  ΣFe ≤0.20 (close to FMQ, fayalite–magnetite–quartz redox equilibrium) along the entire range of Hekla melt compositions. This discrepancy indicates that the oxidized nature of glasses in the melt inclusions could be related to the post-entrapment process of diffusive hydrogen loss from inclusions and associated oxidation of Fe in the melt. The Fe3+  ΣFe ratio in silicic melts is particularly susceptible to this process due to their low FeO content, and it should be critically evaluated before petrological interpretation.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-05
    Description: Suspended particulate matter (SPM) carries a major fraction of metals in turbid coastal waters, markedly influencing metal bioaccumulation and posing risks to marine life. However, its effects are often overlooked in current water quality criteria for metals, primarily due to challenges in quantifying SPM’s contribution. This contribution depends on the SPM concentration, metal distribution coefficients (Kd), and the bioavailability of SPM-bound metals (assimilation efficiency, AE), which can collectively be integrated as a modifying factor (MF). Accordingly, we developed a new stable isotope method to measure metal AE by individual organisms from SPM, employing the widely distributed filter-feeding clam Ruditapes philippinarum as a representative species. Assessing SPM from 23 coastal sites in China, we found average AEs of 42% for Zn, 26% for Cd, 20% for Cu, 8% for Ni, and 6% for Pb. Moreover, using stable isotope methods, we determined metal Kd of SPM from these sites, which can be well predicted by the total organic carbon and iron content (R2 = 0.977). We calculated MFs using a Monte Carlo method. The calculated MFs are in the range 9.9-43 for Pb, 8.5-37 for Zn, 2.9-9.7 for Cu, 1.4-2.7 for Ni, and 1.1-1.6 for Cd, suggesting that dissolved-metal-based criteria values should be divided by MFs to provide adequate protection to aquatic life. This study provides foundational guidelines to refine water quality criteria in turbid waters and protect coastal ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-04-05
    Description: We examine the impact of horizontal resolution and model time step on the climate of the OpenIFS version 43r3 atmospheric general circulation model. A series of simulations for the period 1979–2019 are conducted with various horizontal resolutions (i.e. ∼100, ∼50, and ∼25 km) while maintaining the same time step (i.e. 15 min) and using different time steps (i.e. 60, 30, and 15 min) at 100 km horizontal resolution. We find that the surface zonal wind bias is significantly reduced over certain regions such as the Southern Ocean and the Northern Hemisphere mid-latitudes and in tropical and subtropical regions at a high horizontal resolution (i.e. ∼25 km). Similar improvement is evident too when using a coarse-resolution model (∼100 km) with a smaller time step (i.e. 30 and 15 min). We also find improvements in Rossby wave amplitude and phase speed, as well as in weather regime patterns, when a smaller time step or higher horizontal resolution is used. The improvement in the wind bias when using the shorter time step is mostly due to an increase in shallow and mid-level convection that enhances vertical mixing in the lower troposphere. The enhanced mixing allows frictional effects to influence a deeper layer and reduces wind and wind speed throughout the troposphere. However, precipitation biases generally increase with higher horizontal resolutions or smaller time steps, whereas the surface air temperature bias exhibits a small improvement over North America and the eastern Eurasian continent. We argue that the bias improvement in the highest-horizontal-resolution (i.e. ∼25 km) configuration benefits from a combination of both the enhanced horizontal resolution and the shorter time step. In summary, we demonstrate that, by reducing the time step in the coarse-resolution (∼100 km) OpenIFS model, one can alleviate some climate biases at a lower cost than by increasing the horizontal resolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-04-10
    Description: There is only sparse empirical data on the settling velocity of small, nonbuoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9-289 mu m) and five discrete length fractions (50-600 mu m) of common nylon and polyester fibers are investigated, respectively. All settling experiments are carried out in quiescent water by using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g., thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003-9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle's terminal settling velocity are assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density, and shape
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-17
    Description: Nitrogen (N) is a crucial limiting nutrient for phytoplankton growth in the ocean. The main source of bioavailable N in the ocean is delivered by N2-fixing diazotrophs in the surface layer. Since field observation of N2 fixation are spatially and temporally sparse, the fundamental processes and mechanisms controlling N2 fixation are not well understood and constrained. Here, we implement benthic denitrification in an Earth System Model of intermediate complexity (UVic-ESCM 2.9) coupled to an optimality-based plankton ecosystem model (OPEM v1.1). Benthic denitrification occurs mostly in coastal upwelling regions and on shallow continental shelves, and is the largest N-loss process in the global ocean. We calibrate our model against three different combinations of observed Chl, NO3-, PO43-, O2 and N* = NO3- −16PO43- +2.9. The inclusion of N* provides a powerful constraint on biogeochemical model behavior. Our new model version including benthic denitrification simulates higher global rates of N2 fixation with a more realistic distribution extending to higher latitudes that are supported by independent estimates based on geochemical data. Oxygen deficient zone volume and water column denitrification rates are reduced in the new version, indicating that including benthic denitrification may improve global biogeochemical models that commonly overestimate anoxic zones. With the improved representation of the ocean N cycle, our new model configuration also yields better global net primary production (NPP) when compared to the independent datasets not included in the calibration. Benthic denitrification plays an important role shaping N2 fixation and NPP throughout the global ocean in our model, and should be considered when evaluating and predicting their response to environmental change.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-04-17
    Description: Since a pH sensor has become available that is principally suitable for use on demanding autonomous measurement platforms, the marine CO2 system can be observed independently and continuously by Biogeochemical Argo floats. This opens the potential to detect variability and long-term changes in interior ocean inorganic carbon storage and quantify the ocean sink for atmospheric CO2. In combination with a second parameter of the marine CO2 system, pH can be a useful tool to derive the surface ocean CO2 partial pressure (pCO2). The large spatiotemporal variability in the marine CO2 system requires sustained observations to decipher trends and study the impacts of short-term events (e.g., eddies, storms, phytoplankton blooms) but also puts a high emphasis on the quality control of float-based pH measurements. In consequence, a consistent and rigorous quality control procedure is being established to correct sensor offsets or drifts as the interpretation of changes depends on accurate data. By applying current standardized routines of the Argo data management to pH measurements from a pH / O2 float pilot array in the subpolar North Atlantic Ocean, we assess the uncertainties and lack of objective criteria associated with the standardized routines, notably the choice of the reference method for the pH correction (CANYON-B, LIR-pH, ESPER-NN, and ESPER-LIR) and the reference depth for this adjustment. For the studied float array, significant differences ranging between ca. 0.003 pH units and ca. 0.04 pH units are observed between the four reference methods which have been proposed to correct float pH data. Through comparison against discrete and underway pH data from other platforms, an assessment of the adjusted float pH data quality is presented. The results point out noticeable discrepancies near the surface of 〉 0.004 pH units. In the context of converting surface ocean pH measurements into pCO2 data for the purpose of deriving air–sea CO2 fluxes, we conclude that an accuracy requirement of 0.01 pH units (equivalent to a pCO2 accuracy of 10 µatm as a minimum requirement for potential future inclusion in the Surface Ocean CO2 Atlas, SOCAT, database) is not systematically achieved in the upper ocean. While the limited dataset and regional focus of our study do not allow for firm conclusions, the evidence presented still calls for the inclusion of an additional independent pH reference in the surface ocean in the quality control routines. We therefore propose a way forward to enhance the float pH quality control procedure. In our analysis, the current philosophy of pH data correction against climatological reference data at one single depth in the deep ocean appears insufficient to assure adequate data quality in the surface ocean. Ideally, an additional reference point should be taken at or near the surface where the resulting pCO2 data are of the highest importance to monitor the air–sea exchange of CO2 and would have the potential to very significantly augment the impact of the current observation network.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-04-29
    Description: A natural plankton community from oligotrophic subtropical waters of the Atlantic near Gran Canaria, Spain, was subjected to varying degrees of ocean alkalinity enhancement (OAE) to assess the potential physiological effects, in the context of the application of ocean carbon dioxide removal (CDR) techniques. We employed 8.3 m3 mesocosms with a sediment trap attached to the bottom, creating a gradient in total alkalinity (TA). The lowest point on this gradient was 2400 μmol · L-1, which corresponded to the natural alkalinity of the environment, and the highest point was 4800 μmol · L-1. Over the course of the 33-day experiment, the plankton community exhibited two distinct phases. In phase-I (days 5–20), a notable decline in the photosynthetic efficiency (Fv/Fm) was observed. This change was accompanied by substantial reductions in the abundances of picoeukaryotes, small size nanoeukaryotes (nanoeukaryotes-1), and microplankton. The cell viability of picoeukaryotes, as indicated by fluorescein-di-acetate hydrolysis by cellular esterases (FDA- green fluorescence), slightly increased by the end of phase-I whilst the viability of nanoeukaryotes 1 and Synechococcus spp . did not change. Reactive oxygen species levels (ROS-green fluorescence) showed no significant changes for any of the functional groups. In contrast, in phase-II (days 21–33), a pronounced community response was observed. Increases in Fv/Fm in the intermediate OAE treatments of ∆900 to ∆1800 μmol · L-1 and in chlorophyll-a (Chl-a), chlorophyll-c2 (Chl-c2) , fucoxanthin and divinyl-Chl-a were attributed to the emergence of blooms of large size nanoeukaryotes (nanoeukaryotes-2) from the genera Chrysochromulina, as well as picoeukaryotes. Synechococcus spp. also flourished towards the end of this phase. In parallel, we observed a total 20 % significant change in the metaproteome of the phytoplankton community. This is considered a significant alteration in protein expression, having substantial impacts on cellular functions and the physiology of the organisms. Medium levels of ∆TA showed more upregulated and less downregulated proteins than higher ∆TA treatments. Under these conditions, cell viability significantly increased in pico and nanoeukaryotes-1 in intermediate alkalinity levels, while in Synechococcus spp., nanoeukaryotes-2 and microplankton remained stable. ROS levels did not significantly change in any functional group. The pigment ratios DD+DT : FUCO, and DD+DT : Chl-a increased in medium ∆TA treatments, supporting the idea of nutrient deficiency alleviation and the absence of physiological stress. Taken all data together, this study shows that there is minimal evidence indicating a harmful impact of high alkalinity on the plankton community. The OAE treatments did not result in physiological fitness impairment, thus OAE did not cause cellular stress in the phytoplankton community studied.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-04-29
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-05-06
    Description: The presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal res- olutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmo- nized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time- series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division’s Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product). Aside from the actual data compilation, the pilot project produced suggestions for reporting metadata, im- plementing quality control measures, and making estimations about uncertainty. These recommendations aim to encourage the community to adopt more consistent and uniform practices for analysis and reporting and to update these practices regularly. The detailed recommendations, links to the original time-series programs, the original data, their documentation, and related efforts are available on the SPOTS website. This site also pro- vides access to the data product (DOI: https://doi.org/10.26008/1912/bco-dmo.896862.2, Lange et al., 2024) and ancillary data.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-05-17
    Description: In September 2021, volcanic aerosol (mainly freshly formed sulfate plumes) originating from the eruption of Cumbre Vieja on La Palma, Canary Islands, Spain, crossed Cabo Verde at altitudes below 2 km. On 24 September 2021, an extraordinary large aerosol optical depth (AOD) close to 1 (daily mean at 500 nm) was observed at Mindelo, Cabo Verde. This event provided favorable conditions to obtain lidar-derived profiles of extinction and backscatter coefficients, lidar ratio, and depolarization ratio at 355, 532 and 1064 nm in the sulfate aerosol plume. A novel feature of the lidar system operated at Mindelo is the availability of extinction, lidar ratio and depolarization measurements at 1064 nm in addition to the standard wavelengths of 355 and 532 nm. Having measurements of these parameters at all three wavelengths is a major advantage for the aerosol characterization and in aerosol typing efforts as the lidar ratio and the particle linear depolarization ratio are key parameters for this purpose. In this article, we present the key results of the lidar observations obtained on one specific day, namely on 24 September 2021 at 04:38-05:57 UTC, including the first ever measurements of the particle extinction coefficient, the lidar ratio and the depolarization ratio at 1064 nm for volcanic sulfate, and discuss the findings in terms of aerosol optical properties and mass concentrations by comparison with a reference observation (16 September 2021) representing the typical background conditions before the start of the eruptions. We found an unusual high particle extinction coefficient of 721 +/- 51, 549 +/- 38 and 178 +/- 13 Mm - 1 , as well as an enhanced lidar ratio of 66.9 +/- 10.1, 60.2 +/- 9.2 and 30.8 +/- 8.7 sr at 355, 532 and 1064 nm, respectively, in the sulfate-dominated planetary boundary layer (PBL). The particle linear depolarization ratio was 〈= 0.9 % at all respective wavelengths. It is the first time that lidar-derived intensive aerosol optical properties could be derived for volcanic sulfate at all three wavelengths, and thus it is a highly valuable data set for global aerosol characterization. The lidar analysis also revealed a sulfate-related AOD of about 0.35 +/- 0.03 at 532 nm of the total PBL-related AOD of 0.43. The rest of the AOD contribution was caused by a lofted Saharan dust layer extending from 1.4 to 5 km and leading to a total AOD of 0.79 at 532 nm. Volcanic ash contribution to the observed aerosol plumes could be mostly excluded based on trajectory analysis and the observed optical properties. Peak mass concentration was 178.5 +/- 44.6 mu g m - 3 in the volcanic-influenced and sulfate-dominated polluted PBL, showing the hazardous potential of such sulfate plumes to significantly worsen local air quality even at remote locations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-05-17
    Description: The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood and diversity in climate model experiments persists as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. This article synthesizes current challenges and emphasizes opportunities for advancing our understanding of climate change and model diversity. The perspective of this article is based on expert views from three multi-model intercomparison projects (MIPs) – the Precipitation Driver Response MIP (PDRMIP), the Aerosol and Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specialisms across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth System Models of varying complexity. It specifically facilitated contributions to the research field through sharing knowledge on best practices for the design of model diagnostics and experimental strategies across MIP boundaries, e.g., for estimating effective radiative forcing. We discuss the challenges of gaining insights from highly complex models that have specific biases and provide guidance from our lessons learned. Promising ideas to overcome some long-standing challenges in the near future are kilometer-scale experiments to better simulate circulation-dependent processes where it is possible, and machine learning approaches for faster and better sub-grid scale parameterizations where they are needed. Both would improve our ability to adopt a smart experimental design with an optimal tradeoff between resolution, complexity and simulation length. Future experiments can be evaluated and improved with sophisticated methods that leverage multiple observational datasets, and thereby, help to advance the understanding of climate change and its impacts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
  • 25
    Publication Date: 2024-05-22
    Description: Black shale sediments from the Barremian to Aptian South Atlantic document intense and widespread burial of marine organic carbon during the initial stages of seafloor spreading between Africa and South America. The enhanced sequestration of atmospheric CO2 makes these young ocean basins potential drivers of the Early Cretaceous carbon cycle and climate perturbations. The opening of marine gateways between initially restricted basins and related circulation and ventilation changes are a commonly invoked explanation for the transient formation and disappearance of these regional carbon sinks. However, large uncertainties in paleogeographic reconstructions limit the interpretation of available paleoceanographic data and prevent any robust model-based quantifications of the proposed circulation and carbon burial changes. Here, we present a new approach to assess the principal controls on the Early Cretaceous South Atlantic and Southern Ocean circulation changes under full consideration of the uncertainties in available boundary conditions. Specifically, we use a large ensemble of 36 climate model experiments to simulate the Barremian to Albian progressive opening of the Falkland Plateau and Georgia Basin gateways with different configurations of the proto-Drake Passage, the Walvis Ridge, and atmospheric CO2 concentrations. The experiments are designed to complement available geochemical data across the regions and to test circulation scenarios derived from them. All simulations show increased evaporation and intermediate water formation at subtropical latitudes that drive a meridional overturning circulation whose vertical extent is determined by the sill depth of the Falkland Plateau. Densest water masses formed in the southern Angola Basin and potentially reached the deep Cape Basin as Walvis Ridge Overflow Water. Paleogeographic uncertainties are as important as the lack of precise knowledge of atmospheric CO2 levels for the simulated temperature and salinity spread in large parts of the South Atlantic. Overall temperature uncertainties are up to 15 °C and increase significantly with water depth. The ensemble approach reveals temporal changes in the relative importance of geographic and radiative forcings for the simulated oceanographic conditions and, importantly, nonlinear interactions between them. Progressive northward opening of the highly restricted Angola Basin increased the sensitivity of local overturning and upper ocean stratification to atmospheric CO2 concentrations due to large-scale changes in the hydrological cycle, while the chosen proto-Drake Passage depth is critical for the ocean dynamics and CO2 response in the southern South Atlantic. Finally, the simulated processes are integrated into a recent carbon burial framework to document the principal control of the regional gateway evolution on the progressive shift from the prevailing saline and oxygen-depleted subtropical water masses to the dominance of ventilated high-latitude deep waters.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-05-27
    Description: Phytoplankton form the base of the marine food web by transforming CO2 into organic carbon via photosynthesis. Despite the importance of phytoplankton for marine ecosystems and global carbon cycling, projections of phytoplankton biomass in response to climate change differ strongly across Earth system models, illustrating uncertainty in our understanding of the underlying processes. Differences are especially large in the Southern Ocean, a region that is notoriously difficult to represent in models. Here, we argue that total (depth-integrated) phytoplankton biomass in the Southern Ocean is projected to largely remain unchanged under climate change by the Coupled Model Intercomparison Project Phase 6 (CMIP6) multi-model ensemble because of a shifting balance of bottom-up and top-down processes driven by a shoaling mixed-layer depth. A shallower mixed layer is projected on average to improve growth conditions, consequently weaken bottom-up control, and confine phytoplankton closer to the surface. An increase in the phytoplankton concentration promotes zooplankton grazing efficiency, thus intensifying top-down control. However, large differences across the model ensemble exist, with some models simulating a decrease in surface phytoplankton concentrations. To reduce uncertainties in projections of surface phytoplankton concentrations, we employ an emergent constraint approach using the observed sensitivity of surface chlorophyll concentration, taken as an observable proxy for phytoplankton, to seasonal changes in the mixed-layer depth as an indicator for future changes in surface phytoplankton concentrations. The emergent constraint reduces uncertainties in surface phytoplankton concentration projections by around one-third and increases confidence that surface phytoplankton concentrations will indeed rise due to shoaling mixed layers under global warming, thus favouring intensified top-down control. Overall, our results suggest that while changes in bottom-up conditions stimulate enhanced growth, intensified top-down control opposes an increase in phytoplankton and becomes increasingly important for the phytoplankton response to climate change in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-05-28
    Description: In this paper we describe the implementation of the carbon isotopes 13C and 14C (radiocarbon) into the marine biogeochemistry model REcoM3. The implementation is tested in long-term equilibrium simulations where REcoM3 is coupled with the ocean general circulation model FESOM2.1, applying a low-resolution configuration and idealized climate forcing. Focusing on the carbon-isotopic composition of dissolved inorganic carbon (δ13CDIC and Δ14CDIC), our model results are largely consistent with reconstructions for the pre-anthropogenic period. Our simulations also exhibit discrepancies, e.g. in upwelling regions and the interior of the North Pacific. Some of these differences are due to the limitations of our ocean circulation model setup, which results in a rather shallow meridional overturning circulation. We additionally study the accuracy of two simplified modelling approaches for dissolved inorganic 14C, which are faster (15 % and about a factor of five, respectively) than the complete consideration of the marine radiocarbon cycle. The accuracy of both simplified approaches is better than 5 %, which should be sufficient for most studies of Δ14CDIC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-05-28
    Description: Laboratory experiments showed that the isotopic fractionation of δ13C and of δ18O during calcite formation of planktic foraminifera are species-specific functions of ambient CO concentration. This effect became known as the carbonate ion effect (CIE), whose role for the interpretation of marine sediment data will be investigated here in an in-depth analysis of the 13C cycle. For this investigation, we constructed new 160 kyr long mono-specific stacks of changes in both δ13C and δ18O from either the planktic foraminifera Globigerinoides ruber (rub) or Trilobatus sacculifer (sac) from 112 and 40 marine records, respectively, from the wider tropics (latitudes below 38°). Both mono-specific time series Δ(δ13Crub) and Δ(δ13Csac) are very similar to each other, and a linear regression through a scatter plot of both data sets has a slope of ∼ 0.99 – although the laboratory-based CIE for both species differs by a factor of nearly 2, implying that they should record distinctly different changes in δ13C, if we accept that the carbonate ion concentration changes on glacial–interglacial timescales. For a deeper understanding of the 13C cycle, we use the Solid Earth version of the Box model of the Isotopic Carbon cYCLE (BICYLE-SE) to calculate how surface-ocean CO should have varied over time in order to be able to calculate the potential offsets which would by caused by the CIE quantified in culture experiments. Our simulations are forced with atmospheric reconstructions of CO2 and δ13CO2 derived from ice cores to obtain a carbon cycle which should at least at the surface ocean be as close as possible to expected conditions and which in the deep ocean largely agrees with the carbon isotope ratio of dissolved inorganic carbon (DIC), δ13CDIC, as reconstructed from benthic foraminifera. We find that both Δ(δ13Crub) and Δ(δ13Csac) agree better with changes in simulated δ13CDIC when ignoring the CIE than those time series which were corrected for the CIE. The combination of data- and model-based evidence for the lack of a role for the CIE in Δ(δ13Crub) and Δ(δ13Csac) suggests that the CIE as measured in laboratory experiments is not directly transferable to the interpretation of marine sediment records. The much smaller CIE-to-glacial–interglacial-signal ratio in foraminifera δ18O, when compared to δ13C, prevents us from drawing robust conclusions on the role of the CIE in δ18O as recorded in the hard shells of both species. However, theories propose that the CIE in both δ13C and δ18O depends on the pH in the surrounding water, suggesting that the CIE should be detectable in neither or both of the isotopes. Whether this lack of role of the CIE in the interpretation of planktic paleo-data is a general feature or is restricted to the two species investigated here needs to be checked with further data from other planktic foraminiferal species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-05-28
    Description: An increasing number of climate model simulations is becoming available for the transition from the Last Glacial Maximum to the Holocene. Assessing the simulations' reliability requires benchmarking against environmental proxy records. To date, no established method exists to compare these two data sources in space and time over a period with changing background conditions. Here, we develop a new algorithm to rank simulations according to their deviation from reconstructed magnitudes and temporal patterns of orbital and millennial-scale temperature variations. The use of proxy forward modeling allows for accounting for non-climatic processes that affect the temperature reconstructions. It further avoids the need to reconstruct gridded fields or regional mean temperature time series from sparse and uncertain proxy data. First, we test the reliability and robustness of our algorithm in idealized experiments with prescribed deglacial temperature histories. We quantify the influence of limited temporal resolution, chronological uncertainties, and non-climatic processes by constructing noisy pseudo-proxies. While model–data comparison results become less reliable with increasing uncertainties, we find that the algorithm discriminates well between simulations under realistic non-climatic noise levels. To obtain reliable and robust rankings, we advise spatial averaging of the results for individual proxy records. Second, we demonstrate our method by quantifying the deviations between an ensemble of transient deglacial simulations and a global compilation of sea surface temperature reconstructions. The ranking of the simulations differs substantially between the considered regions and timescales, which suggests that optimizing for agreement with the temporal patterns of a small set of proxies might be insufficient for capturing the spatial structure of the deglacial temperature variability. We attribute the diversity in the rankings to more regionally confined temperature variations in reconstructions than in simulations, which could be the result of uncertainties in boundary conditions, shortcomings in models, or regionally varying characteristics of reconstructions such as recording seasons and depths. Future work towards disentangling these potential reasons can leverage the flexible design of our algorithm and its demonstrated ability to identify varying levels of model–data agreement. Additionally, the algorithm can be applied to variables like oxygen isotopes and climate transitions such as the penultimate deglaciation and the last glacial inception.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-05-28
    Description: Oxygen isotopes in biogenic silica (δ18OBSi) from lake sediments allow for quantitative reconstruction of past hydroclimate and proxy-model comparison in terrestrial environments. The signals of individual records have been attributed to different factors, such as air temperature (Tair), atmospheric circulation patterns, hydrological changes, and lake evaporation. While every lake has its own local set of drivers of δ18O variability, here we explore the extent to which regional or even global signals emerge from a series of paleoenvironmental records. This study provides a comprehensive compilation and combined statistical evaluation of the existing lake sediment δ18OBSi records, largely missing in other summary publications (i.e. PAGES network). For this purpose, we have identified and compiled 71 down-core records published to date and complemented these datasets with additional lake basin parameters (e.g. lake water residence time and catchment size) to best characterize the signal properties. Records feature widely different temporal coverage and resolution, ranging from decadal-scale records covering the past 150 years to records with multi-millennial-scale resolution spanning glacial–interglacial cycles. The best coverage in number of records (N = 37) and data points (N = 2112) is available for Northern Hemispheric (NH) extratropical regions throughout the Holocene (roughly corresponding to Marine Isotope Stage 1; MIS 1). To address the different variabilities and temporal offsets, records were brought to a common temporal resolution by binning and subsequently filtered for hydrologically open lakes with lake water residence times 〈 100 years. For mid- to high-latitude (〉 45° N) lakes, we find common δ18OBSi patterns among the lake records during both the Holocene and Common Era (CE). These include maxima and minima corresponding to known climate episodes, such as the Holocene Thermal Maximum (HTM), Neoglacial Cooling, Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). These patterns are in line with long-term air temperature changes supported by previously published climate reconstructions from other archives, as well as Holocene summer insolation changes. In conclusion, oxygen isotope records from NH extratropical lake sediments feature a common climate signal at centennial (for CE) and millennial (for Holocene) timescales despite stemming from different lakes in different geographic locations and hence constitute a valuable proxy for past climate reconstructions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-05-28
    Description: We present transient simulations of the last glacial inception using the Earth system model CLIMBER-X with dynamic vegetation, interactive ice sheets, and visco-elastic solid Earth responses. The simulations are initialized at the middle of the Eemian interglacial (125 kiloyears before present, ka) and run until 100 ka, driven by prescribed changes in Earth's orbital parameters and greenhouse gas concentrations from ice core data. CLIMBER-X simulates a rapid increase in Northern Hemisphere ice sheet area through MIS5d, with ice sheets expanding over northern North America and Scandinavia, in broad agreement with proxy reconstructions. While most of the increase in ice sheet area occurs over a relatively short period between 119 and 117 ka, the larger part of the increase in ice volume occurs afterwards with an almost constant ice sheet extent. We show that the vegetation feedback plays a fundamental role in controlling the ice sheet expansion during the last glacial inception. In particular, with prescribed present-day vegetation the model simulates a global sea level drop of only ∼ 20 m, compared with the ∼ 35 m decrease in sea level with dynamic vegetation response. The ice sheet and carbon cycle feedbacks play only a minor role during the ice sheet expansion phase prior to ∼ 115 ka but are important in limiting the deglaciation during the following phase characterized by increasing summer insolation. The model results are sensitive to climate model biases and to the parameterization of snow albedo, while they show only a weak dependence on changes in the ice sheet model resolution and the acceleration factor used to speed up the climate component. Overall, our simulations confirm and refine previous results showing that climate–vegetation–cryosphere feedbacks play a fundamental role in the transition from interglacial to glacial states characterizing Quaternary glacial cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-06-14
    Description: We compare Holocene tree-cover changes in Europe derived from a transient MPI-ESM1.2 simulation with high spatial resolution LPJ-GUESS time-slice simulations and pollen-based quantitative reconstructions of tree cover based on the REVEALS model. The dynamic vegetation models and REVEALS agree with respect to the general temporal trends in tree cover for most parts of Europe, with a large tree cover during the mid-Holocene and a substantially smaller tree cover closer to the present time. However, the decrease in tree cover in REVEALS starts much earlier than in the models indicating much earlier anthropogenic deforestation than the prescribed land-use in the models. While LPJ-GUESS generally overestimates tree cover compared to the reconstructions, MPI-ESM indicates lower percentages of tree cover than REVEALS, particularly in Central Europe and the British Isles. A comparison of the simulated climate with chironomid-based climate reconstructions reveals that model-data mismatches in tree cover are in most cases not driven by biases in the climate. Instead, sensitivity experiments indicate that the model results strongly depend on the tuning of the models regarding natural disturbance regimes (e.g. fire and wind throw). The frequency and strength of disturbances are – like most of the parameters in the vegetation models – static and calibrated to modern conditions. However, these parameter values may not be valid during climate and vegetation states totally different from todays. In particular, the mid-Holocene natural forests were probably more stable and less sensitive to disturbances than present day forests that are heavily altered by human interventions. Our analysis highlights the fact that such model settings are inappropriate for palaeo-simulations and complicate model-data comparisons with additional challenges. Moreover, our study suggests that land-use is the main driver of forest decline in Europe during the mid- and late-Holocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-09-07
    Description: Implementation of pH sensor on Eulerian observations in the Mediterranean Sea (DYFAMED site)
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-09-07
    Description: Design of numerical experiments assimilating in situ physical and BGC observations to assess and enhance their impact in CMEMS ocean monitoring and forecasting systems.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-09-07
    Description: Investigations and preparation of glider observations to be assimilated in MED-MFC and WMOP systems.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-09-07
    Description: Derive the user-relevant indicators defined in Milestone MS7 from the ensemble of ECMWF and CMCC seasonal forecasts systems contributing to C3S
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-09-07
    Description: Framework of the envisioned time-series synthesis product used to indicate the consistency of biogeochemical time-series data (in-)between different ship-based sites.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2023-09-07
    Description: This document describes the numerical modelling work done in task 5.2 needed to implement OSPAC
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-09-07
    Description: This document describes the numerical modelling work for waves done in wp5.2. needed to implement OSPAC
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-09-07
    Description: This report includes the description and the manuals (both at User and Administrator level) for the OSPAC service and its applications
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-09-07
    Description: Assess the seasonal forecast skill of selected ocean variables - SST, OHC300m, and SSH - from the ensemble of ECMWF and CMCC seasonal forecasts systems contributing to C3S
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-09-07
    Description: Report on ASV-Network structure and roadmap Revised edition
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-09-07
    Description: Identification of local and regional impacts of oxygen, heat and pH related “Extreme Marine Events”: Ocean model data products are overlaid with existing marine biological datasets to identify sensitive areas and organism vulnerabilities.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-09-07
    Description: This report includes recommendations for the planification of in situ experiments aimed to reconstruct fine-scale ocean currents (~20 km), such as those that will be conducted to validate SWOT satellite observations.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-09-08
    Description: This deliverable is intended to give an overview of the EuroSea actions at the interface between science and policy, ensuring the EuroSea results are useful for policy and decision-makers both at the EU, regional, and national levels.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-09-12
    Description: This report provides a description of the different tools developed for tackling key issues of the High Frequency Radar (HFR) community: advanced delayed time QC of HFR historical data, implementation of Best Practices, enhancing the application of HFR observations in NRT modelling assessment and Ocean State indicators
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-09-12
    Description: The purpose of this deliverable is to describe and highlight specificities of the observing networks involved in Eurosea and to display a list of main data management points done at European level in comparison to what exists at international level.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-09-12
    Description: Euro-Argo strategy in the context of the OneArgo new international design
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-09-12
    Description: This report provides recommendations to foster collaboration and cooperation between technologies and disciplines and for implementing truly integrated ocean observing systems. Based on an intensive literature review and a careful examination of different examples of integration in different fields, this work identifies the issues and barriers that must be addressed, and proposes a vision for a real implementation of this ocean integration ambition. This work is a contribution to the implementation of EOOS, a much-needed step forward in Europe, following the international guidance of GOOS.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-09-11
    Description: Several legal frameworks exist that are important for states conducting ocean observing activities or for which it would be relevant to include the necessity of ocean observing activities and development of ocean information products. Existing hard and soft law frameworks and mechanisms will be analysed to enable adequate adaptation of ocean observing system design at a regional and global level, with a focus on supporting sustained ocean observing and fit-for-purpose ocean information products.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-11-28
    Description: EuroSea brought together key European actors of ocean observation and forecasting with key end users of the ocean observations’ products and services to better integrate existing ocean observation systems and tools, and to bring the coordination to a higher level. The EuroSea WP1 “Governance and coordination of ocean observing and forecasting systems”, in particular, aimed to strengthen the interactions between regional, national, and international observing systems and support the development of a European coordinated system through the Framework of the European Ocean Observing System (EOOS). During the project, the challenges and gaps in the design and coordination of the European ocean observing and forecasting system were identified and mapped. Many gaps and challenges related to the observations of physical, chemical and biological Essential Ocean Variables were identified. Some of these gaps are related to technological advancements, while others are caused by insufficient funding, coordination, management, and cooperation between different entities, as well as limitations in foresight activities, policies and decisions. To enhance the sustainability of European ocean observations, several recommendations were compiled for networks, frameworks, initiatives, Member States, and the European Commission.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-10-27
    Description: Nitrous oxide (N2O) is a long-lived potent greenhouse gas and stratospheric ozone-depleting substance, which has been accumulating in the atmosphere since the pre-industrial period. The mole fraction of atmospheric N2O has increased by nearly 25 % from 270 parts per billion (ppb) in 1750 to 336 ppb in 2022, with the fastest annual growth rate since 1980 of more than 1.3 ppb yr-1 in both 2020 and 2021. As a core component of our global greenhouse gas assessments coordinated by the Global Carbon Project (GCP), we present a global N2O budget that incorporates both natural and anthropogenic sources and sinks, and accounts for the interactions between nitrogen additions and the biochemical processes that control N2O emissions. We use Bottom-Up (BU: inventory, statistical extrapolation of flux measurements, process-based land and ocean modelling) and Top-Down (TD: atmospheric measurement-based inversion) approaches. We provide a comprehensive quantification of global N2O sources and sinks in 21 natural and anthropogenic categories in 18 regions between 1980 and 2020. We estimate that total annual anthropogenic N2O emissions increased 40 % (or 1.9 Tg N yr-1) in the past four decades (1980–2020). Direct agricultural emissions in 2020, 3.9 Tg N yr−1 (best estimate) represent the large majority of anthropogenic emissions, followed by other direct anthropogenic sources (including ‘Fossil fuel and industry’, ‘Waste and wastewater’, and ‘Biomass burning’ (2.1 Tg N yr−1), and indirect anthropogenic sources (1.3 Tg N yr−1). For the year 2020, our best estimate of total BU emissions for natural and anthropogenic sources was 18.3 (lower-upper bounds: 10.5–27.0) Tg N yr-1, close to our TD estimate of 17.0 (16.6–17.4) Tg N yr-1. For the period 2010–2019, the annual BU decadal-average emissions for natural plus anthropogenic sources were 18.1 (10.4–25.9) Tg N yr-1 and TD emissions were 17.4 (15.8–19.20 Tg N yr-1. The once top emitter Europe has reduced its emissions since the 1980s by 31 % while those of emerging economies have grown, making China the top emitter since the 2010s. The observed atmospheric N2O concentrations in recent years have exceeded projected levels under all scenarios in the Coupled Model Intercomparison Project Phase 6 (CMIP6), underscoring the urgency to reduce anthropogenic N2O emissions. To evaluate mitigation efforts and contribute to the Global Stocktake of the United Nations Framework Convention on Climate Change, we propose establishing a global network for monitoring and modeling N2O from the surface through the stratosphere. The data presented in this work can be downloaded from https://doi.org/10.18160/RQ8P-2Z4R (Tian et al. 2023).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-11-23
    Description: The European Ocean Observing and Forecasting System (EOOFS) plays a pivotal role in understanding, monitoring, forecasting, and managing the complex dynamics and resources of Europe's Seas. It serves as a critical interdisciplinary system for addressing a myriad of challenges, from climate change impacts to marine resources management. However, to ensure its continued effectiveness, it is essential to identify and address the gaps within this system and provide actionable recommendations for improvements at short- and long-term. Therefore, this document serves as a baseline that can guide the funders and supporters of the EOOFS, as well as the various stakeholders directly or indirectly related to the EOOFS, towards the gaps that hinder better monitoring and prediction of various ocean phenomena, along the ocean observing value chain. The main identified gaps are related to spatial and temporal coverage of data and products of the EOOFS, the data integration and accessibility by various types of users, the uncertainties of projections, the technological challenges, as well as to the engagement of various actors and the communication of results and services to them. The main recommendations to be taken into consideration for addressing all highlighted gaps are detailed in the report for every phenomenon and component of the ocean value chain. These recommendations are not provided just to satisfy the academic interest of the EOOFS community, however, they may have profound implications for multiple sectors and the society as a whole, if taken into consideration. This is due to the fact that the EOOFS is essential for climate change mitigation and adaptation measures, in improving the efficiency of the marine resources’ management, in enhancing the resilience of marine and coastal ecosystems as well as coastal cities and infrastructures against disasters and extreme events, for shipping and navigation safety, and for the scientific advancements and innovations of Europe in the field of marine science that serves the society. We propose a scoring approach that can evaluate the EOOFS readiness level (RL) in monitoring ocean phenomena, on a regular basis and in a systematic way. We have demonstrated the usefulness of this approach by implementing it based on our assessment and the feedback of the EOOFS community. The main results clearly show that the EOOFS has “Fitness for Purpose” readiness levels (RL 7) in the three main pillars of the value chain (Input, Process, and Output) only for one ocean phenomenon, while 83% of ocean phenomena have RLs varying from 1 (Idea) to 4 (Trial). A deeper analysis of the scoring results reflects that the EOOFS major gaps are predominantly concentrated in two of its three pillars: the coordination and observational elements (Process) and data management and information products (Output) (Figure 1). In a changing world that is affecting all aspects of European lives, it is crucial to significantly invest and support the EOOFS to better monitor and accurately predict the European Seas, and provide sustained services that can help businesses and improve the resilience of communities and resources.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-12-21
    Description: Ocean alkalinity enhancement (OAE) has been proposed as a carbon dioxide removal technology (CDR) allowing for long term storage of carbon dioxide in the ocean. By changing the carbonate speciation in seawater, OAE may potentially alter marine ecosystems with implications for the biological carbon pump. Using mesocosmsthe subtropical North Atlantic, we provide first empirical insights into impacts of carbonate-based OAE on the vertical flux and attenuation of sinking particles in an oligotrophic plankton community. We enhanced total alkalinity (TA) in increments of 300 μmol kg-1, reaching up to ΔTA = 2400 µmol kg-1 compared to ambient TA. We applied a pCO2-equilibrated OAE approach, i.e. dissolved inorganic carbon (DIC) was raised simultaneously with TA to maintain seawater pCO2 in equilibrium with the atmosphere, thereby keeping perturbations of seawater carbonate chemistry moderate. The vertical flux of major elements including carbon, nitrogen, phosphorus and silicon, as well as their stoichiometric ratios (e.g. carbon-to-nitrogen) remained unaffected over 29 days of OAE. The particle properties controlling the flux attenuationinking velocities and remineralization rates also remained unaffected by OAE. However, we observed abiotic mineral precipitation at high OAE levels (ΔTA = 1800 μmol kg-1 and higher) that resulted in a substantial increase in PIC formation. The associated consumption of alkalinity reduces the efficiency of CO2 removal and emphasizes the importance of maintaining OAE within a carefully defined operating range. Our findings suggest that carbon export by oligotrophic plankton communities is insensitive to OAE perturbations using a CO2 pre-equilibrated approach. The integrity of ecosystem services is a prerequisite for large-scale application and should be further tested across a variety of nutrient-regimes and for less idealized OAE approaches.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2024-01-08
    Description: Nitric oxide (NO) is an intermediate of various microbial nitrogen cycle processes and the open ocean and coastal areas are generally a source of NO in the atmosphere. However, our knowledge about its distribution and the main production processes in coastal areas and estuaries is rudimentary at best. To this end, dissolved NO concentrations were measured for the first time in surface waters along the lower Elbe Estuary and Hamburg Port area in July 2021. The discrete surface water samples were analyzed using a chemiluminescence detection method. The NO concentrations ranged from below the limit of detection (9.1 × 10−12 mol L−1) to 17.7 × 10−12 mol L−1, averaging at 12.5 × 10−12 mol L−1 and were supersaturated in the surface layer of both the lower Elbe Estuary and the Hamburg Port area, indicating that the study site was a source of NO to the atmosphere during the study period. On the basis of a comprehensive comparison of NO concentrations with parallel nutrient, oxygen, and nitrous oxide concentration measurements, we conclude that the observed distribution of dissolved NO was most likely resulting from microbial nitrogen transformation processes, particularly nitrification in the coastal-brackish and limnic zones of the lower Elbe Estuary and nitrifier-denitrification in the Hamburg Port area.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is an emerging strategy that aims to mitigate climate change by increasing the alkalinity of seawater. This approach involves increasing the alkalinity of the ocean to enhance its capacity to absorb and store carbon dioxide (CO2) from the atmosphere. This chapter presents an overview of the technical aspects associated with the full range of OAE methods being pursued and discusses implications for undertaking research on these approaches. Various methods have been developed to implement OAE, including the direct injection of alkaline liquid into the surface ocean; dispersal of alkaline particles from ships, platforms, or pipes; the addition of minerals to coastal environments; and the electrochemical removal of acid from seawater. Each method has its advantages and challenges, such as scalability, cost effectiveness, and potential environmental impacts. The choice of technique may depend on factors such as regional oceanographic conditions, alkalinity source availability, and engineering feasibility. This chapter considers electrochemical methods, the accelerated weathering of limestone, ocean liming, the creation of hydrated carbonates, and the addition of minerals to coastal environments. In each case, the technical aspects of the technologies are considered, and implications for best-practice research are drawn. The environmental and social impacts of OAE will likely depend on the specific technology and the local context in which it is deployed. Therefore, it is essential that the technical feasibility of OAE is undertaken in parallel with, and informed by, wider impact assessments. While OAE shows promise as a potential climate change mitigation strategy, it is essential to acknowledge its limitations and uncertainties. Further research and development are needed to understand the long-term effects, optimize techniques, and address potential unintended consequences. OAE should be viewed as complementary to extensive emission reductions, and its feasibility may be improved if it is operated using energy and supply chains with minimal CO2 emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2024-01-08
    Description: The Paris Agreement to limit global warming to well below 2 °C requires ambitious emission reduction and the balancing of remaining emissions through carbon sinks, i.e. the deployment of carbon dioxide removal (CDR). While ambitious climate protection scenarios until now consider primarily land-based CDR methods, there is growing concern about their potential to deliver sufficient CDR, and marine CDR options receive more and more interest. Based on idealized theoretical studies, Ocean Alkalinity Enhancement (OAE) appears as a promising marine CDR method. However, the knowledge base is insufficient for a robust assessment of its practical feasibility, of its side effects, social and governance aspects as well as monitoring, reporting and verification issues. A number of research efforts aim to improve this in a timely manner. We provide an overview on the current situation of developing OAE as marine CDR method, and describe the history that has led to the creation of the OAE research Best Practices Guide.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-01-08
    Description: Ocean alkalinity enhancement (OAE) is a proposed marine carbon dioxide removal (mCDR) approach that has the potential for large-scale uptake of significant amounts of atmospheric carbon dioxide (CO2). Removing anthropogenic legacy CO2 will be required to stabilise global surface temperatures below the 1.5–2 ∘C Paris Agreement target of 2015. In this chapter we describe the impacts of various OAE feedstocks on seawater carbonate chemistry, as well as pitfalls that need to be avoided during sampling, storage, and measurement of the four main carbonate chemistry parameters, i.e. dissolved inorganic carbon (DIC), total alkalinity (TA), pH, and CO2 fugacity (fCO2). Finally, we also discuss considerations in regard to calculating carbonate chemistry speciation from two measured parameters. Key findings are that (1) theoretical CO2 uptake potential (global mean of 0.84 mol of CO2 per mole of TA added) based on carbonate chemistry calculations is probably secondary in determining the oceanic region in which OAE would be best; (2) carbonate chemistry sampling is recommended to involve gentle pressure filtration to remove calcium carbonate (CaCO3) that might have been precipitated upon TA increase as it would otherwise interfere with a number of analyses; (3) samples for DIC and TA can be stabilised to avoid the risk of secondary CaCO3 precipitation during sample storage; and (4) some OAE feedstocks require additional adjustments to carbonate chemistry speciation calculations using available programs and routines, for instance if seawater magnesium or calcium concentrations are modified.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-01-08
    Description: The deliberate increase in ocean alkalinity (referred to as ocean alkalinity enhancement, or OAE) has been proposed as a method for removing CO2 from the atmosphere. Before OAE can be implemented safely, efficiently, and at scale several research questions have to be addressed, including (1) which alkaline feedstocks are best suited and the doses in which they can be added safely, (2) how net carbon uptake can be measured and verified, and (3) what the potential ecosystem impacts are. These research questions cannot be addressed by direct observation alone but will require skilful and fit-for-purpose models. This article provides an overview of the most relevant modelling tools, including turbulence-, regional-, and global-scale biogeochemical models and techniques including approaches for model validation, data assimilation, and uncertainty estimation. Typical bio- geochemical model assumptions and their limitations are discussed in the context of OAE research, which leads to an identification of further development needs to make models more applicable to OAE research questions. A description of typical steps in model validation is followed by proposed minimum criteria for what constitutes a model that is fit for its intended purpose. After providing an overview of approaches for sound integration of models and observations via data assimilation, the application of observing system simulation experiments (OSSEs) for observing system design is described within the context of OAE research. Criteria for model val- idation and intercomparison studies are presented. The article concludes with a summary of recommendations and potential pitfalls to be avoided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-01-08
    Description: An essential prerequisite for the implementation of ocean alkalinity enhancement (OAE) applications is their environmental safety. Only if it can be ensured that ecosystem health and ecosystem services are not at risk will the implementation of OAE move forward. Public opinion on OAEs will depend first and foremost on reliable evidence that no harm will be done to marine ecosystems and licensing authorities will demand measurable criteria against which environmental sustainability can be determined. In this context mesocosm experiments represent a highly valuable tool in determining the safe operating space of OAE applications. By combining realism and biological complexity with controllability and replication they provide an ideal OAE test bed and a critical stepping stone towards field applications. Mesocosm approaches can also be helpful in testing the efficacy, efficiency and permanence of OAE applications. This chapter outlines strengths and weaknesses of mesocosm approaches, illustrates mesocosm facilities and suitable experimental designs presently employed in OAE research, describes critical steps in mesocosm operation, and discusses possible approaches for alkalinity manipulation and monitoring. Building on a general treatise on each of these aspects, the chapter describes pelagic and benthic mesocosm approaches separately, given their inherent differences. The chapter concludes with recommendations for best practices in OAE-related mesocosm research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-01-10
    Description: Carbon monoxide (CO) is an atmospheric trace gas that plays a crucial role in the oxidizing capacity of the Earth’s atmosphere. Moreover, it functions as an indirect greenhouse gas, influencing the lifetimes of potent greenhouse gases such as methane. Albeit being an overall source of atmospheric CO, the role of coastal regions in the marine cycling of CO and how its budget can be affected by anthropogenic activities, remain uncertain. Here, we present the first measurements of dissolved CO in the Ria Formosa Lagoon, an anthropogenically influenced system in southern Portugal. The dissolved CO concentrations in the surface layer ranged from 0.16 to 3.1 nmol L−1 with an average concentration of 0.75 ± 0.57 nmol L−1. The CO saturation ratio ranged from 1.7 to 32.2, indicating that the lagoon acted as a source of CO to the atmosphere in May 2021. The estimated average sea-to-air flux density was 1.53 μmol m−2 d−1, mainly fueled by CO photochemical production. Microbial consumption accounted for 83 % of the CO production, suggesting that the resulting CO emissions to the atmosphere were modulated by microbial consumption in the surface waters of the Ria Formosa Lagoon. The results from an irradiation experiment with aquaculture effluent water indicated that aquaculture facilities in the Ria Formosa Lagoon seem to be a negligible source of atmospheric CO.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-01-11
    Description: Ocean alkalinity enhancement (OAE) is a marine carbon dioxide removal (CDR) approach. Publicly funded research projects have begun, and philanthropic funding and start-ups are collectively pushing the field forward. This rapid progress in research activities has created an urgent need to learn if and how OAE can work at scale. The Best Practices Guide to OAE research contains 7 topics broken down into 13 chapters that compare and synthesise previously published methods and offer guidance for future research.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-01-16
    Description: This report “Real-time data to central server with display to stakeholders” describes the deployment of two monitoring stations at the aquaculture facilities at Deenish Island (Ireland) and El Campello (Spain), and how the real-time data is distributed to the different stakeholders in the aquaculture industry and the scientific community. The document is structured as follows. First, the background information is presented in the ‘Introduction’. Then, the equipment deployed at Deenish Island and El Campello is described in the ‘Ocean Demonstrator Deployments’ section. Finally, the different ways in which the real-time data is delivered to the stakeholders are presented in the last section ‘Data Delivery to Server’.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    EuroSea
    Publication Date: 2024-01-16
    Description: The EuroSea project was constructed around the ocean observing value chain. Just as intended, the value chain concept is a useful prism for designing the ocean observing and forecasting system, or, indeed, a project like EuroSea that set out to improve just this system. Indeed, several projects in the past have successfully used the value chain for this purpose, for example the AtlantOS EU-funded project or the TPOS 2020 project. In this report we summarize some of the main take home messages from EuroSea on the technical innovation and data management needs for the European Ocean Observing and Forecasting System. This report does not set out to summarize EuroSea outputs or impacts, but rather look forward on what we still have to accomplish. We do so, using the prism of the ocean observing value chain, and articulate needs in the areas of governance and coordination, design, network integration and, finally, data integration, assimilation and forecasting. This report is not a detailed list of immediate needs and next steps, but rather a compilation of the broader technical needs for the observing and forecasting system and is meant as a broad guide to the community and possibly to funders of a possible path forward.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2024-01-16
    Description: This report focuses on encouraging usage of Copernicus Marine Service products by fisheries users and scientists, and consists of a number of key studies where numerous EuroSea activities support the uptakes of Copernicus Marine Service data products, focusing on Atlantic mackerel, European hake and Atlantic tuna. The report also contains an intercomparison study focused on oceanographic equipment (CTD) to determine the most suitable sensor for a fisheries observing system. A number of recommendations are provided on how to support the use of Copernicus Marine Service products in fisheries science, such as the production of new Best Practices, stronger partnerships (fisheries scientists and oceanographers) and co-development of ocean indicators.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    EuroSea
    Publication Date: 2024-01-16
    Description: The EuroSea project has been running for 4 years by the writing of this report, and this report covers months 33-48 of the action at a time when most tasks are completed and deliverables submitted. However, a few items still need to be finalized as we have experienced delays for a few items, mostly due to COVID, or Brexit, but we expect all of those to be solved before the end of the project by the end of 2023. The progress of the WPs is summarized below, and is described in more detail in the main part of this report. As an innovation action, EuroSea is keeping a close eye on creating impact and on creating services and products that will last past the lifetime of the project. Therefore, we would like to emphasis the registry of impacts that is published on the EuroSea website1. These about 100 areas illustrate the impact that EuroSea has had on improving the European ocean observing and forecasting system. EuroSea has produced a number of targeted services and products for ocean health, operational services and climate, that are tested and used by the stakeholders.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2024-01-18
    Description: This deliverable outlines the sustainability and business plan of the Key Exploitable Result (KER) identified in WP6 with the most potential for commercialisation. The report includes a summary of the KER Solution for marine sensors to measure and forecast oxygen, heat and pH related Extreme Marine Events onsite for aquaculture – monitoring system for extreme marine events at aquaculture sites (WP6), a market analysis in terms of the market size and value, target market, competition, market needs that are being addressed as a result of the co-development process. Information is provided on agreements arranged to continue the service in the demonstrator post project with the creation of MOUs between industry partners and a service level agreement with the cloud provider EGI foundation. The report reviews the size of the markets for the KER, the viable commercial plan and the investment sources to be pursued to further develop the results.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2024-01-17
    Description: The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort that provides high-quality, quality-controlled ocean biogeochemical bottle data with annual-updates, playing a crucial role in advancing our understanding of the Earth's oceans and their complex biogeochemical processes. This deliverable covers the GLODAP annual updates under the EuroSea funding, as well as the automatization of the quality control process of the data. Under the EuroSea funding, GLODAP has received three updates (GLODAPv2.2020, GLODAPv2.2021 and GLODAPv2.2022) with a total number of 245 cruises added, and in addition, a new version release (GLODAPv3) is planned. These updates were possible as a result of the large degree of automatization of the quality control process that ensures the accuracy of the data. The core of the quality control process is the crossover analysis that is currently performed via the 2nd QC Matlab toolbox from Lauvset and Tanhua (2015). However, following Eurosea’s vision of a user-focused, truly interdisciplinary, and responsive European ocean observing and forecasting system, this deliverable aims to migrate from the Matlab toolbox to an online web application based on the open-source software Django and Python. This will allow the user to simply upload the data file to be quality controlled and the web application performs the secondary quality control through the deep water crossover analysis just as in Matlab, and offers similar graphics for visualization. Because the crossover analysis is partially automated on this online tool, the users do not need to possess any programming knowledge in order to quality control their data. In addition, this online tool can be part of a fully automated GLODAP quality control process, without need for manual intervention.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2024-01-17
    Description: The aim of the WP3 “Network Integration and Improvements” is to coordinate and enhance key aspects of integration of European observing technology (and related data flows) for its use in the context of international ocean monitoring activities. One of the dimensions of the integrations is the constitution of thematic networks, that is, networks whose aim is to address specific observational challenges and thus to favor innovation, innovation that will ultimately support the Blue economy. In this context, the specific aim of Task 3.8 is to accelerate the adoption of molecular methods such as genomic, transcriptomic (and related “omics”) approaches, currently used as monitoring tools in human health, to the assessment of the state and change of marine ecosystems. It was designed to favor the increase the capacity to evaluate biological diversity and the organismal metabolic states in different environmental conditions by the development of “augmented observatories”, utilizing state-of-art methodologies in genomic-enabled research at multidisciplinary observatories at well-established marine LTERs, with main focus on a mature oceanographic observatory in Naples, NEREA. In addition, an effort is dedicated to connecting existing observatories that intend to augment their observations with molecular tools. Molecular approaches come with many different options for the protocols (size fractioning, sample collection and storage, sequencing etc). One main challenge in systematically implementing those approaches is thus their standardization across observatories. Based on a survey of existing methods and on a 3-year experience in collecting, sequencing and analyzing molecular data, this deliverable is thus dedicated to present the SOPs implemented and tested at NEREA. The SOPs consider a size fractioning of the biological material to avoid biases toward more abundant, smaller organisms such as bacteria. They cover both the highly stable DNA and the less stable RNA and they are essentially an evolution of the ones developed for the highly successful Tara Oceans Expedition and recently updated for the Expedition Mission Microbiomes, an All-Atlantic expedition organised and executed by the EU AtlantECO project. Importantly, they have only slight variations with respect the ones adopted by the network of genomic observatories EMOBON. Discussions are ongoing with EMOBON to perfectly align the protocols. The SOPs are being disseminated via the main national and international networks.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2024-01-17
    Description: The purpose of this report is to provide a compilation of the communication and dissemination activities in EuroSea. It also proposes, as a guide, some guidelines and considerations to be included in the Communication and Dissemination Strategy in European projects. Dissemination and communication activities are essential for the success of the European Union’s Horizon 2020 research and innovation Programme, and the EuroSea project is no exception. The project has focused on improving ocean observing and forecasting for a sustainable ocean, and effective communication has been a crucial element in bringing together the interest groups, ensuring all stakeholders are to work towards the common goal of sustainable, science-based ocean management, as well as promoting and fostering public understanding of the importance and value of the ocean and its crucial role in climate change. This document offers a summary of the consortium's activities carried out during the whole life of the project (November 2019 - October 2023) related to all EuroSea communication and dissemination tools (official website, social media, newsletter, press release), as well as materials generated for the project (visual identity, printed and audiovisual materials) and the events-based dissemination. Key considerations in planning and strategy include defining project objectives, identifying target audiences, crafting effective messages, and selecting appropriate communication channels and tools. Evaluation and adjustment are also vital to measure the effectiveness of communication and dissemination activities. Overall, this guide could serve as a resource for any team involved in communication and dissemination activities in projects from Horizon 2020. This information will be instrumental in enhancing future efforts, maximizing the impact of the activities and ensuring the success of the project.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2024-01-17
    Description: Analysis of global numerical experiments with physical and BGC forecasting model to estimate the impact of new observing system design.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2024-01-17
    Description: While originally developed for weather forecasting, the Extreme Forecast index (EFI) concept has found utility in diverse fields. This study marks the inaugural application of EFI principles to numerical ocean forecasting. EFI offers a metric to gauge the forecast's deviation from historical norms specific to the location and time of year. A heightened EFI value signifies that the forecast falls beyond the usual range of variability, signifying a higher probability of extreme conditions. This novel use of EFI stands to benefit oceanographers by identifying significant oceanic events, aiding decision-making, and supporting early warning systems, particularly for extreme marine conditions. It enhances comprehension of forecast uncertainties and facilitates clearer communication of potential risks to the public and stakeholders. Such insights are invaluable for preparedness, coastal management, and mitigating the impact of marine extremes on communities and ecosystems. EFI indices for the Mediterranean Sea are computed using a first implementation of a forecast ensemble system that is being developed for the Mediterranean Sea Monitoring and Forecasting Center of the Copernicus Marine Environment Service. This deliverable report presents the first-ever application of the EFI approach to the Mediterranean Sea. After presenting the EFI definition adopted in this study, we discuss its application to sea surface temperature (SST) and sea surface height (SSH) extremes. A case studies using ensemble forecasts for the year 2021 are presented and discussed.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2024-01-23
    Description: The report analyses the interactions between the public and private organisations involved in the project activities as members of the project consortium, internal advisory boards and stakeholders. This strong, collaborative and interdisciplinary collaboration between public and private sectors is essential to improve ocean observing and forecasting systems with innovative technological solutions also in support of the implementation process of important global strategies related to the ocean.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-01-23
    Description: This report provides an overview of EuroSea's initiatives focused on engaging the next generation of ocean observing and forecasting stakeholders. Many activities took place, including delivering workshops, presenting the EuroSea itinerant exhibition, collaborating with the WASCAL Floating University and the SEA-EU inter-university initiative, supporting the international Ocean Observers Initiative, and much more. Engaging the next generation of stakeholders in meaningful discussions and innovative projects is essential to ensure future-oriented intergenerational collaboration. Yet, this is often an overlooked aspect of public engagement within the Horizon 2020 landscape as it requires engagement techniques specifically tailored to reach the young generation. Within the framework of Horizon 2020, the European Union's research and innovation funding program, public engagement traditionally targets a diverse range of stakeholders, including researchers, policymakers, industry representatives, civil society organizations, NGOs, and citizens. While these efforts are crucial for fostering inclusive and transparent dialogue, targeted initiatives directed towards the younger generation and early-career ocean professionals need to be expanded. It is important to recognize the concerns, unique perspectives, and aspirations of young individuals who will inherit the outcomes of today's research and innovation. Dedicating resources to engage with the next generation is vital to ensure their active involvement in shaping their future and addressing global challenges such as the sustainability of ocean observing, monitoring, and forecasting. EuroSea has recognized the importance of fostering a deeper understanding of ocean observing and forecasting among the younger generation. This deliverable and the many activities feeding into it are a testament to EuroSea's commitment to this cause. This report focuses on the lessons learnt from a diverse array of activities engaging the next generation of ocean observing and forecasting stakeholders, demonstrating the extensive range of possibilities for involving the younger generation. It underscores the importance of tailoring approaches to different age groups, from school children to university graduates and adapting engagement strategies to their varying interests and life stages. Every experience—even the ones that did not turn out as expected—has shown to be beneficial, and it is important to share lessons learnt and identify best practices while expanding these kinds of initiatives. EuroSea's dedication to engaging the next generation of stakeholders is a significant step in fostering inter-generational dialogue and promoting blue skills and knowledge sharing. Valuable lessons have been learnt from the EuroSea engagement activities and provide guidance for future initiatives aimed at fostering a deeper understanding of our ocean among the younger generation and engaging them in conversations that impact their future on this planet.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2024-01-23
    Description: EuroSea is a holistic large-scale project encompassing the full value chain of marine knowledge, from observations to modelling and forecasting and to user-focused services. This report summarizes the legacy of EuroSea as planned and measured through a dedicated impact monitoring protocol, a holistic assessment of the project's successes in advancing and integrating European ocean observing and forecasting systems. Since its start, EuroSea has been analysing how well the project progresses towards the identified areas of impact. Impact assessment is not performance evaluation. These terms overlap but are distinct: performance relates to the efficient use of resources; impact relates to the transformative effect on the users. The EuroSea legacy report is presented through an aggregation and analysis of the EuroSea work towards achieving its impacts. Overall, over 100 impacts have been identified and presented on the website and in a stand-alone impact report. The legacy report sheds light on 32 most powerful impacts (four impacts in each of the eight EuroSea impact areas). EuroSea Impact Areas: 1. Strengthen the European Ocean Observing System (EOOS), support the Global Ocean Observing System (GOOS) and the GOOS Regional Alliances; 2. Increase ocean data sharing and integration; 3. Deliver improved climate change predictions; 4. Build capacity, internally in EuroSea and externally with EuroSea users, in a range of key areas; 5. Develop innovations, including exploitation of novel ideas or concepts; shorten the time span between research and innovation and foster economic value in the blue economy; 6. Facilitate methodologies, best practices, and knowledge transfer in ocean observing and forecasting; 7. Contribute to policy making in research, innovation, and technology; 8. Raise awareness of the need for a fit for purpose, sustained, observing and forecasting system in Europe. Ocean observing and forecasting is a complex activity brining about a variety of technologies, human expertise, in water and remote sensing measurements, high-volume computing and artificial intelligence, and a high degree of governance and coordination. Determining an impact on a user type or an area, therefore, requires a holistic assessment and a clear strategic overview. The EuroSea impact monitoring protocol has been the first known such attempt in a European ocean observing and forecasting project. The project’s progress has been followed according to the identified impact areas, through consortium workshops, stakeholder webinars, tracking, and reporting. At the end of EuroSea, we are able to demonstrate how well we have responded to the European policy drivers set out in the funding call and the grant agreement of our project, signed between the European Commission and 53 organizations, members of the EuroSea consortium. The project's impact is diverse, spanning areas from strengthening ocean observing governance to contributing to policymaking or boosting ocean research, innovation, and technology. Each impact area underscores EuroSea's commitment to a sustainable and informed approach to ocean observing and forecasting for enhanced marine knowledge and science-based sustainable blue economy and policies.
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-02-07
    Description: As one of Earth's most productive marine ecosystems, the Peruvian upwelling system transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and O2-depletion, it has not yet been measured in this system. During a 50 d mesocosm experiment in the surface waters off the coast of Peru, we assessed particle sinking velocities and their biogeochemical and physical drivers. We further characterized the general properties of exported particles under different phytoplankton communities and nutritional states. Average sinking velocities varied between size classes and ranged from 12.8 ± 0.7 m d−1 (particles 40–100 µm) to 19.4 ± 0.7 m d−1 (particles 100–250 µm) and 34.2 ± 1.5 m d−1 (particles 250–1000 µm) (± 95 % CI). Despite a distinct plankton succession from diatoms to dinoflagellates with concomitant 5-fold drop in opal ballasting, substantial changes in sinking velocity were not observed. This illustrates the complexity of counteracting factors driving the settling behaviour of marine particles. In contrast, we found higher sinking velocities with increasing particle size and roundness and decreasing porosity. Size had by far the strongest influence among these physical particle properties, despite a high amount of unexplained variability. Our study provides a detailed analysis of the drivers of particle sinking velocity in the Peruvian upwelling system, which allows modellers to optimize local particle flux parameterization. This will help to better project oxygen concentrations and carbon sequestration in a region that is subject to substantial climate-driven changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2024-02-07
    Description: Global biogeochemical ocean models help to investigate the present and potential future state of the ocean, its productivity and cascading effects on higher trophic levels such as fish. They are often subjectively tuned against data sets of inorganic tracers and surface chlorophyll and only very rarely against organic components such as particulate organic carbon or zooplankton. The resulting uncertainty in biogeochemical model parameters (and parameterisations) associated with these components can explain some of the large spread of global model solutions with regard to the cycling of organic matter and its impacts on biogeochemical tracer distributions, such as oxygen minimum zones (OMZs). A second source of uncertainty arises from differences in the model spin-up length as, so far, there seems to be no agreement on the required simulation time that should elapse before a global model is assessed against observations. We investigated these two sources of uncertainty by optimising a global biogeochemical ocean model against the root-mean-squared error (RMSE) of six different combinations of data sets and different spin-up times. Besides nutrients and oxygen, the observational data sets also included phyto- and zooplankton, as well as dissolved and particulate organic phosphorus (DOP and POP, respectively). We further analysed the optimised model performance with regard to global biogeochemical fluxes, oxygen inventory and OMZ volume. Following the optimisation procedure, we evaluated the RMSE for all tracers located in the upper 100 m (except for POP, for which we considered the entire vertical domain), regardless of their consideration during optimisation. For the different optimal model solutions, we find a narrow range of the RMSE, between 14 % of the average RMSE after 10 years and 24 % after 3000 years of simulation. Global biogeochemical fluxes, global oxygen bias and OMZ volume showed a much stronger divergence among the models and over time than RMSE, indicating that even models that are similar with regard to local surface tracer concentrations can perform very differently when assessed against the global diagnostics for oxygen. Considering organic tracers in the optimisation had a strong impact on the particle flux exponent (Martin b) and may reduce much of the uncertainty in this parameter and the resulting deep particle flux. Independent of the optimisation setup, the OMZ volume showed a particularly sensitive response with strong trends over time, even after 3000 years of simulation time (despite the constant physical forcing); a high sensitivity to simulation time; and the highest sensitivity to model parameters arising from the tuning strategy setup (variation of almost 80 % of the ensemble mean). In conclusion, calibration against observations of organic tracers can help to improve global biogeochemical models even after short spin-up times; here especially, observations of deep particle flux could provide a powerful constraint. However, a large uncertainty remains with regard to global OMZ volume and its evolution over time, which can show very dynamic behaviour during the model spin-up, which renders temporal extrapolation to a final equilibrium state difficult if not impossible. Given that the real ocean shows variations on many timescales, the assumption of observations representing a steady-state ocean may require some reconsideration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2024-02-07
    Description: The Peruvian upwelling system is a highly productive ecosystem with a large oxygen minimum zone (OMZ) close to the surface. In this work, we carried out a mesocosm experiment off Callao, Peru, with the addition of water masses from the regional OMZ collected at two different sites simulating two different upwelling scenarios. Here, we focus on the pelagic remineralization of organic matter by the extracellular enzyme activity of leucine aminopeptidase (LAP) and alkaline phosphatase activity (APA). After the addition of the OMZ water, dissolved inorganic nitrogen (N) was depleted, but the standing stock of phytoplankton was relatively high, even after N depletion (mostly 〉 4 µg chlorophyll a L−1). During the initial phase of the experiment, APA was 0.6 nmol L−1 h−1 even though the PO concentration was 〉 0.5 µmol L−1. Initially, the dissolved organic phosphorus (DOP) decreased, coinciding with an increase in the PO concentration that was probably linked to the APA. The LAP activity was very high, with most of the measurements in the range of 200–800 nmol L−1 h−1. This enzyme hydrolyzes terminal amino acids from larger molecules (e.g., peptides or proteins), and these high values are probably linked to the highly productive but N-limited coastal ecosystem. Moreover, the experiment took place during a rare coastal El Niño event with higher than normal surface temperatures, which could have affected enzyme activity. Using a nonparametric multidimensional scaling analysis (NMDS) with a generalized additive model (GAM), we found that biogeochemical variables (e.g., nutrient and chlorophyll-a concentrations) and phytoplankton and bacterial communities explained up to 64 % of the variability in APA. The bacterial community best explained the variability (34 %) in LAP. The high hydrolysis rates for this enzyme suggest that pelagic N remineralization, likely driven by the bacterial community, supported the high standing stock of primary producers in the mesocosms after N depletion.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-02-07
    Description: Petroleum substances, as archetypical UVCBs (substances of unknown or variable composition, complex reaction products, or biological substances), pose a challenge for chemical risk assessment as they contain hundreds to thousands of individual constituents. It is particularly challenging to determine the biodegradability of petroleum substances since each constituent behaves differently. Testing the whole substance provides an average biodegradation, but it would be effectively impossible to obtain all constituents and test them individually. To overcome this challenge, comprehensive two-dimensional gas chromatography (GC × GC) in combination with advanced data-handling algorithms was applied to track and calculate degradation half-times (DT50s) of individual constituents in two dispersed middle distillate gas oils in seawater. By tracking 〉1000 peaks (representing ∼53–54% of the total mass across the entire chromatographic area), known biodegradation patterns of oil constituents were confirmed and extended to include many hundreds not currently investigated by traditional one-dimensional GC methods. Approximately 95% of the total tracked peak mass biodegraded after 64 days. By tracking the microbial community evolution, a correlation between the presence of functional microbial communities and the observed progression of DT50s between chemical classes was demonstrated. This approach could be used to screen the persistence of GC × GC-amenable constituents of petroleum substance UVCBs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2024-02-07
    Description: In 2021, the United Nations Environment Programme (UNEP) recognized chemical pollution as a planetary crisis tantamount to climate change and biodiversity decline. (1) In an important next step, the international community agreed in March 2022 on establishing an independent, intergovernmental science–policy panel on chemicals, waste, and pollution prevention (hereafter termed “the Panel”). (2) This Panel will take its place among two other intergovernmental bodies, the Intergovernmental Panel on Climate Change (IPCC) (3) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (4) Now is a crucial time for establishing the Panel, following a process facilitated by UNEP to negotiate the Panel’s scope, functions, and institutional design, with the ambition to formally establish the Panel in 2024. As a group of international scientists working on chemical pollution, we applaud this milestone of progress to initiate the establishment of a panel for chemicals, waste, and pollution prevention. At the beginning of the negotiating process, we would like to highlight the following 10 critical aspects for consideration in determining the settings of the Panel.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2024-02-07
    Description: As Earth's atmospheric temperatures and human populations increase, more people are becoming vulnerable to natural and human-induced disasters. This is particularly true in Central America, where the growing human population is experiencing climate extremes (droughts and floods), and the region is susceptible to geological hazards, such as earthquakes and volcanic eruptions, and environmental deterioration in many forms (soil erosion, lake eutrophication, heavy metal contamination, etc.). Instrumental and historical data from the region are insufficient to understand and document past hazards, a necessary first step for mitigating future risks. Long, continuous, well-resolved geological records can, however, provide a window into past climate and environmental changes that can be used to better predict future conditions in the region. The Lake Izabal Basin (LIB), in eastern Guatemala, contains the longest known continental records of tectonics, climate, and environmental change in the northern Neotropics. The basin is a pull-apart depression that developed along the North American and Caribbean plate boundary ∼ 12 Myr ago and contains 〉 4 km of sediment. The sedimentological archive in the LIB records the interplay among several Earth System processes. Consequently, exploration of sediments in the basin can provide key information concerning: (1) tectonic deformation and earthquake history along the plate boundary; (2) the timing and causes of volcanism from the Central American Volcanic Arc; and (3) hydroclimatic, ecologic, and geomicrobiological responses to different climate and environmental states. To evaluate the LIB as a potential site for scientific drilling, 65 scientists from 13 countries and 33 institutions met in Antigua, Guatemala, in August 2022 under the auspices of the International Continental Scientific Drilling Program (ICDP) and the US National Science Foundation (NSF). Several working groups developed scientific questions and overarching hypotheses that could be addressed by drilling the LIB and identified optimal coring sites and instrumentation needed to achieve the project goals. The group also discussed logistical challenges and outreach opportunities. The project is not only an outstanding opportunity to improve our scientific understanding of seismotectonic, volcanic, paleoclimatic, paleoecologic, and paleobiologic processes that operate in the tropics of Central America, but it is also an opportunity to improve understanding of multiple geological hazards and communicate that knowledge to help increase the resilience of at-risk Central American communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2024-02-07
    Description: For millennia, humans have gravitated towards coastlines for their resource potential and as geopolitical centres for global trade. A basic requirement ensuring water security for coastal communities relies on a delicate balance between the supply and demand of potable water. The interaction between freshwater and saltwater in coastal settings is, therefore, complicated by both natural and human-driven environmental changes at the land-sea interface. In particular, ongoing sea level rise, warming and deoxygenation might exacerbate such perturbations. In this context, an improved understanding of the nature and variability of groundwater fluxes across the land-sea continuum is timely, yet remains out of reach. The flow of terrestrial groundwater across the coastal transition zone as well as the extent of freshened groundwater below the present-day seafloor are receiving increased attention in marine and coastal sciences because they likely represent a significant, yet highly uncertain component of (bio)geochemical budgets, and because of the emerging interest in the potential use of offshore freshened groundwater as a resource. At the same time, “reverse” groundwater flux from offshore to onshore is of prevalent socio-economic interest as terrestrial groundwater resources are continuously pressured by overpumping and seawater intrusion in many coastal regions worldwide. An accurate assessment of the land-ocean connectivity through groundwater and its potential responses to future anthropogenic activities and climate change will require a multidisciplinary approach combining the expertise of geophysicists, hydrogeologists, (bio)geochemists and modellers. Such joint activities will lay the scientific basis for better understanding the role of groundwater in societal-relevant issues such as climate change, pollution and the environmental status of the coastal oceans within the framework of the United Nations Sustainable Development Goals. Here, we present our perspectives on future research directions to better understand land-ocean connectivity through groundwater, including the spatial distributions of the essential hydrogeological parameters, highlighting technical and scientific developments, and briefly discussing its societal relevance in rapidly changing coastal oceans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2024-02-07
    Description: The Humboldt Current Upwelling System (HCS) is the most productive eastern boundary upwelling system (EBUS) in terms of fishery yield on the planet. EBUSs are considered hotspots of climate change with predicted expansion of mesopelagic oxygen minimum zones (OMZs) and related changes in the frequency and intensity of upwelling of nutrient-rich, low-oxygen deep water. To increase our mechanistic understanding of how upwelling impacts plankton communities and trophic links, we investigated mesozooplankton community succession and gut fluorescence, fatty acid and elemental compositions (C, N, O, P), and stable isotope (δ13C, δ15N) ratios of dominant mesozooplankton and microzooplankton representatives in a mesocosm setup off Callao (Peru) after simulated upwelling with OMZ water from two different locations and different N:P signatures (moderate and extreme treatments). An oxycline between 5 and 15 m with hypoxic conditions (〈50 µmol L−1) below ∼10 m persisted in the mesocosms throughout the experiment. No treatment effects were determined for the measured parameters, but differences in nutrient concentrations established through OMZ water additions were only minor. Copepods and polychaete larvae dominated in terms of abundance and biomass. Development and reproduction of the dominant copepod genera Paracalanus sp., Hemicyclops sp., Acartia sp., and Oncaea sp. were hindered as evident from accumulation of adult copepodids but largely missing nauplii. Failed hatching of nauplii in the hypoxic bottom layer of the mesocosms and poor nutritional condition of copepods suggested from very low gut fluorescence and fatty acid compositions most likely explain the retarded copepod development. Correlation analysis revealed no particular trophic relations between dominant copepods and phytoplankton groups. Possibly, particulate organic matter with a relatively high C:N ratio was a major diet of copepods. C:N ratios of copepods and polychaetes ranged 4.8–5.8 and 4.2–4.3, respectively. δ15N was comparatively high (∼13 ‰–17 ‰), potentially because the injected OMZ source water was enriched in δ15N as a result of anoxic conditions. Elemental ratios of dinoflagellates deviated strongly from the Redfield ratio. We conclude that opportunistic feeding of copepods may have played an important role in the pelagic food web. Overall, projected changes in the frequency and intensity of upwelling hypoxic waters may make a huge difference for copepod reproduction and may be further enhanced by varying N:P ratios of upwelled OMZ water masses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2024-02-07
    Description: When interpreting geophysical models, we need to establish a link between the models’ physical parameters and geological units. To define these connections, it is crucial to consider and compare geophysical models with multiple, independent parameters. Particularly in complex geological scenarios, such as the rifted passive margin offshore Namibia, multi-parameter analysis and joint inversion are key techniques for comprehensive geological inferences. The models resulting from joint inversion enable the definition of specific parameter combinations, which can then be ascribed to geological units. Here we perform a user-unbiased clustering analysis of the parameters electrical resistivity and density from two models derived in a joint inversion along the Namibian passive margin. We link the resulting parameter combinations to break-up related lithology, and infer the history of margin formation. This analysis enables us to clearly differentiate two types of sediment cover. Namely, one of near-shore, thick, clastic sediments, and a second one of further offshore located, more biogenic, marine sediments. Furthermore, we clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward dipping reflectors. Lastly, we find a distinct difference in the signature of the transitional crust south of- and along the supposed hot-spot track Walvis Ridge. We ascribe this contrast to an increase in magmatic activity above the volcanic centre along Walvis Ridge, and potentially a change in melt sources or depth of melting. This characterizes a rift-related southern complex, and a plume-driven Walvis Ridge regime. All of these observations demonstrate the importance of multi-parameter geophysical analysis for large-scale geological interpretations. Furthermore, our results may improve future joint inversions using direct parameter coupling, by providing a guideline for the complex passive margins parameter correlations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2024-02-07
    Description: In this paper, we review observational and modelling results on the upwelling in the tropical Atlantic between 10∘ N and 20∘ S. We focus on the physical processes that drive the seasonal variability of surface cooling and the upward nutrient flux required to explain the seasonality of biological productivity. We separately consider the equatorial upwelling system, the coastal upwelling system of the Gulf of Guinea and the tropical Angolan upwelling system. All three tropical Atlantic upwelling systems have in common a strong seasonal cycle, with peak biological productivity during boreal summer. However, the physical processes driving the upwelling vary between the three systems. For the equatorial regime, we discuss the wind forcing of upwelling velocity and turbulent mixing, as well as the underlying dynamics responsible for thermocline movements and current structure. The coastal upwelling system in the Gulf of Guinea is located along its northern boundary and is driven by both local and remote forcing. Particular emphasis is placed on the Guinea Current, its separation from the coast and the shape of the coastline. For the tropical Angolan upwelling, we show that this system is not driven by local winds but instead results from the combined effect of coastally trapped waves, surface heat and freshwater fluxes, and turbulent mixing. Finally, we review recent changes in the upwelling systems associated with climate variability and global warming and address possible responses of upwelling systems in future scenarios.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2024-02-07
    Description: Pathologic hyperreactive inflammatory responses occur when there is excessive activation of a proinflammatory NF-kappa B pathway and a reduced cytoprotective NRF2 cascade. The noncytotoxic, highly selective COX-2 inhibitory flavonol-enriched butanol fraction (UaB) from Uvaria alba (U. alba) was investigated for its inflammatory modulating potential by targeting NF-kappa B activation and NRF2 activity. Enzyme-linked immunosorbent assay was initially performed to measure levels of proinflammatory mediators [nitric oxide (NO), prostaglandin E2, and reactive oxygen species (ROS)] and cytokines [tumor necrosis factor-alpha (TNF-alpha), IL-1 beta, and IL-6], followed by reverse transcription-polymerase chain reaction and western blotting to determine mRNA and protein expression, respectively. Using immunofluorescence staining combined with western blot analysis, the activation of NF-kappa B was further investigated. NRF2 activity was also measured using a luciferase reporter assay. UaB abrogated protein and mRNA expressions of inducible nitric oxide synthase (iNOS), COX-2, TNF-alpha, IL-1 beta, and IL-6 in RAW 264.7 macrophages, thereby suppressing the production of proinflammatory mediators and cytokines. This was further validated when a concentration-dependent decrease in NO and ROS production was observed in zebrafish (Danio rerio) larvae. UaB also increased NRF2 activity in HaCaT/ARE cell line and attenuated NF-kappa B activation by inhibiting the nuclear translocation of transcription factor p65 in RAW 264.7 macrophages. Nontargeted LC- MS analysis of UaB revealed the presence of the flavonols quercitrin (1), quercetin (2), rutin (3), kaempferol (4), and kaempferol 3O-rutinoside (5). Molecular docking indicates that major flavonol aglycones have high affinity toward COX-2 NSAID-binding sites, TNF-alpha, and TNF-alpha converting enzyme, while the glycosylated flavonoids showed strong binding toward iNOS and IKK-all possessing dynamic stability when performing molecular dynamics simulations at 140 ns. This is the first report to have elucidated the mechanistic anti-inflammatory potential of the Philippine endemic plant U. alba.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2024-02-07
    Description: Increasing Greenland Ice Sheet–melting is anticipated to impact watermass transformation in the subpolar North Atlantic and ultimately the meridional overturning circulation. Complex ocean and climate models are widely applied to predict magnitude and timing of related impacts under projected future climate. We discuss the role of the ocean mean state, subpolar gyre circulation, mesoscale eddies and atmospheric coupling in shaping the response of the subpolar North Atlantic Ocean to enhanced Greenland runoff. In a suite of eight dedicated 60 to 100-year long model experiments with and without atmospheric coupling, with eddy processes parameterized and explicitly simulated, with regular and significantly enlarged Greenland runoff, we find (1) a major impact by the interactive atmosphere in enabling a compensating temperature feedback, (2) a non-negligible influence by the ocean mean state biased towards greater stability in the coupled simulations, both of which making the Atlantic Merdional Overturning Circulation less susceptible to the freshwater perturbation applied, and (3) a more even spreading of the runoff tracer in the subpolar North Atlantic and enhanced inter-gyre exchange with the subtropics in the strongly eddying simulations. Overall, our experiments demonstrate the important role of mesoscale ocean dynamics and atmosphere feedbacks in projections of the climate system response to enhanced Greenland Ice Sheet–melting and hence underline the necessity to advance scale-aware eddy parameterizations for next-generation climate models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-02-07
    Description: Carbon monoxide (CO) influences the radiative budget and oxidative capacity of the atmosphere over the Arctic Ocean, which is a source of atmospheric CO. Yet, oceanic CO cycling is understudied in this area, particu- larly in light of the ongoing rapid environmental changes. We present results from incubation experiments conducted in the Fram Strait in August–September 2019 under different environmental conditions: while lower pH did not affect CO production (GPCO) or consumption (kCO) rates, enhanced GPCO and kCO were positively correlated with coloured dis- solved organic matter (CDOM) and dissolved nitrate concen- trations, respectively, suggesting microbial CO uptake under oligotrophic conditions to be a driving factor for variability in CO surface concentrations. Both production and consump- tion of CO will likely increase in the future, but it is un- known which process will dominate. Our results will help to improve models predicting future CO concentrations and emissions and their effects on the radiative budget and the oxidative capacity of the Arctic atmosphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-02-07
    Description: The carbon cycle component of the newly developed Earth System Model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediments processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and peatlands. The dust cycle in the model allows for an interactive determination of the input of the micro-nutrient iron into the ocean. A rock weathering scheme is implemented into the model, with the weathering rate depending on lithology, runoff and soil temperature. CLIMBER-X includes a simple representation of the methane cycle, with explicitly modelled natural emissions from land and the assumption of a constant residence time of CH4 in the atmosphere. Carbon isotopes 13C and 14C are tracked through all model compartments and provide a useful diagnostic for model-data comparison. A comprehensive evaluation of the model performance for present–day and the historical period shows that CLIMBER-X is capable of realistically reproducing the historical evolution of atmospheric CO2 and CH4, but also the spatial distribution of carbon on land and the 3D structure of biogeochemical ocean tracers. The analysis of model performance is complemented by an assessment of carbon cycle feedbacks and model sensitivities compared to state-of-the-art CMIP6 models. Enabling interactive carbon cycle in CLIMBER-X results in a relatively minor slow-down of model computational performance by ~20 %, compared to a throughput of ~10,000 simulation years per day on a single node with 16 CPUs on a high performance computer in a climate–only model setup. CLIMBER-X is therefore well suited to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to 〉100,000 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-02-07
    Description: Nitrous oxide (N2O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. Estuaries can be sources of N2O, but their emission estimates have significant uncertainties due to limited data availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved N2O and its emissions along the Elbe Estuary (Germany), a well-mixed temperate estuary with high nutrient loading from agriculture. During nine research cruises performed between 2017 and 2022, we measured dissolved N2O concentrations, as well as dissolved nutrient and oxygen concentrations along the estuary, and calculated N2O saturations, flux densities, and emissions. We found that the estuary was a year-round source of N2O, with the highest emissions in winter when dissolved inorganic nitrogen (DIN) loads and wind speeds are high. However, in spring and summer, N2O saturations and emissions did not decrease alongside lower riverine nitrogen loads, suggesting that estuarine in situ N2O production is an important source of N2O. We identified two hotspot areas of N2O production: the Port of Hamburg, a major port region, and the mesohaline estuary near the maximum turbidity zone (MTZ). N2O production was fueled by the decomposition of riverine organic matter in the Hamburg Port and by marine organic matter in the MTZ. A comparison with previous measurements in the Elbe Estuary revealed that N2O saturation did not decrease alongside the decrease in DIN concentrations after a significant improvement of water quality in the 1990s that allowed for phytoplankton growth to re-establish in the river and estuary. The overarching control of phytoplankton growth on organic matter and, subsequently, on N2O production highlights the fact that eutrophication and elevated agricultural nutrient input can increase N2O emissions in estuaries.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-02-07
    Description: Microplastics (MP) including tire wear particles (TWP) are ubiquitous. However, their mass loads, transport, and vertical behavior in water bodies and overlying air are never studied simultaneously before. Particularly, the sea surface microlayer (SML), a ubiquitous, predominantly organic, and gelatinous film (〈1 mm), is interesting since it may favor MP enrichment. In this study, a remote-controlled research catamaran simultaneously sampled air, SML, and underlying water (ULW) in Swedish fjords of variable anthropogenic impacts (urban, industrial, and rural) to fill these knowledge gaps in the marine-atmospheric MP cycle. Polymer clusters and TWP were identified and quantified with pyrolysis-gas chromatography–mass spectrometry. Air samples contained clusters of polyethylene terephthalate, polycarbonate, and polystyrene (max 50 ng MP m–3). In water samples (max. 10.8 μg MP L–1), mainly TWP and clusters of poly(methyl methacrylate) and polyethylene terephthalate occurred. Here, TWP prevailed in the SML, while the poly(methyl methacrylate) cluster dominated the ULW. However, no general MP enrichment was observed in the SML. Elevated anthropogenic influences in urban and industrial compared to the rural fjord areas were reflected by enhanced MP levels in these areas. Vertical MP movement behavior and distribution were not only linked to polymer characteristics but also to polymer sources and environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-02-07
    Description: Marine dissolved organic matter (DOM) presents key thermodynamic properties that are not yet fully constrained. Here, we report the distribution of binding sites occupied by protons (i.e., proton affinity spectra) and parametrize the median intrinsic proton binding affinities (log K̅H) and heterogeneities (m), for DOM samples extracted from the North Atlantic. We estimate that 11.4 ± 0.6% of C atoms in the extracted marine DOM have a functional group with a binding site for ionic species. The log K̅H of the most acidic groups was larger (4.01–4.02 ± 0.02) than that observed in DOM from coastal waters (3.82 ± 0.02), while the chemical binding heterogeneity parameter increased with depth to values (m1= 0.666 ± 0.009) ca. 10% higher than those observed in surface open ocean or coastal samples. On the contrary, the log K̅H for the less acidic groups shows a difference between the surface (10.01 ± 0.08) and deep (9.22 ± 0.35) samples. The latter chemical groups were more heterogeneous for marine than for terrestrial DOM, and m2 decreased with depth to values of 0.28 ± 0.03. Binding heterogeneity reflects aromatic carbon compounds’ persistence and accumulation in diverse, low-abundance chemical forms, while easily degradable low-affinity groups accumulate more uniformly in the deep ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-02-07
    Description: Heinrich-type ice-sheet surges are one of the prominent signals of glacial climate variability. They are characterised as abrupt, quasi-periodic episodes of ice-sheet instabilities during which large numbers of icebergs are released from the Laurentide ice sheet. The mechanisms controlling the timing and occurrence of Heinrich-type ice-sheet surges remain poorly constrained to this day. Here, we use a coupled ice sheet–solid Earth model to identify and quantify the importance of boundary forcing for the surge cycle length of Heinrich-type ice-sheet surges for two prominent ice streams of the Laurentide ice sheet – the land-terminating Mackenzie ice stream and the marine-terminating Hudson ice stream. Both ice streams show responses of similar magnitude to surface mass balance and geothermal heat flux perturbations, but Mackenzie ice stream is more sensitive to ice surface temperature perturbations, a fact likely caused by the warmer climate in this region. Ocean and sea-level forcing as well as different frequencies of the same forcing have a negligible effect on the surge cycle length. The simulations also highlight the fact that only a certain parameter space exists under which ice-sheet oscillations can be maintained. Transitioning from an oscillatory state to a persistent ice streaming state can result in an ice volume loss of up to 30 % for the respective ice stream drainage basin under otherwise constant climate conditions. We show that Mackenzie ice stream is susceptible to undergoing such a transition in response to all tested positive climate perturbations. This underlines the potential of the Mackenzie region to have contributed to prominent abrupt climate change events of the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2024-02-07
    Description: Understanding the relationship between surface marine ecosystems and the export of carbon to depth by sinking organic particles is key to representing the effect of ecosystem dynamics and diversity, and their evolution under multiple stressors, on the carbon cycle and climate in models. Recent observational technologies have greatly increased the amount of data available, both for the abundance of diverse plankton groups and for the concentration and properties of particulate organic carbon in the ocean interior. Here we use synthetic model data to test the potential of using machine learning (ML) to reproduce concentrations of particulate organic carbon within the ocean interior based on surface ecosystem and environmental data. We test two machine learning methods that differ in their approaches to data-fitting, the random forest and XGBoost methods. The synthetic data are sampled from the PlankTOM12 global biogeochemical model using the time and coordinates of existing observations. We test 27 different combinations of possible drivers to reconstruct small (POCS) and large (POCL) particulate organic carbon concentrations. We show that ML can successfully be used to reproduce modelled particulate organic carbon over most of the ocean based on ecosystem and modelled environmental drivers. XGBoost showed better results compared to random forest thanks to its gradient boosting trees' architecture. The inclusion of plankton functional types (PFTs) in driver sets improved the accuracy of the model reconstruction by 58 % on average for POCS and by 22 % for POCL. Results were less robust over the equatorial Pacific and some parts of the high latitudes. For POCS reconstruction, the most important drivers were the depth level, temperature, microzooplankton and PO4, while for POCL it was the depth level, temperature, mixed-layer depth, microzooplankton, phaeocystis, PO4 and chlorophyll a averaged over the mixed-layer depth. These results suggest that it will be possible to identify linkages between surface environmental and ecosystem structure and particulate organic carbon distribution within the ocean interior using real observations and to use this knowledge to improve both our understanding of ecosystem dynamics and of their functional representation within models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2024-02-07
    Description: The southern African climate is strongly impacted by climate change. Precipitation is a key variable in this region, as it is linked to agriculture and water supply. Simulations with a regional atmospheric model over the past decades and the 21st century display a decrease in the past precipitation over some coastal areas of South Africa and an increase over the rest of southern Africa. However, precipitation is projected to decrease over the whole southern part of the domain in the future. This study shows that the Agulhas Current system, including the current and the leakage, which surrounds the continent in the east and south, impacts this precipitation trend. A reduction in the strength of the Agulhas Current is linked to a reduction in precipitation along the southeast coast. The Agulhas leakage, the part of the Agulhas Current that leaves the system and flows into the South Atlantic, impacts winter precipitation in the southwest of the continent. A more intense Agulhas leakage is linked to a reduction in precipitation in this region.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2024-02-07
    Description: Marine diazotrophs convert dinitrogen (N-2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N-2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N-2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N-2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43-57 versus 45-63 TgNyr (-1); ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223 +/- 30 TgNyr (-1) (mean +/- standard error; same hereafter) compared to version 1 (74 +/- 7 TgNyr (-1)). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88 +/- 23 versus 20 +/- 2 TgNyr 1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40 +/- 9 versus 10 +/- 2 TgNyr (-1)). Moreover, version 2 estimates the N-2 fixation rate in the Indian Ocean to be 35 +/- 14 TgNyr (-1), which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N-2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional N-15(2) bubble method yields lower rates in 69% cases compared to the new N-15(2) dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-07
    Description: Stable water isotopes in polar ice cores are widely used to reconstruct past temperature variations over several orbital climatic cycles. One way to calibrate the isotope–temperature relationship is to apply the present-day spatial relationship as a surrogate for the temporal one. However, this method leads to large uncertainties because several factors like the sea surface conditions or the origin and transport of water vapor influence the isotope–temperature temporal slope. In this study, we investigate how the sea surface temperature (SST), the sea ice extent, and the strength of the Atlantic Meridional Overturning Circulation (AMOC) affect these temporal slopes in Greenland and Antarctica for Last Glacial Maximum (LGM, ∼ 21 000 years ago) to preindustrial climate change. For that, we use the isotope-enabled atmosphere climate model ECHAM6-wiso, forced with a set of sea surface boundary condition datasets based on reconstructions (e.g., GLOMAP) or MIROC 4m simulation outputs. We found that the isotope–temperature temporal slopes in East Antarctic coastal areas are mainly controlled by the sea ice extent, while the sea surface temperature cooling affects the temporal slope values inland more. On the other hand, ECHAM6-wiso simulates the impact of sea ice extent on the EPICA Dome C (EDC) and Vostok sites through the contribution of water vapor from lower latitudes. Effects of sea surface boundary condition changes on modeled isotope–temperature temporal slopes are variable in West Antarctica. This is partly due to the transport of water vapor from the Southern Ocean to this area that can dampen the influence of local temperature on the changes in the isotopic composition of precipitation and snow. In the Greenland area, the isotope–temperature temporal slopes are influenced by the sea surface temperatures near the coasts of the continent. The greater the LGM cooling off the coast of southeastern Greenland, the greater the transport of water vapor from the North Atlantic, and the larger the temporal slopes. The presence or absence of sea ice very near the coast has a large influence in Baffin Bay and the Greenland Sea and influences the slopes at some inland ice core stations. The extent of the sea ice far south slightly influences the temporal slopes in Greenland through the transport of more depleted water vapor from lower latitudes to this area. The seasonal variations of sea ice distribution, especially its retreat in summer, influence the isotopic composition of the water vapor in this region and the modeled isotope–temperature temporal slopes in the eastern part of Greenland. A stronger LGM AMOC decreases LGM-to-preindustrial isotopic anomalies in precipitation in Greenland, degrading the isotopic model–data agreement. The AMOC strength modifies the temporal slopes over inner Greenland slightly and by a little on the coasts along the Greenland Sea where the changes in surface temperature and sea ice distribution due to the AMOC strength mainly occur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-02-07
    Description: An international, multidisciplinary research group is proposing the “NICA-BRIDGE” drilling project, within the framework of the International Continental Scientific Drilling Program (ICDP). The project goal is to conduct scientific drilling in Lake Nicaragua and Lake Managua (Nicaragua, Central America) to obtain long lacustrine sediment records to (a) extend the neotropical paleoclimate record back to the Pliocene, making it one of the longest continental tropical climate archives in the world, and to (b) provide geological data on the long-term complex interplay among tectonics, volcanism, sea-level dynamics, climate change, and biosphere. The lakes are the two largest in Central America, and they are located in a trench-parallel half graben that hosts the volcanic front, which developed during or prior to the Pliocene, as a consequence of subduction-related tectonic activity. The lakes are uniquely suited for multidisciplinary scientific investigation as their long, con- tinuous sediment records (several Myr) will facilitate the study of (1) terrestrial and marine basin development at the southern Central American margin, (2) alternating lacustrine and marine environments in response to tec- tonic and climatic changes, (3) the longest record of tropical climate proxies, (4) the evolution of (and transition between) the Miocene to Pliocene/Pleistocene and Pleistocene to present volcanic arcs, which were separated by slab rollback, (5) the significance of the lakes as hot spots for endemism, and (6) the Great American Biotic Interchange at this strategic location, i.e., the N–S and reverse migration of fauna after the land bridge between the Americas was established. The planned ICDP project offers an opportunity to explore these topics through continent-based seismolog- ical, volcanological, paleoclimatological, paleoecological, and paleoenvironmental studies, combined with an International Ocean Discovery Program (IODP) drill project to explore its oceanic continuation. In preparation of this drilling project, an ICDP workshop was held in Montelimar, Nicaragua, on 2–5 March 2020 to develop drilling strategies and refine scientific questions, objectives, and hypotheses. The workshop was organized and hosted by the principal investigators and the Instituto Nicaragüense de Estudios Territoriales (INETER), with funding from the ICDP. Forty-five researchers from 12 countries participated in the workshop, including representatives from ICDP. During the workshop, previous research data on the study lakes, including new recent surveys, were reviewed, and a three-phase strategy for the proposed research was developed. The aim of Phase 0 is to complement the pre-site surveys where we identified the need for further data. In Phase I, with ICDP support, we will obtain sediment cores ∼ 100 m long, which will allow us to investigate many of the scientific questions. Based on the data from those drill cores, coring locations will be identified for a future Phase II, which we envisage as a combined ICDP/IODP project to collect deep drill cores in the lakes and the offshore Sandino Basin in order to extend Phase I results to much deeper time. The Sandino Basin is the oceanic continuation of the depression in which the studied lakes are located, and complementary marine drilling will improve the understanding of the evolution of this complex margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2024-02-07
    Description: We use output from a freely-running NEMO model simulation for the equatorial Pacific to investigate the utility of linearly removing the local influence of vertical displacements of the thermocline from variations in sea surface height. We show that the resulting time series of residual sea surface height, denoted ηnlti, measures variations in near-surface heat content that are independent of the local vertical displacement of the thermocline and can arise from horizontal advection, surface heat flux and diapycnal mixing processes. We find that the variance of ηnlti and its correlation with sea surface temperature, are focused on the Niño4 region. Furthermore, ηnlti averaged over the Niño4 region is highly correlated with indices of Central Pacific El Niño Southern Oscillation (CP ENSO), and its variance in 21 year running windows shows a strong upward trend over the past 50 years, corresponding to the emergence of CP ENSO following the 1976/77 climate shift. We show that ηnlti can be estimated from observations, using satellite altimeter data and a linear multi-mode model. The time series of ηnlti, especially when estimated using the linear model, show pronounced westward propagation in the western equatorial Pacific, arguing an important role for zonal advective feedback in the dynamics of CP ENSO, in particular for cold events. We also present evidence that the role of the thermocline displacement in influencing sea surface height increased strongly after 2000 in the eastern part of the Niño4 region, at a time when CP ENSO was particularly active. Finally, the diagnostic is easy to compute and can be easily applied to mooring data or couple climate models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-02-07
    Description: Nitrogen (N) and phosphorus (P) biogeochemical dynamics are crucial for the regulation of the terrestrial carbon cycle. In Earth system models (ESMs) the implementation of nutrient limitations has been shown to improve the carbon cycle feedback representation and, hence, the fidelity of the response of land to simulated atmospheric CO2 rise. Here we aimed to implement a terrestrial N and P cycle in an Earth system model of intermediate complexity to improve projections of future CO2 fertilization feedbacks. The N cycle is an improved version of the Wania et al. (2012) N module, with enforcement of N mass conservation and the merger with a deep land-surface and wetland module that allows for the estimation of N2O and NO fluxes. The N cycle module estimates fluxes from three organic (litter, soil organic matter and vegetation) and two inorganic ( and ) pools and accounts for inputs from biological N fixation and N deposition. The P cycle module contains the same organic pools with one inorganic P pool; it estimates influx of P from rock weathering and losses from leaching and occlusion. Two historical simulations are carried out for the different nutrient limitation setups of the model: carbon and nitrogen (CN), as well as carbon, nitrogen and phosphorus (CNP), with a baseline carbon-only simulation. The improved N cycle module now conserves mass, and the added fluxes (NO and N2O), along with the N and P pools, are within the range of other studies and literature. For the years 2001–2015 the nutrient limitation resulted in a reduction of gross primary productivity (GPP) from the carbon-only value of 143 to 130 Pg C yr−1 in the CN version and 127 Pg C yr−1 in the CNP version. This implies that the model efficiently represents a nutrient limitation over the CO2 fertilization effect. CNP simulation resulted in a reduction of 11 % of the mean GPP and a reduction of 23 % of the vegetation biomass compared to the baseline C simulation. These results are in better agreement with observations, particularly in tropical regions where P limitation is known to be important. In summary, the implementation of the N and P cycle has successfully enforced a nutrient limitation in the terrestrial system, which has now reduced the primary productivity and the capacity of land to take up atmospheric carbon, better matching observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...