ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2018-04-26
    Description: All types of applications of stable water isotopes, for example, for the reconstruction of paleotemperatures or for climate model validation, rely on a proper understanding of the mechanisms determining the isotopic composition of water vapor and precipitation. In this study, we use the isotope-enabled limited-area model COSMOiso to characterize the impacts of continental evapotranspiration, rainout, and subcloud processes on δD of European water vapor and precipitation. To this end, we first confirm a reliable implementation of the most important isotope fractionation processes in COSMOiso by comparing 5 years of modeled δD values with multiplatform δD observations from Europe (remote sensing observations of the δD of water vapor around 2.6 km above ground level, in situ δD measurements in near-surface water vapor, and δD precipitation data from the Global Network of Isotopes in Precipitation). Based on six 15 year sensitivity simulations, we then quantify the climatological impacts of the different fractionation processes on the δD values. We find δD of European water vapor and precipitation to be most strongly controlled by rainout. Superimposed to this are the effect of subcloud processes, which especially affects δD in precipitation under warm conditions, and the effect of continental evapotranspiration, which exerts an important control over the δD of near-surface water vapor. In future studies, the validated COSMOiso model can be employed in a similar way for a comprehensive interpretation of European isotope records from climatologically different time periods. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2017-03-10
    Description: Using new high-resolution 10Be measurements in the NGRIP, EDML and Vostok ice cores, together with previously published data from EDC, we present an improved synchronization between Greenland and Antarctic ice cores during the Laschamp geomagnetic excursion  ∼  41 kyr ago. We estimate the precision of this synchronization to be ±20 years, an order of magnitude better than previous work. We discuss the implications of this new synchronization for making improved estimates of the depth difference between ice and enclosed gas of the same age (Δdepth), difference between age of ice and enclosed gas at the same depth (Δage) in the EDC and EDML ice cores, spectral properties of the 10Be profiles and phasing between Dansgaard–Oeschger-10 (in NGRIP) and AIM-10 (in EDML and EDC).
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-14
    Description: We present here the first results, for the preindustrial and mid-Holocene climatological periods, of the newly developed isotope-enhanced version of the fully coupled Earth system model MPI-ESM, called hereafter MPI-ESM-wiso. The water stable isotopes H216O, H218O and HDO have been implemented into all components of the coupled model setup. The mid-Holocene provides the opportunity to evaluate the model response to changes in the seasonal and latitudinal distribution of insolation induced by different orbital forcing conditions. The results of our equilibrium simulations allow us to evaluate the performance of the isotopic model in simulating the spatial and temporal variations of water isotopes in the different compartments of the hydrological system for warm climates. For the preindustrial climate, MPI-ESM-wiso reproduces very well the observed spatial distribution of the isotopic content in precipitation linked to the spatial variations in temperature and precipitation rate. We also find a good model–data agreement with the observed distribution of isotopic composition in surface seawater but a bias with the presence of surface seawater that is too 18O-depleted in the Arctic Ocean. All these results are improved compared to the previous model version ECHAM5/MPIOM. The spatial relationships of water isotopic composition with temperature, precipitation rate and salinity are consistent with observational data. For the preindustrial climate, the interannual relationships of water isotopes with temperature and salinity are globally lower than the spatial ones, consistent with previous studies. Simulated results under mid-Holocene conditions are in fair agreement with the isotopic measurements from ice cores and continental speleothems. MPI-ESM-wiso simulates a decrease in the isotopic composition of precipitation from North Africa to the Tibetan Plateau via India due to the enhanced monsoons during the mid-Holocene. Over Greenland, our simulation indicates a higher isotopic composition of precipitation linked to higher summer temperature and a reduction in sea ice, shown by positive isotope–temperature gradient. For the Antarctic continent, the model simulates lower isotopic values over the East Antarctic plateau, linked to the lower temperatures during the mid-Holocene period, while similar or higher isotopic values are modeled over the rest of the continent. While variations of isotopic contents in precipitation over West Antarctica between mid-Holocene and preindustrial periods are partly controlled by changes in temperature, the transport of relatively 18O-rich water vapor near the coast to the western ice core sites could play a role in the final isotopic composition. So, more caution has to be taken about the reconstruction of past temperature variations during warm periods over this area. The coupling of such a model with an ice sheet model or the use of a zoomed grid centered on this region could help to better describe the role of the water vapor transport and sea ice around West Antarctica. The reconstruction of past salinity through isotopic content in sea surface waters can be complicated for regions with strong ocean dynamics, variations in sea ice regimes or significant changes in freshwater budget, giving an extremely variable relationship between the isotopic content and salinity of ocean surface waters over small spatial scales. These complicating factors demonstrate the complexity of interpreting water isotopes as past climate signals of warm periods like the mid-Holocene. A systematic isotope model intercomparison study for further insights on the model dependency of these results would be beneficial.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-01
    Description: The Laschamp excursion is a period of reduced geomagnetic field intensity occurring 40.7 ± 1.0 kyr ago. As a consequence, cosmogenic isotope production increased dramatically and its sensitivity to solar activity was enhanced during this period. The latter occurs because a larger fraction of the lower-energy interstellar galactic cosmic-ray particles, normally excluded by the geomagnetic field, is able to reach Earth's atmosphere. This produces a cosmogenic isotope production signal with a significant structure. As high-resolution 10Be profiles from both Antarctica (EDC) and Greenland (NGRIP-GRIP) during this crucial period are now available, one can use them as input into a box carbon cycle model in order to predict atmospheric 14C variations due to the Laschamp excursion. For this purpose, 10Be data are converted into 14C, using production calculations for the 10Be-14C conversion, after correction for the estimated difference of sensitivity between polar and global 10Be deposition. Several scenarios of carbon cycle state are simulated, from preindustrial to glacial conditions. Applying two recent cosmogenic isotope production calculations for the 10Be to 14C conversion, we found that the resulting atmospheric Δ14C variations are very sensitive to which of these two are employed. For example, Δ14C amplitude under glacial conditions varies from 260‰ (EDC) and 320‰ (Greenland) to 430‰ (EDC) and 510‰ (Greenland) depending on the formulation used for 10Be-14C conversion.
    Print ISSN: 0033-8222
    Electronic ISSN: 1945-5755
    Topics: Archaeology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-04
    Description: Atmospheric general circulation models (AGCMs) are known to have a warm and isotopically enriched bias over Antarctica. We test here the hypothesis that these biases are consequences of a too diffusive advection. Using the LMDZ-iso model, we show that a good representation of the advection, especially on the horizontal, is very important to reduce the bias in the isotopic contents of precipitation above this area and to improve the modelled water isotopes – temperature relationship. A good advection scheme is thus essential when using GCMs for paleoclimate applications based on polar water isotopes.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2019-06-20
    Description: We present here the first results, for the pre-industrial and mid-Holocene climatological periods, of the newly developed isotope-enhanced version of the fully coupled Earth system model MPI-ESM, called hereafter MPI-ESM-wiso. The water stable isotopes H216O, H218O and HDO have been implemented into all components of the coupled model setup: the atmosphere model ECHAM6, the land/soil vegetation model JSBACH, and the ocean/sea ice model MPIOM. The exchanges of the related isotope masses between the atmosphere and the ocean are made via the coupler OASIS3. The mid-Holocene, one of the PMIP4-CMIP6 entry cards to evaluate the performance of the latest generation of fully-coupled General Circulation Models, provides the opportunity to evaluate the model response to changes in the seasonal and latitudinal distribution of insolation induced by different orbital forcing conditions. The results of our equilibrium simulations allow to evaluate the performance of the isotopic model in simulating the spatial and temporal variations of water isotopes in the different compartments of the hydrological system for warm climates. It represents a first necessary step before simulating other climatological interglacial periods or transient Holocene experiment. For pre-industrial climate, MPI-ESM-wiso reproduces very well the observed spatial distribution of isotopic content in precipitation, in link with the spatial variations in temperature and precipitation rate. We find also a good model-data agreement with the observed distribution of isotopic composition in surface seawater, but a bias with too depleted surface seawater is present in the Arctic Ocean. All these results are improved compared to the previous model version ECHAM5/MPIOM. The spatial relationships of water isotopic composition with temperature, precipitation rate and salinity are consistent with observational data. For the pre-industrial climate, the interannual relationships of water isotopes with temperature and salinity are globally lower than the spatial ones, consistent with previous studies. Simulated results under mid-Holocene conditions are in fair agreement with the isotopic measurements from ice cores and continental speleothems. MPI-ESM-wiso simulates a depletion in isotopic composition of precipitation from North Africa to the Tibetan plateau via India due to the enhanced monsoons during mid-Holocene. Over Greenland, our simulation indicates enriched isotopic composition of precipitation over Greenland in link with higher summer temperature and reduction in sea ice, shown by positive isotope-temperature gradient. For the Antarctic continent, the model simulates depleted isotopic values over the East Antarctic plateau, in link with the lower temperatures during the mid-Holocene period, while similar or higher isotopic values are modeled over the rest of the continent. While variations of isotopic contents in precipitation over West Antarctica between mid-Holocene and pre-industrial periods are partly controlled by changes in temperature, the transport of relatively enriched water vapor near the coast to the western ice core sites could play a role in the final isotopic composition. The reconstruction of past salinity through isotopic content in sea surface waters can be complicated for regions with strong ocean dynamics, variations in sea ice regimes or significant changes in freshwater budget, giving an extremely variable relationship between isotopic content and salinity of ocean surface waters over small spatial scales. These complicating factors demonstrate the complexity in interpreting water isotopes as past climate signals of warm periods like the mid-Holocene.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-11
    Description: In order to investigate the impact of spatial resolution on the discrepancy between simulated δ18O and observed δ18O in Greenland ice cores, regional climate simulations are performed with the isotope-enabled regional climate model (RCM) COSMO_iso. For this purpose, isotope-enabled general circulation model (GCM) simulations with the ECHAM5-wiso general circulation model (GCM) under present-day conditions and the MPI-ESM-wiso GCM under mid-Holocene conditions are dynamically downscaled with COSMO_iso for the Arctic region. The capability of COSMO_iso to reproduce observed isotopic ratios in Greenland ice cores for these two periods is investigated by comparing the simulation results to measured δ18O ratios from snow pit samples, Global Network of Isotopes in Precipitation (GNIP) stations and ice cores. To our knowledge, this is the first time that a mid-Holocene isotope-enabled RCM simulation is performed for the Arctic region. Under present-day conditions, a dynamical downscaling of ECHAM5-wiso (1.1∘×1.1∘) with COSMO_iso to a spatial resolution of 50 km improves the agreement with the measured δ18O ratios for 14 of 19 observational data sets. A further increase in the spatial resolution to 7 km does not yield substantial improvements except for the coastal areas with its complex terrain. For the mid-Holocene, a fully coupled MPI-ESM-wiso time slice simulation is downscaled with COSMO_iso to a spatial resolution of 50 km. In the mid-Holocene, MPI-ESM-wiso already agrees well with observations in Greenland and a downscaling with COSMO_iso does not further improve the model–data agreement. Despite this lack of improvement in model biases, the study shows that in both periods, observed δ18O values at measurement sites constitute isotope ratios which are mainly within the subgrid-scale variability of the global ECHAM5-wiso and MPI-ESM-wiso simulation results. The correct δ18O ratios are consequently not resolved in the GCM simulation results and need to be extracted by a refinement with an RCM. In this context, the RCM simulations provide a spatial δ18O distribution by which the effects of local uncertainties can be taken into account in the comparison between point measurements and model outputs. Thus, an isotope-enabled GCM–RCM model chain with realistically implemented fractionating processes constitutes a useful supplement to reconstruct regional paleo-climate conditions during the mid-Holocene in Greenland. Such model chains might also be applied to reveal the full potential of GCMs in other regions and climate periods, in which large deviations relative to observed isotope ratios are simulated.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-08
    Description: We present here the first results, for the preindustrial and mid-Holocene climatological periods, of the newly developed isotope-enhanced version of the fully coupled Earth system model MPI-ESM, called hereafter MPI-ESM-wiso. The water stable isotopes H162O, H182O and HDO have been implemented into all components of the coupled model setup. The mid-Holocene provides the opportunity to evaluate the model response to changes in the seasonal and latitudinal distribution of insolation induced by different orbital forcing conditions. The results of our equilibrium simulations allow us to evaluate the performance of the isotopic model in simulating the spatial and temporal variations of water isotopes in the different compartments of the hydrological system for warm climates. For the preindustrial climate, MPI-ESM-wiso reproduces very well the observed spatial distribution of the isotopic content in precipitation linked to the spatial variations in temperature and precipitation rate. We also find a good model–data agreement with the observed distribution of isotopic composition in surface seawater but a bias with the presence of surface seawater that is too 18O-depleted in the Arctic Ocean. All these results are improved compared to the previous model version ECHAM5/MPIOM. The spatial relationships of water isotopic composition with temperature, precipitation rate and salinity are consistent with observational data. For the preindustrial climate, the interannual relationships of water isotopes with temperature and salinity are globally lower than the spatial ones, consistent with previous studies. Simulated results under mid-Holocene conditions are in fair agreement with the isotopic measurements from ice cores and continental speleothems. MPI-ESM-wiso simulates a decrease in the isotopic composition of precipitation from North Africa to the Tibetan Plateau via India due to the enhanced monsoons during the mid-Holocene. Over Greenland, our simulation indicates a higher isotopic composition of precipitation linked to higher summer temperature and a reduction in sea ice, shown by positive isotope–temperature gradient. For the Antarctic continent, the model simulates lower isotopic values over the East Antarctic plateau, linked to the lower temperatures during the mid-Holocene period, while similar or higher isotopic values are modeled over the rest of the continent. While variations of isotopic contents in precipitation over West Antarctica between mid-Holocene and preindustrial periods are partly controlled by changes in temperature, the transport of relatively 18O-rich water vapor near the coast to the western ice core sites could play a role in the final isotopic composition. So, more caution has to be taken about the reconstruction of past temperature variations during warm periods over this area. The coupling of such a model with an ice sheet model or the use of a zoomed grid centered on this region could help to better describe the role of the water vapor transport and sea ice around West Antarctica. The reconstruction of past salinity through isotopic content in sea surface waters can be complicated for regions with strong ocean dynamics, variations in sea ice regimes or significant changes in freshwater budget, giving an extremely variable relationship between the isotopic content and salinity of ocean surface waters over small spatial scales. These complicating factors demonstrate the complexity of interpreting water isotopes as past climate signals of warm periods like the mid-Holocene. A systematic isotope model intercomparison study for further insights on the model dependency of these results would be beneficial.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...