ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aerospace Medicine
  • 1995-1999  (361)
  • 1980-1984
  • 1999  (209)
  • 1996  (152)
  • 1
    Publication Date: 2011-08-24
    Description: OBJECTIVES: The risk of a urinary calculus during an extended duration mission into the reduced gravity environment of space is significant. For medical operations to develop a comprehensive strategy for the spaceflight stone risk, both preventive countermeasures and contingency management (CM) plans must be included. METHODS: A feasibility study was conducted to demonstrate the potential CM technique of endoscopic ureteral stenting with ultrasound guidance for the possible in-flight urinary calculus contingency. The procedure employed the International Space Station/Human Research Facility ultrasound unit for guide wire and stent localization, a flexible cystoscope for visual guidance, and banded, biocompatible soft ureteral stents to successfully stent porcine ureters bilaterally in zero gravity (0g). RESULTS: The study demonstrated that downlinked endoscopic surgical and ultrasound images obtained in 0g are comparable in quality to 1g images, and therefore are useful for diagnostic clinical utility via telemedicine transmission. CONCLUSIONS: In order to be successful, surgical procedures in 0g require excellent positional stability of the operating surgeon, assistant, and patient, relative to one another. The technological development of medical procedures for long-duration spaceflight contingencies may lead to improved terrestrial patient care methodology and subsequently reduced morbidity.
    Keywords: Aerospace Medicine
    Type: Urology (ISSN 0090-4295); Volume 53; 5; 892-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: To determine whether the rat hindlimb elevation model can be used to study the effects of spaceflight and loss of gravitational loading on bone in the adult animal, and to examine the effects of age on bone responsiveness to mechanical loading, we studied 6-mo-old rats subjected to hindlimb elevation for up to 5 wk. Loss of weight bearing in the adult induced a mild hypercalcemia, diminished serum 1,25-dihydroxyvitamin D, decreased vertebral bone mass, and blunted the otherwise normal increase in femoral mass associated with bone maturation. Unloading decreased osteoblast numbers and reduced periosteal and cancellous bone formation but had no effect on bone resorption. Mineralizing surface, mineral apposition rate, and bone formation rate decreased during unloading. Our results demonstrate the utility of the adult rat hindlimb elevation model as a means of simulating the loss of gravitational loading on the skeleton, and they show that the effects of nonweight bearing are prolonged and have a greater relative effect on bone formation in the adult than in the young growing animal.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 276; 1 Pt 1; E62-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.
    Keywords: Aerospace Medicine
    Type: Current opinion in neurology (ISSN 1350-7540); Volume 12; 1; 29-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic hormone. In contrast, urinary epinephrine, norepinephrine, and cortisol were significantly elevated at landing. Band neutrophils were observed in 9 of 16 astronauts. Neutrophil chemotactic assays showed a 10-fold decrease in the optimal dose response after landing. Neutrophil adhesion to endothelial cells was increased both before and after spaceflight. At landing, the expression of MAC-1 was significantly decreased while L-selectin was significantly increased. These functional alterations may be of clinical significance on long-duration space missions.
    Keywords: Aerospace Medicine
    Type: Journal of leukocyte biology (ISSN 0741-5400); Volume 65; 2; 179-86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: BACKGROUND: Increased spinal height due to the lack of of axial compression on spinal structures in microgravity may stretch the spinal cord, cauda equina, nerve roots, and paraspinal tissues. HYPOTHESIS: Exposure to simulated microgravity causes dysfunction of nerve roots so that the synaptic portion of the Achilles tendon reflex is delayed. METHODS: Six healthy male subjects were randomly divided into two groups with three in each group. The subjects in the first group underwent horizontal bed rest (HBR) for three days. After a two week interval they underwent bed rest in a position of head-down tilt with balanced traction (HDT). So that each subject could serve as his own control, the second group was treated identically but in opposite order. Bilateral F waves and H-reflexes were measured daily (18:30-20:30) on all subjects placed in a prone position. RESULTS: By means of ANOVA, differences between HDT and HBR were observed only in M-latency and F-ratio, not in F-latency, central latency, and H-latency. Differences during the course of the bed rest were observed in M-latency and H-latency only. Tibial H latency was significantly lengthened in HDT group on day 2 and 3, although no significant difference between HDT and HBR was observed. CONCLUSION: The monosynaptic reflex assessed by H-reflex was delayed during 6 degree HDT with traction. The exact mechanism of this delay and whether the change was due to lengthening of the lower part of the vertebrae remain to be clarified.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 70; 3 Pt 1; 220-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (microG) and hypergravity ( approximately 1. 6 G). Boluses of 0.5-, 1-, and 2-micron-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp 〉500 ml). For 0.5-micron-diameter particles for which sedimentation velocity is low, the differences between dispersion in microG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between microG and 1 G.
    Keywords: Aerospace Medicine
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 86; 4; 1402-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 70; 2; 153-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.
    Keywords: Aerospace Medicine
    Type: Neuroimmunomodulation (ISSN 1021-7401); Volume 6; 3; 160-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Proximal metaphyses of tibial bones from the Sprague-Dowly rats exposed in US dedicated space life sciences laboratory SLS-2 for 13-14 days and sacrificed on day 13 in microgravity and within 5 hours and 14 days following recovery were the subject of histological, histochemical, and histomorphometric analyses. After the 13-day flight of SLS-2 the rats showed initial signs of osteopenia in the spongy tissue of tibial bones, secondary spongiosis affected first. Resorption of the secondary spongiosis was consequent to enhanced resorption and inhibition of osteogenesis. In rats sacrificed within 5 hours of recovery manifestations of tibial osteopenia were more evident than in rats sacrificed during the flight. Spaceflight-induced changes in tibial spongiosis were reverse by character the amount of spongy bone was fully compensated and following 14 days of readaptation to the terrestrial gravity.
    Keywords: Aerospace Medicine
    Type: Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine (ISSN 0233-528X); Volume 30; 1; 21-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P 〈 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P 〈 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.
    Keywords: Aerospace Medicine
    Type: Experimental cell research (ISSN 0014-4827); Volume 228; 1; 168-71
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P〉0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P〉0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P〈0.05) over this time. At later time periods, satellite cell number increased (P〈0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.
    Keywords: Aerospace Medicine
    Type: Cell and tissue research (ISSN 0302-766X); Volume 283; 2; 203-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: BACKGROUND: Performing a surgical procedure in weightlessness has been shown not to be any more difficult than in a 1g environment if the requirements for the restraint of the patient, operator, and surgical hardware are observed. The feasibility of performing a laparoscopic surgical procedure in weightlessness, however, has been questionable. Concerns have included the impaired visualization from the lack of gravitational retraction of the bowel and from floating debris such as blood. METHODS: In this project, laparoscopic surgery was performed on a porcine animal model in the weightlessness of parabolic flight. RESULTS: Visualization was unaffected due to the tethering of the bowel by the elastic mesentery and the strong tendency for debris and blood to adhere to the abdominal wall due to surface tension forces. CONCLUSIONS: There are advantages to performing a laparoscopic instead of an open surgical procedure in a weightless environment. These will become important as the laparoscopic support hardware is miniaturized from its present form, as laparoscopic technology becomes more advanced, and as more surgically capable crew medical officers are present in future long-duration space-exploration missions.
    Keywords: Aerospace Medicine
    Type: Surgical endoscopy (ISSN 0930-2794); Volume 10; 2; 111-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: The transduction mechanism (or mechanisms) responsible for converting a mechanical load into a skeletal muscle growth response are unclear. In this study we have used a mechanically active tissue culture model of differentiated human skeletal muscle cells to investigate the relationship between mechanical load, sarcolemma wounding, fibroblast growth factor release, and skeletal muscle cell growth. Using the Flexcell Strain Unit we demonstrate that as mechanical load increases, so too does the amount of sarcolemma wounding. A similar relationship was also observed between the level of mechanical load inflicted on the cells and the amount of bFGF (FGF2) released into the surrounding medium. In addition, we demonstrate that the muscle cell growth response induced by chronic mechanical loading in culture can be inhibited by the presence of an antibody capable of neutralizing the biological activity of FGF. This study provides direct evidence that mechanically induced, sarcolemma wound-mediated FGF release is an important autocrine mechanism for transducing the stimulus of mechanical load into a skeletal muscle growth response.
    Keywords: Aerospace Medicine
    Type: The FASEB journal : official publication of the Federation of American Societies for Experimental Biology (ISSN 0892-6638); Volume 10; 4; 502-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The six domains that must be addressed in managing fatigue in operational settings are identified, and examples of how the aviation industry is dealing with the problems in each domain are given. Challenges facing healthcare providers in managing fatigue are also discussed.
    Keywords: Aerospace Medicine
    Type: Behavioral medicine (Washington, D.C.) (ISSN 0896-4289); Volume 21; 4; 166-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: The purpose was to investigate the mechanism for the excessive exercise hyperthermia following deconditioning (reduction of physical fitness). Rectal (Tre) and mean skin (Tsk) temperatures and thermoregulatory responses were measured in six men [mean (SD) age, 32 (6) years; mass, 78.26 (5.80) kg; surface area, 1.95 (0.11) m2; maximum oxygen uptake (VO2max), 48 (6) ml.min-1.kg-1; whilst supine in air at dry bulb temperature 23.2 (0.6) degree C, relative humidity 31.1 (11.1)% and air speed 5.6 (0.1) m.min-1] during 70 min of leg cycle exercise [51 (4)% VO2max] in ambulatory control (AC), or following 6 h of chair rest (CR), 6 degree head-down bed rest (BR), and 20 degree (WI20) and 80 degree (WI80) foot-down water immersion [water temperature, 35.0 (0.1) degree C]. Compared with the AC exercise delta Tre [mean (SD) 0.77 (0.13) degree C (*P 〈 0.05), after WI80 0.96 (0.13) degree C*, and after WI20 1.03 (0.09) degree C*. All Tsk responded similarly to exercise: they decreased (NS) by 0.5-0.7 degree C in minutes 4-8 and equilibrated at +0.1 to +0.5 degree C at 60-70. Skin heat conductance was not different among the five conditions (range = 147-159 kJ.m-2.h-1.degree C-1). Results from an intercorrelation matrix suggested that total body sweat rate was more closely related to Tre at 70 min (Tre70) than limb sweat rate or blood flow. Only 36% of the variability in Tre70 could be accounted for by total sweating, and less than 10% from total body dehydration. It would appear that multiple factors are involved which may include change in sensitivity of thermo- and osmoreceptors.
    Keywords: Aerospace Medicine
    Type: European journal of applied physiology and occupational physiology (ISSN 0301-5548); Volume 72; 4; 303-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P 〈 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P 〈 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 270; 1 Pt 1; E51-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: Bed rest, both with and without head-down tilt, has been extensively used as an earth-bound analog to study physiologic effects mimicking those occurring in weightlessness during spaceflight. We have been able to show in six subjects that 4 weeks of head-down tilt bed rest induces a significant decrease in interleukin-2 secretion by PHA-stimulated T lymphocytes. Another study, lasting 113 days, with two subjects showed a decreased interleukin-2 receptor expression in PHA-stimulated peripheral blood mononuclear cells but a decreased interleukin-2 production in one subject only. Under the same conditions, interleukin-1 production was largely increased in both subjects. Several other immune parameters were also analyzed. Increased interleukin-1 production could contribute to bone mineral loss encountered during bed rest and decreased interleukin-2 secretion could play a role in the appearance of infectious diseases often observed during bed red.
    Keywords: Aerospace Medicine
    Type: Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research (ISSN 1079-9907); Volume 16; 2; 151-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.
    Keywords: Aerospace Medicine
    Type: Nature (ISSN 0028-0836); Volume 379; 6565; 540-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: BACKGROUND: One of the principal explanations for respiratory sinus arrhythmia is that it reflects arterial baroreflex buffering of respiration-induced arterial pressure fluctuations. If this explanation is correct, then elimination of RR interval fluctuations should increase respiratory arterial pressure fluctuations. METHODS AND RESULTS: We measured RR interval and arterial pressure fluctuations during normal sinus rhythm and fixed-rate atrial pacing at 17.2+/-1.8 (SEM) beats per minute greater than the sinus rate in 16 healthy men and 4 healthy women, 20 to 34 years of age. Measurements were made during controlled-frequency breathing (15 breaths per minute or 0.25 Hz) with subjects in the supine and 40 degree head-up tilt positions. We characterized RR interval and arterial pressure variabilities in low-frequency (0.05 to 0.15 Hz) and respiratory-frequency (0.20 to 0.30 Hz) ranges with fast Fourier transform power spectra and used cross-spectral analysis to determine the phase relation between the two signals. As expected, cardiac pacing eliminated beat-to-beat RR interval variability. Against expectations, however, cardiac pacing in the supine position significantly reduced arterial pressure oscillations in the respiratory frequency (systolic, 6.8+/-1.8 to 2.9 +/-0.6 mm Hg2/Hz, P=.017). In contrast, cardiac pacing in the 40 degree tilt position increased arterial pressure variability (systolic, 8.0+/-1.8 to 10.8 +/-2.6, P=.027). Cross-spectral analysis showed that 40 degree tilt shifted the phase relation between systolic pressure and RR interval at the respiratory frequency from positive to negative (9 +/-7 degrees versus -17+/-11 degrees, P=.04); that is, in the supine position, RR interval changes appeared to lead arterial pressure changes, and in the upright position, RR interval changes appeared to follow arterial pressure changes. CONCLUSIONS: These results demonstrate that respiratory sinus arrhythmia can actually contribute to respiratory arterial pressure fluctuations. Therefore, respiratory sinus arrhythmia does not represent simple baroreflex buffering of arterial pressure.
    Keywords: Aerospace Medicine
    Type: Circulation (ISSN 0009-7322); Volume 93; 8; 1527-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.
    Keywords: Aerospace Medicine
    Type: Nature (ISSN 0028-0836); Volume 381; 6578; 161-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: A Research Roundtable, organized by the American College of Sports Medicine with sponsorship from the National Aeronautics and Space Administration, met in November 1995 to define research strategies for effective exercise countermeasures to weightlessness. Exercise was considered both independently of, and in conjunction with, other therapeutic modalities (e.g., pharmacological nutritional, hormonal, and growth-related factors) that could prevent or minimize the structural and functional deficits involving skeletal muscle and bone in response to chronic exposure to weightlessness, as well as return to Earth baseline function if a degree of loss is inevitable. Musculoskeletal deficits and countermeasures are described with respect to: 1) muscle and connective tissue atrophy and localized bone loss, 2) reductions in motor performance, 3) potential proneness to injury of hard and soft tissues, and 4) probable interaction between muscle atrophy and cardiovascular alterations that contribute to the postural hypotension observed immediately upon return from space flight. In spite of a variety of countermeasure protocols utilized previously involving largely endurance types of exercise, there is presently no activity-specific countermeasure(s) that adequately prevent or reduce musculoskeletal deficiencies. It seems apparent that countermeasure exercises that have a greater resistance element, as compared to endurance activities, may prove beneficial to the musculoskeletal system. Many questions remain for scientific investigation to identify efficacious countermeasure protocols, which will be imperative with the emerging era of long-term space flight.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10; 1247-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S56; discussion S56-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Plasma volume is reduced by 10-20% within 24-48 h of exposure to simulated or actual microgravity. The clinical importance of microgravity induced hypovolemia is manifested by its relationship with orthostatic intolerance and reduced maximal oxygen uptake (VO2max) after return to one gravity (1G). Since there is no evidence to suggest that plasma volume reduction during microgravity is associated with thirst or renal dysfunctions, a diuresis induced by an immediate blood volume shift to the central circulation appears responsible for microgravity-induced hypovolemia. Since most astronauts choose to restrict their fluid intake before a space mission, absence of increased urine output during actual space flight may be explained by low central venous pressure (CVP) which accompanies dehydration. Compelling evidence suggests that prolonged reduction in CVP during exposure to microgravity reflects a "resetting" to a lower operating point, which acts to limit plasma volume expansion during attempts to increase fluid intake. In ground based and space flight experiments, successful restoration and maintenance of plasma volume prior to returning to an upright posture may depend upon development of treatments that can return CVP to its baseline IG operating point. Fluid-loading and lower body negative pressure (LBNP) have not proved completely effective in restoring plasma volume, suggesting that they may not provide the stimulus to elevate the CVP operating point. On the other hand, exercise, which can chronically increase CVP, has been effective in expanding plasma volume when combined with adequate dietary intake of fluid and electrolytes. The success of designing experiments to understand the physiological mechanisms of and development of effective counter measures for the control of plasma volume in microgravity and during return to IG will depend upon testing that can be conducted under standardized controlled baseline conditions during both ground-based and space flight investigations.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S45-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S94-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: We measured human ocular torsion (OT) monocularly (using video) and binocularly (using search coils) while sinusoidally accelerating (0.7 g) five human subjects along an earth-horizontal axis at five frequencies (0.35, 0.4, 0.5, 0.75, and 1.0 Hz). The compensatory nature of OT was investigated by changing the relative orientation of the dynamic (linear acceleration) and static (gravitational) cues. Four subject orientations were investigated: (1) Y-upright-acceleration along the interaural (y) axis while upright; (2) Y-supine-acceleration along the y-axis while supine; (3) Z-RED-acceleration along the dorsoventral (z) axis with right ear down; (4) Z-supine-acceleration along the z-axis while supine. Linear acceleration in the Y-upright, Y-supine and Z-RED orientations elicited conjugate OT. The smaller response in the Z-supine orientation appeared disconjugate. The amplitude of the response decreased and the phase lag increased with increasing frequency for each orientation. This frequency dependence does not match the frequency response of the regular or irregular afferent otolith neurons; therefore the response dynamics cannot be explained by simple peripheral mechanisms. The Y-upright responses were larger than the Y-supine responses (P 〈 0.05). This difference indicates that OT must be more complicated than a simple low-pass filtered response to interaural shear force, since the dynamic shear force along the interaural axis was identical in these two orientations. The Y-supine responses were, in turn, larger than the Z-RED responses (P 〈 0.01). Interestingly, the vector sum of the Y-supine responses plus Z-RED responses was not significantly different (P = 0.99) from the Y-upright responses. This suggests that, in this frequency range, the conjugate OT response during Y-upright stimulation might be composed of two components: (1) a response to shear force along the y-axis (as in Y-supine stimulation), and (2) a response to roll tilt of gravitoinertial force (as in Z-RED stimulation).
    Keywords: Aerospace Medicine
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); Volume 110; 2; 315-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (〈1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.
    Keywords: Aerospace Medicine
    Type: Current opinion in neurobiology (ISSN 0959-4388); Volume 6; 6; 744-50
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Measurement of bone turnover in conditions such as osteoporosis has been limited by the need for invasive iliac bone biopsy to reliably determine parameters of bone metabolism. Recent advances in the area of serum and urinary markers of bone metabolism have raised the possibility for noninvasive measurements; however, little nonhuman primate data exist for these parameters. The purpose of this experiment was to define the normal range and variability of several of the newer noninvasive bone markers which are currently under investigation in humans. The primary intent was to determine age and gender variability, as well as provide some normative data for future experiments in nonhuman primates. Twenty-four rhesus macaques were divided into equal groups of male and female according to the following age groupings: 3 years, 5-10 years, 15-20 years, and 〉 25 years. Urine was collected three times daily for a four-day period and measured for several markers of bone turnoverm including pyridinoline (PYD), deoxypyrodinoline (DPD), hydroxyproline, and creatinine. Bone mineral density measurements of the lumbar spine were performed at the beginning and end of the study period. Serum was also obtained at the time of bone densitometry for measurement of osteocalcin levels by radioimmunoassay. There were no significant differences in bone mineral density, urine PYD, or urine DPD based on gender. Bone density was lowest in the youngest animals, peaked in the 15-20-year group, but again decreased in the oldest animals. The osteocalcin, PYD, and DPD levels followed an inversely related pattern to bone density. The most important result was the relative age insensitivity of the ratio of PYD:DPD in monkeys up to age 20 years. Since bone density changes take months or years to become measurable and iliac biopsies are invasive, the PYD/DPD marker ratio may have important implications for rapid noninvasive measurement of the effects of potential treatments for osteoporosis in the non-human primate model.
    Keywords: Aerospace Medicine
    Type: Journal of medical primatology (ISSN 0047-2565); Volume 25; 5; 333-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: We present calculations of linear energy transfer (LET) spectra in low earth orbit from galactic cosmic rays and trapped protons using the HZETRN/BRYNTRN computer code. The emphasis of our calculations is on the analysis of the effects of secondary nuclei produced through target fragmentation in the spacecraft shield or detectors. Recent improvements in the HZETRN/BRYNTRN radiation transport computer code are described. Calculations show that at large values of LET (〉 100 keV/micrometer) the LET spectra seen in free space and low earth orbit (LEO) are dominated by target fragments and not the primary nuclei. Although the evaluation of microdosimetric spectra is not considered here, calculations of LET spectra support that the large lineal energy (y) events are dominated by the target fragments. Finally, we discuss the situation for interplanetary exposures to galactic cosmic rays and show that current radiation transport codes predict that in the region of high LET values the LET spectra at significant shield depths (〉 10 g/cm2 of Al) is greatly modified by target fragments. These results suggest that studies of track structure and biological response of space radiation should place emphasis on short tracks of medium charge fragments produced in the human body by high energy protons and neutrons.
    Keywords: Aerospace Medicine
    Type: Radiation measurements (ISSN 1350-4487); Volume 26; 6; 923-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: In this study, we describe changes in the nature of Crew Resource Management (CRM) training in commercial aviation, including its shift from cockpit to crew resource management. Validation of the impact of CRM is discussed. Limitations of CRM, including lack of cross-cultural generality are considered. An overarching framework that stresses error management to increase acceptance of CRM concepts is presented. The error management approach defines behavioral strategies taught in CRM as error countermeasures that are employed to avoid error, to trap errors committed, and to mitigate the consequences of error.
    Keywords: Aerospace Medicine
    Type: The International journal of aviation psychology (ISSN 1050-8414); Volume 9; 1; 19-32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: Ten subjects served as their own controls in two conditions of continuous, centrifugally produced hypergravity (+2 Gz) and a 1-G control condition. Before and after exposure, open-loop measures were obtained of (1) motor control, (2) visual localization, and (3) hand-eye coordination. During exposure in the visual feedback/hypergravity condition, subjects received terminal visual error-corrective feedback from their target pointing, and in the no-visual feedback/hypergravity condition they pointed open loop. As expected, the motor control measures for both experimental conditions revealed very short lived underreaching (the muscle-loading effect) at the outset of hypergravity and an equally transient negative aftereffect on returning to 1 G. The substantial (approximately 17 degrees) initial elevator illusion experienced in both hypergravity conditions declined over the course of the exposure period, whether or not visual feedback was provided. This effect was tentatively attributed to habituation of the otoliths. Visual feedback produced a smaller additional decrement and a postexposure negative after-effect, possible evidence for visual recalibration. Surprisingly, the target-pointing error made during hypergravity in the no-visual-feedback condition was substantially less than that predicted by subjects' elevator illusion. This finding calls into question the neural outflow model as a complete explanation of this illusion.
    Keywords: Aerospace Medicine
    Type: Perception & psychophysics (ISSN 0031-5117); Volume 58; 1; 22-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 270; 1 Pt 2; R3-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: PURPOSE: To determine weight (water) loss levels for onset of muscular strength and endurance changes during deconditioning. METHODS: Seven men (27-40 yr) performed maximal shoulder-, knee-, and ankle-joint isometric (0 degree.s(-1) load) and isokinetic (60 degrees, 120 degrees, 180 degrees.s(-1) velocity) exercise tests during ambulatory control (AC), after 6 h of 6 degrees head-down tilt (HDT; dry-bulb temp. = 23.2 +/- SD 0.6 degrees C, relative humidity = 31.1+/- 11.1%) and after 6 h of 80 degrees foot-down head-out water immersion (WI; water temp. = 35.0 +/- SD 0.1 degree C) treatments. RESULTS: Weight (water) loss after HDT (1.10 +/- SE 0.14 kg, 1.4 +/- 0.2% body wt) and WI (1.54+/- 0.19 kg, 2.0 +/- 0.2% body wt) were not different, but urinary excretion with WI (1,354 +/- 142 ml.6 h(-1)) was 28% greater (p 〈 0.05) than that of 975 +/- 139 ml.6 h(-1) with HDT. Muscular endurance (total work; maximal flexion-extension of the non-dominant knee at 180 degrees.s(-1) for 30 s) was not different between AC and the WI or HDT treatments. Shoulder-, knee-, and ankle-joint strength was unchanged except for three knee-joint peak torques: AC torque (120 degrees.s(-1), 285 +/- 20 Nm) decreased to 268 +/- 21 Nm (delta = -6%, p 〈 0.05) with WI; and AC torques (180 degrees.s(-1), 260 +/- 19 Nm) decreased to 236 +/- 15 Nm (delta = -9%, p 〈 0.01) with HDT, and to 235 +/- 19 Nm (delta = -10%, p 〈 0.01) with WI. CONCLUSION: Thus, the total body hypohydration threshold level for shoulder- and ankle-joint strength and endurance decrements is more than 2% body weight (water) loss, while significant reduction in knee-joint muscular strength-endurance occurred only at moderate (120 degrees.s(-1) and lighter (180 degrees.s(-1)) loads with body weight loss of 1.4-2.0% following WI or HDT, respectively. These weight (water) losses and knee-joint strength decrements are somewhat less than the mean weight loss of 2.6% and knee-joint strength decrements of 6-20% of American astronauts after Skylab flights to 84 d.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 67; 1; 46-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: BACKGROUND: Maintaining intermediary metabolism is necessary for the health and well-being of astronauts on long-duration spaceflights. While peak oxygen uptake (VO2) is consistently decreased during prolonged bed rest, submaximal VO2 is either unchanged or decreased. METHODS: Submaximal exercise metabolism (61 +/- 3% peak VO2) was measured during ambulation (AMB day-2) and on bed rest days 4, 11, and 25 in 19 healthy men (32-42 yr) allocated into no exercise (NOE, N = 5) control, and isotonic exercise (ITE, N = 7) and isokinetic exercise (IKE, N = 7) training groups. Exercise training was conducted supine for two 30-min periods per day for 6 d per week: ITE training was intermittent at 60-90% peak VO2; IKE training was 10 sets of 5 repetitions of peak knee flexion-extension force at a velocity of 100 degrees s-1. Cardiac output was measured with the indirect Fick CO2 method, and plasma volume with Evans blue dye dilution. RESULTS: Supine submaximal exercise VO2 decreased significantly (*p 〈 0.05) by 10.3%* with ITE and by 7.3%* with IKE; similar to the submaximal cardiac output decrease of 14.5%* (ITE) and 20.3%* (IKE), but different from change in peak VO2 (+1.4% with ITE and -10.2%* with IKE) and decrease in plasma volume of -3.7% (ITE) and -18.0%* (IKE). Reduction of submaximal VO2 during bed rest correlated 0.79 (p 〈 0.01) with submaximal Qc, but was not related to change in peak VO2 or plasma volume. CONCLUSION: Reduction in submaximal oxygen uptake during prolonged bed rest is related to decrease in exercise but not resting cardiac output; perturbations in active skeletal muscle metabolism may be involved.
    Keywords: Aerospace Medicine
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 67; 4; 314-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Journal of clinical anesthesia (ISSN 0952-8180); Volume 8; 3 Suppl; 29S-37S
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: The present study was aimed at evaluating quantitatively gamma-aminobutyric acid (GABA) immunoreactivity in the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension. A reduction in the number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-containing terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system of hindlimb-suspended animals, it is suggested that the unloading due to hindlimb suspension alters afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the reduction in immunoreactivity of local circuit GABAergic neurons and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.
    Keywords: Aerospace Medicine
    Type: Journal of neuroscience research (ISSN 0360-4012); Volume 44; 6; 532-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Annals of the New York Academy of Sciences (ISSN 0077-8923); Volume 781; 666-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.
    Keywords: Aerospace Medicine
    Type: Archives of physical medicine and rehabilitation (ISSN 0003-9993); Volume 77; 8; 773-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: There is considerable interest in determining whether hypergravity can be used as a countermeasure for microgravity-induced bone loss. This study was conducted on 20 immature male rats in order to investigate possible elastic adaptations of cortical bone in rapidly growing rats exposed to chronic hypergravity. Ten rats were continuously centrifuged for 14 days at twice gravitational acceleration (2G) on a 12.75 foot radius centrifuge and 10 rats concurrently acted as stationary controls. The effect of hypergravity on the elastic characteristics of cortical bone was quantified via ultrasonic wave propagation. Propagation velocities of longitudinal and shear waves were measured through cubic cortical specimens from the posterior femoral diaphyses. Density was measured with an Archimedes' technique. The orthotropic elastic properties were calculated and used to compare the difference between groups. Results showed an average increase in both the Young's moduli (Eii, + 2.2%) and shear moduli (Gij, + 4.3%) with a statistically significant increase only in G12 (+15.7%, P = 0.046). The ratio of transverse to axial strain (Poisson's ratio, nuij) demonstrated statistically significant changes in nu12, nu21, nu13, and nu31 (P 〈 0.05). These findings suggest that although slight elastic changes were incurred via a hypergravity environment, the treatment level or duration in this study do not dramatically perturb the normal elastic behavior of cortical bone and that dramatic biomechanical differences noted in previous studies were due more to structural changes than material elasticity changes. Hypergravity applied post facto to a microgravity environment would offer further illucidation of this method as treatment for a degenerative spaceflight experience.
    Keywords: Aerospace Medicine
    Type: Calcified tissue international (ISSN 0171-967X); Volume 59; 3; 214-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: Dynamics of the left heart ventricular muscle contractility and compliance was studied in 4 monkeys in the head down position (antiorthostatic hypokinesia) with the body angle 10 during 2 weeks. Functional tests on a tilt table and under two conditions of centrifuge rotation were performed prior to and after the antiorthostatic hypokinesia. No changes in the left heart ventricular muscle contractility was found. However, the sensitivity level of the baroreflex control decreased. Compliance of the left heart myocardial fibre increased in the first hours and days of the antiorthostatic hypokinesia.
    Keywords: Aerospace Medicine
    Type: Fiziologicheskii zhurnal imeni I.M. Sechenova / Rossiiskaia akademiia nauk (ISSN 1027-3646); Volume 82; 10-11; 34-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
    Keywords: Aerospace Medicine
    Type: Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale (ISSN 0014-4819); Volume 112; 2; 325-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: The correlation is low between the occurrence of gas bubbles in the pulmonary artery, called venous gas emboli (VGE), and subsequent decompression illness (DCI). The correlation improves when a "grade" of VGE is considered; a zero to four categorical classification based on the intensity and duration of the VGE signal from a Doppler bubble detector. Additional insight about DCI might come from an analysis of the time course of the occurrence of VGE. Using the NASA Hypobaric Decompression Sickness Databank, we compared the time course of the VGE outcome between 322 subjects who exercised and 133 Doppler technicians who did not exercise to evaluate the role of physical activity on the VGE outcome and incidence of DCI. We also compared 61 subjects with VGE and DCI with 110 subjects with VGE but without DCI to identify unique characteristics about the time course of the VGE outcome to try to discriminate between DCI and no-DCI cases. The VGE outcome as a function of time showed a characteristic short lag, rapid response, and gradual recovery phase that was related to physical activity at altitude and the presence or absence of DCI. The average time for DCI symptoms in a limb occurred just before the time of the highest fraction of VGE in the pulmonary artery. It is likely, but not certain, that an individual will report a DCI symptom if VGE are detected early in the altitude exposure, the intensity or grade of VGE rapidly increases from a limb region, and the intensity or grade of VGE remains high.
    Keywords: Aerospace Medicine
    Type: Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc (ISSN 1066-2936); Volume 23; 3; 141-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: The Space Shuttle program has produced a database of information on the cardiovascular responses to spaceflight, based on in-flight as well as pre- and post-flight assessments undertaken as part of the assessment of the health, safety, and efficiency of Shuttle crews. The methods used in routine cardiovascular assessments of Space Shuttle astronauts are reviewed, and the major findings of these investigations are presented.
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S18-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 28; 10 Suppl; S90-2; discussion S92-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: We tested the hypothesis that one bout of maximal exercise performed at the conclusion of prolonged simulated microgravity would improve blood pressure stability during an orthostatic challenge. Heart rate (HR), mean arterial blood pressure (MAP), norepinephrine (NE), epinephrine (E), arginine vasopressin (AVP), plasma renin activity (PRA), atrial natriuretic peptide (ANP), cardiac output (Q), forearm vascular resistance (FVR), and changes in leg volume were measured during lower body negative pressure (LBNP) to presyncope in seven subjects immediately prior to reambulation from 16 days of 6 degrees head-down tilt (HDT) under two experimental conditions: 1) after maximal supine cycle ergometry performed 24 h before returning to the upright posture (exercise) and 2) without exercise (control). After HDT, the reduction of LBNP tolerance time from pre-HDT levels was greater (P = 0.041) in the control condition (-2.0 +/- 0.2 min) compared with the exercise condition (-0.4 +/- 0.2 min). At presyncope after HDT, FVR and NE were higher (P 〈 0.05) after exercise compared with control, whereas MAP, HR, E, AVP, PRA, ANP, and leg volume were similar in both conditions. Plasma volume (PV) and carotid-cardiac baroreflex sensitivity were reduced after control HDT, but were restored by the exercise treatment. Maintenance of orthostatic tolerance by application of acute intense exercise after 16 days of simulated microgravity was associated with greater circulating levels of NE, vasoconstriction, Q, baroreflex sensitivity, and PV.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 271; 4 Pt 2; R837-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-08-24
    Description: The Physiology Research Branch at Brooks AFB conducts both human and nonhuman primate experiments to determine the effects of microgravity and hypergravity on the cardiovascular system and to identify the particular mechanisms that invoke these responses. Primary investigative efforts in our nonhuman primate model require the determination of total peripheral resistance, systemic arterial compliance, and pressure-volume loop characteristics. These calculations require beat-to-beat measurement of aortic flow. This study evaluated accuracy, linearity, biocompatability, and anatomical features of commercially available electromagnetic (EMF) and transit-time flow measurement techniques. Five rhesus monkeys were instrumented with either EMF (3 subjects) or transit-time (2 subjects) flow sensors encircling the proximal ascending aorta. Cardiac outputs computed from these transducers taken over ranges of 0.5 to 2.0 L/min were compared to values obtained using thermodilution. In vivo experiments demonstrated that the EMF probe produced an average error of 15% (r = .896) and 8.6% average linearity per reading, and the transit-time flow probe produced an average error of 6% (r = .955) and 5.3% average linearity per reading. Postoperative performance and biocompatability of the probes were maintained throughout the study. The transit-time sensors provided the advantages of greater accuracy, smaller size, and lighter weight than the EMF probes. In conclusion, the characteristic features and performance of the transit-time sensors were superior to those of the EMF sensors in this study.
    Keywords: Aerospace Medicine
    Type: Journal of investigative surgery : the official journal of the Academy of Surgical Research (ISSN 0894-1939); Volume 9; 6; 455-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-24
    Description: This communication extends a statistical analysis of forced-descent decompression sickness at altitude in exercising subjects (J Appl Physiol 1994; 76:2726-2734) with a data subset having an additional explanatory variable, rate of ascent. The original explanatory variables for risk-function analysis were environmental pressure of the altitude, duration of exposure, and duration of pure-O2 breathing before exposure; the best fit was consistent with the idea that instantaneous risk increases linearly as altitude exposure continues. Use of the new explanatory variable improved the fit of the smaller data subset, as indicated by log likelihood. Also, with ascent rate accounted for, replacement of the term for linear accrual of instantaneous risk by a term for rise and then decay made a highly significant improvement upon the original model (log likelihood increased by 37 log units). The authors conclude that a more representative data set and removal of the variability attributable to ascent rate allowed the rise-and-decay mechanism, which is expected from theory and observations, to become manifest.
    Keywords: Aerospace Medicine
    Type: Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc (ISSN 1066-2936); Volume 23; 4; 225-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-24
    Description: Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.
    Keywords: Aerospace Medicine
    Type: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (ISSN 0884-0431); Volume 14; 1; 21-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-24
    Description: Patients with neurogenic orthostatic hypotension may use portable folding chairs to prevent or reduce symptoms of low blood pressure. However, a concomitant movement disorder may limit the use of these chairs in daily living. In this prospective study, 13 patients with orthostatic hypotension, balance disturbance associated with motor disability, or both examined three commercially available portable folding chairs. A questionnaire was used to document the characteristics in chair design that were relevant for satisfactory use to these patients. Armrests, seat width, and an adjustable sitting height were found to be important features of a portable folding chair. One chair was selected by 11 of 13 patients to fit most needs.
    Keywords: Aerospace Medicine
    Type: Clinical autonomic research : official journal of the Clinical Autonomic Research Society (ISSN 0959-9851); Volume 9; 6; 341-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2011-08-24
    Description: Tibial bones of rats flown onboard the SLS-2 shuttle mission were studied. Trabecular bone parameters were investigated, including growth plate height, trabecular bone volume, thickness and number, and trabecular separation in the primary and secondary spongiosa. Several histomorphometric changes were noted, allowing researchers to conclude that exposure to microgravity resulted in osteopenia of spongy bone of tibial metaphysis. The roles of bone formation and bone resorption are discussed.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 3; 2; 80-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2011-08-24
    Description: Ionizing radiation environment models, a 3-D spacecraft mass model, and radiation transport codes have been used to predict the radiation dose and linear energy transfer (LET) spectra measured at various locations on the LDEF satellite. The predictions are compared with thermoluminescent dosimeter measurements of the trapped proton and electron doses and with LET spectra measured by plastic nuclear track detectors. The predicted vs observed comparisons indicate some of the uncertainties of present ionizing radiation environment models for low Earth-orbit missions.
    Keywords: Aerospace Medicine
    Type: Radiation measurements (ISSN 1350-4487); Volume 26; 6; 751-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2011-08-24
    Description: Circulatory and hormonal parameters were measured in endurance-trained athletes and control subjects during orthostatic tolerance tests conducted prior to and after three days of bed rest. Heart rate and blood pressure changes due to bed rest appeared to be the same in both groups. Hormonal changes, however, were different between the two groups, with the athletes having decreased sympathoadrenal activity and increased plasma renin activity. Untrained subjects had changes in cortisol secretion only.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 3; 2; 40-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2011-08-24
    Description: A human-powered short-arm centrifuge is described. This centrifuge could be used during spaceflight to provide +Gz acceleration while subjects performed exercise, thus supplying two forms of weightlessness countermeasures. Results from a study of cardiovascular responses while using the centrifuge are presented.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 3; 2; 61-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2004-12-03
    Description: We have successfully completed the series of experiments planned for year 1 and the first part of year 2 measuring the induction of chromosome aberrations induced in multiple cell types by three model space radiations: Fe-ions, protons and photons. Most of these data have now been compiled and a significant part subjected to detailed data analyses, although continuing data analysis is an important part of our current and future efforts. These analyses are directed toward defining the patterns of chromosomal damage induction by the three radiations and the extent to which such patterns are dependent on the type of cell irradiated. Our studies show significant differences, both quantitatively and qualitatively, between response of different cell types to these radiations however there is an overall pattern that characterizes each type of radiation in most cell lines. Thus our data identifies general dose-response patterns for each radiation for induction of multiple types of chromosomal aberrations but also identifies significant differences in response between some cell types. Specifically, we observe significant resistance for induction of aberrations in rat mammary epithelial cells when they are irradiated in vivo and assayed in vitro. Further, we have observed some remarkable differences in susceptibility to certain radiation-induced aberrations in cells whose genome has been modulated for two cancer- relevant genes, TP53 and CDKNIA. This data, if confirmed, may represent the first evidence of gene-specific differences in cellular metabolism of damage induced by densely-ionizing radiation that confers substantial sensitivity to protons compared to photons.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-99 - B-101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2004-12-03
    Description: In addition to adapting to microgravity, major neurovestibular problems of space flight include postflight difficulties with standing, walking, turning corners, and other activities that require stable upright posture and gaze stability. These difficulties inhibit astronauts' ability to stand or escape from their vehicle during emergencies. The long-ter7n goal of the NSBRI is the development of countermeasures to ameliorate the effects of long duration space flight. These countermeasures must be tested with valid and reliable tools. This project aims to develop quantitative, parametric approaches for assessing gaze stability and spatial orientation during normal gait and when gait is perturbed. Two of this year's most important findings concern head fixation distance and ideal trajectory analysis. During a normal cycle of walking the head moves up and down linearly. A simultaneous angular pitching motion of the head keeps it aligned toward an imaginary point in space at a distance of about one meter in front of a subject and along the line of march. This distance is called the head fixation distance. Head fixation distance provides the fundamental framework necessary for understanding the functional significance of the vestibular reflexes that couple head motion to eye motion. This framework facilitates the intelligent design of counter-measures for the effects of exposure to microgravity upon the vestibular ocular reflexes. Ideal trajectory analysis is a simple candidate countermeasure based upon quantifying body sway during repeated up and down stair stepping. It provides one number that estimates the body sway deviation from an ideal sinusoidal body sway trajectory normalized on the subject's height. This concept has been developed with NSBRI funding in less than one year. These findings are explained in more detail below. Compared to assessments of the vestibuo-ocular reflex, analysis of vestibular effects on locomotor function is relatively less well developed and quantified. We are improving this situation by applying methodologies such as nonlinear orbital stability to quantify responses and by using multivariate statistical approaches to link together the responses across separate tests. In this way we can exploit the information available and increase the ability to discriminate between normal and pathological responses. Measures of stability and orientation are compared to measures such as dynamic visual acuity and with balance function tests. The responses of normal human subjects and of patients having well documented pathophysiologies are being characterized. When these studies are completed, we should have a clearer idea about normal and abnormal patterns of eye, head, and body movements during locomotion and their stability in a wide range of environments. We plan eventually to use this information to validate the efficacy of candidate neurovestibular and neuromuscular rehabilitative techniques. Some representative studies made during this year are summarized.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-86 - B-90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-12-03
    Description: We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-12-03
    Description: The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as upstream targets for the effects of weightlessness. In the past year we have determined that the expression of E Proteins is restricted to specific fiber types by post-transcriptional mechanisms. By far, the most prevalent mechanism of cellular control for achieving post-transcriptional regulation of gene expression is selective proteolysis -through the ubiquitin -proteasome pathway. Steady-state levels of HEB message are similar in all fast and slow skeletal muscle fiber types, yet the protein is restricted to Type IIX fibers. HEB appears to be a nodal point for regulating fiber-specific transcription, as expression of the transcription factor is regulated at the post-transcriptional level. It is not clear at present whether the regulation is at the level of protein synthesis or degradation. We are now poised to evaluate the biological role of ubiquitination in fiber specific-gene expression by controlling the post-transcriptional expression of E Proteins. The use of metabolic labelling and pharmacological inhibitors of the ubiquitin pathway will be used to identify the mode of regulation of the Type IIX expression pattern. The potential role of specific kinases in effecting the restriction of HEB expression will be examined by using both inhibitors and activators. The results of these studies will provide the necessary information to evaluate the biological role of E proteins in controlling fiber type transitions, and in potentially attenuating the atrophic effects of microgravity conditions. We have also recently shown that ectopic expression of the HEB protein transactivates the Type IIX-specific skeletal a-actin reporter. The 218 bp skeletal a-actin promoter drives transgene expression solely in mature Type IIX fibers. A mouse also carrying the transgene MLCI/HEB (which ectopically expresses the E Protein HEB in Type IIB fibers) forces expression of the skeletal a-actin reporter gene in Type IIB fibers. We can now dissect the composition of this fiber-specific cis-element. The skeletal a-actin promoter is quite compact and has been extensively characterized in vitro for activity and binding factors. The single E box may act as a binding target of myogenic factor/HEB heterodimer to allow for IIX expression. The HEB transcription factor may recognize either the precise flanking sequences of the E Box, or perhaps interacting with other proteins bound nearby, and activating expression in Type IIX fibers. This E box will be both ablated, and alternatively, as ablation may well destroy any muscle-specific transcriptional activity, flanking sequences substituted with those surrounding the E box (El) of the myogenin promoter. Modification of fiber-specific transgene expression will be tested in transgenic mice. The results of these studies will provide basic information on the regulatory circuitry underlying fiber specificity, and will form the basis for building appropriate transgenic regulatory cassettes to effect fiber transitions in subsequent experimental manipulations on unweighted muscles.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-73 - B-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-12-03
    Description: The Cardiovascular Alterations Team is currently conducting studies to determine what alterations in hemodynamic regulation result from sixteen days of simulated microgravity exposure in normal human subjects. In this project we make additional measurements on these same study subjects in order to determine whether there is an increase in susceptibility to ventricular arrhythmias resulting from simulated microgravity exposure. Numerous anecdotal and documented reports from the past 30 years suggest that the incidence of ventricular arrhythmias among astronauts is increased during space flight. For example, documented runs of ventricular tachycardia have been recorded from crew members of Skylab and Mir, there was much attention given by the lay press to Mir Commander Vasily Tslbliyev's complaints of heart rhythm irregularities in July of 1997, and cardiovascular mechanisms may have been causal in the recent death of an experimental primate shortly after return from space. In 1986, a Mir cosmonaut, Alexander Laveikin, was brought home and replaced with an alternate cosmonaut as a result of cardiac dysrhythmias that began during extravehicular activity. Furthermore, at a joint NASA/NSBRI workshop held in January 1998, cardiac arrhythmias were identified as the highest priority cardiovascular risk to a human Mars mission. Despite the evidence for the risk of a potentially lethal arrhythmia resulting from microgravity exposure, the effects of space flight and the associated physiologic stresses on cardiac conduction processes are not known, and an increase in cardiac susceptibility to arrhythmias has never been quantified. In this project, we are determining whether simulated space flight increases the risk of developing life-threatening heart rhythm disturbances such as sustained ventricular tachycardia (defined as ventricular tachycardia lasting at least 30 seconds or resulting in hemodynamic collapse) and ventricular fibrillation. We are obtaining measures of cardiac susceptibility to ventricular arrhythmias in subjects exposed to simulated space flight in the Human Studies Core protocol being conducted by the Cardiovascular Alterations Team, which involves sixteen days .of bed rest. In particular, we are applying a powerful new non-invasive technology, developed in Professor Cohen's laboratory at MIT for the quantitative assessment of the risk of life-threatening ventricular arrhythmias. This technology involves the measurement of microvolt levels of T wave alternans (TWA) during exercise stress, and was recently granted approval by the Food and Drug Administration to be used for the clinical evaluation of patients suspected to be at risk of ventricular arrhythmias. In addition, we are obtaining 24 hour Holter monitoring (to detect non-sustained ventricular tachycardia and to assess heart rate variability). We are also conducting protocols to obtain these same measures on a monthly basis for up to four months in subjects in the Bone Demineralization/calcium Metaboloism Team's long term bed rest study.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-28 - B-29
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-12-03
    Description: Exposure to microgravity during space flight results in profound physiologic changes. Numerous studies have shown changes in circulating populations of peripheral blood immune cells immediately after space flight. It is currently unknown if these changes result from exposure to microgravity or are caused by the stress of reentry and readaptation to gravity. We have developed the whole blood staining device as a system for the staining of whole blood collected during space flight for subsequent flow cytometric analysis, This device contains all liquids to address safety issues concerned with space flight and also moves the cells through the staining, lyse/fixation and dilution steps.
    Keywords: Aerospace Medicine
    Type: KC-135 and Other Microgravity Simulations; 114-116; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-12-03
    Description: The everyday perception of one's bodily orientation is determined by two classes of sensory cues: Vision and gravity. Because these cues typically agree, as when one is standing in a lighted room, it is difficult if not impossible to determine the degree to which each contributes to spatial perception. Therefore, in order to make this judgment it is necessary to introduce a conflict between vision and gravity and note the resulting perceptual experience. One simple way to do this is to expose the observer to a visual framework that has been rolled or pitched relative to the gravitational vector. The underlying assumption is that the separate contributions of vision and gravity to the perception of bodily orientation that are measured in such a situation of intersensory conflict are the same as those that operate under normal (i.e., non-conflicting) circumstances.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 449-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Presentations from the assembled group of investigators involved in specific research projeects related to skeletal muscle in space flight can categorized in thematic subtopics: regulation of contractile protein phenotypes, muscle growth and atrophy, muscle structure: injury, recovery,and regeneration, metabolism and fatigue, and motor control and loading factors.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 359-362
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-12-03
    Description: Development of orthostatic hypotension and intolerance in astronauts who return to earth following a spaceflight mission represents a significant operational concern to NASA. Reduced plasma volume, vascular resistance, and baroreflex responsiveness following exposure to actual and ground-based analogs of microgravity have been associated with orthostatic instability, suggesting that these mechanisms may contribute alone or in combination to compromise of blood pressure regulation after spaceflight. It therefore seems reasonable that development of procedures designed to reverse or restore the effects of microgravity on regulatory mechanisms of blood volume, vascular resistance and cardiac function should provide some protection against postflight orthostatic intolerance. Several investigations have provided evidence that a single bout of exhaustive dynamic exercise enhances functions of mechanisms responsible for blood pressure stability. Therefore, the purpose of our research project was to conduct a series of experiments using ground-based analogs of reduced gravity (i.e., prolonged restriction to the upright standing posture) in human subjects to investigate the hypothesis that a single bout of dynamic maximal exercise would restore blood volume, vascular resistance and cardiac function and improve blood pressure stability.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 260-262
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: It was apparent that the bed-rest and spaceflight data indicated that decreases in plasma volume and cardiac atrophy along with cardiac remodeling were fundamental changes which predisposed many astronauts to post flight orthostatic intolerance. Despite the recently acquired in-flight and post-flight muscle sympathetic nerve activity findings suggesting that the sympathetic nerve responses were appropriate there remains significant contrary data from bed-rest studies, post- flight stand tests and hind-limb unweighted rat studies that suggest that the vasoconstrictive responses were compromised at least insufficient in susceptible individuals. The key issues raised is whether a diminished increase in sympathetic activity from baseline without changes in 254 First Biennial Space Biomedical Investigators'Workshop Cardiovascular peak response or receptor adaptations is an abnormal response or is an individual variance of response to the accentuated decrease in stroke volume. Data relating autonomic neural control of heart rate were presented to suggest that the vagal and sympathetic control of heart rate was attenuated. Also, bed-rest and space flight induced attenuated baroreflex control of heart rate was shown to be restored to pre-bedrest function by one bout of maximal dynamic exercise. However, these data were confounded by relying on the use of R-R interval as a measure of efferent responses of the baroreflex during a condition in which the baseline heart rate was changed. Clearly the idea that the autonomic control of heart rate may be changed by microgravity needs further investigation. This direction is suggested despite the fact that in the triple product (HR x SV x TPR = MAP) assessment of the regulation of arterial blood pressure during orthostasis the role of the HR reflex may be less influential than that associated. with cardiac atrophy (SV changes) and aberrant sympathetic vasoconstriction (resistance) changes. Although sympathetic nerve activity responses in-flight and post-flight on neurolab appeared appropriate, enough bed-rest and post-flight stand test data, along with animal model data suggest that vasoconstriction was compromised. The mechanism of this compromised vasoconstriction needs to be delineated. Other major findings concerning microgravity and physiological regulatory systems are that: I . Thermoregulatory adaptation appear to suggest some decrements in the control of cutaneous vasodilation and sweating; 2. Calcium resorption and dietary calcium need to be defined for differing durations of spaceflight, especially as the effects of excess calcium on vasomotor function appears to be detrimental; 3. Neurohumoral mechanisms of microgravity induced changes in neural function and the regulation of plasma volume and total body water, bone resorption and autonomic neural control of the circulation need further delineation; 4. As performance of work tasks become prolonged, the mechanisms of blood pressure regulation in microgravity needs to be used in the recovery period from prolonged work tasks.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 249-256
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-12-03
    Description: Space flight produces a number of metabolic and physiological changes in the crewmembers exposed to microgravity. Following launch, body fluid volumes, electrolyte levels, and bone and muscle undergo changes as the human body adapts to the weightless environment. Changes in the urinary chemical composition may lead to the potentially serious consequences of renal stone formation. Previous data collected immediately after space flight indicate changes in the urine chemistry favoring an increased risk of calcium oxalate and uric acid stone formation (n = 323). During short term Shuttle space flights, the changes observed include increased urinary calcium and decreased urine volume, pH and citrate resulting in a greater risk for calcium oxalate and brushite stone formation (n = 6). Results from long duration Shuttle/Mir missions (n = 9) followed a similar trend and demonstrated decreased fluid intake and urine volume and increased urinary calcium resulting in a urinary environment saturated with the calcium stone-forming salts. The increased risk occurs rapidly upon exposure to microgravity, continues throughout the space flight and following landing. Dietary factors, especially fluid intake, or pharmacologic intervention can significantly influence the urinary chemical composition. Increasing fluid intake to produce a daily urine output of 2 liters/day may allow the excess salts in the urine to remain in solution, crystals formation will not occur and a renal stone will not develop. Results from long duration crewmembers (n = 2) who had urine volumes greater than 2.5 L/day minimized their risk of renal stone formation. Also, comparisons of stone-forming risk in short duration crewmembers clearly identified greater risk in those who produced less than 2 liters of urine/day. However, hydration and increased urine output does not correct the underlying calcium excretion due to bone loss and only treats the symptoms and not the cause of the increased urinary salts. Dietary modification and promising pharmacologic treatments may also be used to reduce the potential risk for renal stone formation. Potassium citrate is being used clinically to increase the urinary inhibitor levels to minimize the development of crystals and the growth of renal stones. Bisphosphonates are a class of drugs recently shown to help in patients with osteoporosis by inhibiting the loss of bones in elderly patients. This drug could potentially prevent the bone loss observed in astronauts and thereby minimize the increase in urinary calcium and reduce the risk for renal stone development. Results of NASA's renal stone risk assessment program clearly indicate that exposure to microgravity changes the urinary chemical environment such that there is an increased risk for supersaturation of stone-forming salts, including calcium oxalaie and brushite. These studies have indicated specific avenues for development of countermeasures for the increased renal stone risk observed during and following space flight. Increased hydration and implementation of pharmacologic countermeasures should largely mitigate the in-flight risk of renal stones.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 242
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-12-03
    Description: Informal benchmarking using personal or professional networks has taken place for many years at the Kennedy Space Center (KSC). The National Aeronautics and Space Administration (NASA) recognized early on, the need to formalize the benchmarking process for better utilization of resources and improved benchmarking performance. The need to compete in a faster, better, cheaper environment has been the catalyst for formalizing these efforts. A pioneering benchmarking consortium was chartered at KSC in January 1994. The consortium known as the Kennedy Benchmarking Clearinghouse (KBC), is a collaborative effort of NASA and all major KSC contractors. The charter of this consortium is to facilitate effective benchmarking, and leverage the resulting quality improvements across KSC. The KBC acts as a resource with experienced facilitators and a proven process. One of the initial actions of the KBC was to develop a holistic methodology for Center-wide benchmarking. This approach to Benchmarking integrates the best features of proven benchmarking models (i.e., Camp, Spendolini, Watson, and Balm). This cost-effective alternative to conventional Benchmarking approaches has provided a foundation for consistent benchmarking at KSC through the development of common terminology, tools, and techniques. Through these efforts a foundation and infrastructure has been built which allows short duration benchmarking studies yielding results gleaned from world class partners that can be readily implemented. The KBC has been recognized with the Silver Medal Award (in the applied research category) from the International Benchmarking Clearinghouse.
    Keywords: Aerospace Medicine
    Type: Proceedings from the 1998 Occupational Health Conference: Benchmarking for Excellence; 20-23; NASA/CP-1999-208543
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2004-12-03
    Description: It was hypothesized that the absence of the gravitational reference cues may be responsible for adaptive changes in the vestibulo-ocular reflex (VOR). These changes result in the alteration of the direction of the compensatory slow phase (SP) eye movements in microgravity. In order to test this hypothesis, the direction of the VOR SP relative to head motion was investigated in three astronauts during and after an eight-day orbital flight by passive sinusoidal pitch or yaw angular motion at two frequencies. The results of the inflight and postflight testing are considered. The observed deviation between VOR SP and head motion suggests that spatial transformation in the VOR occurred during adaptation to microgravity. It is considered that, although this spatial transformation might be due to a sensory bias, it may reflect central changes in the reference system used for spatial orientation in microgravity.
    Keywords: Aerospace Medicine
    Type: ; 77-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-12-03
    Description: The vulnerability to medical emergencies is greatest in space where there are real limits to the availability or effectiveness of ground based assistance. Moreover, astronaut safety and health maintenance will be of increasing importance as we venture out into space for extended periods of time. It is therefore critical to understand the mechanisms of the regulatory physiology of homeostatic systems (sleep, circadian, neuroendocrine, fluid and nutritional balance) and the key roles played in adaptation. This synergy project has combined aims of the "Human Performance Factors, Sleep and Chronobiology Team"; the "Immunology, Infection and Hematology Team"; and the "Muscle Alterations and Atrophy Team", to broadly address the effects of long term sleep reduction, as is frequently encountered in space exploration, on neuroendocrine, neuroimmune and circulating growth factors. Astronaut sleep is frequently curtailed to averages of between 4- 6.5 hours per night. There is evidence that this amount of sleep is inadequate for maintaining optimal daytime functioning. However, there is a lack of information concerning the effects of chronic sleep restriction, or reduction, on regulatory physiology in general, and there have been no controlled studies of the cumulative effects of chronic sleep reduction on neuroendocrine and neuroimmune parameters. This synergy project represents a pilot study designed to characterize the effects of chronic partial sleep deprivation (PSD) on neuroendocrine, neuroimmune and growth factors. This project draws its subjects from two (of 18) conditions of the larger NSBRI project, "Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight", one of the projects on the "Human Performance Factors, Sleep and Chronobiology Team ". For the purposes of this study, to investigate the effects of chronic sleep loss on neuroendocrine and neuroimmune function, we have focused on the two extreme sleep conditions from this larger study: a 4.2 hour per night condition, and a 8.2 hour per night condition. During space flight, muscle mass and bone density are reduced, apparently due to loss of GH and IGF-I, associated with microgravity. Since 〉70% of growth hormone (GH) is secreted at night in normal adults, we hypothesized that the chronic sleep restriction to 4 hours per night would reduce GH levels as measured in the periphery. In this synergy project, in collaboration with the "Muscle Alterations and Atrophy Team ", we are measuring insulin-like growth factor-I (IGF-I) in peripheral circulation to test the prediction that it will be reduced by chronic sleep restriction. In addition to stress modulation of immune function, recent research suggests that sleep is also involved. While we all have the common experience of being sleepy when suffering from infection, and being susceptible to infection when not getting enough sleep, the mechanisms involved in this process are not understood and until recently have gone largely overlooked. We believe that the immune function changes seen in spaceflight may also be related to the cumulative effects of sleep loss. Moreover, in space flight, the possibility of compromised immune function or of the reactivation of latent viruses are serious potential hazards for the success of long term missions. Confined living conditions, reduced sleep, altered diet and stress are all factors that may compromise immune function, thereby increasing the risks of developing and transmitting disease. Medical complications, which would not pose serious problems on earth, may be disastrous if they emerged in space.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-123 - B-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-12-03
    Description: Manned exploration of space exposes the explorers to a complex and novel radiation environment. The galactic cosmic ray and trapped belt radiation (predominantly proton) components of this environment are relatively constant, and the variations with the solar cycle are well understood and predictable. The level of radiation encountered in low earth orbits is determined by several factors, including altitude, inclination of orbit with respect to the equator, and spacecraft shielding. At higher altitudes, and on a Mars mission, the level of radiation exposure will increase significantly. A significant fraction of the dose may be delivered by solar particle events which vary dramatically in dose rate and incident particle spectrum. High-LET radiation is of particular concern. High-LET radiation, a component of galactic cosmic rays (GCR), is comprised of a variety of charged particles of various energies (10 MeV/n to 10 GeV/n), including about 87% photons, 12% helium ions, and heavy ions (including iron). These high energy particles can cause significant damage to target cells. The different particle types and energies result in different patterns of energy deposition at the molecular and cellular level in a primary target cell. They can also cause significant damage to other, nearby cells as a result of secondary particles. Protons, for instance produce secondaries that include photons, neutrons, pions, heavy particles, as well as gamma rays. Heavy ions deposit energy in a "track" in which the magnitude of the damage varies as the particle loses energy. Heavy ions produce secondary delta rays, or electrons. The distribution of damage through tissue is described by a Bragg curve which will be characteristic for different energies. Needless to say there are differences in the RBE of protons and a particles. High-LET heavy ions are particularly damaging to cells as they do continual damage throughout their track. Differences in these energy deposition patterns can significantly influence the nature of DNA damage and the ability of cellular systems to repair such damage. It has been suspected that these differences also affect the spatial distribution of damage within the DNA of the interphase cell nucleus and produce corresponding differences in endpoints related to health effects. The interaction of a single high-LET particle with chromatin has been suggested to cause multiple double strand breaks within a relatively short distance. In part this is due to the organization of DNA into chromatin fibers in which distant regions of the DNA helix can be physically juxtaposed by the various levels of coiling of the DNA. This prediction was confirmed by the detection of the generation of double strand DNA fragments of 100-2000 bp following exposure to high-LET ions (including iron).
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-102 - B-104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2004-12-03
    Description: Stabilization of the eyes and head during body movements is important for maintaining balance and keeping the images of objects stationary on our retinas. Impairment of this ability can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. In the absence of a normal earth gravity field, the dynamics of head stabilization, and the interpretation of vestibular signals that sense gravity and linear acceleration, are subject to change. Transitions between different gravitoinertial force environments - as during different phases of space flight - provide an extreme test of the adaptive mechanisms that maintain these reflexive abilities. It is vitally important to determine human adaptive capabilities in such a circumstance, so that we can know to what extent the sensorimotor skills acquired in one gravity environment will transfer to others. Our work lays the foundation for understanding these capabilities, and for determining how we can aid the processes of adaptation and readaptation. An integrated set of experiments addresses this issue. We use the general approach of adapting some type of reflexive eye movement (saccades, the angular vestibulo-ocular reflex (AVOR), the linear vestibulo-ocular reflex (LVOR)), or the vestibulo-collic reflex (VCR), to a particular change in gain or phase in one condition of gravitoiner-tial force, and adapting to a different gain or phase (or asking for no change) in a second gravitoinertial force condition, and then seeing if the gravitoinertial force itself - the context cue - can recall the previously learned adapted responses. The majority of the experiments in the laboratory use the direction of vertical gaze or the direction of gravity (head tilt) as the context cue. This allows us to study context-specificity in a ground-based setting. One set of experiments, to be performed in parabolic flight, specifically uses the magnitude of gravitoinertial force as a context cue. This is a much better analog of the situation encountered in space flight. Various experiments investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning mechanisms. We use otolith (gravity) signals as the contextual cue for switching between adapted states of the saccadic system, the angular and linear vestibulo-ocular reflexes, and the VCR. (By LVOR we mean the oculomotor response - horizontal, vertical, and torsional - to linear translation of the head and body.) We are studying the effect of context on adaptation of saccade gain, phase and gain of the AVOR and LVOR, on ocular counterrolling (OCR) in response to static head tilt, and on head/neck reflexes (VCR) in response to rotation in different orientations. Such research is particularly germane to potential problems of postural and oculomotor control upon exposure to different gravitational environments.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-80 - B-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2004-12-03
    Description: The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-70 - B-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2004-12-03
    Description: It is now clear that the marked loss of muscle mass that occurs with disuse, denervation or in many systemic diseases (cancer cachexia, sepsis, acidosis, various endocrine disorders) is due primarily to accelerated degradation of muscle proteins, especially myofibrillar components. Recent work primarily in Dr. Goldberg's laboratory had suggested that in these diverse conditions, the enhancement of muscle proteolysis results mainly from activation of the Ub-proteasome degradative pathway. In various experimental models of atrophy, rat muscles show a common series of changes indicative of activation of this pathway, including increases in MRNA for Ub and proteasome subunits, content of ubiquitinated proteins, and sensitivity to inhibitors of the proteasome. In order to understand the muscle atrophy seen in weightlessness, Dr. Goldberg's laboratory is collaborating with Dr. Baldwin in studies to define the changes in these parameters upon hind-limb suspension. Related experiments will explore the effects on this degradative system of exercise regimens and also of glucocorticoids, which are known to rise in space personnel and to promote muscle, especially in inactive muscles. The main goals will be: (A) to define the enzymatic changes leading to enhanced activity of the Ub-proteasome pathway in inactive muscles upon hind-limb suspension, and the effects on this system of exposure to glucocorticoids or exercise; and (B) to learn whether inhibitors of the Ub-proteasome pathway may be useful in retarding the excessive proteolysis in atrophying muscles. Using muscle extracts, Dr. Goldberg's group hopes to define the rate-limiting, enzymatic changes that lead to the accelerated Ub-conjugation and protein degradation. They have recently developed cell-free preparations from atrophying rat muscles, in which Ub-conjugation to muscle proteins is increased above control levels. Because these new preparations seem to reproduce the changes occurring in vivo, they will analyze in depth extracts from normal and atrophying muscles to compare the activities of the Ub-activating enzyme (El), the various LTh-carrier proteins (E2s), and Ub-protein ligases (E3s). Recent studies of other types of muscle wasting -suggest a very important role in muscle proteolysis of certain ubiquitination enzymes, E214k and E3-alpha(i.e. components of the "N-end pathway"). Future studies will focus in understanding their role and test whether they are in fact critical for muscle atrophy in vivo. Since weightlessness leads to a specific loss of contractile proteins and to a switching of myosin isotypes, Dr. Goldberg's group will attempt to identify the ubiquitination enzymes specifically involved in myosin degradation both in normal muscle and after hind-limb suspension.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-65 - B-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2004-12-03
    Description: Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine position; and (3) that based on assessment of slow-eye movements and quantitative on-line topographical analyses of EEG during wakefulness an EEG and or EOG parameter can be derived/constructed which accurately predicts changes in neurobehavioral function.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-38 - B-39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2004-12-03
    Description: The volume regulating systems are integrated to produce an appropriate response to both acute and chronic volume changes. Their responses include changing the levels of the hormones and neural inputs of the involved systems and/or changing the responsiveness of their target tissues. Weightlessness during space travel produces a volume challenge that is unfamiliar to the organism. Thus, it is likely that these volume regulatory mechanisms may respond inappropriately, e.g., a decrease in total body volume in space and abnormal responses to upright posture and stress on return to Earth. A similar "inappropriateness" also can occur in disease states, e.g., congestive heart failure. While it is clear that weightlessness produces profound changes in sodium and volume homeostasis, the mechanisms responsible for these changes are incompletely understood. Confounding this analysis is sleep deprivation, common in space travel, which can also modify volume homeostatic mechanisms. The purpose of this project is to provide the required understanding and then to design appropriate countermeasures to reduce or eliminate the adverse effects of microgravity. To accomplish this we are addressing five Specific Aims: (1) To test the hypothesis that microgravity modifies the acute responsiveness of the renin-angiotensin-aldosterone system (RAAS) and renal blood flow; (2) Does simulated microgravity change the circadian rhythm of the volume- regulating hormones?; (3) Does simulated microgravity change the target tissue responsiveness to angiotensin 11 (AngII)?; (4) Does chronic sleep deprivation modify the circadian rhythm of the RAAS and change the acute responsiveness of this system to posture beyond what a microgravity environment alone does? and (5) What effect does salt restriction have on the volume homeostatic and neurohumoral responses to a microgravity environment? Because the RAAS plays a pivotal role in blood pressure control and volume homeostasis, it likely is a major mediator of the adaptive cardio-renal responses observed during space missions and is a special focus of this project. Thus, the overall goal of this project is to assess the impact of microgravity and sleep deprivation in humans on volume-regulating systems. To achieve this overall objective, we are evaluating renal blood flow and the status and responsiveness of the volume- regulating systems (RAAS, atrial natriuretic peptide and vasopressin), and the adrenergic system (plasma and urine catecholamines) in both simulated microgravity and normal gravity with and -Without sleep deprivation. Furthermore, the responses of the volume homeostatic mechanisms to acute stimulation by upright tilt testing, standing and exercise are being evaluated before and after achieving equilibrium with these interventions.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-22 - B-23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2004-12-03
    Description: To determine the frequency of true incomplete exchanges induced by both low- and high-LET radiation.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 533
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2004-12-03
    Description: Somatosensory input has been used to modify motor output in many contexts. During space flight, the use of the lower limb musculature is much less than during activities in 1g. Consequently the neuromuscular activity of the legs is also reduced during space flight. This decrease in muscle activity contributes to muscle atrophy. Furthermore, adaptations to weightlessness contribute to posture and locomotion problems upon the return to Earth. Providing techniques to counter the negative effects of weightlessness on the neuromuscular system is an important goal, particularly during a long-duration mission. Previous work by our group has shown that lower limb neuromuscular activation that normally precedes arm movements in 1g is absent or greatly reduced during similar movements made while freefloating. However, preliminary evidence indicates that applying pressure to the feet results in enhanced neuromuscular activation during rapid arm movements performed while freefloating. This finding suggests that sensory input can be used to "drive" the motor system to increase neuromuscular functioning throughout a mission. The purpose of this investigation was to quantify the increase in neuromuscular activation resulting from the application of pressure to the feet.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 418-419
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2004-12-03
    Description: Locomotion is a complex task requiring the coordinated integration of multiple sensorimotor subsystems. This coordination is exemplified by the precise control of segmental kinematics that allows smooth progression of movement in the face of changing environmental constraints. Exposure to the microgravity environment encountered during space flight induces adaptive modification in the central processing of sensory input to produce motor responses appropriate for the prevailing environment. This inflight adaptive change in sensorimotor function is inappropriate for movement control in 1-g and leads to postflight disturbances in terrestrial locomotor function. We have previously explored the effects of short-duration (7-16 days) space flight on the control of locomotion. The goal of the present set of studies was to investigate the effects of long-duration spaceflight (3-6 months) on the control of locomotion with particular emphasis on understanding how the multiple interacting systems are adaptively modified by prolonged microgravity exposure.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 411-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2004-12-03
    Description: Calculations suggest that exercise in space to date has lacked sufficient loads to maintain musculoskeletal mass. Lower body negative pressure (LBNP) produces a force at the feet equal to the product of the LBNP and body cross-sectional area at the waist. Supine exercise within 50-60 mm Hg LBNP improves tolerance to LBNP and produces forces similar to those occurring during upright posture on Earth. Thus, exercise within LBNP may help prevent deconditioning of astronauts by stressing tissues of the lower body in a manner similar to gravity and also, may provide a safe and effective alternative to centrifugation in terms of cost, mass, volume, and power usage. We hypothesize that supine treadmill exercise during LBNP at one body weight (50-60 mm Hg LBNP) will provide cardiovascular and musculoskeletal loads similar to those experienced while upright in lg. Also, daily supine treadmill running in a LBNP chamber will maintain aerobic fitness, orthostatic tolerance, and musculoskeletal structure and function during bed rest (simulated microgravity).
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 378-384
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Oman - The early mission operational problems caused by space motion sickness have been largely resolved in recent years. This has been achieved by appropriate timeline adjustments, voluntary head movement restriction, and judicious use of promethazine. Crew members now simply accept that some symptoms "come with the job," and usually last only a few days. But as more people have flown longer flights, we've seen cases of space sickness and inversion illusion that take several weeks to resolve. Visual reorientation illusions continue throughout long flights, and occasionally cause difficulties. EVA astronauts sometimes suddenly fear they will fall out of the payload bay or off of the RMS or Strella arms. Orientation and navigation in three dimensions in the MIR station reportedly does not come naturally, because modules have different visual verticals. It is clear that the neurovestibular problems of spaceflight have not disappeared. After return to Earth, many crew members are disoriented and ataxic in the first hour after return, and require assistance leaving the vehicle, Flight surgeons say that the longer the mission, the stronger the aftereffects, certain of which last for weeks. We do not yet know how to predict who will be afflicted. Looking ahead to 3-4 month long voyages to Mars, it seems obvious that if cruise is in O-G, the crew may encounter neurovestibular problems on arrival. Artificial G may be broadly effective as a countermeasure for many of the physiological changes of spaceflight, but from the neurovestibular perspective, it is a double-edged sword. We know that the Coriolis stimulus resulting from rotation is potentially disorienting and nauseogenic. But we don't yet know how much artificial G will be enough, nor how successfully people can adapt to a specific angular velocity and hypo G level. Development of countermeasures remains a big challenge for our neurovestibular community. Maintaining an interdisciplinary perspective is important. Three examples were presented at this meeting: 1) Transgenic animal experiments suggest that in addition to the light illumination cycle, vestibular inputs may also serve as an important input to the circadian system. 2) Radiation can cause important CNS effects in animals, including loss of spatial memory. 3) As described in our session, otolith inputs may contribute to cardiovascular regulation of orthostatic tolerance. Over the past three days, we've all enjoyed catching up with old friends, and making many new ones. On behalf of my colleagues, I want to thank Al Coats and the USRA DSLS staff for the great job they did in running this meeting. And keeping the emphasis on fun. And also my Co- Chair, Mal Cohen, who had more stamina than many of us, despite major surgery only three weeks ago. Mal and I have written a few lines describing each of the seventeen papers in our session, to give you a quick over-view, and as a guide to the full abstracts, We have grouped them under five themes: preflight and inflight countermeasurements, postlanding posture and locomotion deficits: assessment and prediction, adaptive processes, relationships among physical simuli, perceptions, and eye movements, vestibular contribution to human autonomic responses, and implications and recommendations.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 403-406
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2004-12-03
    Description: Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 374-375
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2004-12-03
    Description: Nursing is a service profession. The services provided are essential to life and welfare. Therefore, setting the benchmark for high quality care is fundamental. Exploring the definition of a benchmark value will help to determine a best practice approach. A benchmark is the descriptive statement of a desired level of performance against which quality can be judged. It must be sufficiently well understood by managers and personnel in order that it may serve as a standard against which to measure value.
    Keywords: Aerospace Medicine
    Type: Proceedings from the 1998 Occupational Health Conference: Benchmarking for Excellence; 110-111; NASA/CP-1999-208543
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2004-12-03
    Description: Bone, muscular strength, aerobic capacity, and normal fluid pressure gradients within the body are lost during bed rest and spaceflight. Lower Body Negative Pressure (LBNP) exercise may create musculoskeletal and cardiovascular strains equal to a greater than those experienced on Earth and elucidate some of the mechanisms for maintaining bone integrity. LBNP exercise simulates gravity during supine posture by using negative pressure to pull subjects inward against a treadmill generating footward forces and increasing transmural pressures. Footward forces are generated which equal the product of the pressure differential and the cross-sectional area of the LBNP waist seal. Subjects lie supine within the chamber with their legs suspended from one another via cuffs, bungee cords, and pulleys, such that each leg acts as a counterweight to the other leg during the gait cycle. The subjects then walk or run on a treadmill which is positioned vertically within the chamber. Supine orientation allows only footward force production due to the negative pressure within the chamber. The purpose of this study was to determine if the kinematics, kinetics, and metabolic rate during supine walking and slow running on a vertical treadmill within LBNP are similar to those on a treadmill in 1-g environment in an upright posture.
    Keywords: Aerospace Medicine
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2004-12-03
    Description: To better understand the mechanisms underlying the effects of microgravity on the cardiovascular system, cardiovascular models have been developed. These computational models estimate changes in cardiovascular parameters such as total peripheral resistance and systemic arterial compliance, and require high quality aortic pressure and flow measurements as their input. Many of these measurements are obtained in experimental animals and therefore the invasiveness of the instrumentation must be as kept to a minimum. These considerations are the primary motivation behind this work.
    Keywords: Aerospace Medicine
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2004-12-03
    Description: The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.
    Keywords: Aerospace Medicine
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2004-12-03
    Description: This synergy project was a one-year effort conducted cooperatively by members of the NSBRI Cardiovascular Alterations and Neurovestibular Adaptation Teams in collaboration with NASA Johnson Space Center (JSC) colleagues. The objective of this study was to evaluate visual autonomic interactions on short-term cardiovascular regulatory mechanisms. Based on established visual-vestibular and vestibular-autonomic shared neural pathways, we hypothesized that visually induced changes in orientation will trigger autonomic cardiovascular reflexes. A second objective was to compare baroreflex changes during postural changes as measured with the new Cardiovascular System Identification (CSI) technique with those measured using a neck barocuff. While the neck barocuff stimulates only the carotid baroreceptors, CSI provides a measure of overall baroreflex responsiveness. This study involved a repeated measures design with 16 healthy human subjects (8 M, 8 F) to examine cardiovascular regulatory responses during actual and virtual head-upright tilts. Baroreflex sensitivity was first evaluated with subjects in supine and upright positions during actual tilt-table testing using both neck barocuff and CSI methods. The responses to actual tilts during this first session were then compared to responses during visually induced tilt and/or rotation obtained during a second session.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-121 - B-122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2004-12-03
    Description: Long-duration manned space flight requires crew members to maintain a high level of cognitive performance and vigilance while operating and monitoring sophisticated instrumentation. However, the reduction in the strength of environmental synchronizers in the space environment leads to misalignment of circadian phase among crew members, coupled with restricted time available to sleep, results in sleep deprivation and consequent deterioration of neurobehavioral function. Crew members are provided, and presently use, long-acting benzodiazepine hypnotics on board the current, relatively brief space shuttle missions to counteract such sleep disruption, a situation that is only likely to worsen during extended duration missions. Given the known carry-over effects of such compounds on daytime performance, together with the reduction in emergency readiness associated with their use at night, NASA has recognized the need to develop effective but safe countermeasures to allow crew members to obtain an adequate amount of sleep. Over the past eight years, we have successfully implemented a new technology for shuttle crew members involving bright light exposure during the pre-launch period to facilitate adaptation of the circadian timing system to the inversions of the sleep-wake schedule often required during dual shift missions. However for long duration space station missions it will be necessary to develop effective and attainable countermeasures that can be used chronically to optimize circadian entrainment. Our current research effort is to study the effects of light-dark cycles with reduced zeitgeber strength, such as are anticipated during long-duration space flight, on the entrainment of the endogenous circadian timing system and to study the effects of a countermeasure that consists of scheduled brief exposures to bright light on the human circadian timing system. The proposed studies are designed to address the following Specific Aims: (1) test the hypothesis that synchronization of the human circadian pacemaker will be disturbed in men and women by the reduction in LD cycle strength. (2) test the hypothesis that this disturbed circadian synchronization will result in the secretion of the sleep-promoting hormone melatonin during the waking day, disturbed sleep, reduced growth hormone secretion, and impaired performance and daytime alertness; (3) as a countermeasure, test the hypothesis that brief daily exposures to bright light (10,000 lux) will reestablish normal entrained circadian phase, resulting in improved sleep consolidation, normalized sleep structure and endogenous growth hormone secretion and enhanced daytime performance. To date, we have carried out twelve experiments to address Hypotheses I and 2 and data analyses are in progress. The results of the current research may have important implications for the treatment of circadian rhythm sleep disorders, such as delayed sleep phase syndrome and shift-work dyssomnia, which are anticipated to have a high incidence and prevalence during extended duration space flight such as planned for the International Space Station and manned missions to Mars.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-33 - B-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2004-12-03
    Description: The overall goal of this project is to provide structurally meaningful data on bone loss after exposure to reduced gravity environments so that more precise estimates of fracture risk and the effectiveness of countermeasures in reducing fracture risk can be developed. The project has three major components: (1) measure structural changes in the limb bones of rats subjected to complete and partial nonweightbearing, with and without treatment with ibandronate and periodic full weightbearing; (2) measure structural changes in the limb bones of human bedrest subjects, with and without treatment with alendronate and resistive exercise, and Russian cosmonauts flying on the Mir Space Station; and (3) validate and extend the 2-dimensional structural analyses currently possible in the second project component (bedrest and Mir subjects) using 3-dimensional finite element modeling techniques, and determine actual fracture-producing loads on earth and in space.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-12 - B-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2004-12-03
    Description: The biological actions mediated by the estrogen receptor (ER), vitamin D receptor (VDR) and Ca(sup 2+) (sub o) -sensing receptor (CaR) play key roles in the normal control of bone growth and skeletal turnover that is necessary for skeletal health. These receptors act by controlling the differentiation and/or function of osteoblasts and osteoclasts, and other cell types within the bone and bone marrow microenvironment. The appropriate use of selective ER modulators (SERMS) which target bone, vitamin D analogs that favor bone formation relative to resorption, and CaR agonists may both stimulate osteoblastogenesis and inhibit osteoclastogenesis and the function of mature osteoclasts, should make it possible to prevent the reduction in bone formation and increase in bone resorption that normally contribute to the bone loss induced by weightlessness. Indeed, there may be synergistic interactions among these receptors that enhance the actions of any one used alone. Therefore, we proposed to: 1) assess the in vitro ability of novel ER, VDR and CaR agonists, alone or in combination, to modulate osteoblastogenesis and mature osteoblast function under conditions of 1g and simulated microgravity; 2) assess the in vitro ability of novel ER, VDR and CaR agonists, alone or in combination, to modulate osteoclastogenesis and bone resorption under conditions of lg and simulated microgravity; and 3) carry out baseline studies on the skeletal localization of the CaR in normal rat bone as well as the in vivo actions of our novel ER- and VDR-based therapeutics in the rat in preparation for their use, alone or in combination, in well-established ground-based models of microgravity and eventually in space flight.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2004-12-03
    Description: The Health Maintenance System (HMS) hardware will be used to support a medical contingency for the International Space Station (ISS). During two test flights, the procedures for performing Advanced Cardiac Life Support (ACLS) were evaluated to determine the required level of detail, assess the logic of the steps and division of tasks among crew members.
    Keywords: Aerospace Medicine
    Type: KC-135 and Other Microgravity Simulations; 17-20; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2004-12-03
    Description: The objective of this study was to obtain measurement of cutaneous tissue perfusion central and peripheral venous pressure, and esophageal and abdominal pressure in human test subjects during parabolic flight. Hemodynamic data recorded during SLS-I and SLS-2 missions have resulted in the paradoxical finding of increased cardiac stroke volume in the presence of a decreased central venous pressure (CVP) following entry in weightlessness. The investigators have proposed that in the absence of gravity, acceleration-induced peripheral vascular compression is relieved, increasing peripheral vascular capacity and flow while reducing central and peripheral venous pressure, This pilot study seeks to measure blood pressure and flow in human test subjects during parabolic flight for different postures.
    Keywords: Aerospace Medicine
    Type: KC-135 and Other Microgravity Simulations; 11-13; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2004-12-03
    Description: The Cardiovascular Alterations Team is conducting studies of hemodynamic regulation and susceptibility to arrhythmias resulting from sixteen days of simulated microgravity exposure. In these studies very intensive measurements are made during a short duration of bed rest. In this collaborative effort are making many of the same measurements, however much less frequently, on subjects who are exposed to a much longer duration of simulated microgravity. Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In addition, numerous reports from the past 30 years suggest that the incidence of ventricular arrhythmias among astronauts is increased during space flight. However, the effects of space flight and the associated physiologic stresses on cardiac conduction processes are not known, and an increase in cardiac susceptibility to arrhythmias has never been quantified. In this project we are applying the most powerful technologies available to determine, in a ground-based study of long duration space flight, the mechanisms by which space flight affects cardiovascular function, and then on the basis of an understanding of these mechanisms to develop rational and specific countermeasures. To this end we are conducting a collaborative project with the Bone Demineralization/Calcium Metabolism Team of the National Space Biomedical Research Institute (NSBRI). The Bone Team is conducting bed rest studies in human subjects lasting 17 weeks, which provides a unique opportunity to study the effects of long duration microgravity exposure on the human cardiovascular system. We are applying a number of powerful new methods to these long term bed rest subjects, including cardiovascular system identification (CSI), microvolt level T wave alternans analysis, and cardiac magnetic resonance imaging to assess non-invasively the effects of simulated long duration space flight on the cardiovascular system.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-117 - B-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2004-12-03
    Description: Total sleep deprivation leads to decrements in neurobehavioral performance and changes in electroencephalographic (EEG) oscillations as well as the incidence of slow eye movements ad detected in the electro-oculogram (EOG) during wakefulness. Although total sleep deprivation is a powerful tool to investigate the association of EEG/EOG and neurobehavioral decrements, sleep loss during space flight is usual only partial. Furthermore exposure to the microgravity environment leads to changes in sodium and volume homeostasis and associated renal and cardio-endocrine responses. Some of these changes can be induced in head down tilt bedrest studies. We integrate research tools and research projects to enhance the fidelity of the simulated conditions of space flight which are characterized by complexity and mutual interactions. The effectiveness of countermeasures and physiologic mechanisms underlying neurobehavioral changes and renal-cardio endocrine changes are investigated in Project 3 of the Human Performance Team and Project 3 of the Cardiovascular Alterations Team respectively. Although the. specific aims of these two projects are very different, they employ very similar research protocols. Thus, both projects investigate the effects of posture/bedrest and sleep deprivation (total or partial) on outcome measures relevant to their specific aims. The main aim of this enhancement grant is to exploit the similarities in research protocols by including the assessment of outcome variables relevant to the Renal-Cardio project in the research protocol of Project 3 of the Human Performance Team and by including the assessment of outcome variables relevant to the Quantitative EEG and Sleep Deprivation Project in the research protocols of Project 3 of the Cardiovascular Alterations team. In particular we will assess Neurobehavioral Function and Waking EEG in the research protocols of the renal-cardio endocrine project and renin-angiotensin and cardiac function in the research protocol of the Quantitative EEG and Waking Neurobehavioral Function project. This will allow us to investigate two additional specific aims: 1) Test the hypothesis that chronic partial sleep deprivation during a 17 day bed rest experiment results in deterioration of neurobehavioral function during waking and increases in EEG power density in the theta frequencies, especially in frontal areas of the brain, as well as the nonREM- REM cycle dependent modulation of heart-rate variability. 2) Test the hypothesis that acute total sleep deprivation modifies the circadian rhythm of the renin-angiotensin system, changes the acute responsiveness of this system to posture beyond what a microgravity environment alone does and affects the nonREM-REM cycle dependent modulation of heart-rate variability.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-119 - B-120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The risks to personnel in space from the naturally occurring radiations are generally considered to be one of the most serious limitations to human space missions, as noted in two recent reports of the National Research Council/National Academy of Sciences. The Core Project of the Radiation Effects Team for the National Space Biomedical Research Institute is the consequences of radiations in space in order to develop countermeasure, both physical and pharmaceutical, to reduce the risks of cancer and other diseases associated with such exposures. During interplanetary missions, personnel in space will be exposed to galactic cosmic rays, including high-energy protons and energetic ions with atomic masses of iron or higher. In addition, solar events will produce radiation fields of high intensity for short but irregular durations. The level of intensity of these radiations is considerably higher than that on Earth's surface, and the biological risks to astronauts is consequently increased, including increased risks of carcinogenesis and other diseases. This group is examining the risk of cancers resulting from low-dose, low-dose rate exposures of model systems to photons, protons, and iron by using ground-based accelerators which are capable of producing beams of protons, iron, and other heavy ions at energies comparable to those encountered in space. They have begun the first series of experiments using a 1-GeV iron beam at the Brookhaven National Laboratory and 250-MeV protons at Loma Linda University Medical Center's proton synchrotron facility. As part of these studies, this group will be investigating the potential for the pharmaceutical, Tamoxifen, to reduce the risk of breast cancer in astronauts exposed to the level of doses and particle types expected in space. Theoretical studies are being carried out in a collaboration between scientists at NASA's Johnson Space Center and Johns Hopkins University in parallel with the experimental program have provided methods and predictions which are being used to assess the levels of risks to be encountered and to evaluate appropriate strategies for countermeasures. Although the work in this project is primarily directed toward problems associated with space travel, the problem of protracted exposures to low-levels of radiation is one of national interest in our energy and defense programs, and the results may suggest new paradigms for addressing such risks.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-96 - B-98
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2004-12-03
    Description: A major concern associated with long-duration space flight is the possibility of infectious diseases posing an unacceptable medical risk to crew members. One major hypothesis addressed in this project is that space flight will cause alterations in the immune system that will allow latent viruses that are endogenous in the human population to reactivate and shed to higher levels than normal, which may affect the health of crew members. The second major hypothesis being examined is that the effects of space flight will alter the mucosal immune system, the first line of defense against many microbial infections, including herpesviruses, polyomaviruses, and gastroenteritis viruses, rendering crew members more susceptible to virus infections across the mucosa. We are focusing the virus studies on the human herpesviruses and polyomaviruses, important pathogens known to establish latent infections in most of the human population. Both primary infection and reactivation from latent infection with these groups of viruses (especially certain herpesviruses) can cause a variety of illnesses that result in morbidity and, occasionally, mortality. Both herpesviruses and polyomaviruses have been associated with human cancer, as well. Effective vaccines exist for only one of the eight known human herpesviruses and available antivirals are of limited use. Whereas normal individuals display minimal consequences from latent viral infections, events which alter immune function (such as immunosuppressive therapy following solid organ transplantation) are known to increase the risk of complications as a result of viral reactivations.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-54 - B-56
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-51 - B-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2004-12-03
    Description: This project is concerned with identifying ways to prevent neurobehavioral and physical deterioration due to inadequate sleep in astronauts during long-duration manned space flight. The performance capability of astronauts during extended-duration space flight depends heavily on achieving recovery through adequate sleep. Even with appropriate circadian alignment, sleep loss can erode fundamental elements of human performance capability including vigilance, cognitive speed and accuracy, working memory, reaction time, and physiological alertness. Adequate sleep is essential during manned space flight not only to ensure high levels of safe and effective human performance, but also as a basic regulatory biology critical to healthy human functioning. There is now extensive objective evidence that astronaut sleep is frequently restricted in space flight to averages between 4 hr and 6.5 hr/day. Chronic sleep restriction during manned space flight can occur in response to endogenous disturbances of sleep (motion sickness, stress, circadian rhythms), environmental disruptions of sleep (noise, temperature, light), and curtailment of sleep due to the work demands and other activities that accompany extended space flight operations. The mechanism through which this risk emerges is the development of cumulative homeostatic pressure for sleep across consecutive days of inadequate sleep. Research has shown that the physiological sleepiness and performance deficits engendered by sleep debt can progressively worsen (i.e., accumulate) over consecutive days of sleep restriction, and that sleep limited to levels commonly experienced by astronauts (i.e., 4 - 6 hr per night) for as little as 1 week, can result in increased lapses of attention, degradation of response times, deficits in complex problem solving, reduced learning, mood disturbance, disruption of essential neuroendocrine, metabolic, and neuroimmune responses, and in some vulnerable persons, the emergence of uncontrolled sleep attacks. The prevention of cumulative performance deficits and neuroendocrine disruption from sleep restriction during extended duration space flight involves finding the most effective ways to obtain sleep in order to maintain the high-level cognitive and physical performance functions required for manned space flight. There is currently a critical deficiency in knowledge of the effects of how variations in sleep duration and timing relate to the most efficient return of performance per unit time invested in sleep during long-duration missions, and how the nature of sleep physiology (i.e., sleep stages, sleep electroencephalographic [EEG] power spectral analyses) change as a function of sleep restriction and performance degradation. The primary aim of this project is to meet these critical deficiencies through utilization of a response surface experimental paradigm, testing in a dose-response manner, varying combinations of sleep duration and timing, for the purpose of establishing how to most effectively limit the cumulative adverse effects on human performance and physiology of chronic sleep restriction in space operations.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-35 - B-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2004-12-03
    Description: Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In this project we apply a powerful, new method - cardiovascular system identification (CSI) - for the study of the effects of space flight on the cardiovascular system so that effective countermeasures can be developed. CSI involves the mathematical analysis of second-to-second fluctuations in non-invasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV - respiratory activity) in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of all the physiologic mechanisms coupling these signals, CSI provides a model of the closed-loop cardiovascular regulatory state in an individual subject. The model includes quantitative descriptions of the heart rate baroreflex, autonomic function, as well as other important physiologic mechanisms. We are in the process of incorporating beat-to-beat fluctuations of stroke volume into the CSI technique in order to quantify additional physiologic mechanisms such as those involved in control of peripheral vascular resistance and alterations in cardiac contractility. We apply CSI in conjunction with the two general protocols of the Human Studies Core project. The first protocol involves ground-based, human head down tilt bed rest to simulate microgravity and acute stressors - upright tilt, standing and bicycle exercise - to provide orthostatic and exercise challenges. The second protocol is intended to be the same as the first but with the addition of sleep deprivation to determine whether this contributes to cardiovascular alterations. In these studies, we focus on the basic physiologic mechanisms responsible for the alterations in cardiovascular regulation and function during the simulated microgravity in order to formulate hypotheses regarding what countermeasures are likely to be most effective. Compared to our original proposal, the protocol we are using has been slightly modified to lengthen the bed rest period to 16 days and streamline the data collection. These modifications provide us data on a longer bed rest period and have enabled us to increase our subject throughput. Based on review of our preliminary data we have decided to test a countermeasure which is applied the very end of the bed rest period. We will use the same bed rest protocol to test this countermeasure. We anticipate completing the baseline data collection in our first protocol plus testing of the countermeasure in an additional eight subjects, at which time we plan to initiate the second protocol which includes sleep deprivation. In future studies, we plan to apply CSI to test other potential countermeasures in conjunction with the same bed rest, sleep deprivation and acute stressor models. We also anticipate applying CSI for studying astronauts before and after space flight and ultimately, during space flight. The application of CSI is providing information relevant to the development and evaluation of effective countermeasures allowing humans to adapt appropriately upon re-exposure to a gravity field, and to live and work for longer periods of time in microgravity.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-20 - B-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2004-12-03
    Description: As new personnel join the Medical Operations Branch, it is critical that they understand the effects of microgravity on medical procedures, hardware, and supplies. The familiarization flight provided new personnel with a better understanding of the effects of microgravity on (1) medical procedures, (2) patient and rescuer restraint, (3) medical fluids, and (4) medical training for space flight. The flight process also provided experience in flight proposal preparation, flight test plan preparation and execution, and final report preparation. In addition, first time flyers gained insight on their performance level in microgravity for future flights.
    Keywords: Aerospace Medicine
    Type: KC-135 and Other Microgravity Simulations; 151-156; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2004-12-03
    Description: The STS-76 (Shuttle-Mir 3) spaceflight provided an opportunity to test two questions about radiation responses in C. elegans. First, does the absence of gravity modify the dose-response relation for mutation and chromosome aberration and second, what are the features of the mutation spectrum resulting from exposure to cosmic rays? These questions were put to the test in space using the ESA "Biorack" facility which was housed in the Spacehab module aboard shuttle Atlantis. The mission flew in March, 1996 and was a shuttle rendezvous with the Russian space station Mir.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 515-516
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2004-12-03
    Description: The acute effects of exposure to microgravity include the development of space motion sickness which usually requires therapeutic intervention. The current drug of choice, promethazine (PMZ), has side effects which include nausea, drowsiness, dizziness, sedation and impaired psychomotor performance. In a ground-based study with commercial airline pilots and shuttle simulator trainers, we measured sleep and psychomotor performance variables, and physiological variables such as blood pressure and heart rate, as a function of circulating drug concentrations in the body. We evaluated a non-invasive sampling method (saliva) as a means of assessing pharmacodynamics following a single intramuscular (IM) dose of PMZ.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 462-463
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2004-12-03
    Description: We postulate that centripetal acceleration induced by centrifugation can be used as an inflight sensorimotor countermeasure to retain and/or promote appropriate crewmember responses to sustained changes in gravito-inertial force conditions. Active voluntary motion is required to promote vestibular system conditioning, and both visual and graviceptor sensory feedback are critical for evaluating internal representations of spatial orientation. The goal of our investigation is to use centrifugation to develop an analog to the conflicting visual/gravito-inertial force environment experienced during space flight, and to use voluntary head movements during centrifugation to study mechanisms of adaptation to altered gravity environments. We address the following two hypotheses: (1) Discordant canal-otolith feedback during head movements in a hypergravity tilted environment will cause a reorganization of the spatial processing required for multisensory integration and motor control, resulting in decreased postural stability upon return to normal gravity environment. (2) Adaptation to this "gravito-inertial tilt distortion" will result in a negative after-effect, and readaptation will be expressed by return of postural stability to baseline conditions. During the third year of our grant we concentrated on examining changes in balance control following 90-180 min of centrifugation at 1.4 9. We also began a control study in which we exposed subjects to 90 min of sustained roll tilt in a static (non-rotating) chair. This allowed us to examine adaptation to roll tilt without the hypergravity induced by centrifugation. To these ends, we addressed the question: Is gravity an internal calibration reference for postural control? The remainder of this report is limited to presenting preliminary findings from this study.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 432-434
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2004-12-03
    Description: The potential threat of immunosuppression and abnormal inflammatory responses in long-term space travel, leading to unusual predilection for opportunistic infections, malignancy, and death, is of ma or concern to the National Aeronautics and Space Administration (NASA) Program. This application has been devised to seek answers to questions of altered immunity in space travel raised by previous investigations spanning 30-plus years. We propose to do this with the help of knowledge gained by the discovery of the molecular basis of many primary and secondary immunodeficiency diseases and by application of molecular and genetic technology not previously available. Two areas of immunity that previously received little attention in space travel research will be emphasized: specific antibody responses and non-specific inflammation and adhesion. Both of these areas of research will not only add to the growing body of information on the potential effects of space travel on the immune system, but be able to delineate any functional alterations in systems important for antigen presentation, specific immune memory, and cell:cell and cell:endothelium interactions. By more precisely defining molecular dysfunction of components of the immune system, it is hoped that targeted methods of prevention of immune damage in space could be devised.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 351-353
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...