ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    Publication Date: 2004-12-03
    Description: Stabilization of the eyes and head during body movements is important for maintaining balance and keeping the images of objects stationary on our retinas. Impairment of this ability can lead to disorientation and reduced performance in sensorimotor tasks such as piloting of spacecraft. In the absence of a normal earth gravity field, the dynamics of head stabilization, and the interpretation of vestibular signals that sense gravity and linear acceleration, are subject to change. Transitions between different gravitoinertial force environments - as during different phases of space flight - provide an extreme test of the adaptive mechanisms that maintain these reflexive abilities. It is vitally important to determine human adaptive capabilities in such a circumstance, so that we can know to what extent the sensorimotor skills acquired in one gravity environment will transfer to others. Our work lays the foundation for understanding these capabilities, and for determining how we can aid the processes of adaptation and readaptation. An integrated set of experiments addresses this issue. We use the general approach of adapting some type of reflexive eye movement (saccades, the angular vestibulo-ocular reflex (AVOR), the linear vestibulo-ocular reflex (LVOR)), or the vestibulo-collic reflex (VCR), to a particular change in gain or phase in one condition of gravitoiner-tial force, and adapting to a different gain or phase (or asking for no change) in a second gravitoinertial force condition, and then seeing if the gravitoinertial force itself - the context cue - can recall the previously learned adapted responses. The majority of the experiments in the laboratory use the direction of vertical gaze or the direction of gravity (head tilt) as the context cue. This allows us to study context-specificity in a ground-based setting. One set of experiments, to be performed in parabolic flight, specifically uses the magnitude of gravitoinertial force as a context cue. This is a much better analog of the situation encountered in space flight. Various experiments investigate the behavioral properties, neurophysiological basis, and anatomical substrate of context-specific learning mechanisms. We use otolith (gravity) signals as the contextual cue for switching between adapted states of the saccadic system, the angular and linear vestibulo-ocular reflexes, and the VCR. (By LVOR we mean the oculomotor response - horizontal, vertical, and torsional - to linear translation of the head and body.) We are studying the effect of context on adaptation of saccade gain, phase and gain of the AVOR and LVOR, on ocular counterrolling (OCR) in response to static head tilt, and on head/neck reflexes (VCR) in response to rotation in different orientations. Such research is particularly germane to potential problems of postural and oculomotor control upon exposure to different gravitational environments.
    Keywords: Aerospace Medicine
    Type: National Space Biomedical Research Institute; B-80 - B-82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: A system for assessing vestibulo-ocular function includes a motion sensor system adapted to be coupled to a user's head; a data processing system configured to communicate with the motion sensor system to receive the head-motion signals; a visual display system configured to communicate with the data processing system to receive image signals from the data processing system; and a gain control device arranged to be operated by the user and to communicate gain adjustment signals to the data processing system.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...