ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 1984-09-01
    Print ISSN: 0260-2814
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The correlation is low between the occurrence of gas bubbles in the pulmonary artery, called venous gas emboli (VGE), and subsequent decompression illness (DCI). The correlation improves when a "grade" of VGE is considered; a zero to four categorical classification based on the intensity and duration of the VGE signal from a Doppler bubble detector. Additional insight about DCI might come from an analysis of the time course of the occurrence of VGE. Using the NASA Hypobaric Decompression Sickness Databank, we compared the time course of the VGE outcome between 322 subjects who exercised and 133 Doppler technicians who did not exercise to evaluate the role of physical activity on the VGE outcome and incidence of DCI. We also compared 61 subjects with VGE and DCI with 110 subjects with VGE but without DCI to identify unique characteristics about the time course of the VGE outcome to try to discriminate between DCI and no-DCI cases. The VGE outcome as a function of time showed a characteristic short lag, rapid response, and gradual recovery phase that was related to physical activity at altitude and the presence or absence of DCI. The average time for DCI symptoms in a limb occurred just before the time of the highest fraction of VGE in the pulmonary artery. It is likely, but not certain, that an individual will report a DCI symptom if VGE are detected early in the altitude exposure, the intensity or grade of VGE rapidly increases from a limb region, and the intensity or grade of VGE remains high.
    Keywords: Aerospace Medicine
    Type: Undersea & hyperbaric medicine : journal of the Undersea and Hyperbaric Medical Society, Inc (ISSN 1066-2936); Volume 23; 3; 141-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Our hypothesis is that metabolic gases play a role in the initial explosive growth phase of bubble formation during hypobaric exposures. Models that account for optimal internal tensions of dissolved gases to predict the probability of occurrence of venous gas emboli were statistically fitted to 426 hypobaric exposures from National Aeronautics and Space Administration tests. The presence of venous gas emboli in the pulmonary artery was detected with an ultrasound Doppler detector. The model fit and parameter estimation were done by using the statistical method of maximum likelihood. The analysis results were as follows. 1) For the model without an input of noninert dissolved gas tissue tension, the log likelihood (in absolute value) was 255.01. 2) When an additional parameter was added to the model to account for the dissolved noninert gas tissue tension, the log likelihood was 251.70. The significance of the additional parameter was established based on the likelihood ratio test (P 〈 0.012). 3) The parameter estimate for the dissolved noninert gas tissue tension participating in bubble formation was 19. 1 kPa (143 mmHg). 4) The additional gas tissue tension, supposedly due to noninert gases, did not show an exponential decay as a function of time during denitrogenation, but it remained constant. 5) The positive sign for this parameter term in the model is characteristic of an outward radial pressure of gases in the bubble. This analysis suggests that dissolved gases other than N2 in tissues may facilitate the initial explosive bubble-growth phase.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 84; 3; 1088-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: To develop and test a 2-hour prebreathe protocol for performing extravehicular activities (EVAs) from the International Space Station (ISS). Combinations of adynamia (non-walking), prebreathe exercise, and space suit donning options (10.2 vs. 14.7 psi) were evaluated, against timeline and consumable contraints to develop an operational 2- hour prebreathe protocol. Prospective accept/reject criteria were defined for decompression sickness (DCS) and venous gas emboli (VGE) from analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew-members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept/reject limits were adjusted for greater safety based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center human trial. Protocols were tested with 4 different prebreathe exercises (Phases I-IV), prior to exposure to 4.3 psi for 4 hrs. Subject selection, Doppler monitoring for VGE, test termination criteria, and DCS definitions were standardized. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase II: ergometry plus 24 min of light exercise (simulating space-suit preparations). Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. A prebreathe procedure was accepted if, at 95% confidence, the incidence of DCS was less than 15% (with no Type II DCS), and Grade IV VGE was less than 20%.
    Keywords: Man/System Technology and Life Support
    Type: Undersea and Hyperbaric Medical Society; Jun 18, 2000 - Jun 22, 2000; Stockholm; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: We evaluated four 2-hour oxygen prebreathe protocols combining adynamia (non-walking) and 4 different amounts of exercise for potential use with extravehicular activity (EVA) on the International Space Station. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase 11: same ergometry plus 24 min of light exercise that simulated space suit preparations. Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. After 80 min on 100% O2, the subjects breathed 26.5% O2 - 73.5% N2 for 30 min at 10.2 psi. All subjects performed a series of upper body exercises from a recumbent position for 4 hrs at 4.3 psi to simulate EVA work. Venous gas emboli (VGE) were monitored every 12 min using precordial Doppler ultrasound. The 39 female and 126 male exposures were analyzed for correlations between decompression sickness (DCS) or VGE, and risk variables. The duration and quantity of exercise during prebreathe inversely relates to DCS and VGE incidence. The type and distribution of the 19 cases of DCS were similar to historical cases. There was no correlation of age, gender, body mass index, or fitness level with greater incidence of DCS or all VGE. However there were more Grade IV VGE in males 〉 40 years (10 of 19) than in those =〈 40 years (3 of 107), with p〈0.01 from Fisher's Exact Chi square The latency time for VGE was longer (103 min +/- 56 SD, n = 15 versus 53 min +/- 31, n =13) when the ergometry occurred about 15 min into the prebreathe than when performed at the start of the prebreathe, but the order of the ergometry did not influence the overall DCS and VGE incidence. An increasing amount of exercise during prebreathes reduced the risk of DCS during subsequent exposures to 4.3 psi. Age, gender, or fitness level did not correlate with the incidence of DCS or VGE (combination of Grades I-IV). However males greater than 40 years had a higher incidence of Grade IV VGE.
    Keywords: Aerospace Medicine
    Type: Jun 18, 2000 - Jun 22, 2000; Stockholm; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Procedures, equipment, and analytical techniques were developed to implement the ground tested 2-hour protocol in-flight operations. The methods are: 1) The flight protocol incorporates additional safety margin over the ground tested protocol. This includes up to 20 min of additional time on enriched O2 during suit purge and pressure check, increased duration of extravehicular activity (EVA) preparation exercise during O2 prebreathing (up to 90 min vs; the tested 24 min), and reduced rates of depressurization. The ground test observations were combined with model projections of the conservative measures (using statistical models from Duke University and NASA JSQ to bound the risk of Type I and Type II decompression sickness (DCS). 2) An inflight exercise device using the in-flight ergometer and elastic tubes for upper body exercise was developed to replicate the dual cycle exercise in the ground trials. 3) A new in-flight breathing system was developed and man-tested. 4) A process to monitor inflight experience with the protocol, including the use of an in-suit Doppler bubble monitor when available, was developed. The results are: 1) The model projections of the conservative factors of the operational protocol were shown to reduce the risk of DCS to levels consistent with the observations of no DCS to date in the shuttle program. 2) Cross over trials of the dual cycle ergometer used in ground tests and the in-flight exercise system verified that02consumption and the % division of work between upper and lower body was not significantly different at the p= 0.05 level. 3) The in-flight breathing system was demonstrated to support work rates generating 75% O2(max) in 95 percentile subjects. 4) An in-flight monitoring plan with acceptance criteria was put in place for the 2-hour prebreathe protocol. And the conclusions are: The 2-hour protocol has been approved for flight, and all implementation efforts are in place to allow use of the protocol as early as flight ISS 7A, now scheduled in November of 2000.
    Keywords: Aerospace Medicine
    Type: May 14, 2000 - May 18, 2000; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The majority of extravehicular activities (EVAs) performed from the shuttle use a 10.2 psi staged decompression. The International Space Station (ISS) will operate at 14.7 psi, requiring crews to "campout" in the airlock at 10.2 psi. The constraints associated with campout (crew isolation, oxygen usage, and waste management), provided the rationale to develop a 2-hour prebreathe protocol from 14.7 psi. Previous studies on the affect of microgravity and exercise during prebreathe suggested the feasibility of this approach. Various combinations of adynamia (nonwalking subjects), prebreathe exercise doses, and space suit donning options (10.2 vs. 14.7 psi) were analyzed against timeline and consumable constraints. Prospective decompression sickness (DCS) and venous gas emboli (VGE) accept/reject criteria were defined from statistical analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept / reject limits were adjusted for greater safety (including Grade IV VGE criteria) based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center laboratory trial, including the capability of rejecting the primary protocol and testing at least one alternate exercise dose, within the 2-hour prebreathe. The 2-hour protocol incorporates 0, breathing for 5 0 min at 14.7 psi, including 10 min dual cycle ergometry at 75%VO(2max). It requires an additional 30 minO2breathing during depress from 14.7 to 10.2 psi, followed by a 30-60 min suit donning break at 10.2 psi/26.5% O2. It concludes with a 40 min in-suit O2 prebreathe. The protocol would be accepted for operations, if the incidence of DCS was less than 15% and Grade IV VGE less than 20%, both at 95% confidence. The above protocol and accept/reject limits were implemented in a multi-center study.
    Keywords: Man/System Technology and Life Support
    Type: ASMA Annual Scientific Meeting; May 14, 2000 - May 18, 2000; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...