ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 270; 1 Pt 2; R3-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We tested the hypothesis that exposure to microgravity reduces the neuronal release of catecholamines and blood pressure responses to norepinephrine and angiotensin. Eight men underwent 30 days of 6 degrees head-down tilt (HDT) bedrest to simulate exposure to microgravity. Plasma norepinephrine and mean arterial blood pressure (MAP) were measured before and after a cold pressor test (CPT) and graded norepinephrine infusion (8, 16 and 32 ng/kg/min) on day 6 of a baseline control period (C6) and on days 14 and 27 of HDT. MAP and plasma angiotensin II (Ang-II) were measured during graded Ang-II infusion (1, 2 and 4 ng/kg/min) on C8 and days 16 and 29 of HDT. Baseline total circulating norepinephrine was reduced from 1017ng during the baseline control period to 610 ng at day 14 and 673ng at day 27 of HDT, confirming a hypoadrenergic state. An elevation of norepinephrine (+178 ng) to the CPT during the baseline control period was eliminated by HDT days 14 and 27. During norepinephrine infusion, similar elevations in plasma norepinephrine (7.7 pg/ml/ng/kg/min) caused similar elevations in MAP (0.12 mmHg/ng/kg/min) across all test days. Ang-II infusion produced higher levels of plasma Ang-II during HDT (47.3 pg/ml) than during baseline control (35.5 pg/ml), while producing similar corresponding elevations in blood pressure. While vascular responsiveness to norepinephrine appears unaffected, impaired neuronal release of norepinephrine and reduced vascular responsiveness to Ang-II might contribute to the lessened capacity to vasoconstrict after spaceflight. The time course of alterations indicates effects that occur within two weeks of exposure.
    Keywords: Aerospace Medicine
    Type: Clinical autonomic research : official journal of the Clinical Autonomic Research Society (ISSN 0959-9851); Volume 8; 2; 101-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: We measured hemodynamic responses during 4 days of head-down tilt (HDT) and during graded lower body negative pressure (LBNP) in invasively instrumented rhesus monkeys to test the hypotheses that exposure to simulated microgravity increases cardiac compliance and that decreased stroke volume, cardiac output, and orthostatic tolerance are associated with reduced left ventricular peak dP/dt. Six monkeys underwent two 4-day (96 h) experimental conditions separated by 9 days of ambulatory activities in a crossover counterbalance design: 1) continuous exposure to 10 degrees HDT and 2) approximately 12-14 h per day of 80 degrees head-up tilt and 10-12 h supine (control condition). Each animal underwent measurements of central venous pressure (CVP), left ventricular and aortic pressures, stroke volume, esophageal pressure (EsP), plasma volume, alpha1- and beta1-adrenergic responsiveness, and tolerance to LBNP. HDT induced a hypovolemic and hypoadrenergic state with reduced LBNP tolerance compared with the control condition. Decreased LBNP tolerance with HDT was associated with reduced stroke volume, cardiac output, and peak dP/dt. Compared with the control condition, a 34% reduction in CVP (P = 0.010) and no change in left ventricular end-diastolic area during HDT was associated with increased ventricular compliance (P = 0.0053). Increased cardiac compliance could not be explained by reduced intrathoracic pressure since EsP was unaltered by HDT. Our data provide the first direct evidence that increased cardiac compliance was associated with headward fluid shifts similar to those induced by exposure to spaceflight and that reduced orthostatic tolerance was associated with lower cardiac contractility.
    Keywords: Aerospace Medicine
    Type: The American journal of physiology (ISSN 0002-9513); Volume 275; 4 Pt 2; R1343-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: A multiple regression model was constructed to investigate the premise that blood volume (BV) could be predicted using several anthropometric variables, age, and maximal oxygen uptake (VO(2 max)). To test this hypothesis, age, calculated body surface area (height/weight composite), percent body fat (hydrostatic weight), and VO(2 max) were regressed on to BV using data obtained from 66 normal healthy men. Results from the evaluation of the full model indicated that the most parsimonious result was obtained when age and VO(2 max) were regressed on BV expressed per kilogram body weight. The full model accounted for 52% of the total variance in BV per kilogram body weight. Both age and VO(2 max) were related to BV in the positive direction. Percent body fat contributed 〈1% to the explained variance in BV when expressed in absolute BV (ml) or as BV per kilogram body weight. When the model was cross validated on 41 new subjects and BV per kilogram body weight was reexpressed as raw BV, the results indicated that the statistical model would be stable under cross validation (e.g., predictive applications) with an accuracy of +/- 1,200 ml at 95% confidence. Our results support the hypothesis that BV is an increasing function of aerobic fitness and to a lesser extent the age of the subject. The results may have implication as to a mechanism by which aerobic fitness and activity may be protective against reduced BV associated with aging.
    Keywords: Life Sciences (General)
    Type: American journal of physiology. Regulatory, integrative and comparative physiology (ISSN 0363-6119); Volume 279; 3; R1068-75
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: We measured central venous pressure (CVP); plasma volume (PV); urine volume rate (UVR); renal excretion of sodium (UNa); and renal clearances of creatinine, sodium, and osmolality before and after acute volume infusion to test the hypothesis that exposure to microgravity causes resetting of the CVP operating point. Six rhesus monkeys underwent two experimental conditions in a crossover counterbalance design: 1) continuous exposure to 10 degrees head-down tilt (HDT) and 2) a control, defined as 16 h/day of 80 degrees head-up tilt and 8 h prone. After 48 h of exposure to either test condition, a 120-min course of continuous infusion of isotonic saline (0.4 ml. kg(-1). min(-1) iv) was administered. Baseline CVP was lower (P = 0.011) in HDT (2.3 +/- 0.3 mmHg) compared with the control (4.5 +/- 1.4 mmHg) condition. After 2 h of saline infusion, CVP was elevated (P = 0.002) to a similar magnitude (P = 0.485) in HDT (DeltaCVP = 2.7 +/- 0.8 mmHg) and control (DeltaCVP = 2.3 +/- 0.8 mmHg) conditions and returned to preinfusion levels 18 h postinfusion in both treatments. PV followed the same pattern as CVP. The response relationships between CVP and UVR and between CVP and UNa shifted to the left with HDT. The restoration of CVP and PV to lower preinfusion levels after volume loading in HDT compared with control supports the notion that lower CVP during HDT may reflect a new operating point about which vascular volume is regulated. These results may explain the ineffective fluid intake procedures currently employed to treat patients and astronauts.
    Keywords: Aerospace Medicine
    Type: American journal of physiology. Regulatory, integrative and comparative physiology (ISSN 0363-6119); Volume 281; 6; R2021-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: In the early phase of the Space Shuttle program, NASA flight surgeons implemented a fluid-loading countermeasure in which astronauts were instructed to ingest eight 1-g salt tablets with 960 ml of water approximately 2 hours prior to reentry from space. This fluid loading regimen was intended to enhance orthostatic tolerance by replacing circulating plasma volume reduced during the space mission. Unfortunately, fluid loading failed to replace plasma volume in groundbased experiments and has proven minimally effective as a countermeasure against post-spaceflight orthostatic intolerance. In addition to the reduction of plasma volume, central venous pressure (CVP) is reduced during exposure to actual and groundbased analogs of microgravity. In the present study, we hypothesized that the reduction in CVP due to exposure to microgravity represents a resetting of the CVP operating point to a lower threshold. A lower CVP 'setpoint' might explain the failure of fluid loading to restore plasma volume. In order to test this hypothesis, we conducted an investigation in which we administered an acute volume load (stimulus) and measured responses in CVP, plasma volume and renal functions. If our hypothesis is true, we would expect the elevation in CVP induced by saline infusion to return to its pre-infusion levels in both HDT and upright control conditions despite lower vascular volume during HDT. In contrast to previous experiments, our approach is novel in that it provides information on alterations in CVP and vascular volume during HDT that are necessary for interpretation of the proposed CVP operating point resetting hypothesis.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); Volume 8; 1; P51-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: Effects of prescribed doses of ketamine five minutes after application and influences of transesophageal echocardiography (TEE) on left ventricular, systemic arterial, and baroreflex responses were investigated to test the hypothesis that ketamine and/or TEE probe insertion alter cardiovascular function. Seven rhesus monkeys were tested under each of four randomly selected experimental conditions: (1) intravenous bolus dose of ketamine (0.5 ml), (2) continuous infusion of ketamine (500 mg/kg/min), (3) continuous infusion of ketamine (500 mg/kg/min) with TEE, and (4) control (no ketamine or TEE). Monkeys were chronically instrumented with a high fidelity, dual-sensor micromanometer to measure left ventricular and aortic pressure and a transit-time ultrasound probe to measure aortic flow. These measures were used to calculate left ventricular function. A 4-element Windkessel lumped-parameter model was used to estimate total peripheral resistance and systemic arterial compliance. Baroreflex response was calculated as the change in R-R interval divided by the change in mean aortic pressure measured during administration of graded concentrations of nitroprusside. The results indicated that five minutes after ketamine application heart rate and left ventricular diastolic compliance decreased while TEE increased aortic systolic and diastolic pressure. We conclude that ketamine may be administered as either a bolus or continuous infusion without affecting cardiovascular function 5 minutes after application while the insertion of a TEE probe will increase aortic pressure. The results for both ketamine and TEE illustrate the classic "Hawthorne Effect," where the observed values are partly a function of the measurement process. Measures of aortic pressure, heart rate, and left ventricular diastolic pressure should be viewed as relative, as opposed to absolute, when organisms are sedated with ketamine or instrumented with a TEE probe.
    Keywords: Life Sciences (General)
    Type: Comparative medicine (ISSN 1532-0820); Volume 51; 6; 513-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: What is the most efficient dosage of periodic exposure to positive 1G(z) during microgravity to maintain a functional upright position after returning to a positive 1G(z) environment? The answer has implications for the type of countermeasures astronauts will be required to perform during long term space flight. Methods: Nine males were subjected to four different positive 1G exposure protocols plus a control protocol ('zero G(z)') during four days of continuous bedrest. The four positive 1G(z) exposures consisted of periodic standing or walking, each for a total period of two or four hours. Each subject was returned for bedrest on five different occasions over a period of approximately one year to obtain data on each of the nine subjects across all four positive 1G(z) treatments and the control. A 30 min tilt test was used to measure orthostatic response during pre and post bedrest. Results: In terms of survival rate (percentage of subjects who did not faint after 30 sec of tilt), four hours of intermittent standing was the only protocol that maintained a rate comparable to pre bedrest levels (87.5 percent). Although the other three positive 1G(z) protocols performed better than the 'zero G(z) control (22.2 percent), only the four hour standing returned post bedrest survival rates to pre bedrest levels. Conclusions: The results will need to be evaluated with regards to a variety of other physiological systems which are known to decondition during microgravitry.
    Keywords: AEROSPACE MEDICINE
    Type: Aerospace Medical Association, Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Saline loading (SL) within hours of reentry is currently used as a countermeasure against postflight orthostatic hypotension in astronauts. However, its effects on blood volume expansion is not quantified and its effectiveness has proved marginal at best. The purposes of the present study were: (1) to quantify the effects of SL on plasma volume and orthostatic tolerance following exposure to simulated microgravity and (2) to compare these effects with the use of a pharacological fluid expander, fludrcortisone (F). Method: Eleven men (30-45 yr.) underwent a 15-minute stand test before and immediately after 7 days of head-down bedrest (BR). Five subjects ingested SL (8 g salt tablets with 1 liter of water) 2 hours before standing at the end of BR while the other 6 subjects received 0.2 mg oral doses of F at 0800 and 2200 hours the day before and 0800 hours the day the subjects got out of bed (i.e., 2 hours before standing). Plasma volume (PV) was measured before BR on day 7 of BR and after the final SL and F treatments just before the post-BR stand test. Blood pressure and heart rate were measured continuously during the stand tests. Results: BR decreased PV from 40.7 plus or minus 1.9 mml/kg to 35.9 plus or minus 1.1 ml/kg (minus 11.8 percent P less than 0.05). Following SL, PV remained at 36.4 plus or minus 1.5 ml/kg while F returned PV to 39.1 plus or minus 1.8 ml/kg. The post BR stand test was completed without syncopal symptoms by 5 of 6 F subjects but only 2 of 5 SL subjects. Conclusions: SL may be ineffective in restoring PV to preflight levels and may provide inadequate protection against postflight orthostatic hypotension. In contrast, F may provide a promising countermeasure since it restored PV and reduced the incidence of syncope following exposure to simulated microgravity in the present study.
    Keywords: AEROSPACE MEDICINE
    Type: Aerospace Medical Association, Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: Continuous exposure to gravity may not be necessary to prevent compromised physiological function resulting from exposure to microgravity. However, minimum gravity (G) exposure requirements, effectiveness of passive Gz versus activity in a G field, and optimal G stimulus amplitude, duration, and frequency are unknown. To partially address these questions, a 4-day, 6 degree head-down bed rest (HDBR) study (one ambulatory control day, 4 full HDBR days, one recovery day) was conducted. Nine males, 30-50 yr, were subjected to four different +1 Gz (head-foot) exposure protocols (periodic standing or controlled walking for 2 or 4 h/day in 15 min doses), plus a continuous HDBR (0 Gz) control. Standing 4 h completely prevented and standing 2 h partially prevented post-HDBR orthostatic intolerance. Both walking conditions (2 h and 4 h) attenuated the decrease in peak VO2 and prevented the increased urinary Ca2+ excretion associated with HDBR. Both 4 h conditions (standing and walking) attenuated plasma volume loss during HDBR. It was concluded that various physiological systems benefit differentially from passive +1 Gz or activity in +1 Gz and the duration (2 h vs. 4 h) of the stimulus may be an important moderating factor.
    Keywords: Aerospace Medicine
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...