ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society
  • MDPI
  • Wiley-Blackwell
  • 2015-2019  (3,062)
  • 1995-1999
  • 1980-1984
  • 2015  (3,062)
Collection
Language
Years
  • 2015-2019  (3,062)
  • 1995-1999
  • 1980-1984
Year
  • 1
    Publication Date: 2020-11-18
    Description: A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in U.S. landfalling systems. Here, the authors present a tentative study that examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1°–0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and subtropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity, and power dissipation index in each cluster are documented for both configurations. The authors’ results show that, except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. The authors also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, the authors examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.
    Description: Published
    Description: 1333–1361
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; atlantic basin ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-16
    Description: In this study, Mg/Ca, Sr/Ca and Ba/Ca ratios in a Lateglacial to Holocene stalagmite (CC26) from Corchia Cave (central Italy) are compared with stable isotope data to define palaeohydrological changes. For most of the record, the trace element ratios show small absolute variability but similar patterns, which are also consistent with stable isotope variations. Higher trace element-to-calcium values are interpreted as responses to decreasing moisture, inducing changes in the residence time of percolation, producing prior calcite precipitation and/or variations in the hydrological routing. Statistically meaningful levels of covariability were determined using anomalies of Mg/Ca, d18O and d13C. Combining these three time series into a single ‘palaeomoisture-trend’ parameter, we highlight several events of reduced moisture (ca. 8.9–8.4, 6.2, 4.2, 3.1 and 2.0 ka), a humid period between ca. 7.9 and 8.3 ka and other shorter-term wet events at ca. 5.8, 5.3 and 3.7 ka. Most of these events can be correlated with climate changes inferred from other regional studies. For both extremities of the record (i.e. before ca. 12.4 ka and after ca. 0.5 ka) Mg/Ca and Sr/Ca are anti-correlated and show the greatest amplitude of values, a likely explanation for which involves aragonite and/or gypsum precipitation (the latter derived from pyrite oxidation) above the CC26 drip point.
    Description: Published
    Description: 381–392
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: central Italy; Corchia Cave; Holocene; speleothems; trace elements ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-18
    Description: This article presents an integrated approach for the probabilistic systemic risk analysis of a road network considering spatial seismic hazard with correlation of ground motion intensities, vulnerability of the network components, and the effect of interactions within the network, as well as, between roadway components and built environment to the network functionality. The system performance is evaluated at the system level through a global connectivity performance indicator, which depends on both physical damages to its components and induced functionality losses due to interactions with other systems. An object-oriented modeling paradigm is used, where the complex problem of several interacting systems is decomposed in a number of interacting objects, accounting for intra- and interdependencies between and within systems. Each system is specified with its components, solving algorithms, performance indicators and interactions with other systems. The proposed approach is implemented for the analysis of the road network in the city of Thessaloniki (Greece) to demonstrate its applicability. In particular, the risk for the road network in the area is calculated, specifically focusing on the short-term impact of seismic events (just after the earthquake). The potential of road blockages due to collapses of adjacent buildings and overpass bridges is analyzed, trying to individuate possible criticalities related to specific components/subsystems. The application can be extended based on the proposed approach, to account for other interactions such as failure of pipelines beneath the road segments, collapse of adjacent electric poles, or malfunction of lighting and signaling systems due to damage in the electric power network.
    Description: Published
    Description: 524–540
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Systemic vulnerability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-22
    Description: This work explores the impact of orbital parameters and greenhouse gas concentrations on the climate of marine isotope stage (MIS) 7 glacial inception and compares it to that of MIS 5. The authors use a coupled atmosphere-ocean general circulation model to simulate the mean climate state of six time slices at 115, 122, 125, 229, 236, and 239 kyr, representative of a climate evolution from interglacial to glacial inception conditions. The simulations are designed to separate the effects of orbital parameters from those of greenhouse gas (GHG). Their results show that, in all the time slices considered, MIS 7 boreal lands mean annual climate is colder than the MIS 5 one. This difference is explained at 70% by the impact of the MIS 7 GHG. While the impact of GHG over Northern Hemisphere is homogeneous, the difference in temperature between MIS 7 and MIS 5 due to orbital parameters differs regionally and is linked with the Arctic Oscillation. The perennial snow cover is larger in all the MIS 7 experiments compared to MIS 5, as a result of MIS 7 orbital parameters, strengthened by GHG. At regional scale, Eurasia exhibits the strongest response to MIS 7 cold climate with a perennial snow area 3 times larger than in MIS 5 experiments. This suggests that MIS 7 glacial inception is more favorable over this area than over North America. Furthermore, at 239 kyr, the perennial snow covers an area equivalent to that of MIS 5 glacial inception (115 kyr). The authors suggest that MIS 7 glacial inception is more extensive than MIS 5 glacial inception over the high latitudes.
    Description: Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA
    Description: Published
    Description: 8918-8933
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Arctic Oscillation ; Teleconnections ; Greenhouse gases ; Glaciation ; Paleoclimate ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-14
    Description: The knowledge of the local soil structure is important for the assessment of seismic hazards. A widespread, but time-consuming technique to retrieve the parameters of the local underground is the drilling of boreholes. Another way to obtain the shear wave velocity profile at a given location is the inversion of surface wave dispersion curves. To ensure a good resolution for both superficial and deeper layers, the used dispersion curves need to cover a wide frequency range. This wide frequency range can be obtained using several arrays of seismic sensors or a single array comprising a large number of sensors. Consequently, these measurements are time-consuming. A simpler alternative is provided by the use of the ellipticity of Rayleigh waves. The frequency dependence of the ellipticity is tightly linked to the shear wave velocity profile. Furthermore, it can be measured using a single seismic sensor. As soil structures obtained by scaling of a given model exhibit the same ellipticity curve, any inversion of the ellipticity curve alone will be ambiguous. Therefore, additional measurements which fix the absolute value of the shear wave velocity profile at some points have to be included in the inversion process. Small-scale spatial autocorrelation measurements or MASW measurements can provide the needed data. Using a theoretical soil structure, we show which parts of the ellipticity curve have to be included in the inversion process to get a reliable result and which parts can be omitted. Furthermore, the use of autocorrelation or high-frequency dispersion curves will be highlighted. The resulting guidelines for inversions including ellipticity data are then applied to real data measurements collected at 14 different sites during the European NERIES project. It is found that the results are in good agreement with dispersion curve measurements. Furthermore, the method can help in identifying the mode of Rayleigh waves in dispersion curve measurements.
    Description: Published
    Description: 207-229
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Inverse theory Surface waves and free oscillations Site effects Computational seismology Wave propagation ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-22
    Description: Operative seismic aftershock risk forecasting can be particularly useful for rapid decision-making in the presence of an ongoing sequence. In such a context, limit state first-excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance-based framework for adaptive aftershock risk assessment in the immediate post-mainshock environment. A time-dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event-dependent fragility curves as a function of the first-mode spectral acceleration for a prescribed limit state is calculated by employing back-to-back non- linear dynamic analyses. An epidemic-type aftershock sequence model is employed for estimating the spatio-temporal evolution of aftershocks. The event-dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic-type aftershock sequence aftershock hazard. The daily probability of limit state first-excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the num- ber of aftershocks. As a numerical example, daily aftershock risk is calculated for the L’Aquila 2009 aftershock sequence (central Italy). A representative three-story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first-excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.
    Description: Published
    Description: 2179–2197
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: aftershock ; time-dependent reliability ; seismic risk ; etas modeling ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-10-06
    Description: Heavy precipitation is a major hazard over Europe. It is well established that climate model projections indicate a tendency towards more extreme daily rainfall events. It is still uncertain, however, how this changing intensity translates at the sub-daily time scales. The main goal of the present study is to examine possible differences in projected changes in intense precipitation events over Europe at the daily and sub-daily (3-hourly) time scales using a state-of-the-science climate model. The focus will be on one Representative Concentration Pathway (RCP 8.5), considered as illustrative of a high rate of increase in greenhouse gas concentrations over this century. There are statistically significant differences in intense precipitation projections (up to 40%) when comparing the results at the daily and sub-daily time scales. Over north-eastern Europe, projected precipitation intensification at the 3-hour scale is lower than at the daily scale. On the other hand, Spain and the western seaboard exhibit an opposite behaviour, with stronger intensification at the 3-hour scale rather than daily scale. While the mean properties of the precipitation distributions are independent of the analysed frequency, projected precipitation intensification exhibits regional differences. This finding has implications on the extrapolation of impacts of intense precipitation events, given the daily time scale the analyses are usually performed at.
    Description: Published
    Description: 6193–6203
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: rainfall ; extreme events ; heavy precipitation ; snow ; europe ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Pernicana Fault (PF) is the main structural element of Mt Etna and the northern boundary of a section sliding to the southeast. Observed ground motion records in the damage zone of the PF show strong variations of directional resonance in the horizontal plane. The observed resonance directions exhibit an abrupt rotation of azimuth by about 30◦ across the fault, varying from N166◦ on the north side to N139◦ on the south. We interpret the directional resonance observations in terms of changes in the kinematics and deformation fields on the opposite sides of the fault. The northern side is affected primarily by the left-lateral strike-slip movement, whereas the southern side, that is subjected also to sliding, is under a dominant extensional stress regime. Brittle deformation models based on the observed kinematic field predict different sets of fractures on the opposite sides of the fault: synthetic cleavages and extensional fractures are expected to dominate in the northern and southern sides, respectively. These two fracture fields have different orientations (N74◦ and N42◦, respectively) and both show a near-orthogonal relation (∼88◦ in the northern sector and ∼83◦ to the south) with the azimuth of the observed directional resonance. We conclude that the direction of the largest resonance motions is sensitive to and has transversal relationship with the dominant fracture orientation. The directional amplification is inferred to be produced by stiffness anisotropy of the fault damage zone, with larger seismic motions normal to the fractures.
    Description: Published
    Description: 986–996
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions; Site effects; Wave propagation ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We consider a seismicity forecast experiment conducted during the last 4 yr. At the beginning of each year, three models make a 1-yr forecast of the distribution of large earthquakes everywhere on the Earth. The forecasts are generated and the observations are collected in the Collaboratory for the Study of Earthquake Predictability (CSEP). We apply CSEP likelihood measures of consistency and comparison to see how well the forecasts match the observations, and we compare results from some intuitive reference models. These results illustrate some undesirable properties of the consistency tests: the tests can be extremely sensitive to only a few earthquakes, and yet insensitive to seemingly obvious flaws—a na ̈ıve hypothesis that large earthquakes are equally likely everywhere is not always rejected. The results also suggest that one should check the assumptions of the so-called T and W comparison tests, and we illustrate some methods to do so. As an extension of model assessment, we explore strategies to combine forecasts, and we discuss the implications for operational earthquake forecasting. Finally, we make suggestions for the next generation of global seismicity forecast experiments.
    Description: Published
    Description: 422-431
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: probabilistic forecasting ; statistical seismology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The M ∼ 7 1915 Fucino (Central Italy) earthquake represents one of the most destructive seismic events ever occurred in the Italian Peninsula. Several seismogenic faults have been proposed in the past decades as the source of the earthquake by means of different approaches and techniques that lead to a variety of speculations about the source mechanism and the fault location, often contrasting with one another. The 1915 earthquake produced a remarkable data set of 73 coseismic hydrological changes in the near and intermediate field that consist in variation of the flow of streams and springs, liquefaction, rise of water temperature and turbidity. In this paper, we study the coseismic water level changes induced by the 1915 earthquake in the near field to provide convincing clues on the geometry of the earthquake causative fault. We model the coseismic strain field induced by seventeen individual faults proposed through different approaches, and compare its pattern with the distribution of streamflow changes. We find: (i) clues on the most probable geometry of the earthquake causative fault. Best fits between modelled deformation and observed data are displayed by sources (derived by geological or seismological data) that share several distinctive features, as they are ∼135◦-striking, SW-dipping, 25–30-km-long normal faults located along the eastern side of the Fucino basin. These data point to the Serrone Fault and the Parasano Fault as the most likely causative structures and support the hypothesis that the coseismic ruptures observed in the field represented primary surface faulting. On the contrary, our calculations show that the Pescina Fault and the Ventrino Fault are secondary faults from the perspective of the hydrological response. Finally, one of the best scoring potential sources (from geological data) is a multifaulting system that considers the presence, in the central-western part of the basin, of fault splays synthetic and antithetic to the main seismogenic structures; therefore, we infer for these splays a possible active involvement in a 1915-like seismogenic process; (ii) evidence against a number of seismogenic structures that were previously associated with the earthquake. In particular, the plots of coseismic strain induced by sources uniquely derived by macroseismic or geodetic data prove to be inconsistent with the polarities of the hydrological signatures. Also, sources mainly characterized by reverse faulting and/or by right-lateral strike-slip component are discarded and (iii) as a final remark, we maintain that the study of the hydrological signatures of earthquake strain can offer an alternative tool in the investigation of the historical seismicity, to estimate the focal mechanism of major earthquakes capable of giving rise to a consistent data set of hydrological data.
    Description: Published
    Description: 1374-1388
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 1915 Fucino earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Macroseismic intensities are the only available data for most historical earthquakes and often represent the unique source of information for crucial events in the definition of seismic hazard. In this paper, we attempt at getting insight into source characteristics by reproducing the observed intensity field. As a test case, we study the source of 1908 Messina Straits earthquake ( M W = 7.1), by testing three distinct fault models deduced from the analysis of geodeticdata.Startingfromthestaticslipdistribution,wedevelop kinematicsourcemodelsfor the investigated fault and compute full waveform synthetic seismograms in a 1-D structural model, also accounting for anelastic attenuation. Then, we convert both computed peak- ground acceleration (PGA) and peak-ground velocity (PGV) to macroseismic intensity at 100 selected sites, by means of specific empirical relations for the Italian region. By comparing the original data separately with PGA- and PGV-based intensity fields, we discriminate among the tested faults and determine the best values for the investigated kinematic parameters of the source. We also perform a misfit analysis for the best source model, in order to investigate the dependence of the results on the selected parametrization. The results of the analysis indicate that among the tested models, the one characterized by an east-dipping fault, with strike- oriented NS slightly rotated clockwise, better explains the observed macroseismic field of the 1908 Messina Straits earthquake. Besides, the fracture nucleated at the southern end of the fault and ruptured northward, producing considerable directivity effects. This is in agreement with the published results obtained from the investigation of the historical seismograms. We alsodeterminerealisticvalues fortherupturevelocityand therise-time.Ourstudyconfirms the greatpotentialofthemacroseismicdata,demonstratingthattheycontainenoughinformationto constrain important characteristics of the fault, which can be retrieved by using complex source models and computing complete wavefield. Moreover, we also show that the simultaneous comparison of both PGA- and PGV-based synthetic macroseismic fields with the original intensities provides tighter constraints for discriminating among different source models, with respect to what attainable from each of them
    Description: Published
    Description: 164-173
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions; Earthquake source observations. ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Gravity and height changes, reflecting magma accumulation in subsurface chambers, are evaluated using Finite Element models in order to resolve controversial relationships observed in some volcanic areas. When significant gravity changes occur without any significant deformation, or vice versa, it is often difficult, if not impossible, to jointly explain the observations using the popular Mogi model. Here we explore whether these discrepancies can be explained by magma compressibility and source geometry effects. Compression of resident magma and expansion of the chamber wall act concurrently to accommodate newly added magma. Gravity-height ratios are found to mainly depend on: (i) geometry of the sources, which control the volume expansion of the chamber, (ii) magma compressibility, which affects the contraction of the magma resident in the chamber, and (iii) depth of the sources. Our numerical results show that, when magma compressibility and non-spherical sources are taken into account, significant gravity variations can, indeed, be successfully reconciled with negligible height changes. This may be the case at Etna volcano, where gravity changes (about 40 miuGal) without any significant deformation (below 5 cm) were observed during the 1994-1995 inflation period. The numerical results point to the accumulation of a 1.4x10^10 kg mass into an elongated source simulating a shallow storage region supplying the summit craters.
    Description: Published
    Description: 164-173
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: numerical modeling, gravity and height changes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: We present an up-to-date high resolution picture of the ongoing crustal deformation field of Italy, based on an extensive combination of permanent and non-permanent GPS observations carried out since 1994. In addition, we present an updated map of contemporary SHmax orientations computed by a multidisciplinary data set of well-constrained stress indicators, including both published results and novel analyses. The comparison of stress and geodetic strain-rates directions reveals that both patterns are near-parallel over a large part of the investigated area, highlighting that crustal stress and surface deformation are driven by the same mechanism. The comparison of the azimuthal patterns of surface strain and mantle deformation shows a modest correlation on the Alps and a low correlation along the Apennines chain and the Calabro-Peloritan Arc. Along the Apennines chain, this feature suggests the occurrence of significant strain partitioning and crust–mantle mechanical decoupling. Along the Calabro-Peloritan Arc, the apparent low correlation reflects a different mantle–crust mechanism of deformation to the ongoing subduction and rollback of the Ionian slab. In addition, the superposition of regional/local effects related to second-order sources (crustal lateral density changes, strength contrasts), which at regional/local scale modulate the crustal stress/strain-rate pattern, cannot be ruled out.
    Description: Published
    Description: 969-985
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Plate motions ; Seismic anisotropy ; Kinematics of crustal and mantle deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In the Umbria Marche (Central Italy) region an important earthquake sequence occurred in 1997, characterized by nine earthquakes with magnitudes in the range between 5 and 6, that caused important damages and causalities. In the present paper we separately estimate intrinsic- and scattering- Q −1 parameters, using the classical MLTWA approach in the assumption of a half space model. The results clearly show that the attenuation parameters Qi −1 and Qs −1 are frequency dependent. This estimate is compared with other attenuation studies carried out in the same area, and with all the other MLTWA estimates obtained till now in other tectonic environments in the Earth. The bias introduced by the half space assumption is investigated through numerical solutions of the Energy Transport equation in the more realistic assumption of a heterogeneous crust overlying a transparent mantle, with a Moho located at a depth ranging between 35 and 45 km below the surface. The bias introduced by the half space assumption is significant only at high frequency. We finally show how the attenuation estimates, calculated with different techniques, lead to different PGA decay with distance relationships, using the well known and well proven Boore’s method. This last result indicates that care must be used in selecting the correct estimate of the attenuation parameters for seismic risk purposes. We also discuss the reason why MLTWA may be chosen among all the other available techniques, due to its intrinsic stability, to obtain the right attenuation parameters.
    Description: Published
    Description: 1370-1382
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: open
    Keywords: Seismic attenuation ; scattering ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Seismological, geological and geodetic data have been integrated to characterize the seismogenic structure of the late 2013-early 2014 moderate energy (maximum local magnitude MLmax = 4.9) seismic sequence that struck the interior of the Matese Massif, part of the Southern Apennines active extensional belt. The sequence, heralded by a ML = 2.7 foreshock, was characterized by two main shocks with ML = 4.9 and ML = 4.2, respectively, which occurred at a depth of ∼17–18 km. The sequence was confined in the 10–20 km depth range, significantly deeper than the 1997–1998 sequence which occurred few km away on the northeastern side of the massif above ∼15 km depth. The depth distribution of the 2013–14 sequence is almost continuous, albeit a deeper (16–19 km) and a shallower (11–15 km) group of events can be distinguished, the former including the main shocks and the foreshock. The epicentral distribution formed a ∼10 km long NNW–SSE trending alignment, which almost parallels the surface trace of late Pliocene–Quaternary southwest-dipping normal faults with a poor evidence of current geological and geodetic deformation. We built an upper crustal model profile for the eastern Matese massif through integration of geological data, oil exploration well logs and seismic tomographic images. Projection of hypocentres on the profile suggests that the seismogenic volume falls mostly within the crystalline crust and subordinately within the Mesozoic sedimentary cover of Apulia, the underthrust foreland of the Southern Apennines fold and thrust belt. Geological data and the regional macroseismic field of the sequence suggest that the southwest-dipping nodal plane of the main shocks represents the rupture surface that we refer to here as the Matese fault. The major lithological discontinuity between crystalline and sedimentary rocks of Apulia likely confined upward the rupture extent of the Matese fault. Repeated coseismic failure represented by the deeper group of events in the sequence, activated in a passive fashion the overlying ∼11–15 km deep section of the upper crustal normal faults. We consider the southwest-dipping Matese fault representative of a poorly known type of seismogenic structures in the Southern Apennines, where extensional seismogenesis and geodetic strain accumulation occur more frequently on NE-dipping, shallower-rooted faults. This is the case of the Boiano Basin fault located on the northern side of the massif, to which the 1997–1998 sequence is related. The close proximity of the two types of seismogenic faults at the Matese Massif is related to the complex crustal architecture generated by the Pliocene–early Pleistocene contractional and transpressional tectonics.
    Description: Published
    Description: 823-837
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismicity and tectonics ; Continental tectonics: extensional ; Crustal structure ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We analysed the conversion problem between teleseismic magnitudes (Ms and mb) provided by the Seismological Bulletin of the International Seismological Centre and moment magni- tudes (Mw) provided by online moment tensor (MT) catalogues using the chi-square general orthogonal regression method (CSQ) that, differently from the ordinary least-square regres- sion method (OLS), accounts for the measurement errors of both the predictor and response variables. To account for the non-linearity of the relationships, we used two types of curvilin- ear models: (i) the exponential model (EXP), recently proposed by the authors of the Global Catalogue sponsored by the Global Earthquake Model (GEM) Foundation and (ii) a connected bilinear (CBL) model, similar to that proposed by Ekstro ̈m & Dziewonski, where two different linear trends at low and high magnitudes are connected by an arc of circle that preserves the continuity of the function and of its first derivative at the connecting points. For Ms, we found that the regression curves computed for a global data set (GBL) are likely to be biased by the incompleteness of global MT catalogues for Mw 〈5.0–5.5. In fact, the GBL curves deviate significantly from a similar regression curve computed for a Euro-Mediterranean data set (MED) integrated with the data provided by two regional MT catalogues including many more events with Mw 〈 5.0–5.5. The GLB regression curves overestimate the Mw proxies computed from Ms up to 0.5 magnitude units. Hence for computing Mw proxies at the global scale of Ms ≤ 5.5, we suggest to adopt the coefficients obtained from the MED regression. The analysis of the frequency–magnitude relationship of the resulting Mw proxy catalogues confirms the validity of this choice as the behaviour of b-value as a function of cut-off magnitude of the GBL data set is much more stable using such approach. The incompleteness of Mw’s provided from MT global catalogues also affects the mb GBL data set but in this case the use of the CSQ regression method, in place of the OLS, mitigates the bias and then, at low magnitudes, the EXP regression curve computed from the more complete MED data set almost coincides with that computed from the GBL data set. Our results also indicate that the slope at low magnitudes of the Mw–Ms relationship is substantially consistent with the hypothesized theoretical value of 2/3 for Ms 〈 5.0 while the slope of the Mw–mb relationship at high magnitudes probably reaches the theoretically expected value of 2 only in the proximity of the upper limit of mb determinations in our data set (mb = 7.2).
    Description: Published
    Description: 805–828
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations ; Statistical seismology ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: In a recent paper, important issues were raised about the identification of the fault responsible for the 1908 Messina Straits earthquake. Starting with a reanalysis of the available original geodetic data, the authors aimed to demonstrate that both of the fault–plane orientations derived by the focal mechanism are compatible with the measurements. On these grounds, and based on geological considerations, they argued in favour of the Armo fault—a high-angled structure on the Calabrian side of the Messina Straits—as responsible for the 1908 earthquake. We indicate here that their analysis has some pitfalls that produce questionable results, and that render their conclusions unreliable. Moreover, especially when dealing with such old events and data, we consider that it is more prudent not to derive conclusions on the basis of a single data set, as all of the available information should be included in any interpretation. Indeed, when the joint results of the seismological and geodetic analyses are taken into account, a consistent and robust source model can be derived that indicates that a low-angle, east-dipping fault is the most likely source of this 1908 Messina Straits earthquake
    Description: Published
    Description: 1399-1402
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; Seismicity and tectonics; Europe ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: In this study,we use Differential Synthetic Aperture Radar Interferometry (DInSAR) and multiaperture interferometry (MAI) to constrain the sources of the three largest events of the 2008 Baluchistan (western Pakistan) seismic sequence, namely two Mw 6.4 events only 12 hr apart and an Mw 5.7 event that occurred 40 d later. The sequence took place in the Quetta Syntaxis, the most seismically active region of Baluchistan, tectonically located between the colliding Indian Plate and the Afghan Block of the Eurasian Plate. Surface displacements estimated from ascending and descending ENVISAT ASAR acquisitions were used to derive elastic dislocation models for the sources of the two main events. The estimated slip distributions have peak values of 120 and 130 cm on a pair of almost parallel and near-vertical faults striking NW–SE, and of 50 cm and 60 cm on two high-angle faults striking NE–SW. Values up to 50 cm were found for the largest aftershock on an NE–SW fault located between the sources of the main shocks. The MAI measurements, with their high sensitivity to the north–south motion component, are crucial in this area to accurately describe the coseismic displacement field. Our results provide insight into the deformation style of the Quetta Syntaxis, suggesting that right-lateral slip released at shallow depths on large NW fault planes is compatible with left-lateral activation on smaller NE–SW faults.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Radar interferometry ; Satellite geodesy ; Seismicity and Tectonics ; Continental margins: convergent ; Earthquake interaction, forecasting and prediction ; Earthquake source observation ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The relative seismic velocity variations possibly associated to large earthquakes can be readily monitored via cross-correlation of seismic noise. In a recently published study, more than 2 yr of continuous seismic records have been analysed from three stations surrounding the epicentre of the 2009 April 6, Mw 6.1 L’Aquila earthquake, observing a clear decrease of seismic velocities likely corresponding to the co-seismic shaking. Here, we extend the analysis in space, including seismic stations within a radius of 60 km from the main shock epicentre, and in time, collecting 5 yr of data for the six stations within 40 km of it. Our aim is to investigate how far the crustal damage is visible through this technique, and to detect a potential post-seismic recovery of velocity variations. We find that the co-seismic drop in velocity variations extends up to 40 km from the epicentre, with spatial distribution (maximum around the fault and in the north– east direction from it) in agreement with the horizontal co-seismic displacement detected by global positioning system (GPS). In the first few months after L’Aquila earthquake, the crust’s perturbation in terms of velocity variations displays a very unstable behaviour, followed by a slow linear recovery towards pre-earthquake conditions; by almost 4 yr after the event, the co-seismic drop of seismic velocity is not yet fully recovered. The strong oscillations of the velocity changes in the first months after the earthquake prevent to detect the fast exponential recovery seen by GPS data. A test of differently parametrized fitting curves demonstrate that the post-seismic recovery is best explained by a sum of a logarithmic and a linear term, suggesting that processes like viscoelastic relaxation, frictional afterlip and poroelastic rebound may be acting concurrently.
    Description: Published
    Description: 604-6011
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Time-series analysis; Interferometry; Computational seismology; Europe ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-12-13
    Description: Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50–100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong-motion target site located in the middle Aterno river valley. As a target site, we selected the strong-motion station of AQV 5 km away from downtown L'Aquila. For this site, the record of the 2009 L'Aquila main shock is available and its surface stratigraphy is adequately known making possible to propagate the deconvolved bedrock motion back to the surface, and to compare recorded and synthetic waveforms.
    Description: Published
    Description: 848–866
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Fourier analysis, Earthquake ground motions , Site effects ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-05-27
    Description: We propose an innovative approach to mapping CMB topography from seismic P-wave trav- eltime inversions: instead of treating mantle velocity and CMB topography as independent parameters, as has been done so far, we account for their coupling by mantle flow, as formulated by Forte & Peltier. This approach rests on the assumption that P data are sufficiently sensitive to thermal heterogeneity, and that compositional heterogeneity, albeit important in localized regions of the mantle (e.g. within the D′′ region), is not sufficiently strong to govern the pattern of mantle-wide convection and hence the CMB topography. The resulting tomographic maps of CMB topography are physically sound, and they resolve the known discrepancy between images obtained from classic tomography on the basis of core-reflected and core-refracted seismic phases. Since the coefficients of mantle velocity structure are the only free parameters of the inversion, this joint tomography–geodynamics approach reduces the number of param- eters; nevertheless the corresponding mantle models fit the seismic data as well as the purely seismic ones.
    Description: Published
    Description: 730-746
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic tomography ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: We present the results of palaeomagnetic analysis on Late Bronge Age pottery from Santorini carried out in order to estimate the thermal effect of the Minoan eruption on the pre-Minoan habitation level. A total of 170 specimens from 108 ceramic fragments have been studied. The ceramics were collected from the surface of the pre-Minoan palaeosol at six different sites, including also samples from the Akrotiri archaeological site. The deposition temperatures of the first pyroclastic products have been estimated by the maximum overlap of the re-heating temperature intervals given by the individual fragments at site level. A new statistical elaboration of the temperature data has also been proposed, calculating at 95 per cent of probability the re-heating temperatures at each site. The obtained results show that the precursor tephra layer and the first pumice fall of the eruption were hot enough to re-heat the underlying ceramics at temperatures 160–230 ◦C in the non-inhabited sites while the temperatures recorded inside the Akrotiri village are slightly lower, varying from 130 to 200 ◦C. The decrease of the temperatures registered in the human settlements suggests that there was some interaction between the buildings and the pumice fallout deposits while probably the buildings debris layer caused by the preceding and syn-eruption earthquakes has also contributed to the decrease of the recorded re-heating temperatures.
    Description: Published
    Description: 33-47
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Archaeomagnetism ; Rock and mineral magnetism ; Volcaniclastic deposits ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Probabilistic tsunami hazard analysis (PTHA) relies on computationally demanding numerical simulations of tsunami generation, propagation, and non-linear inundation on high-resolution topo-bathymetric models. Here we focus on tsunamis generated by co-seismic sea floor dis- placement, that is, on Seismic PTHA (SPTHA). A very large number of tsunami simulations are typically needed to incorporate in SPTHA the full expected variability of seismic sources (the aleatory uncertainty). We propose an approach for reducing their number. To this end, we (i) introduce a simplified event tree to achieve an effective and consistent exploration of the seismic source parameter space; (ii) use the computationally inexpensive linear approximation for tsunami propagation to construct a preliminary SPTHA that calculates the probability of maximum offshore tsunami wave height (H Max) at a given target site; (iii) apply a two-stage filtering procedure to these ‘linear’ SPTHA results, for selecting a reduced set of sources and (iv) calculate ‘non-linear’ probabilistic inundation maps at the target site, using only the selected sources. We find that the selection of the important sources needed for approximating probabilistic inundation maps can be obtained based on the offshore HMax values only. The filtering procedure is semi-automatic and can be easily repeated for any target sites. We describe and test the performances of our approach with a case study in the Mediterranean that considers potential subduction earthquakes on a section of the Hellenic Arc, three target sites on the coast of eastern Sicily and one site on the coast of southern Crete. The comparison between the filtered SPTHA results and those obtained for the full set of sources indicates that our approach allows for a 75–80 per cent reduction of the number of the numerical simulations needed, while preserving the accuracy of probabilistic inundation maps to a reasonable degree.
    Description: Published
    Description: 574-588
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Tsunami ; Hazard ; Probabilistic ; Subduction ; Mediterranean ; SPTHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Temporal variations in the elastic behaviour of the Earth’s crust can be monitored through the analysis of the Earth’s seismic response and its evolution with time. This kind of analysis is particularly interesting when combined with the reconstruction of seismic Green’s functions from the cross-correlation of ambient seismic noise, which circumvents the limitations imposed by a dependence on the occurrence of seismic events. In fact, because seismic noise is recorded continuously and does not depend on earthquake sources, these cross-correlation functions can be considered analogously to records from continuously repeating doublet sources placed at each station, and can be used to extract observations of variations in seismic velocities. These variations, however, are typically very small: of the order of 0.1 per cent. Such accuracy can be only achieved through the analysis of the full reconstructed waveforms, including later scattered arrivals. We focus on the method known as Moving-Window Cross-Spectral Analysis that has the advantage of operating in the frequency domain, where the bandwidth of coherent signal in the correlation function can be clearly defined. We investigate the sensitivity of this method by applying it to microseismic noise cross-correlations which have been perturbed by small synthetic velocity variations and which have been randomly contaminated. We propose threshold signal-to-noise ratios above which these perturbations can be reliably observed. Such values are a proxy for cross-correlation convergence, and so can be used as a guideline when determining the length of microseismic noise records that are required before they can be used for monitoring with the moving-window cross-spectral technique.
    Description: Published
    Description: 867-882
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Interferometry; Volcano monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Climate model simulations are currently the main tool to provide information about possible future climates. Apart from scenario uncertainties and model error, internal variability is a major source of uncertainty, complicating predictions of future changes. Here, a suite of statistical tests is proposed to determine the shortest time window necessary to capture the internal precipitation variability in a stationary climate. The length of this shortest window thus expresses internal variability in terms of years. The method is applied globally to daily precipitation in a 200-yr preindustrial climate simulation with the CMCC-CM coupled general circulation model. The two-sample Cramér–von Mises test is used to assess differences in precipitation distribution, the Walker test accounts for multiple testing at grid cell level, and field significance is determined by calculating the Bejamini–Hochberg false-discovery rate. Results for the investigated simulation show that internal variability of daily precipitation is regionally and seasonally dependent and that regions requiring long time windows do not necessarily coincide with areas with large standard deviation. The estimated time scales are longer over sea than over land, in the tropics than in midlatitudes, and in the transitional seasons than in winter and summer. For many land grid cells, 30 seasons suffice to capture the internal variability of daily precipitation. There exist regions, however, where even 50 years do not suffice to sample the internal variability. The results show that diagnosing daily precipitation change at different times based on fixed global snapshots of one climate simulation might not be a robust detection method.
    Description: Published
    Description: 3624–3630
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: precipitation ; internal variability ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: In this study we have investigated the forward directivity associated with the initial up-dip rupture propagation during the April 6th 2009 (MW 6.1) L’Aquila normal-faulting earthquake. The objective is the understanding of how the peculiar initial behavior of rupture history during the main shock has affected the near-source recorded ground motions in the L’Aquila town and surrounding areas. We have modeled the observed ground velocities at the closest near-source recording sites by computing synthetic seismograms using a discrete wavenumbers and finite difference approach in the low frequency bandwidth (0.02-0.4 Hz) to avoid site effects contaminations. We use both the rupture model retrieved by inverting ground motion waveforms and continuous high sampling-rate GPS time series as well as uniform-slip constant-rupture speed models. Our results demonstrate that the initial up-dip rupture propagation, characterizing the first three seconds of the rupture history during the L’Aquila main shock and releasing only ∼25% of total seismic moment, controls the observed ground motions in the near-source. This initial stage of the rupture is characterized by the generation of clear ground velocity pulses, which we interpret as a forward directivity effect. Our modeling results confirm a heterogeneous distribution of rupture velocity during the initial up-dip rupture propagation, since uniform rupture speed models overestimate up-dip directivity effects in the footwall of the causative fault. The up-dip directivity observed in the near field during the 2009 L’Aquila main shock is that predicted for a normal faulting earthquake by Somerville’s directivity model, but it differs from that inferred from far-field observations that conversely provide evidence of along-strike directivity. This calls for a careful analysis as well as for the realistic inclusion of rupture directivity to predict ground motions in the near source.
    Description: Published
    Description: 1618-1631
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: earthquake ground motion, earthquake source observations, computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Magnitude conversion problem using general orthogonal regression’ by H. R. Wason, Ranjit Das and M. L. Sharma, (Geophys. J. Int., 190, 1091–1096)
    Publication Date: 2017-04-04
    Description: The argument proposed by Wason et al. that the conversion of magnitudes from a scale (e.g. Ms or mb) to another (e.g. Mw), using the coefficients computed by the general orthogonal regression method (Fuller) is biased if the observed values of the predictor (independent) variable are used in the equation as well as the methodology they suggest to estimate the supposedly true values of the predictor variable are wrong for a number of theoretical and empirical reasons. Hence, we advise against the use of such methodology for magnitude conversions.
    Description: Published
    Description: 626-627
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations ; Statistical seismology ; Computational seismology ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Abstract: The conservation of architectural heritage usually requires a multidisciplinary approach involving a variety of specialist expertise and techniques. Nevertheless, destructive techniques should be avoided, wherever possible, in order to preserve the integrity of the historical buildings, therefore the development of non-destructive and non-contact techniques is extremely important. In this framework, a methodology for combining the terrestrial laser scanning and the infrared thermal images is proposed, in order to obtain a reconnaissance of the conservation state of a historical building. The proposed case study is represented by St. Augustine Monumental Compound, located in the historical centre of the town of Cosenza (Calabria, South Italy). Adopting the proposed methodology, the paper illustrates the main results obtained for the building test overlaying and comparing the collected data with both techniques, in order to outline the capabilities both to detect the anomalies and to improve the knowledge on health state of the masonry building. The 3D model, also, allows to provide a reference model, laying the groundwork for implementation of a monitoring multisensor system based on the use of non-destructive techniques.
    Description: The presented work has been carried out in the PON Monitoraggio in Area Sismica di SIstemi MOnumentali (MASSIMO) project framework, managed by the Italian National Institute of Geophysics and Volcanology (INGV) and funded by the Italian Ministry of Education, University and Research
    Description: Published
    Description: 194-213
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: open
    Keywords: terrestrial laser scanner ; IR thermography ; historical buildings conservation ; preventive diagnosis ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Wiley-Blackwell
    Publication Date: 2017-04-04
    Description: Fluids—essentially meteoric water—are present everywhere in the Earth’s crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in formof solitary pressure waves propagating at a velocity which decreases with time as v ∝t [1/(n − 1) − 1] with n 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.
    Description: Published
    Description: 1281–1285
    Description: 6T. Sismicità indotta e caratterizzazione sismica dei sistemi naturali
    Description: N/A or not JCR
    Description: restricted
    Keywords: forecasting and prediction ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model outputs. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The financial support of the Italian Ministry of Education, University and Research, and Ministry for Environment, Land and Sea through the project GEMINA and that of INDO-MARECLIM (Project 295092) is gratefully acknowledged. A. Cherchi thankfully acknowledges the generous hospitality of the International Pacific Research Center at UH Manoa, Honolulu. Jan Hafner is thanked for providing the moist static energy budget code used here and Matthew Windlansky is thanked for comments and proof reading. H. Annamalai acknowledges the partial support by the Office of Science (BER) U.S. Department of Energy, Grant DE-FG02-07ER6445, and also by the three institutional grants (JAMSTEC, NASA, NOAA) of the IPRC. Dr. Chen and an anonymous reviewer are acknowledged for the instructive and helpful comments given.
    Description: Dry summers over the eastern Mediterranean are characterized by strong descent anchored by long Rossby waves, which are forced by diabatic heating associated with summer monsoon rainfall over South Asia. The large-scale teleconnection between rising and subsiding air masses is referred to as the "monsoon-desert mechanism.'' This study evaluates the ability of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) models in representing the physical processes involved in this mechanism. An evaluation of statistics between summer climatologies of monsoon diabatic heating and that of vertical velocity over the eastern Mediterranean suggests a linear relationship. Despite large spatial diversity in monsoon heating, descent over the Mediterranean is coherently located and realistic in intensity. To measure the sensitivity of descent to the diversity in the horizontal and vertical distribution of monsoon heating, a series of linear atmosphere model experiments are performed. It is shown that column-integrated heating over both the Bay of Bengal and the Arabian Sea provides the largest descent with a more realistic spatial pattern. In the vertical, CMIP5 models underestimate the diabatic heating at upper levels, while they overestimate it at lower levels, resulting in a weaker forced response and weaker associated descent over the Mediterranean. A moist static energy budget analysis applied to CMIP5 suggests that most models capture the dominant role of horizontal temperature advection and radiative fluxes in balancing descent over the Mediterranean. Based on the objective analysis herein, a subset of models is identified that captures the teleconnection for reasons consistent with observations. The recognized processes vary at interannual time scales as well, with imprints of severe weak/strong monsoons noticeable over the Mediterranean.
    Description: Italian Ministry of Education, University and Research Ministry for Environment, Land and Sea through the project GEMINA INDO-MARECLIM 295092 Office of Science (BER) U.S. Department of Energy DE-FG02-07ER6445 (JAMSTEC) of the IPRC (NASA) of the IPRC (NOAA) of the IPRC
    Description: Published
    Description: 6877-6903
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: Rossby waves ; Teleconnections ; Diabatic heating ; Coupled models ; Model evaluation/performance ; Interannual variability ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Optimally modeling background-error horizontal correlations is crucial in ocean data assimilation. This paper investigates the impact of releasing the assumption of uniform background-error correlations in a global ocean variational analysis system. Spatially varying horizontal correlations are introduced in the recursive filter operator, which is used for modeling horizontal covariances in the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) analysis system. The horizontal correlation length scales (HCLSs) were defined on the full three-dimensional model space and computed from both a dataset of monthly anomalies with respect to the monthly climatology and through the so-called National Meteorological Center (NMC) method. Different formulas for estimating the correlation length scale are also discussed and applied to the two forecast error datasets. The new formulation is tested within a 12-yr period (2000–11) in the ½° resolution system. The comparison with the data assimilation system using uniform background-error horizontal correlations indicates the superiority of the former, especially in eddy-dominated areas. Verification skill scores report a significant reduction of RMSE, and the use of nonuniform length scales improves the representation of the eddy kinetic energy at midlatitudes, suggesting that uniform, latitude, or Rossby radius-dependent formulations are insufficient to represent the geographical variations of the background-error correlations. Furthermore, a small tuning of the globally uniform value of the length scale was found to have a small impact on the analysis system. The use of either anomalies or NMC-derived correlation length scales also has a marginal effect with respect to the use of nonuniform HCLSs. On the other hand, the application of overestimated length scales has proved to be detrimental to the analysis system in all areas and for all parameters.
    Description: This work has received funding from the Italian Ministry of Education, University and Research and the Italian Ministry for the Environment, Land and Sea under the GEMINA project and from the European Commission's Copernicus program, previously known as the GMES program, under the MyOcean and MyOcean2 projects.
    Description: Published
    Description: 2330-2349
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: open
    Keywords: DATA ASSIMILATION SCHEME ; TROPICAL PACIFIC-OCEAN ; PART I ; VARIATIONAL ASSIMILATION ; COVARIANCE FUNCTIONS ; DIFFUSION EQUATION ; SYSTEM ; TEMPERATURE ; IMPLEMENTATION ; MODEL ; 03. Hydrosphere::03.01. General::03.01.04. Ocean data assimilation and reanalysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Our improved capability to adapt to future changes in discharge is linked to our capability to predict the magnitude or at least the direction of these changes. For the agricultural U.S. Midwest, too much or too little water has severe socio-economic impacts. Here we focus on the Raccoon River at Van Meter, Iowa, and use a statistical approach to examine projected changes in discharge. We build on statistical models using rainfall and harvested corn and soybean acreage to explain the observed discharge variability. We then use projections of these two predictors to examine the projected discharge response. Results are based on seven global climate models part of the Coupled Model Intercomparison Project Phase 5 and two representative concentration pathways (RCPs 4.5 and 8.5). There is not a strong signal of change in the discharge projections under the RCP 4.5. However the results for the RCP 8.5 point to a stronger changing signal related to larger projected increases in rainfall, resulting in increasing trends in particular in the upper part of the discharge distribution (i.e., 60th percentile and above). Examination of two hypothetical agricultural scenarios indicates that these increasing trends could be alleviated by decreasing the extent of the agricultural production. We also discuss how the methodology presented in this study represents a viable approach to move forward with the concept of return period for engineering design and management in a non-stationary world.
    Description: Published
    Description: 1361–1371
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: river discharge ; rainfall ; statistical model ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-02-24
    Description: Metal-catalysed CO2 hydrogenation is considered a source of methane in serpentinized (hydrated) igneous rocks and a fundamental abiotic process germane to the origin of life. Iron, nickel, chromium and cobalt are the catalysts typically employed in hydrothermal simulation experiments to obtain methane at temperatures 〉200°C. However, land-based present-day serpentinization and abiotic gas apparently develop below 100°C, down to approximately 40–50°C. Here, we document considerable methane production in thirteen CO2 hydrogenation experiments performed in a closed dry system, from 20 to 90°C and atmospheric pressure, over 0.9–122 days, using concentrations of non-pretreated ruthenium equivalent to those occurring in chromitites in ophiolites or igneous complexes (from 0.4 to 76 mg of Ru, equivalent to the amount occurring approximately in 0.4–760 kg of chromitite). Methane production increased with time and temperature, reaching approximately 87 mg CH4 per gram of Ru after 30 days (2.9 mgCH4/gru/day) at 90°C. At room temperature, CH4 production rate was approximately three orders of magnitude lower (0.003 mgCH4/gru/day). We report the first stable carbon and hydrogen isotope ratios of abiotic CH4 generated below 100°C. Using initial d13CCO2 of -40&, we obtained room temperature d13CCH4 values as 13C depleted as 142&. With time and temperature, the C-isotope separation between CO2 and CH4 decreased significantly and the final d13CCH4 values approached that of initial d13CCO2. The presence of minor amounts of C2-C6 hydrocarbons is consistent with observations in natural settings. Comparative experiments at the same temperatures with iron and nichel catalysts did not generate CH4. Ru-enriched chromitites could potentially generate methane at low temperatures on Earth and on other planets.
    Description: Published
    Description: 438–452
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: restricted
    Keywords: abiotic methane, Sabatier reaction ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Atmospheric and Oceanic Technology, American Meteorological Society, 32, pp. 591-602
    Publication Date: 2015-06-19
    Description: Iron in the vicinity of compasses results in magnetic deviations. ADCPs mounted on steel buoyancy devices and deployed on seven moorings on the East Greenland outer shelf and upper slope from 2007 to 2008 suffered from severe magnetic deviations of $〉$90$^\circ$ rendering the ADCP data useless without a compass correction. The effects on the measured velocities, which may also be present in other oceanic velocity measurements, are explained. On each of the moorings, velocity measurements from a different instrument which was assumed not to be affected by magnetic deviation are overlapping in space and time with the compromised ones. A method is described to determine the magnetic compass deviation from the compromised and uncompromised velocity measurements and the compromised compass headings. The method depends on the assumption that at least one instrument per mooring is not compromised. With this method, the magnetic deviation as well as the originally compromised velocity records can be corrected. The method is described in detail and a MATLAB(R) script implementing the method is supplied. The success of the method is demonstrated for one of the moorings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 842–854, doi:10.1175/JTECH-D-14-00215.1.
    Description: The time and space variability of wave transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking and the net wave breaking dissipation at high spatial resolution is estimated using image sequences acquired with a land-based X-band marine radar. Using the radar intensity data, transformed to normalized radar cross section σ0, the temporal and spatial distributions of wave breaking are identified using a threshold developed via the data probability density function. In addition, the inlet bathymetry is determined via depth inversion of the radar-derived frequencies and wavenumbers of the surface waves using a preexisting algorithm (cBathy). Wave height transformation is calculated through the 1D cross-shore energy flux equation incorporating the radar-estimated breaking distribution and bathymetry. The accuracy of the methodology is tested by comparison with in situ wave height observations over a 9-day period, obtaining correlation values R = 0.68 to 0.96, and root-mean-square errors from 0.05 to 0.19 m. Predicted wave forcing, computed as the along-inlet gradient of the cross-shore radiation stress was onshore during high-wave conditions, in good agreement (R = 0.95) with observations.
    Description: These data were collected as part of a joint field program, Data Assimilation and Remote Sensing for Littoral Applications (DARLA) and Rivers and Inlets (RIVET-1), both funded by the Office of Naval Research. The authors were funded through the Office of Naval Research Grant N00014-10-1-0932 and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Description: 2015-10-01
    Keywords: Wave breaking ; Waves, oceanic ; Wind waves ; In situ oceanic observations ; Radars/Radar observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2006–2024, doi:10.1175/JPO-D-14-0234.1.
    Description: The effects of wind-driven whitecapping on the evolution of the ocean surface boundary layer are examined using an idealized one-dimensional Reynolds-averaged Navier–Stokes numerical model. Whitecapping is parameterized as a flux of turbulent kinetic energy through the sea surface and through an adjustment of the turbulent length scale. Simulations begin with a two-layer configuration and use a wind that ramps to a steady stress. This study finds that the boundary layer begins to thicken sooner in simulations with whitecapping than without because whitecapping introduces energy to the base of the boundary layer sooner than shear production does. Even in the presence of whitecapping, shear production becomes important for several hours, but then inertial oscillations cause shear production and whitecapping to alternate as the dominant energy sources for mixing. Details of these results are sensitive to initial and forcing conditions, particularly to the turbulent length scale imposed by breaking waves and the transfer velocity of energy from waves to turbulence. After 1–2 days of steady wind, the boundary layer in whitecapping simulations has thickened more than the boundary layer in simulations without whitecapping by about 10%–50%, depending on the forcing and initial conditions.
    Description: We thank Skidmore College for financial and infrastructure support, and Skidmore and the National Science Foundation for funding travel to meetings where early versions of this work were presented. We also thank the National Science Foundation, Oregon State University, Jonathan Nash, and Joe Jurisa for funding and hosting a workshop on River Plume Mixing in October, 2013, where ideas and context for this paper were developed.
    Description: 2016-02-01
    Keywords: Circulation/ Dynamics ; Mixing ; Turbulence ; Wave breaking ; Wind stress ; Atm/Ocean Structure/ Phenomena ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8574–8584, doi:10.1175/JCLI-D-14-00809.1.
    Description: The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.
    Description: The work was supported by the National Basic Research Program of China (2012CB955600), the National Natural Science Foundation of China (41125019, 41206021), and the U.S. National Science Foundation (AGS 1249145, 1305719).
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Physical Meteorology and Climatology ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 546–561, doi:10.1175/JPO-D-14-0082.1.
    Description: Model studies and observations in the Hudson River estuary indicate that frontogenesis occurs as a result of topographic forcing. Bottom fronts form just downstream of lateral constrictions, where the width of the estuary increases in the down-estuary (i.e., seaward) direction. The front forms during the last several hours of the ebb, when the combination of adverse pressure gradient in the expansion and baroclinicity cause a stagnation of near-bottom velocity. Frontogenesis is observed in two dynamical regimes: one in which the front develops at a transition from subcritical to supercritical flow and the other in which the flow is everywhere supercritical. The supercritical front formation appears to be associated with lateral flow separation. Both types of fronts are three-dimensional, with strong lateral gradients along the flanks of the channel. During spring tide conditions, the fronts dissipate during the flood, whereas during neap tides the fronts are advected landward during the flood. The zone of enhanced density gradient initiates frontogenesis at multiple constrictions along the estuary as it propagates landward more than 60 km during several days of neap tides. Frontogenesis and frontal propagation may thus be essential elements of the spring-to-neap transition to stratified conditions in partially mixed estuaries.
    Description: Support for this research was provided by NSF Grant OCE 0926427.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Frontogenesis/frontolysis ; Fronts
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 606–612, doi:10.1175/JPO-D-14-0221.1.
    Description: Mesoscale intrathermocline lenses are observed throughout the World Ocean and are commonly attributed to water mass anomalies advected from a distant origin. An alternative mechanism of local generation is offered herein, in which eddy–wind interaction can create lens-shaped disturbances in the thermocline. Numerical simulations illustrate how eddy–wind-driven upwelling in anticyclones can yield a convex lens reminiscent of a mode water eddy, whereas eddy–wind-driven downwelling in cyclones produces a concave lens that thins the mode water layer (a cyclonic “thinny”). Such transformations should be observable with long-term time series in the interiors of mesoscale eddies.
    Description: Support of this research by the National Science Foundation and National Aeronautics and Space Administration is gratefully acknowledged.
    Description: 2015-08-01
    Keywords: Circulation/ Dynamics ; Eddies ; Ekman pumping/transport ; Mesoscale processes ; Models and modeling ; Ocean models ; Primitive equations model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 1126–1147, doi:10.1175/JCLI-D-14-00285.1.
    Description: The local atmospheric response to a realistic shift of the Oyashio Extension SST front in the western North Pacific is analyzed using a high-resolution (HR; 0.25°) version of the global Community Atmosphere Model, version 5 (CAM5). A northward shift in the SST front causes an atmospheric response consisting of a weak surface wind anomaly but a strong vertical circulation extending throughout the troposphere. In the lower troposphere, most of the SST anomaly–induced diabatic heating is balanced by poleward transient eddy heat and moisture fluxes. Collectively, this response differs from the circulation suggested by linear dynamics, where extratropical SST forcing produces shallow anomalous heating balanced by strong equatorward cold air advection driven by an anomalous, stationary surface low to the east. This latter response, however, is obtained by repeating the same experiment except using a relatively low-resolution (LR; 1°) version of CAM5. Comparison to observations suggests that the HR response is closer to nature than the LR response. Strikingly, HR and LR experiments have almost identical vertical profiles of . However, diagnosis of the diabatic quasigeostrophic vertical pressure velocity (ω) budget reveals that HR has a substantially stronger response, which together with upper-level mean differential thermal advection balances stronger vertical motion. The results herein suggest that changes in transient eddy heat and moisture fluxes are critical to the overall local atmospheric response to Oyashio Front anomalies, which may consequently yield a stronger downstream response. These changes may require the high resolution to be fully reproduced, warranting further experiments of this type with other high-resolution atmosphere-only and fully coupled GCMs.
    Description: We gratefully acknowledge funding provided by NSF to DS and MN (AGS CLD 1035325) and Y-OK and CF (AGS CLD 1035423) and by DOE to Y-OK (DE-SC0007052).
    Description: 2015-08-01
    Keywords: Atmosphere-ocean interaction ; Atmospheric circulation ; Boundary layer ; Cyclogenesis/cyclolysis ; Diabatic heating ; Extratropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.
    Description: A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
    Description: AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.
    Description: 2015-10-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Fronts ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1610–1631, doi:10.1175/JPO-D-14-0047.1.
    Description: The use of a measure to diagnose submesoscale isopycnal diffusivity by determining the best match between observations of a tracer and simulations with varying small-scale diffusivities is tested. Specifically, the robustness of a “roughness” measure to discriminate between tracer fields experiencing different submesoscale isopycnal diffusivities and advected by scaled altimetric velocity fields is investigated. This measure is used to compare numerical simulations of the tracer released at a depth of about 1.5 km in the Pacific sector of the Southern Ocean during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field campaign with observations of the tracer taken on DIMES cruises. The authors find that simulations with an isopycnal diffusivity of ~20 m2 s−1 best match observations in the Pacific sector of the Antarctic Circumpolar Current (ACC), rising to ~20–50 m2 s−1 through Drake Passage, representing submesoscale processes and any mesoscale processes unresolved by the advecting altimetry fields. The roughness measure is demonstrated to be a statistically robust way to estimate a small-scale diffusivity when measurements are relatively sparse in space and time, although it does not work if there are too few measurements overall. The planning of tracer measurements during a cruise in order to maximize the robustness of the roughness measure is also considered. It is found that the robustness is increased if the spatial resolution of tracer measurements is increased with the time since tracer release.
    Description: We thank the U.K. Natural Environment Research Council and the U.S. National Science Foundation for funding the DIMES project.
    Description: 2015-12-01
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diffusion ; Physical Meteorology and Climatology ; Isopycnal mixing ; Observational techniques and algorithms ; Tracers ; Models and modeling ; Model comparison ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric Sciences 72 (2015): 2786–2805, doi:10.1175/JAS-D-14-0257.1.
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Description: This study was supported by grants of the National Science Foundation (OCE- 0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2016-01-01
    Keywords: Katabatic winds ; Severe storms ; Air-sea interaction ; Mesoscale processes ; Orographic effects ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 6489–6502, doi:10.1175/JCLI-D-15-0143.1.
    Description: The global water cycle is predicted to intensify under various greenhouse gas emissions scenarios. Here the nature and strength of the expected changes for the ocean in the coming century are assessed by examining the output of several CMIP5 model runs for the periods 1990–2000 and 2090–2100 and comparing them to a dataset built from modern observations. Key elements of the water cycle, such as the atmospheric vapor transport, the evaporation minus precipitation over the ocean, and the surface salinity, show significant changes over the coming century. The intensification of the water cycle leads to increased salinity contrasts in the ocean, both within and between basins. Regional projections for several areas important to large-scale ocean circulation are presented, including the export of atmospheric moisture across the tropical Americas from Atlantic to Pacific Ocean, the freshwater gain of high-latitude deep water formation sites, and the basin averaged evaporation minus precipitation with implications for interbasin mass transports.
    Description: This research was supported by NASA Grant NNX12AF59GS03.
    Description: 2016-02-15
    Keywords: Climate change ; Climate prediction ; Hydrologic cycle ; Salinity ; Water budget ; Water vapor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 5885–5907, doi:10.1175/JCLI-D-14-00635.1.
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Description: This work was supported by a grant from the King Abdullah University of Science and Technology (KAUST) as well as National Science Foundation Grant OCE0927017 and from DOD (MURI) Grant N000141110087, administered by the Office of Naval Research.
    Description: 2016-02-01
    Keywords: Africa ; Orographic effects ; Monsoons ; Atmosphere-land interaction ; Atmosphere-ocean interaction ; Hydrometeorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2598–2620, doi:10.1175/JPO-D-14-0249.1.
    Description: Through combining analytical arguments and numerical models, this study investigates the finite-amplitude meanders of shelfbreak fronts characterized by sloping isopycnals outcropping at both the surface and the shelfbreak bottom. The objective is to provide a formula for the meander length scale that can explain observed frontal length scale variability and also be verified with observations. Considering the frontal instability to be a mixture of barotropic and baroclinic instability, the derived along-shelf meander length scale formula is [b1/(1 + a1S1/2)]NH/f, where N is the buoyancy frequency; H is the depth of the front; f is the Coriolis parameter; S is the Burger number measuring the ratio of energy conversion associated with barotropic and baroclinic instability; and a1 and b1 are empirical constants. Initial growth rate of the frontal instability is formulated as [b2(1 + a1S1/2)/(1 + a2αS1/2)]NH/L, where α is the bottom slope at the foot of the front, and a2 and b2 are empirical constants. The formulas are verified using numerical sensitivity simulations, and fitting of the simulated and formulated results gives a1 = 2.69, b1 = 14.65, a2 = 5.1 × 103, and b2 = 6.2 × 10−2. The numerical simulations also show development of fast-growing frontal symmetric instability when the minimum initial potential vorticity is negative. Although frontal symmetric instability leads to faster development of barotropic and baroclinic instability at later times, it does not significantly influence the meander length scale. The derived meander length scale provides a framework for future studies of the influences of external forces on shelfbreak frontal circulation and cross-frontal exchange.
    Description: WGZ and GGG were supported by the National Science Foundation through Grant OCE-1129125.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Instability ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Fronts ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2820–2835, doi:10.1175/JPO-D-15-0101.1.
    Description: The response of a convective ocean basin to variations in atmospheric temperature is explored using numerical models and theory. The results indicate that the general behavior depends strongly on the frequency at which the atmosphere changes relative to the local response time to air–sea heat flux. For high-frequency forcing, the convective region in the basin interior is essentially one-dimensional and responds to the integrated local surface heat flux anomalies. For low-frequency forcing, eddy fluxes from the boundary current into the basin interior become important and act to suppress variability forced by the atmosphere. A theory is developed to quantify this time-dependent response and its influence on various oceanic quantities. The amplitude and phase of the temperature and salinity of the convective water mass, the meridional overturning circulation, the meridional heat flux, and the air–sea heat flux predicted by the theory compare well with that diagnosed from a series of numerical model calculations in both strongly eddying and weakly eddying regimes. Linearized analytic solutions provide direct estimates of each of these quantities and demonstrate their dependence on the nondimensional numbers that characterize the domain and atmospheric forcing. These results highlight the importance of mesoscale eddies in modulating the mean and time-dependent ocean response to atmospheric variability and provide a dynamical framework with which to connect ocean observations with changes in the atmosphere and surface heat flux.
    Description: This study was supported by the National Science Foundation under Grant OCE-1232389.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Deep convection ; Eddies ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 2844–2857, doi:10.1175/JTECH-D-14-00108.1.
    Description: A fiber optic–based spectrometry system was developed to enable automated, long-term measurements of spectral irradiance in sea ice environments. This system utilizes a single spectrometer module that measures the irradiance transmitted by multiple optical fibers, each coupled to the input fiber of the module via a mechanical rotary multiplexer. Small custom-printed optical diffusers, fixed to the input end of each fiber, allow these probes to be frozen into ice auger holes as small as 5 cm in diameter. Temperature-dependent biases in the spectrometer module and associated electronics were examined down to −40°C using an environmental chamber to identify any artifacts that might arise when operating these electronic and optical components below their vendor-defined lower temperature limits. The optical performance of the entire system was assessed by freezing multiple fiber probes in a 1.2-m-tall ice column, illuminating from above with a light source, and measuring spectral irradiance distributions at different depths within the ice column. Results indicated that the radiometric sensitivity of this fiber-based system is comparable to that of commercially available oceanographic spectroradiometers.
    Description: This research was supported by the Joint Initiative Awards Fund from the Andrew W. Mellon Foundation, through Woods Hole Oceanographic Institution’s internal Interdisciplinary Study Award program (S. R. L. and T. M.), and by a China scholarship council (CSC) scholarship and the Program for Zhejiang Leading Team of S&T Innovation (Grant 2010R50036) provided to H. W.
    Description: 2015-06-01
    Keywords: Sea ice ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 412–433, doi:10.1175/JTECH-D-14-00080.1.
    Description: A near-surface specific humidity (Qa) and air temperature (Ta) climatology on daily and 0.25° grids was constructed by the objectively analyzed air–sea fluxes (OAFlux) project by objectively merging two recent satellite-derived high-resolution analyses, the OAFlux existing 1° analysis, and atmospheric reanalyses. The two satellite products include the multi-instrument microwave regression (MIMR) Qa and Ta analysis and the Goddard Satellite-Based Surface Turbulent Fluxes, version 3 (GSSTF3), Qa analysis. This study assesses the degree of improvement made by OAFlux using buoy time series measurements at 137 locations and a global empirical orthogonal function (EOF) analysis. There are a total of 130 855 collocated daily values for Qa and 283 012 collocated daily values for Ta in the buoy evaluation. It is found that OAFlux Qa has a mean difference close to 0 and a root-mean-square (RMS) difference of 0.73 g kg−1, and Ta has a mean difference of −0.03°C and an RMS difference of 0.45°C. OAFlux shows no major systematic bias with respect to buoy measurements over all buoy locations except for the vicinity of the Gulf Stream boundary current, where the RMS difference exceeds 1.8°C in Ta and 1.2 g kg−1 in Qa. The buoy evaluation indicates that OAFlux represents an improvement over MIMR and GSSTF3. The global EOF-based intercomparison analysis indicates that OAFlux has a similar spatial–temporal variability pattern with that of three atmospheric reanalyses including MERRA, NCEP-1, and ERA-Interim, but that it differs from GSSTF3 and the Climate Forecast System Reanalysis (CFSR).
    Description: This study was supported by the NOAA Ocean Climate Observation (OCO) program under Grant NA09OAR4320129.
    Description: 2015-09-01
    Keywords: Data processing ; Databases ; In situ oceanic observations ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015):1189–1204, doi:10.1175/JPO-D-14-0122.1.
    Description: Winter outcropping of the Eighteen Degree Water (EDW) and its subsequent dispersion are studied using a ° eddy-resolving simulation of the Family of Linked Atlantic Modeling Experiments (FLAME). Outcropped EDW columns in the model simulations are detected in each winter from 1990 to 1999, and particles are deployed in the center of each outcropped EDW column. Subsequently, the trajectories of these particles are calculated for the following 5 yr. The particles slowly spread away from the outcropping region into the nonoutcropping/subducted EDW region south of ~30°N and eventually to the non-EDW region in the greater subtropical gyre. Approximately 30% of the particles are found in non-EDW waters 1 yr after deployment; after 5 yr, only 25% of the particles are found within EDW. The reoutcropping time is defined as the number of years between when a particle is originally deployed in an outcropping EDW column and when that particle is next found in an outcropping EDW column. Of the particles, 66% are found to reoutcrop as EDW in 1 yr, and less than 5% of the particles outcrop in each of the subsequent 4 yr. While the individual trajectories exhibit significant eddy-like motions, the time scale of reoutcropping is primarily set by the mean circulation. The dominance of reoutcropping in 1 yr suggests that EDW outcropping contributes considerably to the persistence of surface temperature anomalies from one winter to the next, that is, the reemergence of winter sea surface temperature anomalies.
    Description: We gratefully acknowledge the support from the NSF OCE Physical Oceanography program (NSF OCE-0961090 to Y-OK and J-JP; NSF OCE-0960776 to MSL and SFG; and NSF OCE-1242989 to Y-OK).
    Description: 2015-10-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Atm/Ocean Structure/ Phenomena ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 3004–3023, doi:10.1175/JCLI-D-14-00591.1.
    Description: Time series of surface meteorology and air–sea exchanges of heat, freshwater, and momentum collected from a long-term surface mooring located 1600 km west of the coast of northern Chile are analyzed. The observations, spanning 2000–10, have been withheld from assimilation into numerical weather prediction models. As such, they provide a unique in situ record of atmosphere–ocean coupling in a trade wind region characterized by persistent stratocumulus clouds. The annual cycle is described, as is the interannual variability. Annual variability in the air–sea heat flux is dominated by the annual cycle in net shortwave radiation. In austral summer, the ocean is heated; the 9-yr mean annual heating of the ocean is 38 W m−2. Ocean cooling is seen in 2006–08, coincident with La Niña events. Over the full record, significant trends were found. Increases in wind speed, wind stress, and latent heat flux over 9 yr were 0.8 m s−1, 0.022 N m−2, and 20 W m−2 or 13%, 29%, and 20% of the respective 9-yr means. The decrease in the annual mean net heat flux was 39 W m−2 or 104% of the mean. These changes were found to be largely associated with spring and fall. If this change persists, the annual mean net air–sea heat flux will change sign by 2016, when the magnitude of the wind stress will have increased by close to 60%.
    Description: This work is supported by the NOAA Climate Observation Division (NA09OAR4320129).
    Keywords: Climate variability ; Trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1410–1425, doi:10.1175/JPO-D-14-0192.1.
    Description: The west-to-east crossover of boundary currents has been seen in mean circulation schemes from several past models of the Red Sea. This study investigates the mechanisms that produce and control the crossover in an idealized, eddy-resolving numerical model of the Red Sea. The authors also review the observational evidence and derive an analytical estimate for the crossover latitude. The surface buoyancy loss increases northward in the idealized model, and the resultant mean circulation consists of an anticyclonic gyre in the south and a cyclonic gyre in the north. In the midbasin, the northward surface flow crosses from the western boundary to the eastern boundary. Numerical experiments with different parameters indicate that the crossover latitude of the boundary currents changes with f0, β, and the meridional gradient of surface buoyancy forcing. In the analytical estimate, which is based on quasigeostrophic, β-plane dynamics, the crossover is predicted to lie at the latitude where the net potential vorticity advection (including an eddy component) is zero. Various terms in the potential vorticity budget can be estimated using a buoyancy budget, a thermal wind balance, and a parameterization of baroclinic instability.
    Description: This work is supported by Award USA 00002, KSA 00011, and KSA 00011/02 made by King Abdullah University of Science and Technology (KAUST), by National Science Foundation Grants OCE0927017, OCE1154641, and OCE85464100, and by the Woods Hole Oceanographic Institution Academic Program Office.
    Description: 2015-11-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Buoyancy ; Ocean circulation ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1822–1842, doi:10.1175/JPO-D-14-0147.1.
    Description: Influences of time-dependent precipitation on water mass transformation and heat budgets in an idealized marginal sea are examined using theoretical and numerical models. The equations proposed by Spall in 2012 are extended to cases with time-dependent precipitation whose form is either a step function or a sinusoidal function. The theory predicts the differences in temperature and salinity between the convective water and the boundary current as well as the magnitudes of heat fluxes into the marginal sea and across the sea surface. Moreover, the theory reveals that there are three inherent time scales: relaxation time scales for temperature and salinity and a precipitation time scale. The relaxation time scales are determined by a steady solution of the theoretical model with steady precipitation. The relaxation time scale for temperature is always smaller than that for salinity as a result of not only the difference in the form of fluxes at the surface but also the variation in the eddy transport from the boundary current. These three time scales and the precipitation amplitude determine the strength of the ocean response to changes in precipitation and the phase relation between precipitation, changes in salinity and temperature, and changes in heat fluxes. It is demonstrated that the theoretical predictions agree qualitatively well with results from the eddy-resolving numerical model. This demonstrates the fundamental role of mesoscale eddies in the ocean response to time-dependent forcing and provides a framework with which to assess the extent to which observed variability in marginal sea convection and water mass transformation are consistent with an external forcing by variations in precipitation.
    Description: This work was initiated at the 2013 WHOI Geophysical Fluid Dynamics Summer Program, which was supported by the National Science Foundation and the Office of Naval Research. This work was also supported by Grant-in-Aid for Research Fellow (25·8466) of the Ministry of Education, Culture, Sports and Technology (MEXT), Japan, the Program for Leading Graduate Schools, MEXT, Japan (YY), and by the National Science Foundation Grant OCE-1232389 (MAS).
    Description: 2016-01-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Deep convection ; Eddies ; Ocean dynamics ; Atm/Ocean Structure/ Phenomena ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2806–2819, doi:10.1175/JPO-D-15-0061.1.
    Description: An eastward-flowing current of a homogeneous fluid with velocity U, contained in a channel of width L, impinges on an island of width of O(L), and the resulting interaction and dynamics are studied for values of the supercriticality parameter, b = βL2/U, both larger and smaller than π2. The former case is subcritical with respect to Rossby waves, and the latter is supercritical. The nature of the flow field depends strongly on b, and in particular, the nature of the flow around the island and the proportion of the flow passing to the north or south of the island are sensitive to b and to the position of the island in the channel. The problem is studied analytically in a relatively simple, nonlinear quasigeostrophic and adiabatic framework and numerically with a shallow-water model that allows a qualitative extension of the results to the equator. Although the issues involved are motivated by the interaction of the Equatorial Undercurrent and the Galapagos Islands, the analysis presented here focuses on the fundamental issue of the distinctive nature of the flow as a function of Rossby wave criticality.
    Description: Supported by the National Science Foundation Grant OCE-0959381.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Ocean dynamics ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2773–2789, doi:10.1175/JPO-D-15-0031.1.
    Description: Tidal oscillatory salt transport, induced by the correlation between tidal variations in salinity and velocity, is an important term for the subtidal salt balance under the commonly used Eulerian method of salt transport decomposition. In this paper, its mechanisms in a partially stratified estuary are investigated with a numerical model of the Hudson estuary. During neap tides, when the estuary is strongly stratified, the tidal oscillatory salt transport is mainly due to the hydraulic response of the halocline to the longitudinal variation of topography. This mechanism does not involve vertical mixing, so it should not be regarded as oscillatory shear dispersion, but instead it should be regarded as advective transport of salt, which results from the vertical distortion of exchange flow obtained in the Eulerian decomposition by vertical fluctuations of the halocline. During spring tides, the estuary is weakly stratified, and vertical mixing plays a significant role in the tidal variation of salinity. In the spring tide regime, the tidal oscillatory salt transport is mainly due to oscillatory shear dispersion. In addition, the transient lateral circulation near large channel curvature causes the transverse tilt of the halocline. This mechanism has little effect on the cross-sectionally integrated tidal oscillatory salt transport, but it results in an apparent left–right cross-channel asymmetry of tidal oscillatory salt transport. With the isohaline framework, tidal oscillatory salt transport can be regarded as a part of the net estuarine salt transport, and the Lagrangian advective mechanism and dispersive mechanism can be distinguished.
    Description: Tao Wang was supported by the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (Grant SKLEC-KF201509) and Chinese Scholarship Council. Geyer was supported by by NSF Grant OCE 0926427. Wensheng Jiang was supported by NSFC-Shandong Joint Fund for Marine Science Research Centers (Grant U1406401).
    Description: 2016-05-01
    Keywords: Geographic location/entity ; Estuaries ; Circulation/ Dynamics ; Baroclinic flows ; Dispersion ; Shear structure/flows ; Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Models and modeling ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 3033–3053, doi:10.1175/JPO-D-13-0227.1.
    Description: The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.
    Description: This study has been supported by National Science Foundation (OCE0927017 and ARC1107412).
    Description: 2015-06-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Channel flows ; Meridional overturning circulation ; Ocean circulation ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1356–1375, doi:10.1175/JPO-D-13-0259.1.
    Description: Eddy–mean flow interactions along the Kuroshio Extension (KE) jet are investigated using a vorticity budget of a high-resolution ocean model simulation, averaged over a 13-yr period. The simulation explicitly resolves mesoscale eddies in the KE and is forced with air–sea fluxes representing the years 1995–2007. A mean-eddy decomposition in a jet-following coordinate system removes the variability of the jet path from the eddy components of velocity; thus, eddy kinetic energy in the jet reference frame is substantially lower than in geographic coordinates and exhibits a cross-jet asymmetry that is consistent with the baroclinic instability criterion of the long-term mean field. The vorticity budget is computed in both geographic (i.e., Eulerian) and jet reference frames; the jet frame budget reveals several patterns of eddy forcing that are largely attributed to varicose modes of variability. Eddies tend to diffuse the relative vorticity minima/maxima that flank the jet, removing momentum from the fast-moving jet core and reinforcing the quasi-permanent meridional meanders in the mean jet. A pattern associated with the vertical stretching of relative vorticity in eddies indicates a deceleration (acceleration) of the jet coincident with northward (southward) quasi-permanent meanders. Eddy relative vorticity advection outside of the eastward jet core is balanced mostly by vertical stretching of the mean flow, which through baroclinic adjustment helps to drive the flanking recirculation gyres. The jet frame vorticity budget presents a well-defined picture of eddy activity, illustrating along-jet variations in eddy–mean flow interaction that may have implications for the jet’s dynamics and cross-frontal tracer fluxes.
    Description: A. S. Delman (ASD) and J. L. McClean (JLM) were supported by NSF Grant OCE-0850463 and Office of Science (BER), U.S. Department of Energy, Grant DE-FG02-05ER64119. ASD and J. Sprintall were also supported by a NASA Earth and Space Science Fellowship (NESSF), Grant NNX13AM93H. JLM was also supported by U.S. DOE Office of Science grant entitled “Ultra-High Resolution Global Climate Simulation” via a Los Alamos National Laboratory subcontract. S. R. Jayne was supported by NSF Grant OCE-0849808. Computational resources for the model run were provided by NSF Resource Grants TG-OCE110013 and TG-OCE130010.
    Description: 2015-11-01
    Keywords: Geographic location/entity ; North Pacific Ocean ; Circulation/ Dynamics ; Forcing ; Instability ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Jets ; Models and modeling ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 1042–1057, doi:10.1175/JTECH-D-14-00161.1.
    Description: A 1-yr experiment using a pressure-sensor-equipped inverted echo sounder (PIES) was conducted in Sermilik Fjord in southeastern Greenland (66°N, 38°E) from August 2011 to September 2012. Based on these high-latitude data, the interpretation of PIESs’ acoustic travel-time records from regions that are periodically ice covered were refined. In addition, new methods using PIESs for detecting icebergs and sea ice and for estimating iceberg drafts and drift speeds were developed and tested. During winter months, the PIES in Sermilik Fjord logged about 300 iceberg detections and recorded a 2-week period in early March of land-fast ice cover over the instrument site, consistent with satellite synthetic aperture radar (SAR) imagery. The deepest icebergs in the fjord were found to have keel depths greater than approximately 350 m. Average and maximum iceberg speeds were approximately 0.2 and 0.5 m s−1, respectively. The maximum tidal range at the site was ±1.8 m and during neap tides the range was ±0.3 m, as shown by the PIES’s pressure record.
    Description: This work was supported by the National Science Foundation through the Divisions of Ocean Science and Polar Programs under Grant PLR-1332911. A. Silvano was supported as a WHOI guest student through a Gori Fellowship.
    Keywords: Glaciers ; Sea ice ; Ice thickness ; Data processing ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1735–1756, doi:10.1175/JPO-D-14-0238.1.
    Description: The Lofoten basin of the Nordic Seas is recognized as a crucial component of the meridional overturning circulation in the North Atlantic because of the large horizontal extent of Atlantic Water and winter surface buoyancy loss. In this study, hydrographic and current measurements collected from a mooring deployed in the Lofoten basin from July 2010 to September 2012 are used to describe water mass transformation and the mesoscale eddy field. Winter mixed layer depths (MLDs) are observed to reach approximately 400 m, with larger MLDs and denser properties resulting from the colder 2010 winter. A heat budget of the upper water column requires lateral input, which balances the net annual heat loss of ~80 W m−2. The lateral flux is a result of mesoscale eddies, which dominate the velocity variability. Eddy velocities are enhanced in the upper 1000 m, with a barotropic component that reaches the bottom. Detailed examination of two eddies, from April and August 2012, highlights the variability of the eddy field and eddy properties. Temperature and salinity properties of the April eddy suggest that it originated from the slope current but was ventilated by surface fluxes. The properties within the eddy were similar to those of the mode water, indicating that convection within the eddies may make an important contribution to water mass transformation. A rough estimate of eddy flux per unit boundary current length suggests that fluxes in the Lofoten basin are larger than in the Labrador Sea because of the enhanced boundary current–interior density difference.
    Description: The work was supported by NSF OCE 0850416.
    Description: 2015-12-01
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Boundary currents ; Eddies ; Fluxes ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 4653–4687, doi:10.1175/JCLI-D-13-00326.1.
    Description: Downscaled climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) were used to force a dynamic vegetation agricultural model (Agro-IBIS) and simulate yield responses to historical climate and two future emissions scenarios for maize in the U.S. Midwest and wheat in southeastern Australia. In addition to mean changes in yield, the frequency of high- and low-yield years was related to changing local hydroclimatic conditions. Particular emphasis was on the seasonal cycle of climatic variables during extreme-yield years and links to crop growth. While historically high (low) yields in Iowa tend to occur during years with anomalous wet (dry) growing season, this is exacerbated in the future. By the end of the twenty-first century, the multimodel mean (MMM) of growing season temperatures in Iowa is projected to increase by more than 5°C, and maize yield is projected to decrease by 18%. For southeastern Australia, the frequency of low-yield years rises dramatically in the twenty-first century because of significant projected drying during the growing season. By the late twenty-first century, MMM growing season precipitation in southeastern Australia is projected to decrease by 15%, temperatures are projected to increase by 2.8°–4.5°C, and wheat yields are projected to decline by 70%. Results highlight the sensitivity of yield projections to the nature of hydroclimatic changes. Where future changes are uncertain, the sign of the yield change simulated by Agro-IBIS is uncertain as well. In contrast, broad agreement in projected drying over southern Australia across models is reflected in consistent yield decreases for the twenty-first century. Climatic changes of the order projected can be expected to pose serious challenges for continued staple grain production in some current centers of production, especially in marginal areas.
    Description: This work was initiated at the Dissertations Initiative for the Advancement of Climate Change Research (DISCCRS) V Symposium, supported by the U.S. National Science Foundation through collaborative Grants SES-0932916 and SES-0931402. CCU was supported by a University of New South Wales Vice-Chancellor Fellowship and the Penzance Endowed Fund and John P. Chase Memorial Endowed Fund at WHOI. TET was supported by the U.S. Department of Energy Award DE-EE0004397. NC was funded by NSF Grant EAR-1204774. We are indebted to the FORMAS-funded Land Use Today and Tomorrow (LUsTT) project (Grant 211-2009-1682) for financial support.
    Keywords: Australia ; North America ; Climate change ; Climate models ; Climate variability ; Agriculture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 921–938, doi:10.1175/BAMS-D-13-00117.1.
    Description: El Niño–Southern Oscillation (ENSO) is a naturally occurring mode of tropical Pacific variability, with global impacts on society and natural ecosystems. While it has long been known that El Niño events display a diverse range of amplitudes, triggers, spatial patterns, and life cycles, the realization that ENSO’s impacts can be highly sensitive to this event-to-event diversity is driving a renewed interest in the subject. This paper surveys our current state of knowledge of ENSO diversity, identifies key gaps in understanding, and outlines some promising future research directions.
    Description: AC acknowledges support from the National Science Foundation for this study.
    Description: 2015-12-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2381–2406, doi:10.1175/JPO-D-14-0086.1.
    Description: While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent literature suggests that spontaneous generation of near-inertial waves by frontal instabilities could represent a major sink for the subinertial quasigeostrophic circulation. An unforced three-dimensional 1-km-resolution model, initialized with the observed cross-Kuroshio structure, is used to explore this mechanism. After several weeks, the model exhibits growth of 10–100-km-scale frontal meanders, accompanied by O(10) mW m−2 spontaneous generation of near-inertial waves associated with readjustment of submesoscale fronts forced out of balance by mesoscale confluent flows. These waves have properties resembling those in the observations. However, they are reabsorbed into the model Kuroshio Front with no more than 15% dissipating or radiating away. Thus, spontaneous generation of near-inertial waves represents a redistribution of quasigeostrophic energy rather than a significant sink.
    Description: “The Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries (SKED)” supported by MEXT, MIT-Hayashi Seed Fund, ONR (Awards N000140910196 and N000141210101), NSF (Award OCE 0928617, 0928138) for support.
    Description: 2016-03-01
    Keywords: Circulation/ Dynamics ; Frontogenesis/frontolysis ; Fronts ; Internal waves ; Turbulence ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 7659–7677, doi:10.1175/JCLI-D-15-0007.1.
    Description: Maximum covariance analysis of a preindustrial control simulation of the NCAR Community Climate System Model, version 4 (CCSM4), shows that a barotropic signal in winter broadly resembling a negative phase of the North Atlantic Oscillation (NAO) follows an intensification of the Atlantic meridional overturning circulation (AMOC) by about 7 yr. The delay is due to the cyclonic propagation along the North Atlantic Current (NAC) and the subpolar gyre of a SST warming linked to a northward shift and intensification of the NAC, together with an increasing SST cooling linked to increasing southward advection of subpolar water along the western boundary and a southward shift of the Gulf Stream (GS). These changes result in a meridional SST dipole, which follows the AMOC intensification after 6 or 7 yr. The SST changes were initiated by the strengthening of the western subpolar gyre and by bottom torque at the crossover of the deep branches of the AMOC with the NAC on the western flank of the Mid-Atlantic Ridge and the GS near the Tail of the Grand Banks, respectively. The heat flux damping of the SST dipole shifts the region of maximum atmospheric transient eddy growth southward, leading to a negative NAO-like response. No significant atmospheric response is found to the Atlantic multidecadal oscillation (AMO), which is broadly realistic but shifted south and associated with a much weaker meridional SST gradient than the AMOC fingerprint. Nonetheless, the wintertime atmospheric response to the AMOC shows some similarity with the observed response to the AMO, suggesting that the ocean–atmosphere interactions are broadly realistic in CCSM4.
    Description: Support from the NOAA Climate Program Office (NA10OAR4310202 and NA13OAR4310139), NSF EaSM2 (OCE 1242989) and the European Community 7th framework programme (FP7 2007-2013) under Grant Agreement 308299 (NACLIM) is gratefully acknowledged. The analysis benefited from the IPSL Prodiguer-Ciclad facility, which is supported by CNRS, UPMC, Labex L-IPSL funded by the ANR (Grant ANR-10-LABX-0018) and by the European FP7 IS-ENES2 project (Grant 312979).
    Description: 2016-04-01
    Keywords: Meridional overturning circulation ; North Atlantic Oscillation ; Climate models ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 1945–1959, doi:10.1175/JTECH-D-14-00222.1.
    Description: Observations of waves and setup on a steep, sandy beach are used to identify and assess potential applications of spatially dense lidar measurements for studying inner-surf and swash-zone hydrodynamics. There is good agreement between lidar- and pressure-based estimates of water levels (r2 = 0.98, rmse = 0.05 m), setup (r2 = 0.92, rmse = 0.03 m), infragravity wave heights (r2 = 0.91, rmse = 0.03 m), swell–sea wave heights (r2 = 0.87, rmse = 0.07 m), and energy density spectra. Lidar observations did not degrade with range (up to 65 m offshore of the lidar) when there was sufficient foam present on the water surface to generate returns, suggesting that for narrow-beam 1550-nm light, spatially varying spot size, grazing angle affects, and linear interpolation (to estimate the water surface over areas without returns) are not large sources of error. Consistent with prior studies, the lidar and pressure observations indicate that standing infragravity waves dominate inner-surf and swash energy at low frequencies and progressive swell–sea waves dominate at higher frequencies. The spatially dense lidar measurements enable estimates of reflection coefficients from pairs of locations at a range of spatial lags (thus spanning a wide range of frequencies or wavelengths). Reflection is high at low frequencies, increases with beach slope, and decreases with increasing offshore wave height, consistent with prior studies. Lidar data also indicate that wave asymmetry increases rapidly across the inner surf and swash. The comparisons with pressure measurements and with theory demonstrate that lidar measures inner-surf waves and setup accurately, and can be used for studies of inner-surf and swash-zone hydrodynamics.
    Description: Funding was provided by the USACE Coastal Field Data Collection (CFDC) and Coastal Ocean Data Systems (CODS) programs, the Office of Naval Research, the National Science Foundation, and the Assistant Secretary of Defense (R&E).
    Description: 2016-04-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2497–2521, doi:10.1175/JPO-D-14-0128.1.
    Description: Oceanic density overturns are commonly used to parameterize the dissipation rate of turbulent kinetic energy. This method assumes a linear scaling between the Thorpe length scale LT and the Ozmidov length scale LO. Historic evidence supporting LT ~ LO has been shown for relatively weak shear-driven turbulence of the thermocline; however, little support for the method exists in regions of turbulence driven by the convective collapse of topographically influenced overturns that are large by open-ocean standards. This study presents a direct comparison of LT and LO, using vertical profiles of temperature and microstructure shear collected in the Luzon Strait—a site characterized by topographically influenced overturns up to O(100) m in scale. The comparison is also done for open-ocean sites in the Brazil basin and North Atlantic where overturns are generally smaller and due to different processes. A key result is that LT/LO increases with overturn size in a fashion similar to that observed in numerical studies of Kelvin–Helmholtz (K–H) instabilities for all sites but is most clear in data from the Luzon Strait. Resultant bias in parameterized dissipation is mitigated by ensemble averaging; however, a positive bias appears when instantaneous observations are depth and time integrated. For a series of profiles taken during a spring tidal period in the Luzon Strait, the integrated value is nearly an order of magnitude larger than that based on the microstructure observations. Physical arguments supporting LT ~ LO are revisited, and conceptual regimes explaining the relationship between LT/LO and a nondimensional overturn size are proposed. In a companion paper, Scotti obtains similar conclusions from energetics arguments and simulations.
    Description: B.D.M. and S.K.V. gratefully acknowledge the support of the Office of Naval Research under Grants N00014-12-1-0279, N00014-12-1-0282, and N00014-12-1-0938 (Program Manager: Dr. Terri Paluszkiewicz). S.K.V. also acknowledges support of the National Science Foundation under Grant OCE-1151838. L.S.L. acknowledges support for BBTRE by the National Science Foundation by Contract OCE94-15589 and NATRE and IWISE by the Office of Naval Research by Contracts N00014-92-1323 and N00014-10-10315. J.N.M. was supported through Grant 1256620 from the National Science Foundation and the Office of Naval Research (IWISE Project).
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Small scale processes ; Turbulence ; Atm/Ocean Structure/ Phenomena ; Mixing ; Observational techniques and algorithms ; Profilers, oceanic ; Models and modeling ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2621–2639, doi:10.1175/JPO-D-14-0239.1.
    Description: Measurements made as part of a large-scale experiment to examine wind-driven circulation and mixing in Chesapeake Bay demonstrate that circulations consistent with Langmuir circulation play an important role in surface boundary layer dynamics. Under conditions when the turbulent Langmuir number Lat is low (〈0.5), the surface mixed layer is characterized by 1) elevated vertical turbulent kinetic energy; 2) decreased anisotropy; 3) negative vertical velocity skewness indicative of strong/narrow downwelling and weak/broad upwelling; and 4) strong negative correlations between low-frequency vertical velocity and the velocity in the direction of wave propagation. These characteristics appear to be primarily the result of the vortex force associated with the surface wave field, but convection driven by a destabilizing heat flux is observed and appears to contribute significantly to the observed negative vertical velocity skewness. Conditions that favor convection usually also have strong Langmuir forcing, and these two processes probably both contribute to the surface mixed layer turbulence. Conditions in which traditional stress-driven turbulence is important are limited in this dataset. Unlike other shallow coastal systems where full water column Langmuir circulation has been observed, the salinity stratification in Chesapeake Bay is nearly always strong enough to prevent full-depth circulation from developing.
    Description: The funding for this research was provided by the National Science Foundation Grants OCE-1339032 and OCE-1338518.
    Description: 2016-04-01
    Keywords: Circulation/ Dynamics ; Convection ; Instability ; Mixing ; Turbulence ; Wave breaking ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: The elevation of the Capo Vaticano coastal terraces (Tyrrhenian coast, central Calabria) is the result of a combination of regional uplift and repeated coseismic displacement. We subtract the regional uplift from the total uplift (maximum average uplift rates: 0.81–0.97 mm a)1 since c. 0.7 Ma) and obtain the residual fault-related displacement. Then, we model the residual displacement to provide constraints on the location and geometry of the seismogenic source of the 1905 M7 earthquake, the strongest – and still poorly understood – earthquake of the instrumental era in this area. We try four different potential sources for the dislocation modelling and find that (1) three sources are not compatible with the displacement observed along the terraces and (2) the only source consistent with the local deformation is the 100 - striking Coccorino Fault. We calculate average long-term vertical slip rates of 0.2–0.3 mm a)1 on the Coccorino Fault and estimate an average recurrence time of one millennium for a 1905-type earthquake.
    Description: Published
    Description: 378-389
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 1905 earthquake ; marine terraces ; coseismic displacement ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: Real-time seismology has made significant improvements in recent years, with source parameters now available within a few tens of minutes after an earthquake. It is likely that this time will be further reduced, in the near future, by means of increased efficiency in real-time transmission,increasingdatacoverageandimprovementofthemethodologies.Inthiscontext, together with the development of new ground motion predictive equations (GMPEs) that are abletoaccountforsourcecomplexity,thegenerationofstronggroundmotionshakingmapsin quasi-real time has become ever more feasible after the occurrence of a damaging earthquake. However, GMPEs may not reproduce reliably the ground motion in the near-source region where the finite fault parameters have a strong influence on the shaking. Inthispaperwetestwhetheraccountingforsource-relatedeffectsiseffectiveinbettercharacterizingthegroundmotion.WeintroduceamodificationoftheGMPEswithintheShakeMap softwarepackage,andsubsequentlytesttheaccuracyofthenewlygeneratedshakemapsinpredictingthegroundmotion.ThetestisconductedbycontrollingtheperformanceofShakeMap as we decrease the amount of the available information. We then update ShakeMap with the GMPE modified with a corrective factor accounting for source effects, in order to better constrain these effects that likely influence the level of (near-source) ground shaking. Weinvestigatetwowell-recordedearthquakesfromJapan(the2000Tottori, Mw 6.6,andthe 2008 Iwate-Miyagi, Mw7.0, events) where the instrumental coverage is as dense as needed to ensure an objective appraisal of the results. The results demonstrate that the corrected GMPE can capture only some aspects of the ground shaking in the near-source area, neglecting other multidimensional effects, such as propagation effects and local site amplification.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile(DPC)under the contract 2007–2009 DPC-INGVS3project
    Description: Published
    Description: 1836-1848
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions ; Earthquake source observation ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: A recent study of the Matuyama–Brunhes (M-B) geomagnetic field reversal recorded in exposed lacustrine sediments from the Sulmona Basin (Italy) provided a continuous, highresolution record indicating that the reversal of the field direction at the terminus of the M-B boundary (MBB) occurred in less than a century, about 786 ka ago. In the sediment, thin (4–6 cm) remagnetized horizons were recognized above two distinct tephra layers—SUL2- 19 and SUL2-20—that occur ∼25 and ∼35 cm below the MBB, respectively. Also, a faint, millimetre-thick tephra (SUL2-18) occurs 2–3 cm above the MBB.With the aim of improving the temporal resolution of the previous Sulmona MBB record and understanding the possible influence of cryptotephra on the M-B record in the Sulmona Basin,we performed more detailed sampling and analyses of overlapping standard and smaller samples from a 50 cm-long block that spans the MBB. The new data indicate that (i) the MBB is even sharper than previously reported and occurs ∼2.5 cm below tephra SUL2-18, in agreement with the previous study; (ii) the MBB coincides with the rise of an intensity peak of the natural remanent magnetization (NRM) intensity, which extends across SUL2-18; (iii) except for a 2-cm-thick interval just above tephra SUL2-18, the rock magnetic parameters (k, ARM, Mr, Ms, Bc, Bcr) indicate exactly the same magnetic mineralogy throughout the sampled sequence. We conclude that either SUL2-18 resulted in the remagnetization of an interval of about 6 cm (i.e. during the NRM intensity peak spanning ∼260 ± 110 yr, according to the estimated local sedimentation rate), and thus the detailed MBB record is lost because it is overprinted, or the MBB is well recorded, occurred abruptly about 2.5 cm below SUL2-18 and lasted less than 13 ± 6 yr. Both hypotheses challenge our understanding of the geomagnetic field behaviour during a polarity transition and/or of the NRM acquisition process in the Sulmona lacustrine sediment.
    Description: Published
    Description: 798-812
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Palaeomagnetic secular variation; Rapid time variations; Reversals: process, time scale, magnetostratigraphy; Rock and mineral magnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Monthly Weather Review, American Meteorological Society, 143, pp. 1554-1567, ISSN: 0027-0644
    Publication Date: 2019-07-17
    Description: Ensemble square root filters can either assimilate all observations that are available at a given time at once, or assimilate the observations in batches or one at a time. For large-scale models, the filters are typically applied with a localized analysis step. This study demonstrates that the interaction of serial observation processing and localization can destabilize the analysis process and examines under which conditions the instability becomes significant. The instability results from a repeated inconsistent update of the state error covariance matrix that is caused by the localization. The inconsistency is present in all ensemble Kalman filters, except the classical ensemble Kalman filter with perturbed observations. With serial observation processing, its effect is small in cases when the assimilation changes the ensemble of model states only slightly. However, when the assimilation has a strong effect on the state estimates, the interaction of localization and serial observation processing can significantly deteriorate the filter performance. In realistic large-scale applications, when the assimilation changes the states only slightly and when the distribution of the observations is irregular and changing over time, the instability is likely not significant.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-11-25
    Description: On 2012 May 20 and 29, two damaging earthquakes with magnitudes Mw 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with Mw ? 5.0, all at shallow depths (about 7–9 km), with similar WNW–ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW. Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2–0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate Mw = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock.
    Description: Published
    Description: 1658-1672
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake dynamics ; Earthquake source observations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-11-09
    Description: Ensembles of retrospective 2-month dynamical forecasts initiated on 1May are used to predict the onset of the Indian summer monsoon (ISM) for the period 1989–2005. The subseasonal predictions (SSPs) are based on a coupled general circulation model and recently they have been upgraded by the realistic initialization of the atmosphere with initial conditions taken from reanalysis. Two objective large-scale methods based on dynamical circulation and hydrological indices are applied to detect the ISM onset. The SSPs show some skill in forecasting earlier-than-normal ISM onsets, while they have difficulty in predicting late onsets. It is shown that significant contribution to the skill in forecasting early ISM onsets comes from the newly developed initialization of the atmosphere from reanalysis. On one hand, atmospheric initialization produces a better representation of the atmospheric mean state in the initial conditions, leading to a systematically improved monsoon onset sequence. On the other hand, the initialization of the atmosphere allows some skill in forecasting the northward propagating intraseasonal wind and precipitation anomalies over the tropical Indian Ocean. The northward propagating intraseasonal modes trigger the monsoon in some early-onset years. The realistic phase initialization of these modes improves the forecasts of the associated earlier-than-normal monsoon onsets. The prediction of late onsets is not noticeably improved by the initialization of the atmosphere. It is suggested that late onsets of the monsoon are too far away from the start date of the forecasts to conserve enough memory of the intraseasonal oscillation (ISO) anomalies and of the improved representation of the mean state in the initial conditions.
    Description: Published
    Description: 778-793
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: indian summer monsoon ; onset ; seasonal predictions ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 143 (2015): 195–211, doi:10.1175/MWR-D-14-00051.1.
    Description: Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean’s state (velocity field, salinity field, etc.). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is often modeled as a high-dimensional variable, which precludes the use of more accurate methods such as the particle filter (PF). Here, a hybrid particle–ensemble Kalman filter is developed that applies the EnKF update to the potentially high-dimensional velocity variables, and the PF update to the relatively low-dimensional, highly nonlinear drifter position variable. This algorithm is tested with twin experiments on the linear shallow water equations. In experiments with infrequent observations, the hybrid filter consistently outperformed the EnKF, both by better capturing the Bayesian posterior and by better tracking the truth.
    Description: The work of Apte benefited from the support of the AIRBUS Group Corporate Foundation Chair in Mathematics of Complex Systems established in ICTS-TIFR. Spiller would like to acknowledge support by NSF Grant DMS-1228265 and ONR Grant N00014-11-1-0087. Sandstede gratefully acknowledges support by the NSF through Grant DMS-0907904. Slivinski was supported by the NSF through Grants DMS-0907904 and DMS-1148284.
    Description: 2015-07-01
    Keywords: Bayesian methods ; Filtering techniques ; Kalman filters ; Statistical techniques ; Data assimilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 2871, doi:10.1175/JTECH-D-14-00187.1.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-05-24
    Description: Close relationships between deformation and volcanism are well documented in relatively late evolutionary stages of con- tinental rifting, whereas these are poorly constrained in less mature rifting stages. To investigate the control of inherited structures on faulting and volcanism, we present a statistical analysis of volcanic features, faults and pre-rift fabric in the Tanzania Divergence, where volcanic features occur exten- sively in in-rift and off-rift areas. Our results show that in mature rift sectors (Natron), magma uprising is mostly con- trolled by fractures/faults responding to the far-field stress, whereas the distribution of volcanism during initial rifting (Eyasi) is controlled by inherited structures oblique to the regional extension direction. Off-rift sectors show a marked control of pre-rift structures on magma emplacement, which may not respond to the regional stress field. Thus, the use of off-rift magmatic features as stress indicators should take into account the role of pre-existing structures.
    Description: Published
    Description: 461-468
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: East Africa Rift System, Tanzania-Kenia, structures and volcanism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-06-10
    Description: Patagonia Argentina is a key area for the study of sea level changes in the southern hemisphere, but the availability of reliable sea level markers in this area is still problematic. In fact the storm deposits (beach ridge) commonly used here to reconstruct past sea level oscillations introduce a wide error. Along the Puerto Deseado coast (Santa Cruz), morphometric analyses of 11 features were carried out using traditional measurement tools and a digital software-based method (tested on one selected feature) with the aim to investigate the possibility of their use as sea level markers. By undertaking accurate topographic profiles we identified the relationship between notches and current sea level. In detail, we identified two clusters of notch retreat point elevations, with a very low internal variability. The lower was located a little below the mean high tide level (mHT) and the upper located at least 0.5m above the maximum high tide level (MHT). Field observations of tidal levels and the position of notches suggest that the lower notches are active and the upper are inactive. This study on the abrasive notches attests their quality as sea level markers and opens up the use of fossil abrasive notches as palaeo sea level markers because the error linked to these features is substantially smaller than that introduced by beach ridges commonly used in the study area
    Description: Published
    Description: 1550 – 1558
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: notch; rocky coast; sea level marker; Patagonia; Argentina ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-06-14
    Description: Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broadband stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ∼28oN which extends east–south–eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California.We also observe a high-velocity anomaly at 50-km depth extending down to ∼130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.
    Description: Published
    Description: 1861-1877
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: surface waves ; seismic tomography ; dynamics of lithosphere and mantle ; crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-05-24
    Description: Earthquake source inversions based on space-borne Synthetic Aperture Radar interferometry (InSAR) are used extensively. Typically, however, only the line-of-sight (LoS) surface displacement component is measured, which is mainly sensitive to the vertical and E–W deformations, although well-established methods also exist to estimate the flight-path component, which is highly sensitive to the N–S displacement. With high-resolution sensors, these techniques are particularly appealing, because accuracies in the order of 3 cm can be achieved, while retaining spatial resolutions between 45 m and a few km, depending on the required level of filtering. We discuss the application to COSMO-SkyMed SAR imagery of the Spectral Diversity or Multi Aperture Interferometry technique, presenting the first SAR flight-path displacement field associated with the Mw 6.3, 2009 L’Aquila event (central Apennines). Finally, we observe and characterize a previously unknown misregistration pattern.
    Description: Published
    Description: 28-35
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal Deformation ; Multi Aperture Interferometry MAI ; InSAR ; L'Aquila Earthquake ; Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-05-24
    Description: We present an application of the novel SISTEM approach, to obtain the dense 3D ground deformation pattern produced by the April 6, 2009, Mw 6.3 L’Aquila earthquake. This event, characterized by a SW-dipping normal fault with thousands of foreshocks and aftershocks located in the depth range 5–15 km, is the most destructive to have struck the Abruzzo region since the major 1703 seismic sequence. The surface deformation, revealed by the SISTEM through the integration of GPS with interferometric measurements from the ENVISAT and ALOS satellites, shows a deformed area extending towards SE along the Aterno valley, in agreement with seismological and other geodetic observations. We inverted the SISTEM results using an optimization algorithm based on the genetic algorithm, providing an accurate spatial characterization of ground deformation. Our results improve previous kinematic solutions for the Paganica fault and allow identification of additional faults that have contributed to the observed complex ground deformation pattern.
    Description: Published
    Description: 79-85
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: L'Aquila earthquake, SISTEM, GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 778–791, doi:10.1175/JPO-D-14-0164.1.
    Description: This study examines anisotropic transport properties of the eddying North Atlantic flow, using an idealized model of the double-gyre oceanic circulation and altimetry-derived velocities. The material transport by the time-dependent flow (quantified by the eddy diffusivity tensor) varies geographically and is anisotropic, that is, it has a well-defined direction of the maximum transport. One component of the time-dependent flow, zonally elongated large-scale transients, is particularly important for the anisotropy, as it corresponds to primarily zonal material transport and long correlation time scales. The importance of these large-scale zonal transients in the material distribution is further confirmed with simulations of idealized color dye tracers, which has implications for parameterizations of the eddy transport in non-eddy-resolving models.
    Description: IK would like to acknowledge support through the NSF Grant OCE-1154923. IR was supported by the NSF OCE-1154641 and NASA Grant NNX14AH29G.
    Description: 2015-09-01
    Keywords: Circulation/ Dynamics ; Eddies ; Lagrangian circulation/transport ; Mesoscale processes ; Ocean circulation ; Models and modeling ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8289–8318, doi:10.1175/JCLI-D-14-00555.1.
    Description: This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.
    Description: This research was funded by multiple grants from NASA’s Energy and Water Cycle Study (NEWS) program.
    Description: 2016-05-01
    Keywords: Physical Meteorology and Climatology ; Water budget ; Observational techniques and algorithms ; Remote sensing ; Mathematical and statistical techniques ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 1257–1279, doi:10.1175/BAMS-D-14-00015.1.
    Description: Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.
    Description: The bulk of this work was funded under the Scalable Lateral Mixing and Coherent Turbulence Departmental Research Initiative and the Physical Oceanography Program. The dye experiments were supported jointly by the Office of Naval Research and the National Science Foundation Physical Oceanography Program (Grants OCE-0751653 and OCE-0751734).
    Description: 2016-02-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.google-earth
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8319-8346, doi:10.1175/JCLI-D-14-00556.1.
    Description: New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.
    Description: This study is the result of a collaboration of multiple investigators each supported by the NEWS program.
    Keywords: Climatology ; Energy budget/balance ; Heat budgets/fluxes ; Radiative fluxes ; Surface fluxes ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 9359–9376, doi:10.1175/JCLI-D-14-00228.1.
    Description: Multidecadal variability of the Atlantic meridional overturning circulation (AMOC) is examined based on a comparison of the AMOC streamfunctions in depth and in density space, in a 700-yr present-day control integration of the fully coupled Community Climate System Model, version 3. The commonly used depth-coordinate AMOC primarily exhibits the variability associated with the deep equatorward transport that follows the changes in the Labrador Sea deep water formation. On the other hand, the density-based AMOC emphasizes the variability associated with the subpolar gyre circulation in the upper ocean leading to the changes in the Labrador Sea convection. Combining the two representations indicates that the ~20-yr periodicity of the AMOC variability in the first half of the simulation is primarily due to an ocean-only mode resulting from the coupling of the deep equatorward flow and the upper ocean gyre circulation near the Gulf Stream and North Atlantic Current. In addition, the density-based AMOC reveals a gradual change in the deep ocean associated with cooling and increased density, which is likely responsible for the transition of AMOC variability from strong ~20-yr oscillations to a weaker red noise–like multidecadal variability.
    Description: Support from the NOAA Climate Program Office (Grant NA10OAR4310202 and NA13OAR4310139) and NSF EaSM2 (OCE1242989) is gratefully acknowledged.
    Description: 2015-06-15
    Keywords: North Atlantic Ocean ; Meridional overturning circulation ; Ocean circulation ; Thermocline circulation ; Climate variability ; Multidecadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8981–9005, doi:10.1175/JCLI-D-12-00565.1.
    Description: Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources. SCD acknowledges support from the National Science Foundation (NSF AGS-1048827). This research is supported in part by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725.
    Description: 2015-06-15
    Keywords: Carbon cycle ; Climate models ; Coupled models ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 294–312, doi:10.1175/JPO-D-14-0104.1.
    Description: Model analyses of an alongshelf flow over a continental shelf and slope reveal upwelling near the shelf break. A stratified, initially uniform, alongshelf flow undergoes a rapid adjustment with notable differences onshore and offshore of the shelf break. Over the shelf, a bottom boundary layer and an offshore bottom Ekman transport develop within an inertial period. Over the slope, the bottom offshore transport is reduced from the shelf’s bottom transport by two processes. First, advection of buoyancy downslope induces vertical mixing, destratifying, and thickening the bottom boundary layer. The downward-tilting isopycnals reduce the geostrophic speed near the bottom. The reduced bottom stress weakens the offshore Ekman transport, a process known as buoyancy shutdown of the Ekman transport. Second, the thickening bottom boundary layer and weakening near-bottom speeds are balanced by an upslope ageostrophic transport. The convergence in the bottom transport induces adiabatic upwelling offshore of the shelf break. For a time period after the initial adjustment, scalings are identified for the upwelling speed and the length scale over which it occurs. Numerical experiments are used to test the scalings for a range of initial speeds and stratifications. Upwelling occurs within an inertial period, reaching values of up to 10 m day−1 within 2 to 7 km offshore of the shelf break. Upwelling drives an interior secondary circulation that accelerates the alongshelf flow over the slope, forming a shelfbreak jet. The model results are compared with upwelling estimates from other models and observations near the Middle Atlantic Bight shelf break.
    Description: J. Benthuysen acknowledges support from the ARC Centre of Excellence for Climate System Science (CE110001028) and the MIT/WHOI Joint Program, where this work was initiated.
    Description: 2015-07-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Diapycnal mixing ; Ekman pumping/transport ; Mixing ; Topographic effects ; Upwelling/downwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 104–132, doi:10.1175/JPO-D-14-0032.1.
    Description: Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, eddy-induced Ekman pumping velocities approach O(10) cm day−1. SST-induced Ekman pumping is usually secondary to the two current-induced mechanisms for Ekman pumping. Notable exceptions are the midlatitude extensions of western boundary currents and the Antarctic Circumpolar Current, where SST gradients are strong and all three mechanisms for eddy-induced Ekman pumping are comparable in magnitude. Because the polarity of current-induced curl of the surface stress opposes that of the eddy, the associated Ekman pumping attenuates the eddies. The decay time scale of this attenuation is proportional to the vertical scale of the eddy and inversely proportional to the wind speed. For typical values of these parameters, the decay time scale is about 1.3 yr.
    Description: This work was funded by NASA Grants NNX08AI80G, NNX08AR37G, NNX13AD78G, NNX10AE91G, NNX13AE47G, and NNX10AO98G.
    Description: 2015-07-01
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Eddies ; Ekman pumping/transport ; Atm/Ocean Structure/ Phenomena ; Eddies ; Ekman pumping ; Observational techniques and algorithms ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2024-04-05
    Description: Secondary microseisms recorded by seismic stations are generated in the ocean by the interaction of ocean gravity waves.We present here the theory for modelling secondary microseismic noise by normal mode summation.We show that the noise sources can be modelled by vertical forces and how to derive them from a realistic ocean wave model. We then show how to compute bathymetry excitation effect in a realistic earth model by using normal modes and a comparison with Longuet–Higgins approach. The strongest excitation areas in the oceans depends on the bathymetry and period and are different for each seismic mode. Seismic noise is then modelled by normal mode summation considering varying bathymetry. We derive an attenuation model that enables to fit well the vertical component spectra whatever the station location. We show that the fundamental mode of Rayleigh waves is the dominant signal in seismic noise. There is a discrepancy between real and synthetic spectra on the horizontal components that enables to estimate the amount of Love waves for which a different source mechanism is needed. Finally, we investigate noise generated in all the oceans around Africa and show that most of noise recorded in Algeria (TAM station) is generated in the Northern Atlantic and that there is a seasonal variability of the contribution of each ocean and sea.
    Description: Published
    Description: 1732-1745
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Surface waves and free oscillations ; Seismic attenuation ; Theoretical seismology ; Wave propagation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2024-04-05
    Description: Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. We present here the theory for computing the site effect of the ocean layer upon body waves generated by noise sources distributed along the ocean surface. By defining the wavefield as the superposition of plane waves, we show that the ocean site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to either P or SV waves at the ocean–crust interface. We observe that the site effect varies strongly with period and ocean depth, although in a different way for body waves than for Rayleigh waves. We also show that the ocean site effect is stronger for P waves than for S waves. We validate our computation by comparing the theoretical noise body wave sources with the sources inferred from beamforming analysis of the three seismogram components recorded by the Southern California Seismic Network. We use rotated traces for the beamforming analysis, and we show that we clearly detect P waves generated by ocean gravity wave interactions along the track of typhoon Ioke (2006 September). We do not detect the corresponding SV waves, and we demonstrate that this is because their amplitude is too weak.
    Description: Published
    Description: 1096-1106
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Body waves ; Site effects ; Theoretical Seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2024-05-09
    Description: The Sulmona plain (central Italy) is an intramontane basin of the Abruzzi Apennines that is known in the literature for its high seismic hazard. We use extensive measurements of ambient noise to map the fundamental frequency and to detect the presence of geological heterogeneities in the basin. We perform noise measurements along two basin-scale orthogonal transects, in conjunction with 2-D array experiments in specific key areas. The key areas are located in different positions with respect to the basin margins: one at the eastern boundary (fault-controlled basin margin) and one in the deepest part of the basin. We also collect independent data by using active seismic experiments (MASW), down-hole and geological surveys to characterize the near-surface geology of the investigated sites. In detail, the H/V noise spectral ratios and 2-D array techniques indicate a fundamental resonance (f0) in the low-frequency range (0.35–0.4 Hz) in the Sulmona Basin. Additionally, our results highlight the important role that is played by the alluvial fans near the edge-sectors of the basin, which are responsible for a velocity inversion in the uppermost layering of the soil profile. The H/V ratios and the dispersion curves of adjacent measurements strongly vary over a few dozens of meters in the alluvial fan area. Furthermore, we perform 1-D numerical simulations that are based on a linear-equivalent approach to estimate the site response in the key areas, using realistic seismic inputs. Finally, we perform a 2-D simulation that is based on the spectral element method to propagate surface waves in a simple model with an uppermost stiff layer, which is responsible for the velocity inversion. The results from the 2-D modelling agree with the experimental curves, showing deamplified H/V curves and typical shapes of dispersion curves of a not normally dispersive site.
    Description: Published
    Description: 418-439
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Fourier analysis, Earthquake ground motions, Site effects ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-08-11
    Description: In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs). The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns) but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-08-14
    Description: Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE) of cotton (Gossypium hirsutum L). In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST) method with irrigation triggers set at 5.5 (ST_5.5) and 8.5 h (ST_8.5) and the Crop Water Stress Index (CWSI) method with irrigation triggers set at 0.3 (CWSI_0.3) and 0.6 (CWSI_0.6). When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW) control irrigated at 110% of potential evapotranspiration and a dry land (DL) treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ≤ 0.05) peak near 3.6 to 3.7 kg ha−1 mm−1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-08-13
    Description: The Saudi Arabia (SA) climate varies greatly, depending on the geography and the season. According to K ppen and Geiger, the climates of SA is “desert climate”. The analysis of the seasonal rainfall detects that spring and winter seasons have the highestrainfall incidence, respectively. Through the summer,small quantities of precipitation are observed, while autumn received more precipitation more than summer season considering the total annual rainfall. In all seasons, the SW area receives rainfall, with a maximum in spring, whereas in the summer season, the NE and NW areas receive very little quantities of precipitation. The Rub Al-Khali (the SE region) is almost totally dry. The maximum amount of annual rainfall does not always happen at the highest elevation. Therefore, the elevation is not the only factor in rainfall distribution.A great inter-annual change in the rainfall over the SA for the period (1978–2009) is observed. In addition, in the same period, a linear decreasing trend is found in the observed rainfall, whilst in the recent past (1994–2009) a statistically significant negative trend is observed. In the Southern part of the Arabian Peninsula (AP) and along the coast of the Red Sea, it is interesting to note that rainfall increased, whilst it decreased over most areas of SA during the 2000–2009 decade, compared to 1980–1989.Statistical and numerical models are used to predict rainfall over Saudi Arabia (SA). The statistical models based on stochastic models of ARIMA and numerical models based on Providing Regional Climates for Impact Studies of Hadley Centre (PRECIS). Climate and its qualitative character and quantified range of possible future changes are investigated. The annual total rainfall decreases in most regions of the SA and only increases in the south. The summertime precipitation will be the highest between other seasons over the southern, the southwestern provinces and Asir mountains, while the wintertime rainfall will remain the lowest.The climate in the SA is instructed by the El Niño Southern Oscillation (ENSO) and other circulations such as centers of high and low pressure, the North Atlantic Oscillation (NAO) and SOI. Strength and oscillation of subtropical jet stream play a big role in pulling hot, dry air masses of SA.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-08-15
    Description: In the existing attribute-based encryption (ABE) scheme, the authority (i.e., private key generator (PKG)) is able to calculate and issue any user’s private key, which makes it completely trusted, which severely influences the applications of the ABE scheme. To mitigate this problem, we propose the black box traceable ciphertext policy attribute-based encryption (T-CP-ABE) scheme in which if the PKG re-distributes the users’ private keys for malicious uses, it might be caught and sued. We provide a construction to realize the T-CP-ABE scheme in a black box model. Our scheme is based on the decisional bilinear Diffie-Hellman (DBDH) assumption in the standard model. In our scheme, we employ a pair (ID, S) to identify a user, where ID denotes the identity of a user and S denotes the attribute set associated with her.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-08-15
    Description: Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-08-04
    Description: The use of a novel micro pressurized liquid extraction (µPLE) method for the isolation of 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) from various solid samples is explored. The technique employs rapid heating in a single static extraction mode to remove analytes in a matter of seconds from 5–10 mg samples using only 125 µL of solvent. For example, results show that 30 s extractions with toluene at 200 °C produce respective PAH recovery ranges of 90%–130% and 88%–114% from samples of soil and smoked chicken. Comparatively, solids containing significant amounts of biochar were more challenging to extract from. For instance, when using a pure biochar sample matrix, recoveries for the 16 PAHs range from only 33%–66% after 60 s of extraction with toluene at 200 °C. Overall, these extraction results agree very well with those reported when using conventional methods on similar samples. Therefore, the findings indicate that µPLE can potentially provide an alternative sample preparation method for PAHs that is both very rapid and requires little solvent.
    Electronic ISSN: 2227-9075
    Topics: Chemistry and Pharmacology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-08-05
    Description: Digital publishing resources contain a lot of useful and authoritative knowledge. It may be necessary to reorganize the resources by concepts and recommend the related concepts for e-learning. A recommender system is presented in this paper based on the semantic relatedness of concepts computed by texts from digital publishing resources. Firstly, concepts are extracted from encyclopedias. Information in digital publishing resources is then reorganized by concepts. Secondly, concept vectors are generated by skip-gram model and semantic relatedness between concepts is measured according to the concept vectors. As a result, the related concepts and associated information can be recommended to users by the semantic relatedness for learning or reading. History data or users’ preferences data are not needed for recommendation in a specific domain. The technique may not be language-specific. The method shows potential usability for e-learning in a specific domain.
    Electronic ISSN: 2078-2489
    Topics: Computer Science
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-08-05
    Description: Mangroves are found throughout the tropics, providing critical ecosystem goods and services to coastal communities and supporting rich biodiversity. Globally, mangroves are being rapidly degraded and deforested at rates exceeding loss in many tropical inland forests. Madagascar contains around 2% of the global distribution, >20% of which has been deforested since 1990, primarily from over-harvest for forest products and conversion for agriculture and aquaculture. While historically not prominent, mangrove loss in Madagascar’s Mahajamba Bay is increasing. Here, we focus on Mahajamba Bay, presenting long-term dynamics calculated using United States Geological Survey (USGS) national-level mangrove maps contextualized with socio-economic research and ground observations, and the results of contemporary (circa 2011) mapping of dominant mangrove types. The analysis of the USGS data indicated 1050 hectares (3.8%) lost from 2000 to 2010, which socio-economic research suggests is increasingly driven by commercial timber extraction. Contemporary mapping results permitted stratified sampling based on spectrally distinct and ecologically meaningful mangrove types, allowing for the first-ever vegetation carbon stock estimates for Mahajamba Bay. The overall mean carbon stock across all mangrove classes was estimated to be 100.97 ± 10.49 Mg C ha−1. High stature closed-canopy mangroves had the highest average carbon stock estimate (i.e., 166.82 ± 15.28 Mg C ha−1). These estimates are comparable to other published values in Madagascar and elsewhere in the Western Indian Ocean and demonstrate the ecological variability of Mahajamba Bay’s mangroves and their value towards climate change mitigation.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-08-05
    Description: By recourse to tempered ultradistributions, we show here that the effect of a q-Fourier transform (qFT) is to map equivalence classes of functions into other classes in a one-to-one fashion. This suggests that Tsallis’ q-statistics may revolve around equivalence classes of distributions and not individual ones, as orthodox statistics does. We solve here the qFT’s non-invertibility issue, but discover a problem that remains open.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-08-05
    Description: Aquifers within the Columbia River Basalt Group (CRBG) provide a critical water supply throughout much of the Pacific Northwest of the United States. Increased pumping has resulted in water level declines in this region. Recharge into this aquifer system is generally not well understood. Recent suggestions of probable decades-long droughts in the 21st century add to this problem. We show that geophysical methods can provide useful parameters for improved modeling of aquifers in a primary CRBG aquifer located on the eastern edge of the Columbia Plateau. Groundwater models depend in part on the area, thickness, porosity, storativity, and nature of confinement of this aquifer, most of which are poorly constrained by existing well information and previous stress tests. We have made use of surface gravity measurements, borehole gravity measurements, barometric efficiency estimates, earth tidal response, and earthquake seismology observations to constrain these parameters. We show that the aquifer, despite its persistent drawdown, receives a great deal of recharge annually. Much of the recharge to the aquifer is due to leakage from overlying flows, ultimately tied to precipitation, an important result for future aquifer management in times of sustained drought.
    Electronic ISSN: 2079-9276
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...