ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-14
    Description: Simulating magma propagation pathways requires both a well‐calibrated model for the stress state of the volcano and models for dike advance within such a stress field. Here, we establish a framework for calculating computationally efficient and flexible magma propagation scenarios in the presence of caldera structures. We first develop a three‐dimensional (3D) numerical model for the stress state at volcanoes with mild topography, including the stress induced by surface loads and unloading due to the formation of caldera depressions. Then, we introduce a new, simplified 3D model of dike propagation. Such a model captures the complexity of 3D magma trajectories with low running time, and can backtrack dikes from a vent to the magma storage region. We compare the new dike propagation model to a previously published 3D model. Finally, we employ the simplified model to produce shallow dike propagation scenarios for a set of synthetic caldera settings with increasingly complex topographies. The resulting synthetic magma pathways and eruptive vent locations broadly reproduce the variability observed in natural calderas.
    Description: Plain Language Summary: Understanding the pathways that bring magma from an underground chamber to the surface helps to prepare for future eruptions in volcanic areas. Dikes are fractures filled with magma and represent the most common mechanism of magma transport in the Earth's crust. Their trajectories may be curved if the Earth's crust is deformed by the load of topography or by tectonic forces. Here we first discuss a model of such deformation processes in volcanic regions with complex but mild topography. Then, we develop a simplified dike propagation model that we compare to a more sophisticated one. Next, we combine our models and simulate magma pathways in artificially‐generated scenarios.
    Description: Key Points: We present numerical models of crustal stress state in the presence of caldera structures. We develop a fast dike propagation model and validate it on a previous numerical model. We combine our stress and dike models to simulate magma pathways at synthetic calderas.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: http://persson.berkeley.edu/distmesh/
    Description: https://doi.org/10.5281/zenodo.3694164
    Description: https://doi.org/10.5281/zenodo.4726796
    Description: https://doi.org/10.5281/zenodo.4727208
    Description: https://doi.org/10.5880/GFZ.2.1.2023.001
    Keywords: ddc:550.278 ; dike propagation ; magma pathways ; stress modeling ; pre‐eruptive scenarios ; calderas
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈span〉The existence of a causal link between large earthquakes and volcanic unrest is widely accepted. Recent observations have also revealed counterintuitive negative responses of volcanoes to large earthquakes, including decreased gas emissions and subsidence in volcanic areas. In order to explore the mechanisms that could simultaneously explain both the positive and negative responses of volcanic activity to earthquakes, we here focus on the role played by topography. In the laboratory, we shook a volcanic edifice analogue, made of gel, previously injected with a buoyant fluid. We find that shaking triggers rapid migration of the buoyant fluid upward, downward, or laterally, depending on the fluid's buoyancy and storage depth; bubbly fluids stored at shallow depth ascend, while low-buoyancy fluids descend or migrate laterally. The migration of fluids induced by shaking is two orders of magnitude faster than without shaking. Downward or lateral fluid migration may decrease volcanic gas emissions and cause subsidence as a negative response, while upward migration is consistent both with an increase in volcanic activity and immediate unrest (deformation and seismicity) after large earthquakes. The fluid migration is more efficient when the oscillation frequency is close to the resonance frequency of the edifice. The resonance frequency for a 30-km-wide volcanic mountain range, such as those where subsidence was observed, is ~0.07 Hz. Only large earthquakes are able to cause oscillation at such low frequencies.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-30
    Description: Research at continental rifts, mid-ocean ridges, and transforms has shown that new plates are created by extensional tectonics, magma intrusion, and volcanism. Studies of a wide variety of extensional processes ranging from plate thinning to magma intrusion have helped scientists understand how continents are broken apart to form ocean basins. However, deformation processes vary significantly during the development of continental rifts and mid-ocean ridges. In addition, ocean ridges are offset along their length by major transform faults, the initiation of which is poorly understood. Data documenting active processes have proven difficult to obtain because most ridges are submerged with only rare portions of the divergent plate boundary being exposed on land. Therefore our current knowledge about the length and time scales of magmatism and faulting during rift evolution as well as the mechanisms of initial development of mid-ocean ridges and transforms is limited. In this themed issue we present contributions that document the wide variety of processes acting at divergent plate boundaries and transforms in order to synthesize some of the most relevant research topics about plate extension and to identify the important questions that remain unanswered.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-12
    Description: Tectonic earthquake swarms challenge our understanding of earthquake processes since it is difficult to link observations to the underlying physical mechanisms and to assess the hazard they pose. Transient forcing is thought to initiate and drive the spatio-temporal release of energy during swarms. The nature of the transient forcing may vary across sequences and range from aseismic creeping or transient slip to diffusion of pore pressure pulses to fluid redistribution and migration within the seismogenic crust. Distinguishing between such forcing mechanisms may be critical to reduce epistemic uncertainties in the assessment of hazard due to seismic swarms, because it can provide information on the frequency–magnitude distribution of the earthquakes (often deviating from the assumed Gutenberg–Richter relation) and on the expected source parameters influencing the ground motion (for example the stress drop). Here we study the ongoing Pollino range (Southern Italy) seismic swarm, a long-lasting seismic sequence with more than five thousand events recorded and located since October 2010. The two largest shocks (magnitude M w = 4.2 and M w = 5.1) are among the largest earthquakes ever recorded in an area which represents a seismic gap in the Italian historical earthquake catalogue. We investigate the geometrical, mechanical and statistical characteristics of the largest earthquakes and of the entire swarm. We calculate the focal mechanisms of the M l 〉 3 events in the sequence and the transfer of Coulomb stress on nearby known faults and analyse the statistics of the earthquake catalogue. We find that only 25 per cent of the earthquakes in the sequence can be explained as aftershocks, and the remaining 75 per cent may be attributed to a transient forcing. The b -values change in time throughout the sequence, with low b -values correlated with the period of highest rate of activity and with the occurrence of the largest shock. In the light of recent studies on the palaeoseismic and historical activity in the Pollino area, we identify two scenarios consistent with the observations and our analysis: This and past seismic swarms may have been ‘passive’ features, with small fault patches failing on largely locked faults, or may have been accompanied by an ‘active’, largely aseismic, release of a large portion of the accumulated tectonic strain. Those scenarios have very different implications for the seismic hazard of the area.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-25
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: 〈span〉〈div〉Abstract〈/div〉The existence of a causal link between large earthquakes and volcanic unrest is widely accepted. Recent observations have also revealed counterintuitive negative responses of volcanoes to large earthquakes, including decreased gas emissions and subsidence in volcanic areas. In order to explore the mechanisms that could simultaneously explain both the positive and negative responses of volcanic activity to earthquakes, we here focus on the role played by topography. In the laboratory, we shook a volcanic edifice analogue, made of gel, previously injected with a buoyant fluid. We find that shaking triggers rapid migration of the buoyant fluid upward, downward, or laterally, depending on the fluid’s buoyancy and storage depth; bubbly fluids stored at shallow depth ascend, while low-buoyancy fluids descend or migrate laterally. The migration of fluids induced by shaking is two orders of magnitude faster than without shaking. Downward or lateral fluid migration may decrease volcanic gas emissions and cause subsidence as a negative response, while upward migration is consistent both with an increase in volcanic activity and immediate unrest (deformation and seismicity) after large earthquakes. The fluid migration is more efficient when the oscillation frequency is close to the resonance frequency of the edifice. The resonance frequency for a 30-km-wide volcanic mountain range, such as those where subsidence was observed, is ∼0.07 Hz. Only large earthquakes are able to cause oscillation at such low frequencies.〈/span〉
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-05-09
    Description: On 2012 May 20 and 29, two damaging earthquakes with magnitudes M w 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with M w  ≥ 5.0, all at shallow depths (about 7–9 km), with similar WNW–ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW. Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2–0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate M w  = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-12-19
    Description: Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (〈5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized sources, the discrepancies are up to 20 per cent, which translates into surprisingly large errors when inverting deformation data for source parameters such as depth and volume change. Beyond 8 radii however, we demonstrate that the summation of analytical sources represents adjacent magma chambers correctly.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-01
    Description: Volcanic eruptions are usually fed by dikes. Understanding how crustal inhomogeneities and topographic loads control the direction (lateral/vertical) and extent (propagation/arrest) of dikes is crucial to forecast the opening of a vent. Many factors, including buoyancy, crustal layering, and topography, may control the vertical or lateral propagation of a dike. To define a hierarchy between these factors, we have conducted analogue models, injecting water (magma analogue) within gelatin (crust analogue). We investigate the effect of crustal layering (both rigidity and density layering), topography, magma inflow rate, and the density ratio between host rock and magma. Based on the experimental observations and scaling considerations, we suggest that rigidity layering (a stiffer layer overlying a weaker one) and topographic gradient favor predominantly lateral dike propagation; inflow rate, density layering, and density ratio play a subordinate role. Conversely, a softer layer overlying a stiffer one favors vertical propagation. Our results highlight the higher efficiency of a stiff layer in driving lateral dike propagation and/or inhibiting vertical propagation with respect to the Level of Neutral Buoyancy proposed by previous studies. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-23
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...