ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (95)
  • American Association for the Advancement of Science (AAAS)  (95)
  • American Physical Society
  • Annual Reviews
  • Blackwell Publishing Ltd
  • Springer
  • 2005-2009  (95)
  • 1990-1994
  • 1980-1984
  • 2007  (95)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (95)
  • American Physical Society
  • Annual Reviews
  • Blackwell Publishing Ltd
  • Springer
Years
  • 2005-2009  (95)
  • 1990-1994
  • 1980-1984
Year
  • 1
    Publication Date: 2007-08-04
    Description: In flowering plants, signaling between the male pollen tube and the synergid cells of the female gametophyte is required for fertilization. In the Arabidopsis thaliana mutant feronia (fer), fertilization is impaired; the pollen tube fails to arrest and thus continues to grow inside the female gametophyte. FER encodes a synergid-expressed, plasma membrane-localized receptor-like kinase. We found that the FER protein accumulates asymmetrically in the synergid membrane at the filiform apparatus. Interspecific crosses using pollen from Arabidopsis lyrata and Cardamine flexuosa on A. thaliana stigmas resulted in a fer-like phenotype that correlates with sequence divergence in the extracellular domain of FER. Our findings show that the female control of pollen tube reception is based on a FER-dependent signaling pathway, which may play a role in reproductive isolation barriers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Escobar-Restrepo, Juan-Miguel -- Huck, Norbert -- Kessler, Sharon -- Gagliardini, Valeria -- Gheyselinck, Jacqueline -- Yang, Wei-Cai -- Grossniklaus, Ueli -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):656-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673660" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Brassicaceae/genetics/physiology ; Cell Membrane/enzymology ; Crosses, Genetic ; Evolution, Molecular ; Flowers/cytology/enzymology/*physiology ; Gene Expression ; Genes, Plant ; Germination ; Ligands ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphotransferases/chemistry/*genetics/*metabolism ; Plant Epidermis/enzymology ; Pollen Tube/growth & development/*physiology ; Recombinant Fusion Proteins/metabolism ; Reproduction ; Seeds/growth & development ; Signal Transduction ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCormick, Sheila -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):606-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Gene Expression Center, USDA Agricultural Research Service-UC Berkeley, 800 Buchanan Street, Albany, CA 94710, USA. sheilamc@nature.berkeley.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673644" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/*physiology ; Arabidopsis Proteins/genetics/*metabolism ; Cell Membrane/enzymology ; Crosses, Genetic ; Evolution, Molecular ; Flowers/cytology/enzymology/*physiology ; Genes, Plant ; Ligands ; Models, Biological ; Mutation ; Phosphotransferases/*genetics/*metabolism ; Pollen Tube/growth & development/*physiology ; Reproduction ; Signal Transduction ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-05-05
    Description: The initial electron transfer dynamics during photosynthesis have been studied in Rhodobacter sphaeroides reaction centers from wild type and 14 mutants in which the driving force and the kinetics of charge separation vary over a broad range. Surprisingly, the protein relaxation kinetics, as measured by tryptophan absorbance changes, are invariant in these mutants. By applying a reaction-diffusion model, we can fit the complex electron transfer kinetics of each mutant quantitatively, varying only the driving force. These results indicate that initial photosynthetic charge separation is limited by protein dynamics rather than by a static electron transfer barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Haiyu -- Lin, Su -- Allen, James P -- Williams, Joann C -- Blankert, Sean -- Laser, Christa -- Woodbury, Neal W -- New York, N.Y. -- Science. 2007 May 4;316(5825):747-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478721" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Bacteriochlorophylls/metabolism ; *Electron Transport ; Kinetics ; Light ; Models, Chemical ; Mutation ; *Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*chemistry/genetics/*metabolism ; Rhodobacter sphaeroides/genetics/*metabolism ; Spectrum Analysis ; Temperature ; Thermodynamics ; Tryptophan/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):314.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234920" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/*genetics/metabolism ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Brain/metabolism ; Endosomes/metabolism ; Ethnic Groups/genetics ; Genetic Predisposition to Disease ; Humans ; LDL-Receptor Related Proteins/*genetics/metabolism ; Membrane Transport Proteins/*genetics/metabolism ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/metabolism ; Polymorphism, Single Nucleotide ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-03-24
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrangou, Rodolphe -- Fremaux, Christophe -- Deveau, Helene -- Richards, Melissa -- Boyaval, Patrick -- Moineau, Sylvain -- Romero, Dennis A -- Horvath, Philippe -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1709-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Danisco USA Inc., 3329 Agriculture Drive, Madison, WI 53716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379808" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial/genetics ; DNA, Intergenic/*genetics ; Evolution, Molecular ; *Genes, Bacterial ; Genome, Viral ; Molecular Sequence Data ; Mutation ; Polymorphism, Single Nucleotide ; *Repetitive Sequences, Nucleic Acid ; Streptococcus Phages/genetics/*physiology ; Streptococcus thermophilus/*genetics/*virology ; Viral Plaque Assay ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-03-24
    Description: Analysis of cellular components at multiple levels of biological information can provide valuable functional insights. We performed multiple high-throughput measurements to study the response of Escherichia coli cells to genetic and environmental perturbations. Analysis of metabolic enzyme gene disruptants revealed unexpectedly small changes in messenger RNA and proteins for most disruptants. Overall, metabolite levels were also stable, reflecting the rerouting of fluxes in the metabolic network. In contrast, E. coli actively regulated enzyme levels to maintain a stable metabolic state in response to changes in growth rate. E. coli thus seems to use complementary strategies that result in a metabolic network robust against perturbations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ishii, Nobuyoshi -- Nakahigashi, Kenji -- Baba, Tomoya -- Robert, Martin -- Soga, Tomoyoshi -- Kanai, Akio -- Hirasawa, Takashi -- Naba, Miki -- Hirai, Kenta -- Hoque, Aminul -- Ho, Pei Yee -- Kakazu, Yuji -- Sugawara, Kaori -- Igarashi, Saori -- Harada, Satoshi -- Masuda, Takeshi -- Sugiyama, Naoyuki -- Togashi, Takashi -- Hasegawa, Miki -- Takai, Yuki -- Yugi, Katsuyuki -- Arakawa, Kazuharu -- Iwata, Nayuta -- Toya, Yoshihiro -- Nakayama, Yoichi -- Nishioka, Takaaki -- Shimizu, Kazuyuki -- Mori, Hirotada -- Tomita, Masaru -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):593-7. Epub 2007 Mar 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379776" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatography, Liquid ; Computational Biology ; Electrophoresis, Capillary ; Electrophoresis, Gel, Two-Dimensional ; Enzyme Induction ; Enzyme Repression ; Enzymes/genetics/metabolism ; Escherichia coli/enzymology/*genetics/growth & development/*metabolism ; Escherichia coli Proteins/genetics/*metabolism ; Gene Expression ; *Genes, Bacterial ; Mass Spectrometry ; *Metabolic Networks and Pathways/genetics ; Mutation ; Oligonucleotide Array Sequence Analysis ; Proteome ; RNA, Messenger/genetics/metabolism ; Systems Biology/*methods ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-09-01
    Description: MicroRNAs (miRNAs) repress hundreds of target messenger RNAs (mRNAs), but the physiological roles of specific miRNA-mRNA interactions remain largely elusive. We report that zebrafish microRNA-430 (miR-430) dampens and balances the expression of the transforming growth factor-beta (TGF-beta) Nodal agonist squint and the TGF-beta Nodal antagonist lefty. To disrupt the interaction of specific miRNA-mRNA pairs, we developed target protector morpholinos complementary to miRNA binding sites in target mRNAs. Protection of squint or lefty mRNAs from miR-430 resulted in enhanced or reduced Nodal signaling, respectively. Simultaneous protection of squint and lefty or absence of miR-430 caused an imbalance and reduction in Nodal signaling. These findings establish an approach to analyze the in vivo roles of specific miRNA-mRNA pairs and reveal a requirement for miRNAs in dampening and balancing agonist/antagonist pairs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Wen-Yee -- Giraldez, Antonio J -- Schier, Alexander F -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):271-4. Epub 2007 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17761850" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Embryo, Nonmammalian/physiology ; Embryonic Development ; Gene Expression Regulation ; Left-Right Determination Factors ; MicroRNAs/*metabolism ; Mutation ; Nodal Protein ; Nodal Signaling Ligands ; RNA, Messenger/genetics/*metabolism ; Transforming Growth Factor beta/agonists/antagonists & ; inhibitors/*genetics/*metabolism ; Zebrafish/embryology/*genetics/metabolism ; Zebrafish Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-08-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):884-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702918" target="_blank"〉PubMed〈/a〉
    Keywords: Aldosterone/metabolism ; Animals ; Computer Simulation ; Crystallography, X-Ray ; Desoxycorticosterone/metabolism ; *Evolution, Molecular ; *Fishes ; Hydrocortisone/metabolism ; Models, Molecular ; Mutation ; Protein Conformation ; Receptors, Glucocorticoid/chemistry/*genetics/metabolism ; Receptors, Mineralocorticoid/chemistry/*genetics/metabolism ; Receptors, Steroid/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-08-25
    Description: The organization of chromatin affects all aspects of nuclear DNA metabolism in eukaryotes. H3.3 is an evolutionarily conserved histone variant and a key substrate for replication-independent chromatin assembly. Elimination of chromatin remodeling factor CHD1 in Drosophila embryos abolishes incorporation of H3.3 into the male pronucleus, renders the paternal genome unable to participate in zygotic mitoses, and leads to the development of haploid embryos. Furthermore, CHD1, but not ISWI, interacts with HIRA in cytoplasmic extracts. Our findings establish CHD1 as a major factor in replacement histone metabolism in the nucleus and reveal a critical role for CHD1 in the earliest developmental instances of genome-scale, replication-independent nucleosome assembly. Furthermore, our results point to the general requirement of adenosine triphosphate (ATP)-utilizing motor proteins for histone deposition in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014568/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014568/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Konev, Alexander Y -- Tribus, Martin -- Park, Sung Yeon -- Podhraski, Valerie -- Lim, Chin Yan -- Emelyanov, Alexander V -- Vershilova, Elena -- Pirrotta, Vincenzo -- Kadonaga, James T -- Lusser, Alexandra -- Fyodorov, Dmitry V -- GM58272/GM/NIGMS NIH HHS/ -- GM74233/GM/NIGMS NIH HHS/ -- R01 GM074233/GM/NIGMS NIH HHS/ -- Y 275/Austrian Science Fund FWF/Austria -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1087-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717186" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cell Cycle Proteins/metabolism ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila/embryology/genetics/metabolism/*physiology ; Drosophila Proteins/genetics/*metabolism ; Embryo, Nonmammalian/physiology ; Embryonic Development ; Female ; Haploidy ; Histone Chaperones ; Histones/*metabolism ; Male ; Mutation ; Nucleosomes/metabolism ; Protamines/metabolism ; Spermatozoa/physiology ; Transcription Factors/genetics/*metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-10-06
    Description: The RRM-domain proteins FCA and FPA have previously been characterized as flowering-time regulators in Arabidopsis. We show that they are required for RNA-mediated chromatin silencing of a range of loci in the genome. At some target loci, FCA and FPA promote asymmetric DNA methylation, whereas at others they function in parallel to DNA methylation. Female gametophytic development and early embryonic development are particularly susceptible to malfunctions in FCA and FPA. We propose that FCA and FPA regulate chromatin silencing of single and low-copy genes and interact in a locus-dependent manner with the canonical small interfering RNA-directed DNA methylation pathway to regulate common targets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baurle, Isabel -- Smith, Lisa -- Baulcombe, David C -- Dean, Caroline -- New York, N.Y. -- Science. 2007 Oct 5;318(5847):109-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK. isabel.baurle@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916737" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Chromatin/*genetics ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/metabolism ; Flowers/growth & development ; Mutation ; Oxidoreductases/genetics ; *RNA Interference ; RNA, Plant/genetics ; RNA, Small Interfering/genetics ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Retroelements ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-11-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flatt, Thomas -- Promislow, Daniel E L -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1255-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA. thomas_flatt@brown.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18033874" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/*physiology ; Animals ; Biological Evolution ; Fertility ; Genes ; Humans ; Longevity/genetics ; Mutation ; Reproduction ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-02-03
    Description: The 66-kilodalton isoform of the growth factor adapter Shc (p66Shc) translates oxidative damage into cell death by acting as reactive oxygen species (ROS) producer within mitochondria. However, the signaling link between cellular stress and mitochondrial proapoptotic activity of p66Shc was not known. We demonstrate that protein kinase C beta, activated by oxidative conditions in the cell, induces phosphorylation of p66Shc and triggers mitochondrial accumulation of the protein after it is recognized by the prolyl isomerase Pin1. Once imported, p66Shc causes alterations of mitochondrial Ca2+ responses and three-dimensional structure, thus inducing apoptosis. These data identify a signaling route that activates an apoptotic inducer shortening the life span and could be a potential target of pharmacological approaches to inhibit aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pinton, Paolo -- Rimessi, Alessandro -- Marchi, Saverio -- Orsini, Francesca -- Migliaccio, Enrica -- Giorgio, Marco -- Contursi, Cristina -- Minucci, Saverio -- Mantovani, Fiamma -- Wieckowski, Mariusz R -- Del Sal, Giannino -- Pelicci, Pier Giuseppe -- Rizzuto, Rosario -- GGP05284/Telethon/Italy -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):659-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental and Diagnostic Medicine, Section of General Pathology and Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara, Ferrera, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272725" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/*metabolism ; Adenosine Triphosphate/metabolism/pharmacology ; Animals ; *Apoptosis ; Calcium/metabolism ; Calcium Signaling ; *Cell Aging ; Cell Survival ; Cells, Cultured ; Cyclosporine/pharmacology ; Hydrogen Peroxide/metabolism/pharmacology ; Mice ; Mitochondria/*metabolism/ultrastructure ; Mutation ; Oxidative Stress ; Peptidylprolyl Isomerase/*metabolism ; Permeability ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/genetics/*metabolism ; Protein Kinase C beta ; Reactive Oxygen Species/metabolism ; Recombinant Fusion Proteins/metabolism ; Shc Signaling Adaptor Proteins ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-02-10
    Description: A central issue in the regulation of apoptosis by the Bcl-2 family is whether its BH3-only members initiate apoptosis by directly binding to the essential cell-death mediators Bax and Bak, or whether they can act indirectly, by engaging their pro-survival Bcl-2-like relatives. Contrary to the direct-activation model, we show that Bax and Bak can mediate apoptosis without discernable association with the putative BH3-only activators (Bim, Bid, and Puma), even in cells with no Bim or Bid and reduced Puma. Our results indicate that BH3-only proteins induce apoptosis at least primarily by engaging the multiple pro-survival relatives guarding Bax and Bak.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Willis, Simon N -- Fletcher, Jamie I -- Kaufmann, Thomas -- van Delft, Mark F -- Chen, Lin -- Czabotar, Peter E -- Ierino, Helen -- Lee, Erinna F -- Fairlie, W Douglas -- Bouillet, Philippe -- Strasser, Andreas -- Kluck, Ruth M -- Adams, Jerry M -- Huang, David C S -- CA43540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):856-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289999" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; BH3 Interacting Domain Death Agonist Protein/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Humans ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Models, Biological ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasm Proteins/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism ; bcl-2 Homologous Antagonist-Killer Protein/metabolism ; bcl-2-Associated X Protein/chemistry/*metabolism ; bcl-Associated Death Protein/metabolism ; bcl-X Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-09-29
    Description: The SAX-3/roundabout (Robo) receptor has SLT-1/Slit-dependent and -independent functions in guiding cell and axon migrations. We identified enhancer of ventral-axon guidance defects of unc-40 mutants (EVA-1) as a Caenorhabditis elegans transmembrane receptor for SLT-1. EVA-1 has two predicted galactose-binding ectodomains, acts cell-autonomously for SLT-1/Slit-dependent axon migration functions of SAX-3/Robo, binds to SLT-1 and SAX-3, colocalizes with SAX-3 on cells, and provides cell specificity to the activation of SAX-3 signaling by SLT-1. Double mutants of eva-1 or slt-1 with sax-3 mutations suggest that SAX-3 can (when slt-1 or eva-1 function is reduced) inhibit a parallel-acting guidance mechanism, which involves UNC-40/deleted in colorectal cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujisawa, Kazuko -- Wrana, Jeffrey L -- Culotti, Joseph G -- NS41397/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1934-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Caenorhabditis elegans/cytology/genetics/growth & development/*physiology ; Caenorhabditis elegans Proteins/*chemistry/genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Movement ; Cloning, Molecular ; Humans ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*metabolism ; Nervous System/growth & development/metabolism ; Neurons/physiology ; Protein Structure, Tertiary ; Receptors, Immunologic/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2007-11-03
    Description: The evolution of insect resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins that are widely used in sprays and transgenic crops. Resistance to Bt toxins in some insects is linked with mutations that disrupt a toxin-binding cadherin protein. We show that susceptibility to the Bt toxin Cry1Ab was reduced by cadherin gene silencing with RNA interference in Manduca sexta, confirming cadherin's role in Bt toxicity. Native Cry1A toxins required cadherin to form oligomers, but modified Cry1A toxins lacking one alpha-helix did not. The modified toxins killed cadherin-silenced M. sexta and Bt-resistant Pectinophora gossypiella that had cadherin deletion mutations. Our findings suggest that cadherin promotes Bt toxicity by facilitating toxin oligomerization and demonstrate that the modified Bt toxins may be useful against pests resistant to standard Bt toxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soberon, Mario -- Pardo-Lopez, Liliana -- Lopez, Idalia -- Gomez, Isabel -- Tabashnik, Bruce E -- Bravo, Alejandra -- 1R01 AI066014/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1640-2. Epub 2007 Nov 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 510-3, Cuernavaca 62250, Morelos, Mexico. mario@ibt.unam.mx〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975031" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/chemistry/*genetics/metabolism/*toxicity ; Bacterial Toxins/chemistry/*genetics/metabolism/*toxicity ; Cadherins/genetics/metabolism ; Endotoxins/chemistry/*genetics/metabolism/*toxicity ; Genetic Engineering ; Hemolysin Proteins/chemistry/*genetics/metabolism/*toxicity ; *Insecticide Resistance ; Larva ; *Manduca/genetics/metabolism ; *Moths/genetics/metabolism ; Mutation ; *Pest Control, Biological ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-09-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cohen, Jon -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1483.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872415" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; *Diet ; Dietary Carbohydrates/administration & dosage/*metabolism ; *Gene Dosage ; Humans ; Mutation ; Pan troglodytes/genetics ; Saliva/enzymology ; Starch/*administration & dosage/*metabolism ; alpha-Amylases/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garber, Ken -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):190-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*etiology/*genetics/pathology/physiopathology ; Brain/growth & development/pathology/physiopathology ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules, Neuronal ; Humans ; Learning ; Membrane Proteins/genetics/metabolism ; Memory ; Mutation ; Nerve Net/physiopathology ; Nerve Tissue Proteins/genetics/metabolism ; Neurons/physiology ; Synapses/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2007-01-27
    Description: Primary pneumonic plague is transmitted easily, progresses rapidly, and causes high mortality, but the mechanisms by which Yersinia pestis overwhelms the lungs are largely unknown. We show that the plasminogen activator Pla is essential for Y. pestis to cause primary pneumonic plague but is less important for dissemination during pneumonic plague than during bubonic plague. Experiments manipulating its temporal expression showed that Pla allows Y. pestis to replicate rapidly in the airways, causing a lethal fulminant pneumonia; if unexpressed, inflammation is aborted, and lung repair is activated. Inhibition of Pla expression prolonged the survival of animals with the disease, offering a therapeutic option to extend the period during which antibiotics are effective.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lathem, Wyndham W -- Price, Paul A -- Miller, Virginia L -- Goldman, William E -- AI53298/AI/NIAID NIH HHS/ -- DK52574/DK/NIDDK NIH HHS/ -- F32 AI069688-01/AI/NIAID NIH HHS/ -- NRSA T32 GM07067/GM/NIGMS NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):509-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255510" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Colony Count, Microbial ; Cytokines/genetics/metabolism ; Female ; Fibrinogen/metabolism ; Gene Expression Regulation ; Gene Expression Regulation, Bacterial ; Lung/immunology/*microbiology/pathology ; Mice ; Mice, Inbred C57BL ; Mutation ; Plague/immunology/*microbiology/pathology ; Plasminogen/metabolism ; Plasminogen Activators/genetics/*metabolism ; Pneumonia, Bacterial/immunology/*microbiology/pathology ; Spleen/microbiology ; Tetracyclines/pharmacology ; Virulence Factors/genetics/metabolism ; Yersinia pestis/enzymology/genetics/growth & development/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2007-08-25
    Description: Biotin-dependent multifunctional enzymes carry out metabolically important carboxyl group transfer reactions and are potential targets for the treatment of obesity and type 2 diabetes. These enzymes use a tethered biotin cofactor to carry an activated carboxyl group between distantly spaced active sites. The mechanism of this transfer has remained poorly understood. Here we report the complete structure of pyruvate carboxylase at 2.0 angstroms resolution, which shows its domain arrangement. The structure, when combined with mutagenic analysis, shows that intermediate transfer occurs between active sites on separate polypeptide chains. In addition, domain rearrangements associated with activator binding decrease the distance between active-site pairs, providing a mechanism for allosteric activation. This description provides insight into the function of biotin-dependent enzymes and presents a new paradigm for multifunctional enzyme catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉St Maurice, Martin -- Reinhardt, Laurie -- Surinya, Kathy H -- Attwood, Paul V -- Wallace, John C -- Cleland, W Wallace -- Rayment, Ivan -- AR35186/AR/NIAMS NIH HHS/ -- GM070455/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1076-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717183" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/analogs & derivatives/metabolism ; Allosteric Regulation ; Binding Sites ; Biotin/*metabolism ; Catalytic Domain ; Coenzyme A/metabolism ; Crystallography, X-Ray ; Dimerization ; Enzyme Activators/metabolism ; Models, Molecular ; Mutation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyruvate Carboxylase/*chemistry/genetics/*metabolism ; Rhizobium etli/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2007-07-07
    Description: Multiple DNA polymerases participate in replicating the leading and lagging strands of the eukaryotic nuclear genome. Although 50 years have passed since the first DNA polymerase was discovered, the identity of the major polymerase used for leading-strand replication is uncertain. We constructed a derivative of yeast DNA polymerase epsilon that retains high replication activity but has strongly reduced replication fidelity, particularly for thymine-deoxythymidine 5'-monophosphate (T-dTMP) but not adenine-deoxyadenosine 5'-monophosphate (A-dAMP) mismatches. Yeast strains with this DNA polymerase epsilon allele have elevated rates of T to A substitution mutations. The position and rate of these substitutions depend on the orientation of the mutational reporter and its location relative to origins of DNA replication and reveal a pattern indicating that DNA polymerase epsilon participates in leading-strand DNA replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pursell, Zachary F -- Isoz, Isabelle -- Lundstrom, Else-Britt -- Johansson, Erik -- Kunkel, Thomas A -- Z01 ES065070-17/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 6;317(5834):127-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17615360" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pair Mismatch ; DNA Polymerase II/genetics/*metabolism ; *DNA Replication ; DNA, Fungal/metabolism ; Fungal Proteins/genetics ; Mutation ; Point Mutation ; Replication Origin ; Saccharomyces cerevisiae/*enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2007-04-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibbons, Ann -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):364.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446367" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Antiporters/*genetics ; Diet ; Europe ; European Continental Ancestry Group/*genetics ; *Evolution, Molecular ; Humans ; Mutation ; Sequence Analysis, DNA ; Skin Pigmentation/*genetics ; Time ; Ultraviolet Rays ; Vitamin D/administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2007-04-14
    Description: The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rhesus Macaque Genome Sequencing and Analysis Consortium -- Gibbs, Richard A -- Rogers, Jeffrey -- Katze, Michael G -- Bumgarner, Roger -- Weinstock, George M -- Mardis, Elaine R -- Remington, Karin A -- Strausberg, Robert L -- Venter, J Craig -- Wilson, Richard K -- Batzer, Mark A -- Bustamante, Carlos D -- Eichler, Evan E -- Hahn, Matthew W -- Hardison, Ross C -- Makova, Kateryna D -- Miller, Webb -- Milosavljevic, Aleksandar -- Palermo, Robert E -- Siepel, Adam -- Sikela, James M -- Attaway, Tony -- Bell, Stephanie -- Bernard, Kelly E -- Buhay, Christian J -- Chandrabose, Mimi N -- Dao, Marvin -- Davis, Clay -- Delehaunty, Kimberly D -- Ding, Yan -- Dinh, Huyen H -- Dugan-Rocha, Shannon -- Fulton, Lucinda A -- Gabisi, Ramatu Ayiesha -- Garner, Toni T -- Godfrey, Jennifer -- Hawes, Alicia C -- Hernandez, Judith -- Hines, Sandra -- Holder, Michael -- Hume, Jennifer -- Jhangiani, Shalini N -- Joshi, Vandita -- Khan, Ziad Mohid -- Kirkness, Ewen F -- Cree, Andrew -- Fowler, R Gerald -- Lee, Sandra -- Lewis, Lora R -- Li, Zhangwan -- Liu, Yih-Shin -- Moore, Stephanie M -- Muzny, Donna -- Nazareth, Lynne V -- Ngo, Dinh Ngoc -- Okwuonu, Geoffrey O -- Pai, Grace -- Parker, David -- Paul, Heidie A -- Pfannkoch, Cynthia -- Pohl, Craig S -- Rogers, Yu-Hui -- Ruiz, San Juana -- Sabo, Aniko -- Santibanez, Jireh -- Schneider, Brian W -- Smith, Scott M -- Sodergren, Erica -- Svatek, Amanda F -- Utterback, Teresa R -- Vattathil, Selina -- Warren, Wesley -- White, Courtney Sherell -- Chinwalla, Asif T -- Feng, Yucheng -- Halpern, Aaron L -- Hillier, Ladeana W -- Huang, Xiaoqiu -- Minx, Pat -- Nelson, Joanne O -- Pepin, Kymberlie H -- Qin, Xiang -- Sutton, Granger G -- Venter, Eli -- Walenz, Brian P -- Wallis, John W -- Worley, Kim C -- Yang, Shiaw-Pyng -- Jones, Steven M -- Marra, Marco A -- Rocchi, Mariano -- Schein, Jacqueline E -- Baertsch, Robert -- Clarke, Laura -- Csuros, Miklos -- Glasscock, Jarret -- Harris, R Alan -- Havlak, Paul -- Jackson, Andrew R -- Jiang, Huaiyang -- Liu, Yue -- Messina, David N -- Shen, Yufeng -- Song, Henry Xing-Zhi -- Wylie, Todd -- Zhang, Lan -- Birney, Ewan -- Han, Kyudong -- Konkel, Miriam K -- Lee, Jungnam -- Smit, Arian F A -- Ullmer, Brygg -- Wang, Hui -- Xing, Jinchuan -- Burhans, Richard -- Cheng, Ze -- Karro, John E -- Ma, Jian -- Raney, Brian -- She, Xinwei -- Cox, Michael J -- Demuth, Jeffery P -- Dumas, Laura J -- Han, Sang-Gook -- Hopkins, Janet -- Karimpour-Fard, Anis -- Kim, Young H -- Pollack, Jonathan R -- Vinar, Tomas -- Addo-Quaye, Charles -- Degenhardt, Jeremiah -- Denby, Alexandra -- Hubisz, Melissa J -- Indap, Amit -- Kosiol, Carolin -- Lahn, Bruce T -- Lawson, Heather A -- Marklein, Alison -- Nielsen, Rasmus -- Vallender, Eric J -- Clark, Andrew G -- Ferguson, Betsy -- Hernandez, Ryan D -- Hirani, Kashif -- Kehrer-Sawatzki, Hildegard -- Kolb, Jessica -- Patil, Shobha -- Pu, Ling-Ling -- Ren, Yanru -- Smith, David Glenn -- Wheeler, David A -- Schenck, Ian -- Ball, Edward V -- Chen, Rui -- Cooper, David N -- Giardine, Belinda -- Hsu, Fan -- Kent, W James -- Lesk, Arthur -- Nelson, David L -- O'brien, William E -- Prufer, Kay -- Stenson, Peter D -- Wallace, James C -- Ke, Hui -- Liu, Xiao-Ming -- Wang, Peng -- Xiang, Andy Peng -- Yang, Fan -- Barber, Galt P -- Haussler, David -- Karolchik, Donna -- Kern, Andy D -- Kuhn, Robert M -- Smith, Kayla E -- Zwieg, Ann S -- 062023/Wellcome Trust/United Kingdom -- R01 HG002939/HG/NHGRI NIH HHS/ -- U54 HG003068/HG/NHGRI NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):222-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. agibbs@bcm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431167" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomedical Research ; *Evolution, Molecular ; Female ; Gene Duplication ; Gene Rearrangement ; Genetic Diseases, Inborn ; Genetic Variation ; *Genome ; Humans ; Macaca mulatta/*genetics ; Male ; Multigene Family ; Mutation ; Pan troglodytes/genetics ; Sequence Analysis, DNA ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2007-03-17
    Description: Escape from T cell-mediated immune responses affects the ongoing evolution of rapidly evolving viruses such as HIV. By applying statistical approaches that account for phylogenetic relationships among viral sequences, we show that viral lineage effects rather than immune escape often explain apparent human leukocyte antigen (HLA)-mediated immune-escape mutations defined by older analysis methods. Phylogenetically informed methods identified immune-susceptible locations with greatly improved accuracy, and the associations we identified with these methods were experimentally validated. This approach has practical implications for understanding the impact of host immunity on pathogen evolution and for defining relevant variants for inclusion in vaccine antigens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bhattacharya, Tanmoy -- Daniels, Marcus -- Heckerman, David -- Foley, Brian -- Frahm, Nicole -- Kadie, Carl -- Carlson, Jonathan -- Yusim, Karina -- McMahon, Ben -- Gaschen, Brian -- Mallal, Simon -- Mullins, James I -- Nickle, David C -- Herbeck, Joshua -- Rousseau, Christine -- Learn, Gerald H -- Miura, Toshiyuki -- Brander, Christian -- Walker, Bruce -- Korber, Bette -- AI27757/AI/NIAID NIH HHS/ -- AI57005/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1583-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Los Alamos National Laboratory, Los Alamos, NM 87545, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363674" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Antigen Presentation ; Epitopes ; Evolution, Molecular ; *Founder Effect ; Genes, MHC Class I ; Genes, Viral ; HIV Infections/immunology/*virology ; HIV-1/classification/*genetics/*immunology ; HLA Antigens/*genetics/immunology ; HLA-C Antigens/genetics ; Humans ; Immune Tolerance ; Likelihood Functions ; Mutation ; Phenotype ; Phylogeny ; *Polymorphism, Genetic ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2007-06-02
    Description: Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giraud, Eric -- Moulin, Lionel -- Vallenet, David -- Barbe, Valerie -- Cytryn, Eddie -- Avarre, Jean-Christophe -- Jaubert, Marianne -- Simon, Damien -- Cartieaux, Fabienne -- Prin, Yves -- Bena, Gilles -- Hannibal, Laure -- Fardoux, Joel -- Kojadinovic, Mila -- Vuillet, Laurie -- Lajus, Aurelie -- Cruveiller, Stephane -- Rouy, Zoe -- Mangenot, Sophie -- Segurens, Beatrice -- Dossat, Carole -- Franck, William L -- Chang, Woo-Suk -- Saunders, Elizabeth -- Bruce, David -- Richardson, Paul -- Normand, Philippe -- Dreyfus, Bernard -- Pignol, David -- Stacey, Gary -- Emerich, David -- Vermeglio, Andre -- Medigue, Claudine -- Sadowsky, Michael -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1307-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Recherche pour le Developpement, Centre de Cooperation International en Recherche Agronomique pour le Developpement, Institut National de la Recherche Agronomique, Universite Montpellier 2, France. giraud@mpl.ird.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540897" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics/metabolism ; Amidohydrolases/genetics/metabolism ; Bacterial Proteins/genetics/metabolism ; Bradyrhizobium/*genetics/growth & development/*physiology ; Cytokinins/metabolism ; Fabaceae/*microbiology ; Genes, Bacterial ; Genome, Bacterial ; Genomics ; Lipopolysaccharides/metabolism ; Molecular Sequence Data ; Mutation ; N-Acetylglucosaminyltransferases/genetics/metabolism ; Photosynthesis ; Plant Roots/microbiology ; Plant Stems/*microbiology ; Purines/biosynthesis ; Root Nodules, Plant/microbiology/*physiology ; Signal Transduction ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2007-08-19
    Description: The "segmentation clock" is thought to coordinate sequential segmentation of the body axis in vertebrate embryos. This clock comprises a multicellular genetic network of synchronized oscillators, coupled by intercellular Delta-Notch signaling. How this synchrony is established and how its loss determines the position of segmentation defects in Delta and Notch mutants are unknown. We analyzed the clock's synchrony dynamics by varying strength and timing of Notch coupling in zebra-fish embryos with techniques for quantitative perturbation of gene function. We developed a physical theory based on coupled phase oscillators explaining the observed onset and rescue of segmentation defects, the clock's robustness against developmental noise, and a critical point beyond which synchrony decays. We conclude that synchrony among these genetic oscillators can be established by simultaneous initiation and self-organization and that the segmentation defect position is determined by the difference between coupling strength and noise.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riedel-Kruse, Ingmar H -- Muller, Claudia -- Oates, Andrew C -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1911-5. Epub 2007 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstrasse 108, 01307 Dresden, Germany. ingmar@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702912" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*genetics/physiology ; *Body Patterning/genetics ; Dipeptides/pharmacology ; Embryo, Nonmammalian/metabolism ; *Embryonic Development ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Homeodomain Proteins/genetics/metabolism ; Intracellular Signaling Peptides and Proteins ; Mathematics ; Membrane Proteins/genetics/metabolism ; Mesoderm/physiology ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Oligonucleotides, Antisense/pharmacology ; RNA Stability ; Receptor, Notch1/genetics/metabolism ; Signal Transduction ; Somites/physiology ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2007-07-14
    Description: Sister-chromatid cohesion, established during replication by the protein complex cohesin, is essential for both chromosome segregation and double-strand break (DSB) repair. Normally, cohesion formation is strictly limited to the S phase of the cell cycle, but DSBs can trigger cohesion also after DNA replication has been completed. The function of this damage-induced cohesion remains unknown. In this investigation, we show that damage-induced cohesion is essential for repair in postreplicative cells in yeast. Furthermore, it is established genome-wide after induction of a single DSB, and it is controlled by the DNA damage response and cohesin-regulating factors. We thus define a cohesion establishment pathway that is independent of DNA duplication and acts together with cohesion formed during replication in sister chromatid-based DSB repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strom, Lena -- Karlsson, Charlotte -- Lindroos, Hanna Betts -- Wedahl, Sara -- Katou, Yuki -- Shirahige, Katsuhiko -- Sjogren, Camilla -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):242-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626884" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics/metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Chromatids/*physiology ; Chromosomal Proteins, Non-Histone/metabolism ; *DNA Breaks, Double-Stranded ; *DNA Repair ; DNA Replication ; DNA, Fungal/biosynthesis/*metabolism ; G2 Phase ; Genome, Fungal ; Intracellular Signaling Peptides and Proteins ; Mutation ; Nuclear Proteins/genetics/metabolism ; Protein-Serine-Threonine Kinases ; Saccharomyces cerevisiae/genetics/metabolism/*physiology ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2007-02-03
    Description: Acetylation of histone H3 lysine 56 (H3-K56) occurs in S phase, and cells lacking H3-K56 acetylation are sensitive to DNA-damaging agents. However, the histone acetyltransferase (HAT) that catalyzes global H3-K56 acetylation has not been found. Here we show that regulation of Ty1 transposition gene product 109 (Rtt109) is an H3-K56 HAT. Cells lacking Rtt109 or expressing rtt109 mutants with alterations at a conserved aspartate residue lose H3-K56 acetylation and exhibit increased sensitivity toward genotoxic agents, as well as elevated levels of spontaneous chromosome breaks. Thus, Rtt109, which shares no sequence homology with any other known HATs, is a unique HAT that acetylates H3-K56.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Junhong -- Zhou, Hui -- Horazdovsky, Bruce -- Zhang, Kangling -- Xu, Rui-Ming -- Zhang, Zhiguo -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):653-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272723" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Camptothecin/pharmacology ; Catalytic Domain ; Chromosome Breakage ; DNA Damage ; *DNA Replication ; Histone Acetyltransferases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Hydroxyurea/pharmacology ; Lysine/*metabolism ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mutagens/pharmacology ; Mutation ; Recombinant Proteins/metabolism ; S Phase ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2007-07-14
    Description: Changes in protein-protein interactions may allow polypeptides to perform unexpected regulatory functions. Mammalian ShcA docking proteins have amino-terminal phosphotyrosine (pTyr) binding (PTB) and carboxyl-terminal Src homology 2 (SH2) domains, which recognize specific pTyr sites on activated receptors, and a central region with two phosphorylated tyrosine-X-asparagine (pYXN) motifs (where X represents any amino acid) that each bind the growth factor receptor-bound protein 2 (Grb2) adaptor. Phylogenetic analysis indicates that ShcA may signal through both pYXN-dependent and -independent pathways. We show that, in mice, cardiomyocyte-expressed ShcA directs mid-gestational heart development by a PTB-dependent mechanism that does not require the pYXN motifs. In contrast, the pYXN motifs are required with PTB and SH2 domains in the same ShcA molecule for the formation of muscle spindles, skeletal muscle sensory organs that regulate motor behavior. Thus, combinatorial differences in ShcA docking interactions may yield multiple signaling mechanisms to support diversity in tissue morphogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575375/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575375/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardy, W Rod -- Li, Lingying -- Wang, Zhi -- Sedy, Jiri -- Fawcett, James -- Frank, Eric -- Kucera, Jan -- Pawson, Tony -- R01 NS024373/NS/NINDS NIH HHS/ -- R01 NS024373-18/NS/NINDS NIH HHS/ -- R01 NS024373-19/NS/NINDS NIH HHS/ -- R01 NS024373-20/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):251-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626887" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/genetics/*metabolism ; Amino Acid Motifs ; Animals ; Ataxia ; Excitatory Postsynaptic Potentials ; Genetic Complementation Test ; Heart/*embryology ; Mice ; Mice, Knockout ; *Morphogenesis ; Motor Activity ; Muscle Spindles/*embryology ; Muscle, Skeletal/*embryology/metabolism ; Mutation ; Myocytes, Cardiac/*metabolism ; Neurons, Afferent/physiology ; Phosphorylation ; Protein Structure, Tertiary ; Shc Signaling Adaptor Proteins ; Signal Transduction ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2007-04-21
    Description: Nearly half of the mammalian genome is composed of repeated sequences. In Drosophila, Piwi proteins exert control over transposons. However, mammalian Piwi proteins, MIWI and MILI, partner with Piwi-interacting RNAs (piRNAs) that are depleted of repeat sequences, which raises questions about a role for mammalian Piwi's in transposon control. A search for murine small RNAs that might program Piwi proteins for transposon suppression revealed developmentally regulated piRNA loci, some of which resemble transposon master control loci of Drosophila. We also find evidence of an adaptive amplification loop in which MILI catalyzes the formation of piRNA 5' ends. Mili mutants derepress LINE-1 (L1) and intracisternal A particle and lose DNA methylation of L1 elements, demonstrating an evolutionarily conserved role for PIWI proteins in transposon suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Sachidanandam, Ravi -- Girard, Angelique -- Fejes-Toth, Katalin -- Hannon, Gregory J -- New York, N.Y. -- Science. 2007 May 4;316(5825):744-7. Epub 2007 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Howard Hughes Medical Institute (HHMI), 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446352" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Argonaute Proteins ; Cluster Analysis ; Computational Biology ; DNA Methylation ; Genes, Intracisternal A-Particle ; Long Interspersed Nucleotide Elements ; Male ; Meiosis ; Mice ; Mutation ; Proteins/*metabolism ; RNA, Antisense/genetics/metabolism ; RNA, Untranslated/*genetics/metabolism ; *Retroelements ; Reverse Transcriptase Polymerase Chain Reaction ; Short Interspersed Nucleotide Elements ; Spermatocytes/cytology/*metabolism ; Spermatogenesis ; *Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2007-06-30
    Description: Diapause is a protective response to unfavorable environments that results in a suspension of insect development and is most often associated with the onset of winter. The ls-tim mutation in the Drosophila melanogaster clock gene timeless has spread in Europe over the past 10,000 years, possibly because it enhances diapause. We show that the mutant allele attenuates the photosensitivity of the circadian clock and causes decreased dimerization of the mutant TIMELESS protein isoform to CRYPTOCHROME, the circadian photoreceptor. This interaction results in a more stable TIMELESS product. These findings reveal a molecular link between diapause and circadian photoreception.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sandrelli, Federica -- Tauber, Eran -- Pegoraro, Mirko -- Mazzotta, Gabriella -- Cisotto, Paola -- Landskron, Johannes -- Stanewsky, Ralf -- Piccin, Alberto -- Rosato, Ezio -- Zordan, Mauro -- Costa, Rodolfo -- Kyriacou, Charalambos P -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1898-900.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Padova, 35131 Padova, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600216" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *Circadian Rhythm/genetics ; Climate ; Cryptochromes ; Dimerization ; Drosophila Proteins/chemistry/*genetics/*metabolism ; Drosophila melanogaster/*genetics/metabolism/*physiology ; Europe ; Female ; Flavoproteins/*metabolism ; Light ; Motor Activity ; Mutation ; *Photoperiod ; Protein Isoforms/chemistry/genetics/metabolism ; Seasons ; *Selection, Genetic ; Temperature ; Transgenes ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Downie, J Allan -- New York, N.Y. -- Science. 2007 Jun 1;316(5829):1296-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK. allan.downie@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540893" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics/metabolism ; Bacterial Proteins/genetics/metabolism ; Bradyrhizobium/genetics/growth & development/*physiology ; Cytokinins/metabolism ; Fabaceae/*microbiology ; Genes, Bacterial ; Mutation ; N-Acetylglucosaminyltransferases/genetics/metabolism ; *Nitrogen Fixation ; Photosynthesis ; Plant Roots/microbiology ; Plant Stems/microbiology ; Purines/biosynthesis ; Root Nodules, Plant/microbiology/*physiology ; Signal Transduction ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oldroyd, Giles E D -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):52-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK. giles.oldroyd@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204633" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cytokinins/*metabolism ; Lipopolysaccharides/metabolism ; Lotus/cytology/metabolism/*microbiology/*physiology ; Models, Biological ; Mutation ; Nitrogen Fixation ; Plant Epidermis/cytology/metabolism ; Plant Roots/cytology/microbiology ; Protein Kinases/genetics/*metabolism ; Receptors, Cell Surface/genetics/metabolism ; Rhizobiaceae/physiology ; Root Nodules, Plant/cytology/*growth & development/microbiology ; *Signal Transduction ; Symbiosis ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2007-06-09
    Description: We describe a sensitive mRNA profiling technology, PMAGE (for "polony multiplex analysis of gene expression"), which detects messenger RNAs (mRNAs) as rare as one transcript per three cells. PMAGE incorporates an improved ligation-based method to sequence 14-nucleotide tags derived from individual mRNA molecules. One sequence tag from each mRNA molecule is amplified onto a separate 1-micrometer bead, denoted as a polymerase colony or polony, and about 5 million polonies are arrayed in a flow cell for parallel sequencing. Using PMAGE, we identified early transcriptional changes that preceded pathological manifestations of hypertrophic cardiomyopathy in mice carrying a disease-causing mutation. PMAGE provided a comprehensive profile of cardiac mRNAs, including low-abundance mRNAs encoding signaling molecules and transcription factors that are likely to participate in disease pathogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jae Bum -- Porreca, Gregory J -- Song, Lei -- Greenway, Steven C -- Gorham, Joshua M -- Church, George M -- Seidman, Christine E -- Seidman, J G -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1481-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556586" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiomyopathy, Hypertrophic/*genetics/pathology/physiopathology ; DNA, Complementary ; Fibrosis/genetics/pathology ; Gene Expression Profiling/*methods ; *Gene Expression Regulation ; Gene Library ; Heart Ventricles/metabolism ; Mice ; Mutation ; Myocardial Contraction ; Myocardium/*metabolism ; Myosin Heavy Chains/genetics ; RNA, Messenger/genetics/metabolism ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Analysis, DNA ; Templates, Genetic ; Transcription Factors/genetics ; *Transcription, Genetic ; Ventricular Myosins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2007-02-03
    Description: Posttranslational modifications of the histone octamer play important roles in regulating responses to DNA damage. Here, we reveal that Saccharomyces cerevisiae Rtt109p promotes genome stability and resistance to DNA-damaging agents, and that it does this by functionally cooperating with the histone chaperone Asf1p to maintain normal chromatin structure. Furthermore, we show that, as for Asf1p, Rtt109p is required for histone H3 acetylation on lysine 56 (K56) in vivo. Moreover, we show that Rtt109p directly catalyzes this modification in vitro in a manner that is stimulated by Asf1p. These data establish Rtt109p as a member of a new class of histone acetyltransferases and show that its actions are critical for cell survival in the presence of DNA damage during S phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334813/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334813/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Driscoll, Robert -- Hudson, Amanda -- Jackson, Stephen P -- A5290/Cancer Research UK/United Kingdom -- BBS/S/D/2004/12546/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):649-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust and Cancer Research U.K. Gurdon Institute and the Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Cycle Proteins/genetics/metabolism ; Chromosomes, Fungal/genetics ; DNA Breaks, Double-Stranded ; DNA Damage ; *Genome, Fungal ; *Genomic Instability ; Histone Acetyltransferases/genetics/*metabolism ; Histones/*metabolism ; Lysine/*metabolism ; Molecular Chaperones ; Mutation ; Recombinant Proteins/metabolism ; S Phase ; Saccharomyces cerevisiae/enzymology/*genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sauer, Uwe -- Heinemann, Matthias -- Zamboni, Nicola -- New York, N.Y. -- Science. 2007 Apr 27;316(5824):550-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Systems Biology, ETH Zurich, Switzerland. sauer@ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17463274" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology ; Escherichia coli/*genetics/growth & development/*metabolism ; Escherichia coli Proteins/genetics/metabolism ; Genes, Bacterial ; *Metabolic Networks and Pathways/genetics ; Mutation ; *Proteome ; RNA, Bacterial/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Systems Biology/*methods ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- Enserink, Martin -- New York, N.Y. -- Science. 2007 Jan 26;315(5811):448.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/pharmacology ; Asia/epidemiology ; Birds ; Disease Outbreaks/prevention & control/*veterinary ; Drug Resistance, Viral/genetics ; Humans ; *Influenza A Virus, H5N1 Subtype/drug effects/genetics ; Influenza in Birds/*epidemiology/prevention & control/virology ; Influenza, Human/*epidemiology/mortality/virology ; Mutation ; Oseltamivir/pharmacology ; Poultry ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2007-06-30
    Description: Wheat was domesticated about 10,000 years ago and has since spread worldwide to become one of the major crops. Its adaptability to diverse environments and end uses is surprising given the diversity bottlenecks expected from recent domestication and polyploid speciation events. Wheat compensates for these bottlenecks by capturing part of the genetic diversity of its progenitors and by generating new diversity at a relatively fast pace. Frequent gene deletions and disruptions generated by a fast replacement rate of repetitive sequences are buffered by the polyploid nature of wheat, resulting in subtle dosage effects on which selection can operate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737438/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737438/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dubcovsky, Jorge -- Dvorak, Jan -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1862-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA. jdubcovsky@ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600208" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeology ; Crops, Agricultural/*genetics/growth & development ; DNA, Intergenic ; Gene Deletion ; Gene Dosage ; Gene Duplication ; Gene Expression ; Genes, Plant ; Genetic Speciation ; Genetic Variation ; *Genome, Plant ; Hybridization, Genetic ; Mutation ; Polymorphism, Restriction Fragment Length ; *Polyploidy ; Repetitive Sequences, Nucleic Acid ; Triticum/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2007-08-19
    Description: Integral beta-barrel proteins are found in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. The machine that assembles these proteins contains an integral membrane protein, called YaeT in Escherichia coli, which has one or more polypeptide transport-associated (POTRA) domains. The crystal structure of a periplasmic fragment of YaeT reveals the POTRA domain fold and suggests a model for how POTRA domains can bind different peptide sequences, as required for a machine that handles numerous beta-barrel protein precursors. Analysis of POTRA domain deletions shows which are essential and provides a view of the spatial organization of this assembly machine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Seokhee -- Malinverni, Juliana C -- Sliz, Piotr -- Silhavy, Thomas J -- Harrison, Stephen C -- Kahne, Daniel -- GM34821/GM/NIGMS NIH HHS/ -- GM66174/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):961-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702946" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*chemistry/*metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipoproteins/chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Stuart K -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):603-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Developmental Biology and Genetics, Stanford University Medical Center, Stanford, CA 94305-5329, USA. kim@cmgm.stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673641" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Animals ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Gene Expression Regulation ; Genes, Helminth ; Longevity/*physiology ; Mass Spectrometry ; Metabolic Networks and Pathways ; Models, Animal ; Mutation ; RNA Interference ; Receptor, Insulin/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-05-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nusse, Roel -- New York, N.Y. -- Science. 2007 May 18;316(5827):988-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Stanford University, School of Medicine, Stanford, CA 94305-5323, USA. rnusse@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510350" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Adenomatous Polyposis Coli Protein/metabolism ; Axin Protein ; Cell Nucleus/metabolism ; Chromosomes, Human, X/genetics ; Cytoplasm/metabolism ; Female ; Gene Expression Regulation, Neoplastic ; *Genes, Wilms Tumor ; Humans ; Kidney Neoplasms/*genetics/metabolism ; Male ; Mutation ; Repressor Proteins/metabolism ; Signal Transduction ; Tumor Suppressor Proteins/*genetics/*metabolism ; Wilms Tumor/*genetics/metabolism ; Wnt Proteins/metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-04
    Description: A paradigm shift is occurring in the field of primary immunodeficiencies, with revision of the definition of these conditions and a considerable expansion of their limits. Inborn errors of immunity were initially thought to be confined to a few rare, familial, monogenic, recessive traits impairing the development or function of one or several leukocyte subsets and resulting in multiple, recurrent, opportunistic, and fatal infections in infancy. A growing number of exceptions to each of these conventional qualifications have gradually accumulated. It now appears that most individuals suffer from at least one of a multitude of primary immunodeficiencies, the dissection of which is helping to improve human medicine while describing immunity in natura.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Casanova, Jean-Laurent -- Abel, Laurent -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):617-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Human Genetics of Infectious Diseases, Institut National de la Sante et de la Recherche Medicale, U550, Paris, France. casanova@necker.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673650" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Child ; Disease Susceptibility ; Genetic Predisposition to Disease ; Humans ; Immune System/*physiopathology ; Immunity, Active ; Immunity, Innate ; Immunologic Deficiency Syndromes/*genetics/*immunology ; Infant ; Infection/etiology/*immunology ; Mutation ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-17
    Description: Although there is much behavioral evidence for complex brain functions in insects, it is not known whether insects have selective attention. In humans, selective attention is a dynamic process restricting perception to a succession of salient stimuli, while less relevant competing stimuli are suppressed. Local field potential recordings in the brains of flies responding to visual novelty revealed attention-like processes with stereotypical temporal properties. These processes were modulated by genes involved in short-term memory formation, namely dunce and rutabaga. Attention defects in these mutants were associated with distinct optomotor effects in behavioral assays.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Swinderen, Bruno -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1590-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurosciences Institute, 10640 John Jay Hopkins Drive, San Diego, CA 92121, USA. van@nsi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363675" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/*genetics/metabolism ; Adenylyl Cyclases/*genetics/metabolism ; Animals ; Attention ; Brain/physiology ; Drosophila/*genetics/*physiology ; Drosophila Proteins/*genetics/metabolism ; Electrophysiology ; *Genes, Insect ; Memory, Short-Term ; Motion Perception ; Mutation ; Photic Stimulation ; Vision, Ocular
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2007 Mar 2;315(5816):1211-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17332387" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/metabolism/*therapeutic use ; Apoptosis ; Clinical Trials as Topic ; Drug Screening Assays, Antitumor ; *Genes, p53 ; Genetic Engineering ; Humans ; Imidazolines/therapeutic use ; Mice ; Mutation ; Neoplasm Transplantation ; Neoplasms/*drug therapy/genetics/metabolism/pathology ; Proto-Oncogene Proteins c-mdm2/metabolism ; Pyrimidines/metabolism/therapeutic use ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2007-10-06
    Description: In plants, the mobile signal for systemic acquired resistance (SAR), an organism-wide state of enhanced defense to subsequent infections, has been elusive. By stimulating immune responses in mosaic tobacco plants created by grafting different genetic backgrounds, we showed that the methyl salicylate (MeSA) esterase activity of salicylic acid-binding protein 2 (SABP2), which converts MeSA into salicylic acid (SA), is required for SAR signal perception in systemic tissue, the tissue that does not receive the primary (initial) infection. Moreover, in plants expressing mutant SABP2 with unregulated MeSA esterase activity in SAR signal-generating, primary infected leaves, SAR was compromised and the associated increase in MeSA levels was suppressed in primary infected leaves, their phloem exudates, and systemic leaves. SAR was also blocked when SA methyl transferase (which converts SA to MeSA) was silenced in primary infected leaves, and MeSA treatment of lower leaves induced SAR in upper untreated leaves. Therefore, we conclude that MeSA is a SAR signal in tobacco.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Wook -- Kaimoyo, Evans -- Kumar, Dhirendra -- Mosher, Stephen -- Klessig, Daniel F -- New York, N.Y. -- Science. 2007 Oct 5;318(5847):113-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17916738" target="_blank"〉PubMed〈/a〉
    Keywords: Esterases/genetics/metabolism ; Feedback, Physiological ; Kinetics ; Mixed Function Oxygenases/genetics/metabolism ; Mutation ; Phloem/metabolism ; Plant Diseases/*immunology/virology ; Plant Leaves/metabolism/virology ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Salicylates/*metabolism ; Salicylic Acid/metabolism ; *Signal Transduction ; Tobacco/immunology/*metabolism/virology ; Tobacco Mosaic Virus/*physiology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2007-01-06
    Description: MicroRNAs (miRNAs) negatively regulate partially complementary target messenger RNAs. Target selection in animals is dictated primarily by sequences at the miRNA 5' end. We demonstrated that despite their small size, specific miRNAs contain additional sequence elements that control their posttranscriptional behavior, including their subcellular localization. We showed that human miR-29b, in contrast to other studied animal miRNAs, is predominantly localized to the nucleus. The distinctive hexanucleotide terminal motif of miR-29b acts as a transferable nuclear localization element that directs nuclear enrichment of miRNAs or small interfering RNAs to which it is attached. Our results indicate that miRNAs sharing common 5' sequences, considered to be largely redundant, might have distinct functions because of the influence of cis-acting regulatory motifs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Hun-Way -- Wentzel, Erik A -- Mendell, Joshua T -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):97-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204650" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Apoptosis ; Base Sequence ; Cell Nucleus/*metabolism ; HeLa Cells ; Humans ; Mice ; MicroRNAs/*chemistry/*metabolism ; Mitosis ; Mutation ; NIH 3T3 Cells ; Oligoribonucleotides/chemistry/*metabolism ; RNA Processing, Post-Transcriptional ; RNA Stability ; RNA, Small Interfering ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease III/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):33-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204619" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/immunology ; Crohn Disease/genetics/immunology/microbiology ; Flagellin/immunology ; Humans ; *Immunity, Innate ; Inflammatory Bowel Diseases/drug therapy/genetics/*immunology/microbiology ; Interleukin-17/biosynthesis/immunology ; Interleukin-23/*immunology ; Intestines/immunology/microbiology ; Mice ; Mutation ; Nod2 Signaling Adaptor Protein/genetics/physiology ; Polymorphism, Single Nucleotide ; T-Lymphocyte Subsets/*immunology ; T-Lymphocytes, Helper-Inducer/*immunology ; Toll-Like Receptor 5/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2007-05-05
    Description: The adapter protein ADAP regulates T lymphocyte adhesion and activation. We present evidence for a previously unrecognized function for ADAP in regulating T cell receptor (TCR)-mediated activation of the transcription factor NF-kappaB. Stimulation of ADAP-deficient mouse T cells with antibodies to CD3 and CD28 resulted in impaired nuclear translocation of NF-kappaB, a reduced DNA binding, and delayed degradation and decreased phosphorylation of IkappaB (inhibitor of NF-kappaB). TCR-stimulated assembly of the CARMA1-BCL-10-MALT1 complex was substantially impaired in the absence of ADAP. We further identified a region of ADAP that is required for association with the CARMA1 adapter and NF-kappaB activation but is not required for ADAP-dependent regulation of adhesion. These findings provide new insights into ADAP function and the mechanism by which CARMA1 regulates NF-kappaB activation in T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Medeiros, Ricardo B -- Burbach, Brandon J -- Mueller, Kristen L -- Srivastava, Rupa -- Moon, James J -- Highfill, Sarah -- Peterson, Erik J -- Shimizu, Yoji -- F32 AI063793/AI/NIAID NIH HHS/ -- F32 AI063793-01A1/AI/NIAID NIH HHS/ -- F32AI063793/AI/NIAID NIH HHS/ -- R01AI038474/AI/NIAID NIH HHS/ -- R01AI056016/AI/NIAID NIH HHS/ -- T32DE007288/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2007 May 4;316(5825):754-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17478723" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing/chemistry/genetics/*metabolism ; Animals ; Antigens, CD28/immunology ; Antigens, CD3/immunology ; Apoptosis Regulatory Proteins/*metabolism ; CARD Signaling Adaptor Proteins/*metabolism ; Caspases/metabolism ; Cell Membrane/metabolism ; Cell Nucleus/metabolism ; Humans ; I-kappa B Proteins/metabolism ; Isoenzymes/metabolism ; Jurkat Cells ; Lymphocyte Activation ; Mice ; Mutation ; Neoplasm Proteins/metabolism ; Protein Kinase C/metabolism ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology/*metabolism ; Transcription Factor RelA/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2007-08-19
    Description: Carbon dioxide (CO2) is an important environmental cue for many organisms but is odorless to humans. It remains unclear whether the mammalian olfactory system can detect CO2 at concentrations around the average atmospheric level (0.038%). We demonstrated the expression of carbonic anhydrase type II (CAII), an enzyme that catabolizes CO2, in a subset of mouse olfactory neurons that express guanylyl cyclase D (GC-D+ neurons) and project axons to necklace glomeruli in the olfactory bulb. Exposure to CO2 activated these GC-D+ neurons, and exposure of a mouse to CO2 activated bulbar neurons associated with necklace glomeruli. Behavioral tests revealed CO2 detection thresholds of approximately 0.066%, and this sensitive CO2 detection required CAII activity. We conclude that mice detect CO2 at near-atmospheric concentrations through the olfactory subsystem of GC-D+ neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Ji -- Zhong, Chun -- Ding, Cheng -- Chi, Qiuyi -- Walz, Andreas -- Mombaerts, Peter -- Matsunami, Hiroaki -- Luo, Minmin -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):953-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, Beijing, 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702944" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Dioxide/administration & dosage/*analysis/metabolism ; Carbonic Anhydrase II/antagonists & inhibitors/genetics/metabolism ; Cyclic GMP/metabolism ; Cyclic Nucleotide Phosphodiesterases, Type 2 ; Cyclic Nucleotide-Gated Cation Channels ; Gene Expression Profiling ; Guanylate Cyclase/metabolism ; Ion Channels/genetics/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mutation ; Neurons/*physiology ; Odors ; Olfactory Bulb/cytology/enzymology/*physiology ; Olfactory Mucosa/cytology/enzymology ; Olfactory Receptor Neurons/enzymology/*physiology ; Phosphoric Diester Hydrolases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2007-06-09
    Description: Root hairs and rhizoids are cells with rooting functions in land plants. We describe two basic helix-loop-helix transcription factors that control root hair development in the sporophyte (2n) of the angiosperm Arabidopsis thaliana and rhizoid development in the gametophytes (n) of the bryophyte Physcomitrella patens. The phylogeny of land plants supports the hypothesis that early land plants were bryophyte-like and possessed a dominant gametophyte and later the sporophyte rose to dominance. If this hypothesis is correct, our data suggest that the increase in morphological complexity of the sporophyte body in the Paleozoic resulted at least in part from the recruitment of regulatory genes from gametophyte to sporophyte.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menand, Benoit -- Yi, Keke -- Jouannic, Stefan -- Hoffmann, Laurent -- Ryan, Eoin -- Linstead, Paul -- Schaefer, Didier G -- Dolan, Liam -- BBS/E/J/0000A218/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1477-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich NR47UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556585" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/cytology/genetics/growth & development/*physiology ; Arabidopsis Proteins/genetics/*physiology ; Basic Helix-Loop-Helix Transcription Factors/genetics/*physiology ; Biological Evolution ; Bryopsida/cytology/genetics/growth & development/*physiology ; Diploidy ; Genes, Plant ; Haploidy ; Molecular Sequence Data ; Mutation ; Phylogeny ; Plant Epidermis/cytology/physiology ; Plant Proteins/genetics/physiology ; Plant Roots/*cytology/growth & development ; Plants, Genetically Modified
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinert, Ted -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1374-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA. tweinert@email.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347431" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Cell Cycle Proteins/genetics/metabolism ; Chromosome Segregation ; Chromosomes, Fungal/*genetics/metabolism ; *DNA Replication ; DNA, Fungal/genetics/metabolism ; DNA, Ribosomal/*genetics/metabolism ; Genes, Fungal ; *Mitosis ; Mutation ; Saccharomyces cerevisiae/*cytology/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fortini, Mark E -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1800-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA. fortini@ncifcrf.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395816" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Anticipation, Genetic ; CREB-Binding Protein/genetics/*metabolism ; DNA Repair ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*genetics/metabolism ; *Genomic Instability ; Humans ; Models, Animal ; Mutation ; Nervous System Diseases/genetics ; Peptides/chemistry ; *Transcription, Genetic ; Transgenes ; *Trinucleotide Repeat Expansion ; *Trinucleotide Repeats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):749.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289948" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Disease Models, Animal ; Female ; *Genetic Therapy ; Humans ; Methyl-CpG-Binding Protein 2/*genetics/metabolism ; Mice ; Mutation ; Recombinant Fusion Proteins/metabolism ; Rett Syndrome/*genetics/*therapy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2007-12-01
    Description: The past decade has seen a complete rethinking of the traditional view of the nuclear envelope as simply a passive enclosure for the chromosomes. The convergence of several lines of clinical and basic research has revealed additional roles in both signaling and mitotic progression. It is becoming apparent that the nuclear envelope defines not only nuclear organization but also that of the cytoskeleton and, in this way, integrates both nuclear and cytoplasmic architecture.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, Colin L -- Roux, Kyle J -- Burke, Brian -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1408-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medical Biology, 61 Biopolis Drive, Proteos, Singapore 138668, Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytoplasm/physiology/ultrastructure ; Cytoskeleton/parasitology/physiology/ultrastructure ; Genetic Diseases, Inborn/pathology/physiopathology ; Humans ; Lamins/genetics ; Mitosis ; Mutation ; Nuclear Envelope/*physiology/*ultrastructure ; Nuclear Lamina/physiology/ultrastructure ; Nuclear Pore/physiology/ultrastructure ; Signal Transduction ; Virus Diseases/metabolism/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2007-06-30
    Description: Drosophila melanogaster can make appropriate choices among alternative flight options on the basis of the relative salience of competing visual cues. We show that this choice behavior consists of early and late phases; the former requires activation of the dopaminergic system and mushroom bodies, whereas the latter is independent of these activities. Immunohistological analysis showed that mushroom bodies are densely innervated by dopaminergic axons. Thus, the circuit from the dopamine system to mushroom bodies is crucial for choice behavior in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ke -- Guo, Jian Zeng -- Peng, Yueqing -- Xi, Wang -- Guo, Aike -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1901-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600217" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Axons/*physiology ; Behavior, Animal ; *Choice Behavior ; Cues ; Dopamine/*physiology ; Drosophila melanogaster/genetics/*physiology ; Female ; Immunohistochemistry ; Models, Animal ; Mushroom Bodies/*innervation/*physiology ; Mutation ; Temperature ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2007-09-18
    Description: Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Shen-Ying -- Jouanguy, Emmanuelle -- Ugolini, Sophie -- Smahi, Asma -- Elain, Gaelle -- Romero, Pedro -- Segal, David -- Sancho-Shimizu, Vanessa -- Lorenzo, Lazaro -- Puel, Anne -- Picard, Capucine -- Chapgier, Ariane -- Plancoulaine, Sabine -- Titeux, Matthias -- Cognet, Celine -- von Bernuth, Horst -- Ku, Cheng-Lung -- Casrouge, Armanda -- Zhang, Xin-Xin -- Barreiro, Luis -- Leonard, Joshua -- Hamilton, Claire -- Lebon, Pierre -- Heron, Benedicte -- Vallee, Louis -- Quintana-Murci, Lluis -- Hovnanian, Alain -- Rozenberg, Flore -- Vivier, Eric -- Geissmann, Frederic -- Tardieu, Marc -- Abel, Laurent -- Casanova, Jean-Laurent -- G0900867/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1522-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics of Infectious Diseases, Institut National de la Sante et de la Recherche Medicale (INSERM), U550, Faculty Necker, Paris 75015, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872438" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Child, Preschool ; Dendritic Cells/immunology ; Encephalitis, Herpes Simplex/*genetics/*immunology ; Female ; Fibroblasts/immunology/metabolism/virology ; Genes, Dominant ; *Herpesvirus 1, Human/physiology ; Heterozygote ; Humans ; Immunity, Innate ; Infant ; Interferons/biosynthesis ; Keratinocytes/immunology ; Killer Cells, Natural/immunology ; Leukocytes, Mononuclear/immunology ; Mutation ; Poly I-C/pharmacology ; Toll-Like Receptor 3/chemistry/*deficiency/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2007 Mar 30;315(5820):1786-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17395806" target="_blank"〉PubMed〈/a〉
    Keywords: Africa ; Asia ; Basidiomycota/genetics/growth & development/*pathogenicity ; Fungicides, Industrial ; Genes, Fungal ; Genes, Plant ; Mutation ; Plant Diseases/*microbiology ; Plant Stems/microbiology ; Triticum/genetics/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-07-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jennifer Y -- Engelman, Jeffrey A -- Cantley, Lewis C -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):206-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/pharmacology/therapeutic use ; Catalytic Domain ; Cell Membrane/enzymology ; Cell Proliferation ; Cell Survival ; Dimerization ; Enzyme Inhibitors/pharmacology/therapeutic use ; Humans ; Mutation ; Neoplasms/drug therapy/*genetics ; Phosphatidylinositol 3-Kinases/antagonists & ; inhibitors/chemistry/*genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein Subunits ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corden, Jeffry L -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1735-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, MD 21205, USA. jcorden@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079391" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Gene Expression Regulation ; Humans ; Mutation ; Phosphorylation ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/genetics/*metabolism ; Serine/metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2007-01-27
    Description: How do integral membrane proteins evolve in size and complexity? Using the small multidrug-resistance protein EmrE from Escherichia coli as a model, we experimentally demonstrated that the evolution of membrane proteins composed of two homologous but oppositely oriented domains can occur in a small number of steps: An original dual-topology protein evolves, through a gene-duplication event, to a heterodimer formed by two oppositely oriented monomers. This simple evolutionary pathway can explain the frequent occurrence of membrane proteins with an internal pseudo-two-fold symmetry axis in the plane of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rapp, Mikaela -- Seppala, Susanna -- Granseth, Erik -- von Heijne, Gunnar -- New York, N.Y. -- Science. 2007 Mar 2;315(5816):1282-4. Epub 2007 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17255477" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiporters/*chemistry/genetics ; Cell Membrane/*chemistry ; Dimerization ; Directed Molecular Evolution ; Drug Resistance, Bacterial ; Escherichia coli/*chemistry/drug effects/genetics/growth & development ; Escherichia coli Proteins/*chemistry/genetics ; Ethidium/pharmacology ; *Evolution, Molecular ; Gene Duplication ; Membrane Transport Proteins/*chemistry/genetics ; Molecular Sequence Data ; Mutation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Recombinant Fusion Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-02-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leslie, Mitch -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):584.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272692" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caloric Restriction ; Cues ; Drosophila Proteins/genetics/physiology ; Drosophila melanogaster/genetics/*physiology ; *Food ; *Longevity ; Mutation ; *Odors ; Receptors, Odorant/genetics/physiology ; *Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2007-01-06
    Description: Wilms tumor is a pediatric kidney cancer associated with inactivation of the WT1 tumor-suppressor gene in 5 to 10% of cases. Using a high-resolution screen for DNA copy-number alterations in Wilms tumor, we identified somatic deletions targeting a previously uncharacterized gene on the X chromosome. This gene, which we call WTX, is inactivated in approximately one-third of Wilms tumors (15 of 51 tumors). Tumors with mutations in WTX lack WT1 mutations, and both genes share a restricted temporal and spatial expression pattern in normal renal precursors. In contrast to biallelic inactivation of autosomal tumor-suppressor genes, WTX is inactivated by a monoallelic "single-hit" event targeting the single X chromosome in tumors from males and the active X chromosome in tumors from females.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rivera, Miguel N -- Kim, Woo Jae -- Wells, Julie -- Driscoll, David R -- Brannigan, Brian W -- Han, Moonjoo -- Kim, James C -- Feinberg, Andrew P -- Gerald, William L -- Vargas, Sara O -- Chin, Lynda -- Iafrate, A John -- Bell, Daphne W -- Haber, Daniel A -- P01-CA101942/CA/NCI NIH HHS/ -- R37 CA054358/CA/NCI NIH HHS/ -- R37 CA054358-17/CA/NCI NIH HHS/ -- R37-CA058596/CA/NCI NIH HHS/ -- T32-CA009216/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):642-5. Epub 2007 Jan 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts General Hospital Cancer Center, Harvard Medical Center, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204608" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Alleles ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Deletion ; Chromosomes, Human, X/*genetics ; Female ; Gene Expression ; *Gene Silencing ; *Genes, Wilms Tumor ; Heterozygote ; Humans ; In Situ Hybridization, Fluorescence ; Kidney/embryology/metabolism ; Kidney Neoplasms/*genetics ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Point Mutation ; Tumor Suppressor Proteins/chemistry/*genetics/physiology ; Wilms Tumor/*genetics ; beta Catenin/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2007-05-19
    Description: Nucleosomes must be deacetylated behind elongating RNA polymerase II to prevent cryptic initiation of transcription within the coding region. RNA polymerase II signals for deacetylation through the methylation of histone H3 lysine 36 (H3K36), which provides the recruitment signal for the Rpd3S histone deacetylase complex (HDAC). The recognition of methyl H3K36 by Rpd3S requires the chromodomain of its Eaf3 subunit. Paradoxically, Eaf3 is also a subunit of the NuA4 acetyltransferase complex, yet NuA4 does not recognize methyl H3K36 nucleosomes. In Saccharomyces cerevisiae, we found that methyl H3K36 nucleosome recognition by Rpd3S also requires the plant homeobox domain (PHD) of its Rco1 subunit. Thus, the coupled chromo and PHD domains of Rpd3S specify recognition of the methyl H3K36 mark, demonstrating the first combinatorial domain requirement within a protein complex to read a specific histone code.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Bing -- Gogol, Madelaine -- Carey, Mike -- Lee, Daeyoup -- Seidel, Chris -- Workman, Jerry L -- New York, N.Y. -- Science. 2007 May 18;316(5827):1050-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510366" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetyltransferases/chemistry/metabolism ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; DNA, Fungal/metabolism ; Histone Acetyltransferases/chemistry/metabolism ; Histone Code ; Histone Deacetylases/*chemistry/*metabolism ; Histones/*metabolism ; Methylation ; Mutation ; Nucleosomes/*metabolism ; Oligonucleotide Array Sequence Analysis ; Open Reading Frames ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2007-02-10
    Description: Extensive studies are currently being performed to associate disease susceptibility with one form of genetic variation, namely, single-nucleotide polymorphisms (SNPs). In recent years, another type of common genetic variation has been characterized, namely, structural variation, including copy number variants (CNVs). To determine the overall contribution of CNVs to complex phenotypes, we have performed association analyses of expression levels of 14,925 transcripts with SNPs and CNVs in individuals who are part of the International HapMap project. SNPs and CNVs captured 83.6% and 17.7% of the total detected genetic variation in gene expression, respectively, but the signals from the two types of variation had little overlap. Interrogation of the genome for both types of variants may be an effective way to elucidate the causes of complex phenotypes and disease in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stranger, Barbara E -- Forrest, Matthew S -- Dunning, Mark -- Ingle, Catherine E -- Beazley, Claude -- Thorne, Natalie -- Redon, Richard -- Bird, Christine P -- de Grassi, Anna -- Lee, Charles -- Tyler-Smith, Chris -- Carter, Nigel -- Scherer, Stephen W -- Tavare, Simon -- Deloukas, Panagiotis -- Hurles, Matthew E -- Dermitzakis, Emmanouil T -- 065535/Wellcome Trust/United Kingdom -- 076113/Wellcome Trust/United Kingdom -- 077009/Wellcome Trust/United Kingdom -- 077014/Wellcome Trust/United Kingdom -- 077046/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 9;315(5813):848-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17289997" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Female ; Gene Deletion ; *Gene Dosage ; Gene Duplication ; *Gene Expression Regulation ; *Genetic Variation ; Genetics, Population ; *Genome, Human ; Genomics/methods ; Haplotypes ; Humans ; Linkage Disequilibrium ; Male ; Mutation ; Nucleic Acid Hybridization ; Phenotype ; *Polymorphism, Single Nucleotide ; Regression Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2007-02-03
    Description: Smell is an ancient sensory system present in organisms from bacteria to humans. In the nematode Caenorhabditis elegans, gustatory and olfactory neurons regulate aging and longevity. Using the fruit fly, Drosophila melanogaster, we showed that exposure to nutrient-derived odorants can modulate life span and partially reverse the longevity-extending effects of dietary restriction. Furthermore, mutation of odorant receptor Or83b resulted in severe olfactory defects, altered adult metabolism, enhanced stress resistance, and extended life span. Our findings indicate that olfaction affects adult physiology and aging in Drosophila, possibly through the perceived availability of nutritional resources, and that olfactory regulation of life span is evolutionarily conserved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Libert, Sergiy -- Zwiener, Jessica -- Chu, Xiaowen -- Vanvoorhies, Wayne -- Roman, Gregg -- Pletcher, Scott D -- R01AG023166/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1133-7. Epub 2007 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272684" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Crosses, Genetic ; Diet ; Drosophila Proteins/*genetics/physiology ; Drosophila melanogaster/genetics/*physiology ; Female ; *Food ; *Longevity ; Male ; Models, Animal ; Mutation ; *Odors ; Phenotype ; Receptors, Odorant/*genetics/physiology ; Reproduction ; *Smell ; Transgenes ; Yeasts
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2007-06-26
    Description: Aminoacyl-transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNA(Leu)-AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2'- and 3'-oxygen atoms of tRNA's3'-terminal adenosine. The trapping of enzyme-bound tRNA(Leu) in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNA(Leu) and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Fernando L -- Mao, Weimin -- Yaremchuk, Anya -- Tukalo, Mikhail -- Crepin, Thibaut -- Zhou, Huchen -- Zhang, Yong-Kang -- Hernandez, Vincent -- Akama, Tsutomu -- Baker, Stephen J -- Plattner, Jacob J -- Shapiro, Lucy -- Martinis, Susan A -- Benkovic, Stephen J -- Cusack, Stephen -- Alley, M R K -- R01 DE16835/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1759-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Anacor Pharmaceuticals, Incorporated, 1060 East Meadow Circle, Palo Alto, CA 94303, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588934" target="_blank"〉PubMed〈/a〉
    Keywords: Antifungal Agents/chemistry/*pharmacology ; Bicyclo Compounds, Heterocyclic/chemistry/*pharmacology ; Boron/chemistry ; Boron Compounds/chemistry/*pharmacology ; Drug Resistance, Fungal/genetics ; Enzyme Inhibitors/chemistry/*pharmacology ; Leucine-tRNA Ligase/*antagonists & inhibitors/genetics/metabolism ; Mutation ; Protein Synthesis Inhibitors/chemistry/pharmacology ; *RNA Editing/drug effects ; RNA, Transfer, Leu/*antagonists & inhibitors/metabolism ; Saccharomyces cerevisiae/drug effects/enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2007-02-03
    Description: In eukaryotes, termination of messenger RNA (mRNA) translation is mediated by the release factors eRF1 and eRF3. Using Saccharomyces cerevisiae as a model organism, we have identified a member of the DEAD-box protein (DBP) family, the DEAD-box RNA helicase and mRNA export factor Dbp5, as a player in translation termination. Dbp5 interacts genetically with both release factors and the polyadenlyate-binding protein Pab1. A physical interaction was specifically detected with eRF1. Moreover, we show that the helicase activity of Dbp5 is required for efficient stop-codon recognition, and intact Dbp5 is essential for recruitment of eRF3 into termination complexes. Therefore, Dbp5 controls the eRF3-eRF1 interaction and thus eRF3-mediated downstream events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gross, Thomas -- Siepmann, Anja -- Sturm, Dorothee -- Windgassen, Merle -- Scarcelli, John J -- Seedorf, Matthias -- Cole, Charles N -- Krebber, Heike -- R01 GM033998/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):646-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie und Tumorforschung der Philipps-Universitat Marburg, Emil-Mannkopff-Strasse 2, 35037 Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272721" target="_blank"〉PubMed〈/a〉
    Keywords: Codon, Terminator ; DEAD-box RNA Helicases/genetics/*metabolism ; Mutation ; Nucleocytoplasmic Transport Proteins/genetics/*metabolism ; *Peptide Chain Termination, Translational ; Peptide Termination Factors/genetics/metabolism ; Poly(A)-Binding Proteins/genetics/metabolism ; Polyribosomes/metabolism ; RNA Helicases/genetics/*metabolism ; RNA Stability ; RNA, Fungal/metabolism ; RNA, Messenger/metabolism ; Saccharomyces cerevisiae/*enzymology/*genetics ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2007-06-30
    Description: Circadian and other natural clock-like endogenous rhythms may have evolved to anticipate regular temporal changes in the environment. We report that a mutation in the circadian clock gene timeless in Drosophila melanogaster has arisen and spread by natural selection relatively recently in Europe. We found that, when introduced into different genetic backgrounds, natural and artificial alleles of the timeless gene affect the incidence of diapause in response to changes in light and temperature. The natural mutant allele alters an important life history trait that may enhance the fly's adaptation to seasonal conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tauber, Eran -- Zordan, Mauro -- Sandrelli, Federica -- Pegoraro, Mirko -- Osterwalder, Nicolo -- Breda, Carlo -- Daga, Andrea -- Selmin, Alessandro -- Monger, Karen -- Benna, Clara -- Rosato, Ezio -- Kyriacou, Charalambos P -- Costa, Rodolfo -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600215" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Circadian Rhythm/genetics ; Drosophila Proteins/*genetics/physiology ; Drosophila melanogaster/*genetics/*physiology ; Europe ; Evolution, Molecular ; Female ; Geography ; Haplotypes ; Molecular Sequence Data ; Mutation ; *Photoperiod ; Phylogeny ; Polymorphism, Genetic ; Protein Isoforms/genetics/physiology ; Reproduction ; *Seasons ; *Selection, Genetic ; Temperature ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2007-03-24
    Description: The dynamic process of differentiation depends on the architecture, quantitative parameters, and noise of underlying genetic circuits. However, it remains unclear how these elements combine to control cellular behavior. We analyzed the probabilistic and transient differentiation of Bacillus subtilis cells into the state of competence. A few key parameters independently tuned the frequency of initiation and the duration of competence episodes and allowed the circuit to access different dynamic regimes, including oscillation. Altering circuit architecture showed that the duration of competence events can be made more precise. We used an experimental method to reduce global cellular noise and showed that noise levels are correlated with frequency of differentiation events. Together, the data reveal a noise-dependent circuit that is remarkably resilient and tunable in terms of its dynamic behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suel, Gurol M -- Kulkarni, Rajan P -- Dworkin, Jonathan -- Garcia-Ojalvo, Jordi -- Elowitz, Michael B -- GM068763/GM/NIGMS NIH HHS/ -- GM079771/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1716-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Green Center Division for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17379809" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/cytology/*genetics/metabolism ; Bacterial Proteins/biosynthesis/genetics/*metabolism ; Gene Expression ; Genes, Bacterial ; Isopropyl Thiogalactoside/pharmacology ; Luminescent Proteins/biosynthesis ; Mathematics ; Models, Genetic ; Models, Statistical ; Mutation ; Probability ; Promoter Regions, Genetic ; Transcription Factors/genetics/*metabolism ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2007-11-10
    Description: Endoplasmic reticulum (ER) stress activates a set of signaling pathways, collectively termed the unfolded protein response (UPR). The three UPR branches (IRE1, PERK, and ATF6) promote cell survival by reducing misfolded protein levels. UPR signaling also promotes apoptotic cell death if ER stress is not alleviated. How the UPR integrates its cytoprotective and proapoptotic outputs to select between life or death cell fates is unknown. We found that IRE1 and ATF6 activities were attenuated by persistent ER stress in human cells. By contrast, PERK signaling, including translational inhibition and proapoptotic transcription regulator Chop induction, was maintained. When IRE1 activity was sustained artificially, cell survival was enhanced, suggesting a causal link between the duration of UPR branch signaling and life or death cell fate after ER stress. Key findings from our studies in cell culture were recapitulated in photoreceptors expressing mutant rhodopsin in animal models of retinitis pigmentosa.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3670588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Jonathan H -- Li, Han -- Yasumura, Douglas -- Cohen, Hannah R -- Zhang, Chao -- Panning, Barbara -- Shokat, Kevan M -- Lavail, Matthew M -- Walter, Peter -- K08 EY018313/EY/NEI NIH HHS/ -- K08 EY018313-01/EY/NEI NIH HHS/ -- R01 EY020846/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 9;318(5852):944-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA 94158, USA. Jonathan.Lin@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17991856" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 6/metabolism ; Animals ; Animals, Genetically Modified ; *Apoptosis ; Cell Line ; *Cell Survival ; Disease Models, Animal ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/genetics/*metabolism ; Humans ; Kinetics ; Membrane Proteins/genetics/*metabolism ; Mice ; Mutation ; *Protein Folding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proteins/chemistry/*metabolism ; Rats ; Retina/metabolism ; Retinitis Pigmentosa/metabolism ; Rhodopsin/chemistry/metabolism ; *Signal Transduction ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2007-11-24
    Description: Plants use light to optimize growth and development. The photoreceptor phytochrome A (phyA) mediates various far-red light-induced responses. We show that Arabidopsis FHY3 and FAR1, which encode two proteins related to Mutator-like transposases, act together to modulate phyA signaling by directly activating the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. FHY3 and FAR1 have separable DNA binding and transcriptional activation domains that are highly conserved in Mutator-like transposases. Further, expression of FHY3 and FAR1 is negatively regulated by phyA signaling. We propose that FHY3 and FAR1 represent transcription factors that have been co-opted from an ancient Mutator-like transposase(s) to modulate phyA-signaling homeostasis in higher plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151751/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151751/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Rongcheng -- Ding, Lei -- Casola, Claudio -- Ripoll, Daniel R -- Feschotte, Cedric -- Wang, Haiyang -- R01 GM077582/GM/NIGMS NIH HHS/ -- R01 GM077582-01A1/GM/NIGMS NIH HHS/ -- R01 GM77582-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 23;318(5854):1302-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyce Thompson Institute for Plant Research (BTI), Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18033885" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/metabolism ; Gene Expression Regulation, Plant ; *Light ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Phylogeny ; Phytochrome/chemistry/genetics/*metabolism ; Phytochrome A/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Transcriptional Activation ; Transposases/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2007-04-07
    Description: The domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed. Second, we examined genetic variation in the 15-megabase interval surrounding the QTL in small and giant breeds and found marked evidence for a selective sweep spanning a single gene (IGF1), encoding insulin-like growth factor 1. A single IGF1 single-nucleotide polymorphism haplotype is common to all small breeds and nearly absent from giant breeds, suggesting that the same causal sequence variant is a major contributor to body size in all small dogs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789551/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789551/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sutter, Nathan B -- Bustamante, Carlos D -- Chase, Kevin -- Gray, Melissa M -- Zhao, Keyan -- Zhu, Lan -- Padhukasahasram, Badri -- Karlins, Eric -- Davis, Sean -- Jones, Paul G -- Quignon, Pascale -- Johnson, Gary S -- Parker, Heidi G -- Fretwell, Neale -- Mosher, Dana S -- Lawler, Dennis F -- Satyaraj, Ebenezer -- Nordborg, Magnus -- Lark, K Gordon -- Wayne, Robert K -- Ostrander, Elaine A -- 063056/PHS HHS/ -- 5T32 HG002536/HG/NHGRI NIH HHS/ -- P50 HG002790/HG/NHGRI NIH HHS/ -- R01 GM063056/GM/NIGMS NIH HHS/ -- R01 GM063056-06/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):112-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, Building 50, Room 5349, 50 South Drive MSC 8000, Bethesda, MD 20892-8000, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412960" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Body Size/genetics ; Breeding ; Dogs/*anatomy & histology/*genetics ; Exons ; Genetic Variation ; Genotype ; Haplotypes ; Heterozygote ; Insulin-Like Growth Factor I/*genetics/metabolism ; Introns ; Mutation ; *Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2007-10-20
    Description: Nonhomologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway required to maintain genome stability. Many prokaryotes possess a minimalist NHEJ apparatus required to repair DSBs during stationary phase, composed of two conserved core proteins, Ku and ligase D (LigD). The crystal structure of Mycobacterium tuberculosis polymerase domain of LigD mediating the synapsis of two noncomplementary DNA ends revealed a variety of interactions, including microhomology base pairing, mismatched and flipped-out bases, and 3' termini forming hairpin-like ends. Biochemical and biophysical studies confirmed that polymerase-induced end synapsis also occurs in solution. We propose that this DNA synaptic structure reflects an intermediate bridging stage of the NHEJ process, before end processing and ligation, with both the polymerase and the DNA sequence playing pivotal roles in determining the sequential order of synapsis and remodeling before end joining.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brissett, Nigel C -- Pitcher, Robert S -- Juarez, Raquel -- Picher, Angel J -- Green, Andrew J -- Dafforn, Timothy R -- Fox, Gavin C -- Blanco, Luis -- Doherty, Aidan J -- BB/D522746/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G120/738/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):456-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947582" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Crystallography, X-Ray ; DNA Ligases/*chemistry/genetics/metabolism ; *DNA Repair ; DNA, Bacterial/*chemistry/metabolism ; Dimerization ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium tuberculosis/*chemistry/enzymology/genetics/metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2007-07-14
    Description: Stereotyped synaptic connectivity can arise both by precise recognition between appropriate partners during synaptogenesis and by selective synapse elimination. The molecular mechanisms that underlie selective synapse removal are largely unknown. We found that stereotyped developmental elimination of synapses in the Caenorhabditis elegans hermaphrodite-specific motor neuron (HSNL) was mediated by an E3 ubiquitin ligase, a Skp1-cullin-F-box (SCF) complex composed of SKR-1 and the F-box protein SEL-10. SYG-1, a synaptic adhesion molecule, bound to SKR-1 and inhibited assembly of the SCF complex, thereby protecting nearby synapses. Thus, subcellular regulation of ubiquitin-mediated protein degradation contributes to precise synaptic connectivity through selective synapse elimination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Mei -- Chao, Dan -- Wang, George -- Shen, Kang -- 1R01NS048392/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):947-51. Epub 2007 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626846" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/growth & development/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Cycle Proteins/*metabolism ; Immunoglobulins/genetics/*metabolism ; Models, Neurological ; Motor Neurons/*physiology ; Mutation ; Nerve Tissue Proteins/genetics/metabolism ; Oviposition ; Promoter Regions, Genetic ; Proteasome Endopeptidase Complex/metabolism ; R-SNARE Proteins/metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; SKP Cullin F-Box Protein Ligases/*metabolism ; Synapses/*physiology ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2007-04-07
    Description: Although highly homologous, the spliceosomal hPrp31 and the nucleolar Nop56 and Nop58 (Nop56/58) proteins recognize different ribonucleoprotein (RNP) particles. hPrp31 interacts with complexes containing the 15.5K protein and U4 or U4atac small nuclear RNA (snRNA), whereas Nop56/58 associate with 15.5K-box C/D small nucleolar RNA complexes. We present structural and biochemical analyses of hPrp31-15.5K-U4 snRNA complexes that show how the conserved Nop domain in hPrp31 maintains high RNP binding selectivity despite relaxed RNA sequence requirements. The Nop domain is a genuine RNP binding module, exhibiting RNA and protein binding surfaces. Yeast two-hybrid analyses suggest a link between retinitis pigmentosa and an aberrant hPrp31-hPrp6 interaction that blocks U4/U6-U5 tri-snRNP formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Sunbin -- Li, Ping -- Dybkov, Olexandr -- Nottrott, Stephanie -- Hartmuth, Klaus -- Luhrmann, Reinhard -- Carlomagno, Teresa -- Wahl, Markus C -- New York, N.Y. -- Science. 2007 Apr 6;316(5821):115-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Zellulare Biochemie, Max-Planck-Institut fur Biophysikalische Chemie, Am Fassberg 11, D-37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Carrier Proteins/chemistry/metabolism ; Eye Proteins/*chemistry/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Small Nuclear/*chemistry/*metabolism ; RNA-Binding Proteins ; Retinitis Pigmentosa/genetics ; Ribonucleoprotein, U4-U6 Small Nuclear/*chemistry/*metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2007-08-25
    Description: Histidine kinases, used for environmental sensing by bacterial two-component systems, are involved in regulation of bacterial gene expression, chemotaxis, phototaxis, and virulence. Flavin-containing domains function as light-sensory modules in plant and algal phototropins and in fungal blue-light receptors. We have discovered that the prokaryotes Brucella melitensis, Brucella abortus, Erythrobacter litoralis, and Pseudomonas syringae contain light-activated histidine kinases that bind a flavin chromophore and undergo photochemistry indicative of cysteinyl-flavin adduct formation. Infection of macrophages by B. abortus was stimulated by light in the wild type but was limited in photochemically inactive and null mutants, indicating that the flavin-containing histidine kinase functions as a photoreceptor regulating B. abortus virulence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swartz, Trevor E -- Tseng, Tong-Seung -- Frederickson, Marcus A -- Paris, Gaston -- Comerci, Diego J -- Rajashekara, Gireesh -- Kim, Jung-Gun -- Mudgett, Mary Beth -- Splitter, Gary A -- Ugalde, Rodolfo A -- Goldbaum, Fernando A -- Briggs, Winslow R -- Bogomolni, Roberto A -- 1.U54-AI-057153/AI/NIAID NIH HHS/ -- R01 GM068886/GM/NIGMS NIH HHS/ -- R01-GM068886/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 24;317(5841):1090-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17717187" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Brucella abortus/*enzymology/growth & development/pathogenicity ; Brucella melitensis/*enzymology ; Cell Line ; Cloning, Molecular ; Enzyme Activation ; Flavin Mononucleotide/metabolism ; *Light ; Macrophages/*microbiology ; Mice ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Photochemistry ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Pseudomonas syringae/*enzymology ; Signal Transduction ; Sphingomonadaceae/*enzymology ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2007-03-10
    Description: The plant hormone abscisic acid (ABA) regulates many physiological and developmental processes in plants. The mechanism of ABA perception at the cell surface is not understood. Here, we report that a G protein-coupled receptor genetically and physically interacts with the G protein alpha subunit GPA1 to mediate all known ABA responses in Arabidopsis. Overexpressing this receptor results in an ABA-hypersensitive phenotype. This receptor binds ABA with high affinity at physiological concentration with expected kinetics and stereospecificity. The binding of ABA to the receptor leads to the dissociation of the receptor-GPA1 complex in yeast. Our results demonstrate that this G protein-coupled receptor is a plasma membrane ABA receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Xigang -- Yue, Yanling -- Li, Bin -- Nie, Yanli -- Li, Wei -- Wu, Wei-Hua -- Ma, Ligeng -- New York, N.Y. -- Science. 2007 Mar 23;315(5819):1712-6. Epub 2007 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347412" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*metabolism/pharmacology ; Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; GTP-Binding Protein alpha Subunits/metabolism ; Gene Expression Profiling ; Genes, Reporter ; Germination ; Models, Biological ; Mutation ; Plant Growth Regulators/*metabolism ; Plant Leaves/cytology/physiology ; Plants, Genetically Modified ; Potassium Channels/metabolism ; Protein Binding ; Receptors, G-Protein-Coupled/chemistry/genetics/*metabolism ; Recombinant Proteins/metabolism ; Seeds/growth & development ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2007-09-18
    Description: Transcriptional coexpression of interacting gene products is required for complex molecular processes; however, the function and evolution of cis-regulatory elements that orchestrate coexpression remain largely unexplored. We mutagenized 19 regulatory elements that drive coexpression of Ciona muscle genes and obtained quantitative estimates of the cis-regulatory activity of the 77 motifs that comprise these elements. We found that individual motif activity ranges broadly within and among elements, and among different instantiations of the same motif type. The activity of orthologous motifs is strongly constrained, although motif arrangement, type, and activity vary greatly among the elements of different co-regulated genes. Thus, the syntactical rules governing this regulatory function are flexible but become highly constrained evolutionarily once they are established in a particular element.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Christopher D -- Johnson, David S -- Sidow, Arend -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1557-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872446" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ciona intestinalis/embryology/*genetics ; Creatine Kinase/genetics ; Embryo, Nonmammalian/metabolism ; *Evolution, Molecular ; *Gene Expression Regulation, Developmental ; Muscle Proteins/genetics ; Muscles/cytology/embryology/metabolism ; Mutation ; *Regulatory Sequences, Nucleic Acid ; *Response Elements ; Selection, Genetic ; Transcription, Genetic ; Urochordata/embryology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2007-02-03
    Description: Seven-transmembrane receptor (7TMR) signaling is transduced by second messengers such as diacylglycerol (DAG) generated in response to the heterotrimeric guanine nucleotide-binding protein Gq and is terminated by receptor desensitization and degradation of the second messengers. We show that beta-arrestins coordinate both processes for the Gq-coupled M1 muscarinic receptor. beta-Arrestins physically interact with diacylglycerol kinases (DGKs), enzymes that degrade DAG. Moreover, beta-arrestins are essential for conversion of DAG to phosphatidic acid after agonist stimulation, and this activity requires recruitment of the beta-arrestin-DGK complex to activated 7TMRs. The dual function of beta-arrestins, limiting production of diacylglycerol (by receptor desensitization) while enhancing its rate of degradation, is analogous to their ability to recruit adenosine 3',5'-monophosphate phosphodiesterases to Gs-coupled beta2-adrenergic receptors. Thus, beta-arrestins can serve similar regulatory functions for disparate classes of 7TMRs through structurally dissimilar enzymes that degrade chemically distinct second messengers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nelson, Christopher D -- Perry, Stephen J -- Regier, Debra S -- Prescott, Stephen M -- Topham, Matthew K -- Lefkowitz, Robert J -- CA95463/CA/NCI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL70631/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*metabolism ; COS Cells ; Carbachol/pharmacology ; Cell Line ; Cercopithecus aethiops ; Diacylglycerol Kinase/genetics/*metabolism ; Diglycerides/*metabolism ; Humans ; Mutation ; Phosphatidic Acids/metabolism ; Protein Binding ; RNA, Small Interfering ; Receptor, Muscarinic M1/*metabolism ; Recombinant Fusion Proteins/metabolism ; Second Messenger Systems ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2007-08-04
    Description: DAF-2, an insulin receptor-like protein, regulates metabolism, development, and aging in Caenorhabditis elegans. In a quantitative proteomic study, we identified 86 proteins that were more or less abundant in long-lived daf-2 mutant worms than in wild-type worms. Genetic studies on a subset of these proteins indicated that they act in one or more processes regulated by DAF-2, including entry into the dauer developmental stage and aging. In particular, we discovered a compensatory mechanism activated in response to reduced DAF-2 signaling, which involves the protein phosphatase calcineurin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Meng-Qiu -- Venable, John D -- Au, Nora -- Xu, Tao -- Park, Sung Kyu -- Cociorva, Daniel -- Johnson, Jeffrey R -- Dillin, Andrew -- Yates, John R 3rd -- DK067598/DK/NIDDK NIH HHS/ -- DK070696/DK/NIDDK NIH HHS/ -- DK074798/DK/NIDDK NIH HHS/ -- P41 RR11823-10/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):660-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Scripps Research Institute, La Jolla, CA92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673661" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/physiology ; Animals ; Caenorhabditis elegans/genetics/*metabolism/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Calcineurin/metabolism ; Carbohydrate Metabolism ; Gene Expression Regulation ; Genes, Helminth ; Longevity/physiology ; Mass Spectrometry/methods ; Models, Animal ; Mutation ; Proteomics ; RNA Interference ; Receptor, Insulin/genetics/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-12-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorin, Julia R -- Jackson, Ian J -- MC_U127527200/Medical Research Council/United Kingdom -- MC_U127527201/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK. ian.jackson@hgu.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18048676" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/genetics/metabolism ; Animals ; Dogs/*genetics/metabolism ; Female ; Hair Color/*genetics ; Haplotypes ; Humans ; Male ; Mice ; Mice, Transgenic ; Mutation ; Polymorphism, Genetic ; Receptor, Melanocortin, Type 1/*metabolism ; Sequence Deletion ; Signal Transduction ; Skin/metabolism ; beta-Defensins/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2007-10-20
    Description: Genetic analysis of mammalian color variation has provided fundamental insight into human biology and disease. In most vertebrates, two key genes, Agouti and Melanocortin 1 receptor (Mc1r), encode a ligand-receptor system that controls pigment type-switching, but in domestic dogs, a third gene is implicated, the K locus, whose genetic characteristics predict a previously unrecognized component of the melanocortin pathway. We identify the K locus as beta-defensin 103 (CBD103) and show that its protein product binds with high affinity to the Mc1r and has a simple and strong effect on pigment type-switching in domestic dogs and transgenic mice. These results expand the functional role of beta-defensins, a protein family previously implicated in innate immunity, and identify an additional class of ligands for signaling through melanocortin receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906624/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906624/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Candille, Sophie I -- Kaelin, Christopher B -- Cattanach, Bruce M -- Yu, Bin -- Thompson, Darren A -- Nix, Matthew A -- Kerns, Julie A -- Schmutz, Sheila M -- Millhauser, Glenn L -- Barsh, Gregory S -- R01 DK064265/DK/NIDDK NIH HHS/ -- R01 DK064265-08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 30;318(5855):1418-23. Epub 2007 Oct 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Genetics and Pediatrics, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947548" target="_blank"〉PubMed〈/a〉
    Keywords: Agouti Signaling Protein/genetics/metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Chromosome Mapping ; Dogs/*genetics/metabolism ; Female ; Hair Color/*genetics ; Haplotypes ; Humans ; Keratinocytes/metabolism ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Receptor, Melanocortin, Type 1/*metabolism ; Sequence Analysis, DNA ; Sequence Deletion ; Signal Transduction ; Skin/metabolism ; beta-Defensins/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2007-01-06
    Description: During cell division, copies of mouse chromosome 7 are segregated selectively or randomly to daughter cells depending on the cell type. The mechanism for differential segregation is unknown. Because mouse left-right dynein (LRD) gene mutations result in randomization of visceral organs' laterality, we hypothesized that LRD may also function in selective chromatid segregation. Indeed, upon knock-down by RNA interference methods, LRD depletion disrupts biased segregation. LRD messenger RNA presence or absence correlates with the observed segregation patterns. This work supports the claim that LRD functions in a mechanism for selective chromatid segregation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Armakolas, Athanasios -- Klar, Amar J S -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):100-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Post Office Box B, Frederick, MD 21702-1201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204651" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axonemal Dyneins ; Body Patterning ; Cell Line ; Cell Lineage ; Chromatids/*physiology ; *Chromosome Segregation ; DNA Replication ; Dyneins/*genetics/*physiology ; Ectoderm/*cytology ; Embryonic Stem Cells/*cytology ; Endoderm/*cytology ; Interphase ; Mice ; Mitosis ; Mutation ; RNA Interference ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2007-12-15
    Description: RNA polymerase II (Pol II) transcribes genes that encode proteins and noncoding small nuclear RNAs (snRNAs). The carboxyl-terminal repeat domain (CTD) of the largest subunit of mammalian RNA Pol II, comprising tandem repeats of the heptapeptide consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7, is required for expression of both gene types. We show that mutation of serine-7 to alanine causes a specific defect in snRNA gene expression. We also present evidence that phosphorylation of serine-7 facilitates interaction with the snRNA gene-specific Integrator complex. These findings assign a biological function to this amino acid and highlight a gene type-specific requirement for a residue within the CTD heptapeptide, supporting the existence of a CTD code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263945/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263945/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egloff, Sylvain -- O'Reilly, Dawn -- Chapman, Rob D -- Taylor, Alice -- Tanzhaus, Katrin -- Pitts, Laura -- Eick, Dirk -- Murphy, Shona -- 072107/Wellcome Trust/United Kingdom -- 081312/Wellcome Trust/United Kingdom -- G0400653/Medical Research Council/United Kingdom -- G0400653(71330)/Medical Research Council/United Kingdom -- G9826944/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1777-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18079403" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine ; Amino Acid Sequence ; Cell Line ; Consensus Sequence ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/genetics ; Humans ; Mutation ; Oligopeptides/chemistry/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein Subunits/genetics/metabolism ; RNA Polymerase II/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Messenger/genetics/metabolism ; RNA, Small Nuclear/*genetics ; Serine/*metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2007-09-18
    Description: Precise timing of CONSTANS (CO) gene expression is necessary for day-length discrimination for photoperiodic flowering. The FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and GIGANTEA (GI) proteins regulate CO transcription in Arabidopsis. We demonstrate that FKF1 and GI proteins form a complex in a blue-light-dependent manner. The timing of this interaction regulates the timing of daytime CO expression. FKF1 function is dependent on GI, which interacts with a CO repressor, CYCLING DOF FACTOR 1 (CDF1), and controls CDF1 stability. GI, FKF1, and CDF1 proteins associate with CO chromatin. Thus, the FKF1-GI complex forms on the CO promoter in late afternoon to regulate CO expression, providing a mechanistic view of how the coincidence of light with circadian timing regulates photoperiodic flowering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709017/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709017/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sawa, Mariko -- Nusinow, Dmitri A -- Kay, Steve A -- Imaizumi, Takato -- GM056006/GM/NIGMS NIH HHS/ -- GM067837/GM/NIGMS NIH HHS/ -- GM079712/GM/NIGMS NIH HHS/ -- R01 GM079712/GM/NIGMS NIH HHS/ -- R01 GM079712-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):261-5. Epub 2007 Sep 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872410" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*physiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Chromatin Immunoprecipitation ; *Circadian Rhythm ; DNA-Binding Proteins/*genetics ; Flowers/genetics/*growth & development ; Gene Expression Regulation, Plant ; *Light ; Mutation ; Photoperiod ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2007-07-14
    Description: Faithful chromosome segregation and repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister-chromatid cohesion. Cohesion between sister chromatids is thought to be generated only during ongoing DNA replication by an obligate coupling between cohesion establishment factors such as Eco1 (Ctf7) and the replisome. Using budding yeast, we challenge this model by showing that cohesion is generated by an Eco1-dependent but replication-independent mechanism in response to DSBs in G(2)/M. Furthermore, our studies reveal that Eco1 has two functions: a cohesive activity and a conserved acetyltransferase activity, which triggers the generation of cohesion in response to the DSB and the DNA damage checkpoint. Finally, the DSB-induced cohesion is not limited to broken chromosomes but occurs also on unbroken chromosomes, suggesting that the DNA damage checkpoint through Eco1 provides genome-wide protection of chromosome integrity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Unal, Elcin -- Heidinger-Pauli, Jill M -- Koshland, Douglas -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):245-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Institution, Howard Hughes Medical Institute, Department of Embryology, 3520 San Martin Drive, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626885" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/genetics/*metabolism ; Cell Cycle Proteins/metabolism ; Cell Division ; Chromatids/*physiology ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Fungal/physiology ; *DNA Breaks, Double-Stranded ; DNA Replication ; DNA, Fungal/biosynthesis/metabolism ; G2 Phase ; Genome, Fungal ; Models, Genetic ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics/metabolism/*physiology ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2007-08-19
    Description: The structural mechanisms by which proteins have evolved new functions are known only indirectly. We report x-ray crystal structures of a resurrected ancestral protein-the approximately 450 million-year-old precursor of vertebrate glucocorticoid (GR) and mineralocorticoid (MR) receptors. Using structural, phylogenetic, and functional analysis, we identify the specific set of historical mutations that recapitulate the evolution of GR's hormone specificity from an MR-like ancestor. These substitutions repositioned crucial residues to create new receptor-ligand and intraprotein contacts. Strong epistatic interactions occur because one substitution changes the conformational position of another site. "Permissive" mutations-substitutions of no immediate consequence, which stabilize specific elements of the protein and allow it to tolerate subsequent function-switching changes-played a major role in determining GR's evolutionary trajectory.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortlund, Eric A -- Bridgham, Jamie T -- Redinbo, Matthew R -- Thornton, Joseph W -- F32-GM074398/GM/NIGMS NIH HHS/ -- R01 GM081592/GM/NIGMS NIH HHS/ -- R01 GM081592-01/GM/NIGMS NIH HHS/ -- R01 GM081592-02/GM/NIGMS NIH HHS/ -- R01-DK622229/DK/NIDDK NIH HHS/ -- R01-GM081592/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1544-8. Epub 2007 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702911" target="_blank"〉PubMed〈/a〉
    Keywords: Aldosterone/metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Crystallography, X-Ray ; Epistasis, Genetic ; *Evolution, Molecular ; Humans ; Hydrocortisone/metabolism ; Ligands ; Likelihood Functions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phylogeny ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/*chemistry/*genetics/metabolism ; Receptors, Mineralocorticoid/*chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2007-07-28
    Description: The construction of multicellular organisms depends on stem cells-cells that can both regenerate and produce daughter cells that undergo differentiation. Here, we show that the gaseous messenger ethylene modulates cell division in the cells of the quiescent center, which act as a source of stem cells in the seedling root. The cells formed through these ethylene-induced divisions express quiescent center-specific genes and can repress differentiation of surrounding initial cells, showing that quiescence is not required for these cells to signal to adjacent stem cells. We propose that ethylene is part of a signaling pathway that modulates cell division in the quiescent center in the stem cell niche during the postembryonic development of the root system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ortega-Martinez, Olga -- Pernas, Monica -- Carol, Rachel J -- Dolan, Liam -- BBS/E/J/00000168/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2007 Jul 27;317(5837):507-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17656722" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids, Cyclic/metabolism/pharmacology ; Arabidopsis/*cytology/genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Cell Differentiation ; *Cell Division ; Ethylenes/biosynthesis/*metabolism ; Gene Expression ; Genes, Plant ; Glycine/analogs & derivatives/pharmacology ; Indoleacetic Acids/metabolism ; Mutation ; Naphthaleneacetic Acids/pharmacology ; Plant Roots/*cytology/growth & development/metabolism ; Protein Kinases/genetics/metabolism ; Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2007-03-10
    Description: Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most significantly at natural replication-impeding loci like the ribosomal DNA gene cluster. In the absence of Smc5-Smc6, chromosome nondisjunction occurs as a consequence of mitotic entry with unfinished replication despite intact checkpoint responses. Eliminating processes that obstruct replication fork progression restores the temporal uncoupling between replication and segregation in smc5-smc6 mutants. We propose that the completion of replication is not under the surveillance of known checkpoints.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Torres-Rosell, Jordi -- De Piccoli, Giacomo -- Cordon-Preciado, Violeta -- Farmer, Sarah -- Jarmuz, Adam -- Machin, Felix -- Pasero, Philippe -- Lisby, Michael -- Haber, James E -- Aragon, Luis -- GM 20056/GM/NIGMS NIH HHS/ -- MC_U120074328/Medical Research Council/United Kingdom -- R01 GM061766/GM/NIGMS NIH HHS/ -- R01 GM061766-07/GM/NIGMS NIH HHS/ -- R01 GM061766-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 9;315(5817):1411-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Cycle Group, Medical Research Council (MRC) Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17347440" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Cell Cycle Proteins/genetics/metabolism ; Checkpoint Kinase 2 ; Chromosome Segregation ; Chromosomes, Fungal/*genetics/metabolism ; DNA Breaks, Double-Stranded ; DNA Damage ; *DNA Replication ; DNA, Fungal/genetics/metabolism ; DNA, Ribosomal/*genetics/metabolism ; Genes, Fungal ; Genes, rRNA ; Metaphase ; *Mitosis ; Models, Genetic ; Mutation ; Nondisjunction, Genetic ; Protein-Serine-Threonine Kinases/metabolism ; S Phase ; Saccharomyces cerevisiae/*cytology/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2007-09-18
    Description: Antibodies play a central role in immunity by forming an interface with the innate immune system and, typically, mediate proinflammatory activity. We describe a novel posttranslational modification that leads to anti-inflammatory activity of antibodies of immunoglobulin G, isotype 4 (IgG4). IgG4 antibodies are dynamic molecules that exchange Fab arms by swapping a heavy chain and attached light chain (half-molecule) with a heavy-light chain pair from another molecule, which results in bispecific antibodies. Mutagenesis studies revealed that the third constant domain is critical for this activity. The impact of IgG4 Fab arm exchange was confirmed in vivo in a rhesus monkey model with experimental autoimmune myasthenia gravis. IgG4 Fab arm exchange is suggested to be an important biological mechanism that provides the basis for the anti-inflammatory activity attributed to IgG4 antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van der Neut Kolfschoten, Marijn -- Schuurman, Janine -- Losen, Mario -- Bleeker, Wim K -- Martinez-Martinez, Pilar -- Vermeulen, Ellen -- den Bleker, Tamara H -- Wiegman, Luus -- Vink, Tom -- Aarden, Lucien A -- De Baets, Marc H -- van de Winkel, Jan G J -- Aalberse, Rob C -- Parren, Paul W H I -- New York, N.Y. -- Science. 2007 Sep 14;317(5844):1554-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanquin Research-AMC Landsteiner Laboratory, Department of Immunopathology, Plesmanlaan 125, 1066 CX Amsterdam, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17872445" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/immunology ; Animals ; Antibodies, Bispecific/immunology ; Antibodies, Monoclonal/immunology ; Antigens, CD20/immunology ; Antigens, Plant ; Autoantibodies/immunology ; Glycoproteins/immunology ; Humans ; Immunoglobulin Constant Regions/chemistry ; Immunoglobulin Fab Fragments/*chemistry/*immunology/metabolism ; Immunoglobulin G/*chemistry/*immunology/metabolism ; Immunoglobulin Heavy Chains ; Macaca mulatta ; Mice ; Mutation ; Myasthenia Gravis, Autoimmune, Experimental/immunology/prevention & control ; Protein Processing, Post-Translational ; Receptor, Epidermal Growth Factor/immunology ; Receptors, Cholinergic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-04-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holden, Constance -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):353.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446359" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/genetics/metabolism/*pathology ; Animals ; Astrocytes/*metabolism ; Cell Death ; Cell Line ; Cells, Cultured ; Embryonic Stem Cells/cytology ; Glutamic Acid/metabolism ; Humans ; Mice ; Motor Neurons/*pathology ; Mutation ; Superoxide Dismutase/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):384-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947560" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*metabolism/pathology ; Amyloid beta-Peptides/*metabolism ; Amyloid beta-Protein Precursor/genetics/metabolism ; Animals ; Calcium/*metabolism ; Calcium Channels/metabolism ; Cell Death ; Cell Membrane/metabolism ; Cell Membrane Permeability ; Cells, Cultured ; Endoplasmic Reticulum/metabolism ; Humans ; Membranes, Artificial ; Mutation ; Nerve Degeneration ; Neurons/*metabolism/pathology ; Presenilins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, Jean -- New York, N.Y. -- Science. 2007 Jun 8;316(5830):1416-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17556561" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*drug therapy/*metabolism/pathology ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/genetics ; Animals ; Anti-Inflammatory Agents/therapeutic use ; Brain/metabolism/pathology ; Disease Models, Animal ; Humans ; Mice ; Microtubules/metabolism ; Mutation ; Nerve Degeneration ; Neurofibrillary Tangles/pathology ; Neurons/pathology ; Phosphorylation ; Protein Kinase Inhibitors/therapeutic use ; Tubulin Modulators/therapeutic use ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-04
    Description: Social amoebae feed on bacteria in the soil but aggregate when starved to form a migrating slug. We describe a previously unknown cell type in the social amoeba, which appears to provide detoxification and immune-like functions and which we term sentinel (S) cells. S cells were observed to engulf bacteria and sequester toxins while circulating within the slug, eventually being sloughed off. A Toll/interleukin-1 receptor (TIR) domain protein, TirA, was also required for some S cell functions and for vegetative amoebae to feed on live bacteria. This apparent innate immune function in social amoebae, and the use of TirA for bacterial feeding, suggest an ancient cellular foraging mechanism that may have been adapted to defense functions well before the diversification of the animals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291017/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3291017/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Guokai -- Zhuchenko, Olga -- Kuspa, Adam -- GM52359/GM/NIGMS NIH HHS/ -- HD39691/HD/NICHD NIH HHS/ -- P01 HD039691/HD/NICHD NIH HHS/ -- P01 HD039691-03/HD/NICHD NIH HHS/ -- P01 HD039691-04/HD/NICHD NIH HHS/ -- P01 HD039691-05/HD/NICHD NIH HHS/ -- P01 HD039691-06/HD/NICHD NIH HHS/ -- P01 HD039691-07/HD/NICHD NIH HHS/ -- P01 HD039691-08/HD/NICHD NIH HHS/ -- R01 GM052359/GM/NIGMS NIH HHS/ -- R01 GM052359-10/GM/NIGMS NIH HHS/ -- R01 GM052359-11/GM/NIGMS NIH HHS/ -- R01 GM052359-12/GM/NIGMS NIH HHS/ -- R01 GM052359-13/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Aug 3;317(5838):678-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17673666" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Separation ; Cytoplasmic Vesicles/metabolism ; Dictyostelium/cytology/*immunology/microbiology/physiology ; Ethidium/metabolism ; Fluorescent Dyes/metabolism ; Gene Expression ; Immunity, Innate ; Legionella pneumophila/*immunology ; Mutation ; Phagocytes/cytology/*immunology ; *Phagocytosis ; Protozoan Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...