ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Transfection  (57)
  • American Association for the Advancement of Science (AAAS)  (57)
  • American Association of Petroleum Geologists (AAPG)
  • Emerald
  • 1995-1999  (57)
  • 1997  (57)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (57)
  • American Association of Petroleum Geologists (AAPG)
  • Emerald
  • Springer  (1)
Years
  • 1995-1999  (57)
Year
  • 1
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-17
    Description: The proto-oncogene-encoded transcription factor c-Jun activates genes in response to a number of inducers that act through mitogen-activated protein kinase (MAPK) signal transduction pathways. The activation of c-Jun after phosphorylation by MAPK is accompanied by a reduction in c-Jun ubiquitination and consequent stabilization of the protein. These results illustrate the relevance of regulated protein degradation in the signal-dependent control of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Musti, A M -- Treier, M -- Bohmann, D -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):400-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8994040" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Cycle Proteins/metabolism ; GTP-Binding Proteins/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Phosphorylation ; Proto-Oncogene Proteins c-jun/*metabolism ; Signal Transduction ; Transfection ; Ubiquitins/*metabolism ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-02-21
    Description: The Caenorhabditis elegans survival gene ced-9 regulates ced-4 activity and inhibits cell death, but the mechanism by which this occurs is unknown. Through a genetic screen for CED-4-binding proteins, CED-9 was identified as an interacting partner of CED-4. CED-9, but not loss-of-function mutants, associated specifically with CED-4 in yeast or mammalian cells. The CED-9 protein localized primarily to intracellular membranes and the perinuclear region, whereas CED-4 was distributed in the cytosol. Expression of CED-9, but not a mutant lacking the carboxy-terminal hydrophobic domain, targeted CED-4 from the cytosol to intracellular membranes in mammalian cells. Thus, the actions of CED-4 and CED-9 are directly linked, which could provide the basis for the regulation of programmed cell death in C. elegans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, D -- Wallen, H D -- Nunez, G -- CA-64556/CA/NCI NIH HHS/ -- T32A107413-03/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1126-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/genetics ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/analysis/genetics/*metabolism ; Cell Fractionation ; Cell Line ; Cytosol/chemistry ; Genes, Helminth ; Helminth Proteins/analysis/genetics/*metabolism ; Humans ; Intracellular Membranes/chemistry ; Mutation ; Proto-Oncogene Proteins/analysis/genetics/*metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Transfection ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-07-25
    Description: More than 1% of the world's population is chronically infected with hepatitis C virus (HCV). HCV infection can result in acute hepatitis, chronic hepatitis, and cirrhosis, which is strongly associated with development of hepatocellular carcinoma. Genetic studies of HCV replication have been hampered by lack of a bona fide infectious molecular clone. Full-length functional clones of HCV complementary DNA were constructed. RNA transcripts from the clones were found to be infectious and to cause disease in chimpanzees after direct intrahepatic inoculation. This work defines the structure of a functional HCV genome RNA and proves that HCV alone is sufficient to cause disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolykhalov, A A -- Agapov, E V -- Blight, K J -- Mihalik, K -- Feinstone, S M -- Rice, C M -- AI40034/AI/NIAID NIH HHS/ -- CA57973/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):570-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228008" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cloning, Molecular ; Consensus Sequence ; DNA, Complementary ; Hepacivirus/*genetics/physiology ; Hepatitis C/*transmission/*virology ; Liver/*virology ; Molecular Sequence Data ; Pan troglodytes ; Polymerase Chain Reaction ; RNA, Messenger/*genetics ; RNA, Viral/blood/*genetics ; Transfection ; Viremia ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-09-05
    Description: In response to DNA damage, mammalian cells prevent cell cycle progression through the control of critical cell cycle regulators. A human gene was identified that encodes the protein Chk1, a homolog of the Schizosaccharomyces pombe Chk1 protein kinase, which is required for the DNA damage checkpoint. Human Chk1 protein was modified in response to DNA damage. In vitro Chk1 bound to and phosphorylated the dual-specificity protein phosphatases Cdc25A, Cdc25B, and Cdc25C, which control cell cycle transitions by dephosphorylating cyclin-dependent kinases. Chk1 phosphorylates Cdc25C on serine-216. As shown in an accompanying paper by Peng et al. in this issue, serine-216 phosphorylation creates a binding site for 14-3-3 protein and inhibits function of the phosphatase. These results suggest a model whereby in response to DNA damage, Chk1 phosphorylates and inhibits Cdc25C, thus preventing activation of the Cdc2-cyclin B complex and mitotic entry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchez, Y -- Wong, C -- Thoma, R S -- Richman, R -- Wu, Z -- Piwnica-Worms, H -- Elledge, S J -- GM17763/GM/NIGMS NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1497-501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry, Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278511" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; CDC2 Protein Kinase/*metabolism ; Cell Cycle Proteins/antagonists & inhibitors/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 11 ; Cytoskeletal Proteins ; *DNA Damage ; *F-Box Proteins ; G2 Phase ; HeLa Cells ; Humans ; Mice ; *Mitosis ; Molecular Sequence Data ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Tyrosine Phosphatases/metabolism ; Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Schizosaccharomyces pombe Proteins ; Signal Transduction ; Transfection ; *Tyrosine 3-Monooxygenase ; *Ubiquitin-Protein Ligases ; *cdc25 Phosphatases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-10-10
    Description: The caspase-3 (CPP32, apopain, YAMA) family of cysteinyl proteases has been implicated as key mediators of apoptosis in mammalian cells. Gelsolin was identified as a substrate for caspase-3 by screening the translation products of small complementary DNA pools for sensitivity to cleavage by caspase-3. Gelsolin was cleaved in vivo in a caspase-dependent manner in cells stimulated by Fas. Caspase-cleaved gelsolin severed actin filaments in vitro in a Ca2+-independent manner. Expression of the gelsolin cleavage product in multiple cell types caused the cells to round up, detach from the plate, and undergo nuclear fragmentation. Neutrophils isolated from mice lacking gelsolin had delayed onset of both blebbing and DNA fragmentation, following apoptosis induction, compared with wild-type neutrophils. Thus, cleaved gelsolin may be one physiological effector of morphologic change during apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kothakota, S -- Azuma, T -- Reinhard, C -- Klippel, A -- Tang, J -- Chu, K -- McGarry, T J -- Kirschner, M W -- Koths, K -- Kwiatkowski, D J -- Williams, L T -- P01 HL48743/HL/NHLBI NIH HHS/ -- R01 HL54188/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 10;278(5336):294-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chiron Corporation, Emeryville, CA 94608, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9323209" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Chloromethyl Ketones/pharmacology ; Animals ; Antigens, CD95/physiology ; *Apoptosis ; Caspase 3 ; *Caspases ; Cell Line ; *Cell Size ; Cycloheximide/pharmacology ; Cysteine Endopeptidases/*metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cytoskeleton/metabolism ; DNA Fragmentation ; Gelsolin/*metabolism ; Humans ; Mice ; Neutrophils/cytology/metabolism ; Recombinant Proteins/metabolism ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-10-06
    Description: Chromosome maintenance region 1 (CRM1), a protein that shares sequence similarities with the karyopherin beta family of proteins involved in nuclear import pathway, was shown to form a complex with the leucine-rich nuclear export signal (NES). This interaction was inhibited by leptomycin B, a drug that prevents the function of the CRM1 protein in yeast. To analyze the role of the CRM1-NES interaction in nuclear export, a transport assay based on semipermeabilized cells was developed. In this system, which reconstituted NES-, cytosol-, and energy-dependent nuclear export, leptomycin B specifically blocked export of NES-containing proteins. Thus, the CRM1 protein could act as a NES receptor involved in nuclear protein export.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ossareh-Nazari, B -- Bachelerie, F -- Dargemont, C -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):141-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie-CNRS Unite Mixte de Recherche 144, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311922" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Biological Transport/drug effects ; Carrier Proteins/*physiology ; Cell Nucleus/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Fluorescent Antibody Technique, Indirect ; HeLa Cells ; Humans ; *I-kappa B Proteins ; Immunoblotting ; *Karyopherins ; Nuclear Localization Signals ; Nuclear Proteins/*metabolism ; Protein Sorting Signals/chemistry/*metabolism ; Pyruvate Kinase/metabolism ; *Receptors, Cytoplasmic and Nuclear ; Recombinant Fusion Proteins/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-03-07
    Description: Human immunodeficiency virus-type 1 (HIV-1) infection is characterized by a chronic state of immune hyperactivation in patients. Infection of human peripheral blood lymphocytes with HIV-1 in vitro resulted in increased interleukin-2 (IL-2) secretion in response to T cell activation via the CD3 and CD28 receptors. Expression of the HIV-1 transactivator Tat recapitulated this phenotype and was associated with increased IL-2 secretion in response to costimulation with CD3 plus CD28. IL-2 superinduction by Tat occurred at the transcriptional level, was mediated by the CD28-responsive element in the IL-2 promoter, and was exclusively dependent on the 29 amino acids encoded by the second exon of Tat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ott, M -- Emiliani, S -- Van Lint, C -- Herbein, G -- Lovett, J -- Chirmule, N -- McCloskey, T -- Pahwa, S -- Verdin, E -- New York, N.Y. -- Science. 1997 Mar 7;275(5305):1481-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Picower Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9045614" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/pharmacology ; Antibodies, Monoclonal/immunology ; Antigens, CD28/*immunology ; Antigens, CD3/immunology ; Exons ; Gene Products, tat/genetics/*physiology ; HIV Infections/immunology ; HIV-1/drug effects/genetics/*physiology ; Humans ; Interleukin-2/genetics/*secretion ; Jurkat Cells ; Leukocytes, Mononuclear/virology ; *Lymphocyte Activation ; Promoter Regions, Genetic ; T-Lymphocytes/*immunology/*virology ; Transcription Factors/metabolism ; Transcription, Genetic ; Transfection ; Zidovudine/pharmacology ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1997-03-21
    Description: The adenomatous polyposis coli (APC) tumor suppressor protein binds to beta-catenin, a protein recently shown to interact with Tcf and Lef transcription factors. The gene encoding hTcf-4, a Tcf family member that is expressed in colonic epithelium, was cloned and characterized. hTcf-4 transactivates transcription only when associated with beta-catenin. Nuclei of APC-/- colon carcinoma cells were found to contain a stable beta-catenin-hTcf-4 complex that was constitutively active, as measured by transcription of a Tcf reporter gene. Reintroduction of APC removed beta-catenin from hTcf-4 and abrogated the transcriptional transactivation. Constitutive transcription of Tcf target genes, caused by loss of APC function, may be a crucial event in the early transformation of colonic epithelium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korinek, V -- Barker, N -- Morin, P J -- van Wichen, D -- de Weger, R -- Kinzler, K W -- Vogelstein, B -- Clevers, H -- CA57345/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1784-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University Hospital, Post Office Box 85500, 3508 GA Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065401" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Transformation, Neoplastic ; Cloning, Molecular ; Colon/metabolism ; Colonic Neoplasms/*genetics/metabolism ; Cytoskeletal Proteins/genetics/*metabolism ; Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; Humans ; Intestinal Mucosa/metabolism ; Mice ; Molecular Sequence Data ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/chemistry/genetics/*metabolism ; *Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-12-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, S M -- Hoffmann, A -- Le, D -- Springer, M L -- Stock, P G -- Blau, H M -- F32 HL08991/HL/NHLBI NIH HHS/ -- R01-CA59717/CA/NCI NIH HHS/ -- R01-HD18179/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1322-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9411754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/biosynthesis ; Apoptosis ; Cell Differentiation ; Cell Transplantation ; Fas Ligand Protein ; *Graft Rejection ; Immune Tolerance ; Islets of Langerhans/cytology ; *Islets of Langerhans Transplantation ; Membrane Glycoproteins/genetics/*physiology ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Muscle Fibers, Skeletal/*cytology/metabolism ; Muscle, Skeletal/*cytology/metabolism ; Neutrophils/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1997-07-11
    Description: In vertebrates, the presence of multiple heat shock transcription factors (HSFs) indicates that these factors may be regulated by distinct stress signals. HSF3 was specifically activated in unstressed proliferating cells by direct binding to the c-myb proto-oncogene product (c-Myb). These factors formed a complex through their DNA binding domains that stimulated the nuclear entry and formation of the transcriptionally active trimer of HSF3. Because c-Myb participates in cellular proliferation, this regulatory pathway may provide a link between cellular proliferation and the stress response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanei-Ishii, C -- Tanikawa, J -- Nakai, A -- Morimoto, R I -- Ishii, S -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):246-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, Tsukuba, Ibaraki 305, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Cycle ; Cell Line ; Cell Nucleus/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Promoter Regions, Genetic ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-myb ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/*metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1997-06-20
    Description: The human cytomegalovirus encodes a beta-chemokine receptor (US28) that is distantly related to the human chemokine receptors CCR5 and CXCR4, which also serve as cofactors for the entry into cells of human immunodeficiency virus-type 1 (HIV-1). Like CCR5, US28 allowed infection of CD4-positive human cell lines by primary isolates of HIV-1 and HIV-2, as well as fusion of these cell lines with cells expressing the viral envelope proteins. In addition, US28 mediated infection by cell line-adapted HIV-1 for which CXCR4 was an entry cofactor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pleskoff, O -- Treboute, C -- Brelot, A -- Heveker, N -- Seman, M -- Alizon, M -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1874-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Inserm U.332, Institut Cochin de Genetique Moleculaire, 22 rue Mechain, 75014 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188536" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS-Related Opportunistic Infections/virology ; Amino Acid Sequence ; Cell Fusion ; Chemokines ; Coculture Techniques ; Cytomegalovirus/*genetics/physiology ; Cytomegalovirus Infections/virology ; Giant Cells ; HIV Infections/virology ; HIV-1/*physiology ; HIV-2/*physiology ; HeLa Cells ; Humans ; Membrane Proteins/physiology ; Molecular Sequence Data ; Receptors, CCR2 ; Receptors, CCR5 ; Receptors, CXCR4 ; *Receptors, Chemokine ; Receptors, Cytokine/genetics/*physiology ; Receptors, HIV/genetics/*physiology ; Transfection ; Tumor Cells, Cultured ; Viral Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-03-07
    Description: Protein dephosphorylation by phosphatase PP1 plays a central role in mediating the effects of insulin on glucose and lipid metabolism. A PP1C-targeting protein expressed in 3T3-L1 adipocytes (called PTG, for protein targeting to glycogen) was cloned and characterized. PTG was expressed predominantly in insulin-sensitive tissues. In addition to binding and localizing PP1C to glycogen, PTG formed complexes with phosphorylase kinase, phosphorylase a, and glycogen synthase, the primary enzymes involved in the hormonal regulation of glycogen metabolism. Overexpression of PTG markedly increased basal and insulin-stimulated glycogen synthesis in Chinese hamster ovary cells overexpressing the insulin receptor, which do not express endogenous PTG. These results suggest that PTG is critical for glycogen metabolism, possibly functioning as a molecular scaffold.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Printen, J A -- Brady, M J -- Saltiel, A R -- New York, N.Y. -- Science. 1997 Mar 7;275(5305):1475-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9045612" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; CHO Cells ; Carrier Proteins/chemistry/genetics/*metabolism ; Cloning, Molecular ; Cricetinae ; DNA, Complementary/genetics ; Glycogen/biosynthesis/*metabolism ; Glycogen Synthase/metabolism ; Insulin/pharmacology ; *Intracellular Signaling Peptides and Proteins ; Mice ; Molecular Sequence Data ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylase Kinase/metabolism ; Phosphorylase a/metabolism ; Phosphorylation ; Protein Binding ; Protein Phosphatase 1 ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1997-02-14
    Description: The telomerase ribonucleoprotein catalyzes the addition of new telomeres onto chromosome ends. A gene encoding a mammalian telomerase homolog called TP1 (telomerase-associated protein 1) was identified and cloned. TP1 exhibited extensive amino acid similarity to the Tetrahymena telomerase protein p80 and was shown to interact specifically with mammalian telomerase RNA. Antiserum to TP1 immunoprecipitated telomerase activity from cell extracts, suggesting that TP1 is associated with telomerase in vivo. The identification of TP1 suggests that telomerase-associated proteins are conserved from ciliates to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrington, L -- McPhail, T -- Mar, V -- Zhou, W -- Oulton, R -- Bass, M B -- Arruda, I -- Robinson, M O -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):973-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Arruda, Ontario Cancer Institute-Amgen Institute, Department of Medical Biophysics, University of Toronto, 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Carrier Proteins/*chemistry/genetics/immunology/*metabolism ; Cell Line ; Cloning, Molecular ; DNA, Complementary/genetics ; Humans ; Mice ; Molecular Sequence Data ; Precipitin Tests ; RNA/*metabolism ; RNA, Messenger/genetics/metabolism ; Sequence Homology, Amino Acid ; Telomerase/*chemistry/genetics/metabolism ; Tetrahymena/chemistry/genetics ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1997-10-06
    Description: Activation of the nuclear factor of activated T cells transcription factor (NF-AT) is a key event underlying lymphocyte action. The CAML (calcium-modulator and cyclophilin ligand) protein is a coinducer of NF-AT activation when overexpressed in Jurkat T cells. A member of the tumor necrosis factor receptor superfamily was isolated by virtue of its affinity for CAML. Cross-linking of this lymphocyte-specific protein, designated TACI (transmembrane activator and CAML-interactor), on the surface of transfected Jurkat cells with TACI-specific antibodies led to activation of the transcription factors NF-AT, AP-1, and NFkappaB. TACI-induced activation of NF-AT was specifically blocked by a dominant-negative CAML mutant, thus implicating CAML as a signaling intermediate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Bulow, G U -- Bram, R J -- CA21765/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311921" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Calcineurin ; Calmodulin-Binding Proteins/metabolism ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Jurkat Cells ; Lymphocyte Activation ; *Membrane Proteins ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphoprotein Phosphatases/metabolism ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Sequence Alignment ; Signal Transduction ; T-Lymphocytes/immunology/*metabolism ; Transcription Factor AP-1/metabolism ; Transcription Factors/*metabolism ; Transcription, Genetic ; Transfection ; Transmembrane Activator and CAML Interactor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1997-09-12
    Description: Gangliosides participate in development and tissue differentiation. Cross-linking of the apoptosis-inducing CD95 protein (also called Fas or APO-1) in lymphoid and myeloid tumor cells triggered GD3 ganglioside synthesis and transient accumulation. CD95-induced GD3 accumulation depended on integral receptor "death domains" and on activation of a family of cysteine proteases called caspases. Cell-permeating ceramides, which are potent inducers of apoptosis, also triggered GD3 synthesis. GD3 disrupted mitochondrial transmembrane potential (DeltaPsim), and induced apoptosis, in a caspase-independent fashion. Transient overexpression of the GD3 synthase gene directly triggered apoptosis. Pharmacological inhibition of GD3 synthesis and exposure to GD3 synthase antisense oligodeoxynucleotides prevented CD95-induced apoptosis. Thus, GD3 ganglioside mediates the propagation of CD95-generated apoptotic signals in hematopoietic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Maria, R -- Lenti, L -- Malisan, F -- d'Agostino, F -- Tomassini, B -- Zeuner, A -- Rippo, M R -- Testi, R -- New York, N.Y. -- Science. 1997 Sep 12;277(5332):1652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata," 00133 Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9287216" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD95/metabolism/*physiology ; *Apoptosis ; Ceramides/pharmacology/*physiology ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Enzyme Inhibitors/pharmacology ; Gangliosides/biosynthesis/*metabolism/pharmacology ; Golgi Apparatus/metabolism ; Humans ; Membrane Potentials ; Mitochondria/physiology ; Morpholines/pharmacology ; Oligonucleotides, Antisense/pharmacology ; Sialyltransferases/genetics/metabolism ; Signal Transduction ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1997-12-31
    Description: CCR5 and CD4 are coreceptors for immunodeficiency virus entry into target cells. The gp120 envelope glycoprotein from human immunodeficiency virus strain HIV-1(YU2) bound human CCR5 (CCR5hu) or rhesus macaque CCR5 (CCR5rh) only in the presence of CD4. The gp120 from simian immunodeficiency virus strain SIVmac239 bound CCR5rh without CD4, but CCR5hu remained CD4-dependent. The CD4-independent binding of SIVmac239 gp120 depended on a single amino acid, Asp13, in the CCR5rh amino-terminus. Thus, CCR5-binding moieties on the immunodeficiency virus envelope glycoprotein can be generated by interaction with CD4 or by direct interaction with the CCR5 amino-terminus. These results may have implications for the evolution of receptor use among lentiviruses as well as utility in the development of effective intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, K A -- Wyatt, R -- Farzan, M -- Choe, H -- Marcon, L -- Desjardins, E -- Robinson, J -- Sodroski, J -- Gerard, C -- Gerard, N P -- AI41581/AI/NIAID NIH HHS/ -- HL36162/HL/NHLBI NIH HHS/ -- HL51366/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Nov 21;278(5342):1470-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Perlmutter Laboratory, Children's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9367961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal ; Antigens, CD4/*physiology ; Cell Line ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/chemistry/*metabolism ; HIV-2/immunology ; Humans ; Macaca mulatta ; Macrophages/virology ; *Membrane Glycoproteins ; Mutation ; Receptors, CCR5/chemistry/*metabolism ; Simian Immunodeficiency Virus/*metabolism ; Transfection ; *Viral Envelope Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1997-05-09
    Description: Timely deactivation of kinase cascades is crucial to the normal control of cell signaling and is partly accomplished by protein phosphatase 2A (PP2A). The catalytic (alpha) subunit of the serine-threonine kinase casein kinase 2 (CK2) bound to PP2A in vitro and in mitogen-starved cells; binding required the integrity of a sequence motif common to CK2alpha and SV40 small t antigen. Overexpression of CK2alpha resulted in deactivation of mitogen-activated protein kinase kinase (MEK) and suppression of cell growth. Moreover, CK2alpha inhibited the transforming activity of oncogenic Ras, but not that of constitutively activated MEK. Thus, CK2alpha may regulate the deactivation of the mitogen-activated protein kinase pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heriche, J K -- Lebrin, F -- Rabilloud, T -- Leroy, D -- Chambaz, E M -- Goldberg, Y -- New York, N.Y. -- Science. 1997 May 9;276(5314):952-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commissariat a l'Energie Atomique, Departement de Biologie Moleculaire et Structurale, Laboratoire de Biochimie des Regulations Cellulaires Endocrines, Unite 244, F-38054 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9139659" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Amino Acid Sequence ; Animals ; Antigens, Polyomavirus Transforming ; Binding Sites ; Casein Kinase II ; Cell Division ; Cell Transformation, Neoplastic ; MAP Kinase Kinase 1 ; Mice ; *Mitogen-Activated Protein Kinase Kinases ; Mutation ; Okadaic Acid/pharmacology ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Platelet-Derived Growth Factor/pharmacology ; Protein Phosphatase 2 ; Protein-Serine-Threonine Kinases/*metabolism/pharmacology ; Protein-Tyrosine Kinases/metabolism/pharmacology ; Recombinant Fusion Proteins/metabolism ; Transfection ; ras Proteins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1997-03-21
    Description: Inactivation of the adenomatous polyposis coli (APC) tumor suppressor gene initiates colorectal neoplasia. One of the biochemical activities associated with the APC protein is down-regulation of transcriptional activation mediated by beta-catenin and T cell transcription factor 4 (Tcf-4). The protein products of mutant APC genes present in colorectal tumors were found to be defective in this activity. Furthermore, colorectal tumors with intact APC genes were found to contain activating mutations of beta-catenin that altered functionally significant phosphorylation sites. These results indicate that regulation of beta-catenin is critical to APC's tumor suppressive effect and that this regulation can be circumvented by mutations in either APC or beta-catenin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morin, P J -- Sparks, A B -- Korinek, V -- Barker, N -- Clevers, H -- Vogelstein, B -- Kinzler, K W -- CA57345/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1787-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Johns Hopkins Oncology Center, 424 North Bond Street, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065402" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Colonic Neoplasms/*genetics/metabolism ; Cytoskeletal Proteins/*genetics/*metabolism ; Gene Expression Regulation, Neoplastic ; *Genes, APC ; Genes, Reporter ; Germ-Line Mutation ; Humans ; Mutation ; Phosphorylation ; Signal Transduction ; TCF Transcription Factors ; *Trans-Activators ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1997-12-31
    Description: Retroviral vectors containing CD4 and an appropriate chemokine receptor were evaluated for the ability to transduce cells infected with human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). These CD4-chemokine receptor pseudotypes were able to target HIV- and SIV-infected cell lines and monocyte-derived macrophages in a manner that corresponded to the specificity of the viral envelope glycoprotein for its CD4-chemokine receptor complex. This approach could offer a way to deliver antiviral genes directly to HIV-infected cells in vivo and could provide an additional treatment strategy in conjunction with existing antiviral therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Endres, M J -- Jaffer, S -- Haggarty, B -- Turner, J D -- Doranz, B J -- O'Brien, P J -- Kolson, D L -- Hoxie, J A -- AI33854/AI/NIAID NIH HHS/ -- AI40880/AI/NIAID NIH HHS/ -- HL 07439/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Nov 21;278(5342):1462-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Hematology-Oncology Division, University of Pennsylvania, Philadelphia, PA 19104, USA. endres@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9367958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*genetics/metabolism ; Cell Line ; Gene Products, env/metabolism ; *Gene Transfer Techniques ; *Genetic Vectors ; HIV-1/*physiology ; Humans ; Macrophages/virology ; Plasmids ; Receptors, CCR5/genetics/metabolism ; Receptors, CXCR4/genetics/metabolism ; Receptors, Chemokine/*genetics/metabolism ; Simian Immunodeficiency Virus/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1997-02-21
    Description: Bcl-2 is an integral membrane protein located mainly on the outer membrane of mitochondria. Overexpression of Bcl-2 prevents cells from undergoing apoptosis in response to a variety of stimuli. Cytosolic cytochrome c is necessary for the initiation of the apoptotic program, suggesting a possible connection between Bcl-2 and cytochrome c, which is normally located in the mitochondrial intermembrane space. Cells undergoing apoptosis were found to have an elevation of cytochrome c in the cytosol and a corresponding decrease in the mitochondria. Overexpression of Bcl-2 prevented the efflux of cytochrome c from the mitochondria and the initiation of apoptosis. Thus, one possible role of Bcl-2 in prevention of apoptosis is to block cytochrome c release from mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, J -- Liu, X -- Bhalla, K -- Kim, C N -- Ibrado, A M -- Cai, J -- Peng, T I -- Jones, D P -- Wang, X -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1129-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027314" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/metabolism ; *Apoptosis ; Caspase 3 ; *Caspases ; Cysteine Endopeptidases/metabolism ; Cytochrome c Group/*metabolism ; Cytochromes c ; Cytosol/metabolism ; DNA Fragmentation ; Enzyme Activation ; Etoposide/pharmacology ; HL-60 Cells ; HeLa Cells ; Humans ; Intracellular Membranes/metabolism ; Membrane Potentials/drug effects ; Mitochondria/*metabolism ; Poly(ADP-ribose) Polymerases/metabolism ; Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism ; Staurosporine/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1997-03-28
    Description: The transcription factor NF-AT responds to Ca2+-calcineurin signals by translocating to the nucleus, where it participates in the activation of early immune response genes. Calcineurin dephosphorylates conserved serine residues in the amino terminus of NF-AT, resulting in nuclear import. Purification of the NF-AT kinase revealed that it is composed of a priming kinase activity and glycogen synthase kinase-3 (GSK-3). GSK-3 phosphorylates conserved serines necessary for nuclear export, promotes nuclear exit, and thereby opposes Ca2+-calcineurin signaling. Because GSK-3 responds to signals initiated by Wnt and other ligands, NF-AT family members could be effectors of these pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beals, C R -- Sheridan, C M -- Turck, C W -- Gardner, P -- Crabtree, G R -- New York, N.Y. -- Science. 1997 Mar 28;275(5308):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9072970" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; Brain/enzymology ; COS Cells ; Calcineurin ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Calmodulin-Binding Proteins/metabolism ; Cell Nucleus/*metabolism ; Cloning, Molecular ; Cyclic AMP-Dependent Protein Kinases/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glycogen Synthase Kinase 3 ; Glycogen Synthase Kinases ; Humans ; Molecular Sequence Data ; NFATC Transcription Factors ; *Nuclear Proteins ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Rats ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transcription Factors/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1997-01-10
    Description: Interaction of the p55 tumor necrosis factor receptor 1 (TNF-R1)-associated signal transducer TRADD with FADD signals apoptosis, whereas the TNF receptor-associated factor 2 protein (TRAF2) is required for activation of the nuclear transcription factor nuclear factor kappa B. TNF-induced activation of the stress-activated protein kinase (SAPK) was shown to occur through a noncytotoxic TRAF2-dependent pathway. TRAF2 was both sufficient and necessary for activation of SAPK by TNF-R1; conversely, expression of a dominant-negative FADD mutant, which blocks apoptosis, did not interfere with SAPK activation. Therefore, SAPK activation occurs through a pathway that is not required for TNF-R1-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natoli, G -- Costanzo, A -- Ianni, A -- Templeton, D J -- Woodgett, J R -- Balsano, C -- Levrero, M -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):200-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fondazione Andrea Cesalpino and Istituto di I Clinica Medica, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8985011" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/pharmacology ; *Adaptor Proteins, Signal Transducing ; Apoptosis ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/metabolism ; Cell Line ; Dactinomycin/pharmacology ; Enzyme Activation ; Fas-Associated Death Domain Protein ; Free Radical Scavengers/pharmacology ; HeLa Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; *MAP Kinase Kinase Kinase 1 ; *Mitogen-Activated Protein Kinases ; NF-kappa B/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/*metabolism ; Reactive Oxygen Species/metabolism ; Receptors, Tumor Necrosis Factor/*metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF Receptor-Associated Factor 2 ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1997-08-08
    Description: TRAIL, also called Apo2L, is a cytotoxic protein that induces apoptosis of many transformed cell lines but not of normal tissues, even though its death domain-containing receptor, DR4, is expressed on both cell types. An antagonist decoy receptor (designated as TRID for TRAIL receptor without an intracellular domain) that may explain the resistant phenotype of normal tissues was identified. TRID is a distinct gene product with an extracellular TRAIL-binding domain and a transmembrane domain but no intracellular signaling domain. TRID transcripts were detected in many normal human tissues but not in most cancer cell lines examined. Ectopic expression of TRID protected mammalian cells from TRAIL-induced apoptosis, which is consistent with a protective role. Another death domain-containing receptor for TRAIL (designated as death receptor-5), which preferentially engaged a FLICE (caspase-8)-related death protease, was also identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, G -- Ni, J -- Wei, Y F -- Yu, G -- Gentz, R -- Dixit, V M -- ES08111/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):815-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242610" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caspase 10 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cell Line, Transformed ; Cysteine Endopeptidases/metabolism ; GPI-Linked Proteins ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; Protein Sorting Signals ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Sequence Alignment ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-04
    Description: TRAIL (also known as Apo-2L) is a member of the tumor necrosis factor (TNF) ligand family that rapidly induces apoptosis in a variety of transformed cell lines. The human receptor for TRAIL was found to be an undescribed member of the TNF-receptor family (designated death receptor-4, DR4) that contains a cytoplasmic "death domain" capable of engaging the cell suicide apparatus but not the nuclear factor kappa B pathway in the system studied. Unlike Fas, TNFR-1, and DR3, DR4 could not use FADD to transmit the death signal, suggesting the use of distinct proximal signaling machinery. Thus, the DR4-TRAIL axis defines another receptor-ligand pair involved in regulating cell suicide and tissue homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, G -- O'Rourke, K -- Chinnaiyan, A M -- Gentz, R -- Ebner, R -- Ni, J -- Dixit, V M -- DAMD17-96-1-6085/DA/NIDA NIH HHS/ -- ES08111/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 1997 Apr 4;276(5309):111-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9082980" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Carrier Proteins/metabolism ; Cell Line ; Fas-Associated Death Domain Protein ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Proteins/metabolism ; RNA, Messenger/genetics/metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; TNF Receptor-Associated Factor 1 ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1997-10-06
    Description: In the absence of costimulation, T cells activated through their antigen receptor become unresponsive (anergic) and do not transcribe the gene encoding interleukin-2 (IL-2) when restimulated with antigen. Anergic alloantigen-specific human T cells contained phosphorylated Cbl that coimmunoprecipitated with Fyn. The adapter protein CrkL was associated with both phosphorylated Cbl and the guanidine nucleotide-releasing factor C3G, which catalyzes guanosine triphosphate (GTP) exchange on Rap1. Active Rap1 (GTP-bound form) was present in anergic cells. Forced expression of low amounts of Rap1-GTP in Jurkat T cells recapitulated the anergic defect and blocked T cell antigen receptor (TCR)- and CD28-mediated IL-2 gene transcription. Therefore, Rap1 functions as a negative regulator of TCR-mediated IL-2 gene transcription and may be responsible for the specific defect in IL-2 production in T cell anergy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boussiotis, V A -- Freeman, G J -- Berezovskaya, A -- Barber, D L -- Nadler, L M -- AI 35225/AI/NIAID NIH HHS/ -- AI39671/AI/NIAID NIH HHS/ -- HL 54785/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):124-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA. vassiliki_boussiotis@macmailgw.dfci.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311917" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Antigens, CD28/immunology ; *Clonal Anergy ; GTP-Binding Proteins/*metabolism ; Gene Expression Regulation ; Guanine Nucleotide Exchange Factors ; Guanosine Triphosphate/metabolism ; Humans ; Interleukin-2/*genetics ; Jurkat Cells ; Nuclear Proteins/metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-cbl ; Proto-Oncogene Proteins c-fyn ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; *Transcription, Genetic ; Transfection ; *Ubiquitin-Protein Ligases ; rap GTP-Binding Proteins ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1997-12-31
    Description: Signal transducers and activators of transcription (STATs) enhance transcription of specific genes in response to cytokines and growth factors. STAT1 is also required for efficient constitutive expression of the caspases Ice, Cpp32, and Ich-1 in human fibroblasts. As a consequence, STAT1-null cells are resistant to apoptosis by tumor necrosis factor alpha (TNF-alpha). Reintroduction of STAT1alpha restored both TNF-alpha-induced apoptosis and the expression of Ice, Cpp32, and Ich-1. Variant STAT1 proteins carrying point mutations that inactivate domains required for STAT dimer formation nevertheless restored protease expression and sensitivity to apoptosis, indicating that the functions of STAT1 required for these activities are different from those that mediate induced gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kumar, A -- Commane, M -- Flickinger, T W -- Horvath, C M -- Stark, G R -- P01 CA62220/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1630-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374464" target="_blank"〉PubMed〈/a〉
    Keywords: *Apoptosis ; Caspase 1 ; Caspase 2 ; Caspase 3 ; *Caspases ; Cell Line ; Cysteine Endopeptidases/genetics/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Dactinomycin/pharmacology ; Dimerization ; Gene Expression Regulation, Enzymologic ; Humans ; Interferon-gamma/pharmacology ; Phosphorylation ; Point Mutation ; Proteins/genetics/*metabolism ; STAT1 Transcription Factor ; Signal Transduction ; Trans-Activators/chemistry/genetics/*metabolism ; Transfection ; Tumor Necrosis Factor-alpha/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1997-09-26
    Description: Mature single-positive (SP) T lymphocytes enter a "resting" state in which they are proliferatively quiescent and relatively resistant to apoptosis. The molecular mechanisms regulating this quiescent phenotype were unknown. Here it was found that the expression of a Kruppel-like zinc finger transcription factor, lung Kruppel-like factor (LKLF), is developmentally induced during the maturation of SP quiescent T cells and rapidly extinguished after SP T cell activation. LKLF-deficient T cells produced by gene targeting had a spontaneously activated phenotype and died in the spleen and lymph nodes from Fas ligand-induced apoptosis. Thus, LKLF is required to program the quiescent state of SP T cells and to maintain their viability in the peripheral lymphoid organs and blood.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuo, C T -- Veselits, M L -- Leiden, J M -- AI29637/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 26;277(5334):1986-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9302292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD95/biosynthesis ; Apoptosis ; B-Lymphocytes/metabolism ; Cell Survival ; Chimera ; Fas Ligand Protein ; Gene Deletion ; Gene Targeting ; *Interphase ; Kruppel-Like Transcription Factors ; Lymph Nodes/cytology ; Lymphocyte Activation ; Membrane Glycoproteins/biosynthesis ; Mice ; Mice, Inbred C57BL ; Spleen/cytology ; T-Lymphocyte Subsets/metabolism ; T-Lymphocytes/*cytology/*immunology/metabolism ; Trans-Activators/biosynthesis/genetics/*physiology ; Transfection ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 1997-11-21
    Description: The Janus family of tyrosine kinases (JAK) plays an essential role in development and in coupling cytokine receptors to downstream intracellular signaling events. A t(9;12)(p24;p13) chromosomal translocation in a T cell childhood acute lymphoblastic leukemia patient was characterized and shown to fuse the 3' portion of JAK2 to the 5' region of TEL, a gene encoding a member of the ETS transcription factor family. The TEL-JAK2 fusion protein includes the catalytic domain of JAK2 and the TEL-specific oligomerization domain. TEL-induced oligomerization of TEL-JAK2 resulted in the constitutive activation of its tyrosine kinase activity and conferred cytokine-independent proliferation to the interleukin-3-dependent Ba/F3 hematopoietic cell line.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lacronique, V -- Boureux, A -- Valle, V D -- Poirel, H -- Quang, C T -- Mauchauffe, M -- Berthou, C -- Lessard, M -- Berger, R -- Ghysdael, J -- Bernard, O A -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1309-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U 301 de l'Institut National de la Sante et de la Recherche Medicale and SD 401 No. 301 CNRS, Institut de Genetique Moleculaire, 27 rue Juliette Dodu, 75010 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360930" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biopolymers ; Cell Division ; Cell Line ; Child, Preschool ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Enzyme Activation ; Humans ; Interleukin-3/physiology ; Janus Kinase 2 ; Leukemia-Lymphoma, Adult T-Cell/genetics/*metabolism ; Male ; Mice ; *Milk Proteins ; Molecular Sequence Data ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/chemistry/genetics/*metabolism ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-ets ; *Repressor Proteins ; STAT5 Transcription Factor ; Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/chemistry/genetics/metabolism ; Transfection ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-02-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golstein, P -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1081-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France. golstein@ciml.univ-mrs.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054009" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/cytology/metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/metabolism ; Caspase 1 ; *Caspases ; Cysteine Endopeptidases/metabolism ; Cytochrome c Group/metabolism ; Cytosol/metabolism ; Helminth Proteins/metabolism ; Membrane Glycoproteins/metabolism ; Mitochondria/metabolism ; Perforin ; Pore Forming Cytotoxic Proteins ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Signal Transduction ; Transfection ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-03-14
    Description: Axonal pathfinding in the nervous system is mediated in part by cell-to-cell signaling events involving members of the Eph receptor tyrosine kinase (RTK) family and their membrane-bound ligands. Genetic evidence suggests that transmembrane ligands may transduce signals in the developing embryo. The cytoplasmic domain of the transmembrane ligand Lerk2 became phosphorylated on tyrosine residues after contact with the Nuk/Cek5 receptor ectodomain, which suggests that Lerk2 has receptorlike intrinsic signaling potential. Moreover, Lerk2 is an in vivo substrate for the platelet-derived growth factor receptor, which suggests crosstalk between Lerk2 signaling and signaling cascades activated by tyrosine kinases. It is proposed that transmembrane ligands of Eph receptors act not only as conventional RTK ligands but also as receptorlike signaling molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bruckner, K -- Pasquale, E B -- Klein, R -- EY10576/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054357" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Axons/physiology ; Brain-Derived Neurotrophic Factor/metabolism ; Cell Membrane/*metabolism ; Embryo, Mammalian/metabolism ; Ephrin-B1 ; Ligands ; Mice ; Phosphorylation ; Phosphotyrosine/*metabolism ; Platelet-Derived Growth Factor/pharmacology ; Proteins/*metabolism/pharmacology ; Receptor Protein-Tyrosine Kinases/*metabolism ; Receptor, Ciliary Neurotrophic Factor ; Receptor, EphB2 ; Receptors, Nerve Growth Factor/metabolism ; Receptors, Platelet-Derived Growth Factor/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 1997-07-04
    Description: The immunosuppressant rapamycin interferes with G1-phase progression in lymphoid and other cell types by inhibiting the function of the mammalian target of rapamycin (mTOR). mTOR was determined to be a terminal kinase in a signaling pathway that couples mitogenic stimulation to the phosphorylation of the eukaryotic initiation factor (eIF)-4E-binding protein, PHAS-I. The rapamycin-sensitive protein kinase activity of mTOR was required for phosphorylation of PHAS-I in insulin-stimulated human embryonic kidney cells. mTOR phosphorylated PHAS-I on serine and threonine residues in vitro, and these modifications inhibited the binding of PHAS-I to eIF-4E. These studies define a role for mTOR in translational control and offer further insights into the mechanism whereby rapamycin inhibits G1-phase progression in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brunn, G J -- Hudson, C C -- Sekulic, A -- Williams, J M -- Hosoi, H -- Houghton, P J -- Lawrence, J C Jr -- Abraham, R T -- AR41189/AR/NIAMS NIH HHS/ -- DK28312/DK/NIDDK NIH HHS/ -- DK50628/DK/NIDDK NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):99-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204908" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Androstadienes/pharmacology ; Animals ; Carrier Proteins/pharmacology ; Cell Line ; DNA-Binding Proteins/pharmacology ; Eukaryotic Initiation Factor-4E ; G1 Phase ; Heat-Shock Proteins/pharmacology ; Humans ; Insulin/pharmacology ; Peptide Initiation Factors/metabolism ; Phosphoproteins/genetics/*metabolism ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors/*metabolism ; Polyenes/*pharmacology ; *Protein Kinases ; Rats ; Recombinant Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Signal Transduction ; Sirolimus ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1997-07-11
    Description: Niemann-Pick type C (NP-C) disease, a fatal neurovisceral disorder, is characterized by lysosomal accumulation of low density lipoprotein (LDL)-derived cholesterol. By positional cloning methods, a gene (NPC1) with insertion, deletion, and missense mutations has been identified in NP-C patients. Transfection of NP-C fibroblasts with wild-type NPC1 cDNA resulted in correction of their excessive lysosomal storage of LDL cholesterol, thereby defining the critical role of NPC1 in regulation of intracellular cholesterol trafficking. The 1278-amino acid NPC1 protein has sequence similarity to the morphogen receptor PATCHED and the putative sterol-sensing regions of SREBP cleavage-activating protein (SCAP) and 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carstea, E D -- Morris, J A -- Coleman, K G -- Loftus, S K -- Zhang, D -- Cummings, C -- Gu, J -- Rosenfeld, M A -- Pavan, W J -- Krizman, D B -- Nagle, J -- Polymeropoulos, M H -- Sturley, S L -- Ioannou, Y A -- Higgins, M E -- Comly, M -- Cooney, A -- Brown, A -- Kaneski, C R -- Blanchette-Mackie, E J -- Dwyer, N K -- Neufeld, E B -- Chang, T Y -- Liscum, L -- Strauss, J F 3rd -- Ohno, K -- Zeigler, M -- Carmi, R -- Sokol, J -- Markie, D -- O'Neill, R R -- van Diggelen, O P -- Elleder, M -- Patterson, M C -- Brady, R O -- Vanier, M T -- Pentchev, P G -- Tagle, D A -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211849" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Carrier Proteins ; Cholesterol/*metabolism ; Cholesterol, LDL/metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 18 ; Cloning, Molecular ; *Drosophila Proteins ; Homeostasis ; Humans ; Hydroxymethylglutaryl CoA Reductases/chemistry ; Insect Proteins/chemistry ; Intracellular Signaling Peptides and Proteins ; Lysosomes/metabolism ; *Membrane Glycoproteins ; Membrane Proteins/chemistry ; Molecular Sequence Data ; Mutation ; Niemann-Pick Diseases/*genetics/metabolism ; Polymorphism, Single-Stranded Conformational ; Proteins/chemistry/*genetics/physiology ; Receptors, Cell Surface/chemistry ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1997-01-10
    Description: The interleukin-1beta (IL-1beta) converting enzyme (ICE) processes the inactive IL-1beta precursor to the proinflammatory cytokine. ICE was also shown to cleave the precursor of interferon-gamma inducing factor (IGIF) at the authentic processing site with high efficiency, thereby activating IGIF and facilitating its export. Lipopolysaccharide-activated ICE-deficient (ICE-/-) Kupffer cells synthesized the IGIF precursor but failed to process it into the active form. Interferon-gamma and IGIF were diminished in the sera of ICE-/- mice exposed to Propionibacterium acnes and lipopolysaccharide. The lack of multiple proinflammatory cytokines in ICE-/- mice may account for their protection from septic shock.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Y -- Kuida, K -- Tsutsui, H -- Ku, G -- Hsiao, K -- Fleming, M A -- Hayashi, N -- Higashino, K -- Okamura, H -- Nakanishi, K -- Kurimoto, M -- Tanimoto, T -- Flavell, R A -- Sato, V -- Harding, M W -- Livingston, D J -- Su, M S -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):206-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vertex Pharmaceuticals, Inc., 130 Waverly Street, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Caspase 1 ; Caspase 3 ; *Caspases ; Caspases, Initiator ; Culture Media, Conditioned ; Cysteine Endopeptidases/*metabolism ; Cytokines/blood/*metabolism/pharmacology ; Humans ; Interferon-gamma/biosynthesis/blood ; Interleukin-18 ; Kupffer Cells/*metabolism ; Lipopolysaccharides/pharmacology ; Mice ; Protein Precursors/metabolism ; Protein Processing, Post-Translational ; Recombinant Proteins/metabolism/pharmacology ; Spleen/cytology/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1997-01-24
    Description: The nuclear factor kappaB (NF-kappaB) transcription factor is responsive to specific cytokines and stress and is often activated in association with cell damage and growth arrest in eukaryotes. NF-kappaB is a heterodimeric protein, typically composed of 50- and 65-kilodalton subunits of the Rel family, of which RelA(p65) stimulates transcription of diverse genes. Specific cyclin-dependent kinases (CDKs) were found to regulate transcriptional activation by NF-kappaB through interactions with the coactivator p300. The transcriptional activation domain of RelA(p65) interacted with an amino-terminal region of p300 distinct from a carboxyl-terminal region of p300 required for binding to the cyclin E-Cdk2 complex. The CDK inhibitor p21 or a dominant negative Cdk2, which inhibited p300-associated cyclin E-Cdk2 activity, stimulated kappaB-dependent gene expression, which was also enhanced by expression of p300 in the presence of p21. The interaction of NF-kappaB and CDKs through the p300 and CBP coactivators provides a mechanism for the coordination of transcriptional activation with cell cycle progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Perkins, N D -- Felzien, L K -- Betts, J C -- Leung, K -- Beach, D H -- Nabel, G J -- R01 AI29179/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 24;275(5299):523-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan Medical Center, 4520 MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999795" target="_blank"〉PubMed〈/a〉
    Keywords: *CDC2-CDC28 Kinases ; Cell Cycle ; Cell Line ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclin-Dependent Kinases/genetics/*metabolism ; Cyclins/genetics/metabolism ; Genes, Reporter ; Humans ; Jurkat Cells ; NF-kappa B/genetics/*metabolism ; Nuclear Proteins/genetics/*metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; *Trans-Activators ; Transcription Factor RelA ; Transcription Factors/genetics/*metabolism ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 1997-12-31
    Description: The signal transducer and activator of transcription-3 (Stat3) protein is activated by the interleukin 6 (IL-6) family of cytokines, epidermal growth factor, and leptin. A protein named PIAS3 (protein inhibitor of activated STAT) that binds to Stat3 was isolated and characterized. The association of PIAS3 with Stat3 in vivo was only observed in cells stimulated with ligands that cause the activation of Stat3. PIAS3 blocked the DNA-binding activity of Stat3 and inhibited Stat3-mediated gene activation. Although Stat1 is also phosphorylated in response to IL-6, PIAS3 did not interact with Stat1 or affect its DNA-binding or transcriptional activity. The results indicate that PIAS3 is a specific inhibitor of Stat3.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, C D -- Liao, J -- Liu, B -- Rao, X -- Jay, P -- Berta, P -- Shuai, K -- AI39612/AI/NIAID NIH HHS/ -- T32CA09056/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1803-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Carrier Proteins/chemistry/genetics/*metabolism/pharmacology ; Cell Line ; DNA/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Gene Expression Regulation ; Humans ; Interferon Regulatory Factor-1 ; Interferon-alpha/pharmacology ; Interleukin-6/pharmacology ; *Intracellular Signaling Peptides and Proteins ; Mice ; Molecular Sequence Data ; NF-kappa B/metabolism ; Phosphoproteins/genetics ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Inhibitors of Activated STAT ; Recombinant Fusion Proteins/pharmacology ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; *Signal Transduction ; Trans-Activators/*metabolism ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1997-01-17
    Description: The tyrosine kinase class of receptors induces mitogen-activated protein kinase (MAPK) activation through the sequential interaction of the signaling proteins Grb2, Sos, Ras, Raf, and MEK. Receptors coupled to heterotrimeric guanine triphosphate-binding protein (G protein) stimulate MAPK through Gbetagamma subunits, but the subsequent intervening molecules are still poorly defined. Overexpression of phosphoinositide 3-kinase gamma (PI3Kgamma) in COS-7 cells activated MAPK in a Gbetagamma-dependent fashion, and expression of a catalytically inactive mutant of PI3Kgamma abolished the stimulation of MAPK by Gbetagamma or in response to stimulation of muscarinic (m2) G protein-coupled receptors. Signaling from PI3Kgamma to MAPK appears to require a tyrosine kinase, Shc, Grb2, Sos, Ras, and Raf. These findings indicate that PI3Kgamma mediates Gbetagamma-dependent regulation of the MAPK signaling pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lopez-Ilasaca, M -- Crespo, P -- Pellici, P G -- Gutkind, J S -- Wetzker, R -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):394-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Research Unit Molecular Cell Biology, Medical Faculty, University of Jena, 07747 Jena, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8994038" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Androstadienes/pharmacology ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carbachol/pharmacology ; Cell Membrane/enzymology ; Enzyme Activation ; GRB2 Adaptor Protein ; GTP-Binding Proteins/*metabolism ; Guanine Nucleotide Exchange Factors ; Mitogen-Activated Protein Kinase 1 ; Phosphatidylinositol 3-Kinases ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/*metabolism ; Proteins/metabolism ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Muscarinic M2 ; Receptors, Muscarinic/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transfection ; Tyrosine/metabolism ; ras Guanine Nucleotide Exchange Factors ; ras Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hartl, D L -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1659-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. dhartl@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9206830" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Nucleotidyltransferases/chemistry/*genetics ; *DNA Transposable Elements ; Drosophila/genetics ; Genes, Protozoan ; Genome, Protozoan ; Leishmania major/*genetics ; Mutagenesis, Insertional ; Transfection ; Transposases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1997-01-03
    Description: Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ichijo, H -- Nishida, E -- Irie, K -- ten Dijke, P -- Saitoh, M -- Moriguchi, T -- Takagi, M -- Matsumoto, K -- Miyazono, K -- Gotoh, Y -- New York, N.Y. -- Science. 1997 Jan 3;275(5296):90-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, The Cancer Institute, Tokyo, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8974401" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cell Division ; Cell Line ; Cell Survival ; Enzyme Activation ; JNK Mitogen-Activated Protein Kinases ; MAP Kinase Kinase 6 ; MAP Kinase Kinase Kinases ; *Mitogen-Activated Protein Kinase Kinases ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/chemistry/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/metabolism ; *Signal Transduction ; Transfection ; Tumor Necrosis Factor-alpha/pharmacology ; p38 Mitogen-Activated Protein Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1997-03-14
    Description: NIH 3T3 fibroblasts stably transformed with a constitutively active isoform of p21(Ras), H-RasV12 (v-H-Ras or EJ-Ras), produced large amounts of the reactive oxygen species superoxide (.O2-). .O2- production was suppressed by the expression of dominant negative isoforms of Ras or Rac1, as well as by treatment with a farnesyltransferase inhibitor or with diphenylene iodonium, a flavoprotein inhibitor. The mitogenic activity of cells expressing H-RasV12 was inhibited by treatment with the chemical antioxidant N-acetyl-L-cysteine. Mitogen-activated protein kinase (MAPK) activity was decreased and c-Jun N-terminal kinase (JNK) was not activated in H-RasV12-transformed cells. Thus, H-RasV12-induced transformation can lead to the production of .O2- through one or more pathways involving a flavoprotein and Rac1. The implication of a reactive oxygen species, probably .O2-, as a mediator of Ras-induced cell cycle progression independent of MAPK and JNK suggests a possible mechanism for the effects of antioxidants against Ras-induced cellular transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Irani, K -- Xia, Y -- Zweier, J L -- Sollott, S J -- Der, C J -- Fearon, E R -- Sundaresan, M -- Finkel, T -- Goldschmidt-Clermont, P J -- HL52315/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1649-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054359" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Acetylcysteine/pharmacology ; Animals ; Antioxidants/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; *Cell Cycle ; Cell Line, Transformed ; *Cell Transformation, Neoplastic ; DNA/biosynthesis ; Electron Spin Resonance Spectroscopy ; GTP-Binding Proteins/metabolism ; *Genes, ras ; JNK Mitogen-Activated Protein Kinases ; Mice ; *Mitogen-Activated Protein Kinases ; Oxidation-Reduction ; Proto-Oncogene Proteins p21(ras)/genetics/*metabolism ; Reactive Oxygen Species/*metabolism ; Signal Transduction ; Superoxides/*metabolism ; Transfection ; rac GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1997-10-06
    Description: HLA-DM is a major histocompatibility complex (MHC) class II-like molecule that facilitates antigen processing by catalyzing the exchange of invariant chain-derived peptides (CLIP) from class II molecules for antigenic peptides. HLA-DO is a second class II-like molecule that physically associates with HLA-DM in B cells. HLA-DO was shown to block HLA-DM function. Purified HLA-DM-DO complexes could not promote peptide exchange in vitro. Expression of HLA-DO in a class II+ and DM+, DO- human T cell line caused the accumulation of class II-CLIP complexes, indicating that HLA-DO blocked DM function in vivo and suggesting that HLA-DO is an important modulator of class II-restricted antigen processing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denzin, L K -- Sant'Angelo, D B -- Hammond, C -- Surman, M J -- Cresswell, P -- AI14579/AI/NIAID NIH HHS/ -- AI23081/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9311912" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Antigen Presentation ; Antigens, Differentiation, B-Lymphocyte/metabolism ; B-Lymphocytes/*immunology ; HLA-D Antigens/*metabolism ; HLA-DR3 Antigen/metabolism ; Histocompatibility Antigens Class II/metabolism ; Humans ; Molecular Sequence Data ; *Nuclear Proteins ; T-Lymphocytes/*immunology ; Trans-Activators/genetics ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 1997
    Description: The ras proto-oncogene is frequently mutated in human tumors and functions to chronically stimulate signal transduction cascades resulting in the synthesis or activation of specific transcription factors, including Ets, c-Myc, c-Jun, and nuclear factor kappa B (NF-kappaB). These Ras-responsive transcription factors are required for transformation, but the mechanisms by which these proteins facilitate oncogenesis have not been fully established. Oncogenic Ras was shown to initiate a p53-independent apoptotic response that was suppressed through the activation of NF-kappaB. These results provide an explanation for the requirement of NF-kappaB for Ras-mediated oncogenesis and provide evidence that Ras-transformed cells are susceptible to apoptosis even if they do not express the p53 tumor-suppressor gene product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayo, M W -- Wang, C Y -- Cogswell, P C -- Rogers-Graham, K S -- Lowe, S W -- Der, C J -- Baldwin, A S Jr -- CA13106/CA/NCI NIH HHS/ -- CA52072/CA/NCI NIH HHS/ -- CA72771/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Dec 5;278(5344):1812-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9388187" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Adenovirus E1A Proteins/genetics/metabolism ; Animals ; *Apoptosis ; Cell Line, Transformed ; Cell Survival ; *Cell Transformation, Neoplastic ; *Gene Expression Regulation, Neoplastic ; *Genes, p53 ; *Genes, ras ; Mice ; NF-kappa B/*metabolism ; Rats ; Transfection ; Tumor Suppressor Protein p53/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1997-08-15
    Description: Members of the recently recognized SRC-1 family of transcriptional coactivators interact with steroid hormone receptors to enhance ligand-dependent transcription. AIB1, a member of the SRC-1 family, was cloned during a search on the long arm of chromosome 20 for genes whose expression and copy number were elevated in human breast cancers. AIB1 amplification and overexpression were observed in four of five estrogen receptor-positive breast and ovarian cancer cell lines. Subsequent evaluation of 105 unselected specimens of primary breast cancer found AIB1 amplification in approximately 10 percent and high expression in 64 percent of the primary tumors analyzed. AIB1 protein interacted with estrogen receptors in a ligand-dependent fashion, and transfection of AIB1 resulted in enhancement of estrogen-dependent transcription. These observations identify AIB1 as a nuclear receptor coactivator whose altered expression may contribute to development of steroid-dependent cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anzick, S L -- Kononen, J -- Walker, R L -- Azorsa, D O -- Tanner, M M -- Guan, X Y -- Sauter, G -- Kallioniemi, O P -- Trent, J M -- Meltzer, P S -- New York, N.Y. -- Science. 1997 Aug 15;277(5328):965-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Genetics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9252329" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Breast/metabolism ; Breast Neoplasms/*genetics/metabolism ; Chromosomes, Human, Pair 20 ; Cloning, Molecular ; Estradiol/metabolism/pharmacology ; Female ; *Gene Amplification ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Histone Acetyltransferases ; Humans ; In Situ Hybridization, Fluorescence ; Ligands ; Molecular Sequence Data ; Neoplasms, Hormone-Dependent/*genetics/metabolism ; Nuclear Receptor Coactivator 1 ; Nuclear Receptor Coactivator 2 ; Ovarian Neoplasms/*genetics/metabolism ; Receptors, Estrogen/genetics/*metabolism ; Transcription Factors/genetics ; Transcriptional Activation ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1997-08-01
    Description: The c-Jun amino-terminal kinase (JNK) is a member of the stress-activated group of mitogen-activated protein (MAP) kinases that are implicated in the control of cell growth. A murine cytoplasmic protein that binds specifically to JNK [the JNK interacting protein-1 (JIP-1)] was characterized and cloned. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression. In addition, JIP-1 suppressed the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. This analysis identifies JIP-1 as a specific inhibitor of the JNK signal transduction pathway and establishes protein targeting as a mechanism that regulates signaling by stress-activated MAP kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickens, M -- Rogers, J S -- Cavanagh, J -- Raitano, A -- Xia, Z -- Halpern, J R -- Greenberg, M E -- Sawyers, C L -- Davis, R J -- CA43855/CA/NCI NIH HHS/ -- CA65861/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 1;277(5326):693-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235893" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 2 ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cloning, Molecular ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Fusion Proteins, bcr-abl/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mitogen-Activated Protein Kinase 9 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-18
    Description: Membrane-bound immunoglobulin (mIg) of the IgG, IgA, and IgE classes have conserved cytoplasmic tails. To investigate the function of these tails, a B cell line was transfected with truncated or mutated gamma2a heavy chains. Transport to the endosomal compartment of antigen bound by the B cell antigen receptor did not occur in the absence of the cytoplasmic tail; and one or two mutations, respectively, in the Tyr-X-X-Met motif of the tail partially or completely interrupted the process. Experiments with chimeric antigen receptors confirmed these findings. Thus, a role for the cytoplasmic tail of mIg heavy chains in endosomal targeting of antigen is revealed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weiser, P -- Muller, R -- Braun, U -- Reth, M -- New York, N.Y. -- Science. 1997 Apr 18;276(5311):407-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Immunbiologie, Stubeweg 51, D-79108 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9103197" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; B-Lymphocytes/*immunology ; Biological Transport ; Cytoplasm ; Dimerization ; Endosomes/*immunology ; Immunoglobulin gamma-Chains/chemistry/genetics/*metabolism ; Immunologic Memory ; Mice ; Mutation ; Receptors, Antigen, B-Cell/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1997-03-21
    Description: Signal transduction by beta-catenin involves its posttranslational stabilization and downstream coupling to the Lef and Tcf transcription factors. Abnormally high amounts of beta-catenin were detected in 7 of 26 human melanoma cell lines. Unusual messenger RNA splicing and missense mutations in the beta-catenin gene (CTNNB1) that result in stabilization of the protein were identified in six of the lines, and the adenomatous polyposis coli tumor suppressor protein (APC) was altered or missing in two others. In the APC-deficient cells, ectopic expression of wild-type APC eliminated the excess beta-catenin. Cells with stabilized beta-catenin contained a constitutive beta-catenin-Lef-1 complex. Thus, genetic defects that result in up-regulation of beta-catenin may play a role in melanoma progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubinfeld, B -- Robbins, P -- El-Gamil, M -- Albert, I -- Porfiri, E -- Polakis, P -- 1R43CA69931/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 21;275(5307):1790-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, 3031 Research Drive, Richmond, CA 94806, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9065403" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Animals ; Cell Line ; Cytoskeletal Proteins/chemistry/*genetics/metabolism ; DNA-Binding Proteins/metabolism ; *Gene Expression Regulation, Neoplastic ; *Genes, APC ; Humans ; Lymphoid Enhancer-Binding Factor 1 ; Melanoma/*genetics/metabolism ; Mice ; Mutation ; Point Mutation ; RNA Splicing ; RNA, Messenger/genetics ; RNA, Neoplasm/genetics ; *Trans-Activators ; Transcription Factors/metabolism ; Transfection ; Tumor Cells, Cultured ; Up-Regulation ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 1997-12-31
    Description: The interleukin-1 receptor (IL-1R) signaling pathway leads to nuclear factor kappa B (NF-kappaB) activation in mammals and is similar to the Toll pathway in Drosophila: the IL-1R-associated kinase (IRAK) is homologous to Pelle. Two additional proximal mediators were identified that are required for IL-1R-induced NF-kappaB activation: IRAK-2, a Pelle family member, and MyD88, a death domain-containing adapter molecule. Both associate with the IL-1R signaling complex. Dominant negative forms of either attenuate IL-1R-mediated NF-kappaB activation. Therefore, IRAK-2 and MyD88 may provide additional therapeutic targets for inhibiting IL-1-induced inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muzio, M -- Ni, J -- Feng, P -- Dixit, V M -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1612-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374458" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; *Antigens, Differentiation ; Carrier Proteins/metabolism ; Cell Line ; *Drosophila Proteins ; Humans ; Interleukin-1/*metabolism ; Interleukin-1 Receptor-Associated Kinases ; Molecular Sequence Data ; Myeloid Differentiation Factor 88 ; NF-kappa B/metabolism ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; Proteins/chemistry/genetics/*metabolism ; *Receptors, Immunologic ; Receptors, Interleukin-1/*metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; *Signal Transduction ; TNF Receptor-Associated Factor 6 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 1997-11-05
    Description: Activation of the transcription factor nuclear factor kappa B (NF-kappaB) by inflammatory cytokines requires the successive action of NF-kappaB-inducing kinase (NIK) and IkappaB kinase-alpha (IKK-alpha). A widely expressed protein kinase was identified that is 52 percent identical to IKK-alpha. IkappaB kinase-beta (IKK-beta) activated NF-kappaB when overexpressed and phosphorylated serine residues 32 and 36 of IkappaB-alpha and serines 19 and 23 of IkappaB-beta. The activity of IKK-beta was stimulated by tumor necrosis factor and interleukin-1 treatment. IKK-alpha and IKK-beta formed heterodimers that interacted with NIK. Overexpression of a catalytically inactive form of IKK-beta blocked cytokine-induced NF-kappaB activation. Thus, an active IkappaB kinase complex may require three distinct protein kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woronicz, J D -- Gao, X -- Cao, Z -- Rothe, M -- Goeddel, D V -- New York, N.Y. -- Science. 1997 Oct 31;278(5339):866-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tularik, Two Corporate Drive, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9346485" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Cytokines/metabolism ; Enzyme Activation ; Genes, Reporter ; HeLa Cells ; Humans ; I-kappa B Kinase ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Sequence Homology, Amino Acid ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 1997-01-31
    Description: A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudek, H -- Datta, S R -- Franke, T F -- Birnbaum, M J -- Yao, R -- Cooper, G M -- Segal, R A -- Kaplan, D R -- Greenberg, M E -- DK39519/DK/NIDDK NIH HHS/ -- R01 CA18689/CA/NCI NIH HHS/ -- R01 CA43855/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005851" target="_blank"〉PubMed〈/a〉
    Keywords: Androstadienes/pharmacology ; Animals ; *Apoptosis/drug effects ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Survival/drug effects ; Cells, Cultured ; Cerebellum/cytology ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Insulin/pharmacology ; Insulin-Like Growth Factor I/*pharmacology ; Morpholines/pharmacology ; Neurons/*cytology/drug effects/enzymology ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 1997-02-28
    Description: A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bergelson, J M -- Cunningham, J A -- Droguett, G -- Kurt-Jones, E A -- Krithivas, A -- Hong, J S -- Horwitz, M S -- Crowell, R L -- Finberg, R W -- AI31628/AI/NIAID NIH HHS/ -- AI35667/AI/NIAID NIH HHS/ -- CA69703/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 28;275(5304):1320-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9036860" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviruses, Human/genetics/*metabolism/physiology ; Amino Acid Sequence ; Animals ; CHO Cells ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Cricetinae ; Cytopathogenic Effect, Viral ; Enterovirus B, Human/*metabolism/physiology ; Gene Transfer Techniques ; Genetic Vectors ; HeLa Cells ; Humans ; Molecular Sequence Data ; Receptors, Virus/chemistry/genetics/*isolation & purification/metabolism ; Sequence Alignment ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 1997-09-05
    Description: The transactivation properties of the two estrogen receptors, ERalpha and ERbeta, were examined with different ligands in the context of an estrogen response element and an AP1 element. ERalpha and ERbeta were shown to signal in opposite ways when complexed with the natural hormone estradiol from an AP1 site: with ERalpha, 17beta-estradiol activated transcription, whereas with ERbeta, 17beta-estradiol inhibited transcription. Moreover, the antiestrogens tamoxifen, raloxifene, and Imperial Chemical Industries 164384 were potent transcriptional activators with ERbeta at an AP1 site. Thus, the two ERs signal in different ways depending on ligand and response element. This suggests that ERalpha and ERbeta may play different roles in gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paech, K -- Webb, P -- Kuiper, G G -- Nilsson, S -- Gustafsson, J -- Kushner, P J -- Scanlan, T S -- GM 50672/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Sep 5;277(5331):1508-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143-0446, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9278514" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/metabolism ; Cell Line ; Diethylstilbestrol/metabolism/pharmacology ; *Enhancer Elements, Genetic ; Estradiol/analogs & derivatives/metabolism/pharmacology ; Estrogen Antagonists/*pharmacology ; Estrogen Receptor alpha ; Estrogen Receptor beta ; Estrogens/*pharmacology ; Female ; HeLa Cells ; Humans ; Ligands ; Piperidines/metabolism/pharmacology ; Polyunsaturated Alkamides ; Raloxifene Hydrochloride ; Rats ; Receptors, Estrogen/*metabolism ; Tamoxifen/metabolism/pharmacology ; Transcription Factor AP-1/*genetics ; *Transcriptional Activation/drug effects ; Transfection ; Tumor Cells, Cultured ; Uterus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 1997-06-20
    Description: The avian sarcoma virus 16 (ASV 16) is a retrovirus that induces hemangiosarcomas in chickens. Analysis of the ASV 16 genome revealed that it encodes an oncogene that is derived from the cellular gene for the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase). The gene is referred to as v-p3k, and like its cellular counterpart c-p3k, it is a potent transforming gene in cultured chicken embryo fibroblasts (CEFs). The products of the viral and cellular p3k genes have PI 3-kinase activity. CEFs transformed with either gene showed elevated levels of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate and activation of Akt kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H W -- Aoki, M -- Fruman, D -- Auger, K R -- Bellacosa, A -- Tsichlis, P N -- Cantley, L C -- Roberts, T M -- Vogt, P K -- CA 42564/CA/NCI NIH HHS/ -- GM 41890/GM/NIGMS NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1848-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188528" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Avian Sarcoma Viruses/*genetics/physiology ; *Cell Transformation, Neoplastic ; *Cell Transformation, Viral ; Cells, Cultured ; Chick Embryo ; Chickens ; Cloning, Molecular ; Enzyme Activation ; Genes, Viral ; Hemangiosarcoma/genetics/virology ; Molecular Sequence Data ; *Oncogenes ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/*genetics/metabolism ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 1997-06-13
    Description: Transposable elements of the mariner/Tc1 family are postulated to have spread by horizontal transfer and be relatively independent of host-specific factors. This was tested by introducing the Drosophila mauritiana element mariner into the human parasite Leishmania major, a trypanosomatid protozoan belonging to one of the most ancient eukaryotic lineages. Transposition in Leishmania was efficient, occurring in more than 20 percent of random transfectants, and proceeded by the same mechanism as in Drosophila. Insertional inactivation of a specific gene was obtained, and a modified mariner element was used to select for gene fusions, establishing mariner as a powerful genetic tool for Leishmania and other organisms. These experiments demonstrate the evolutionary range of mariner transposition in vivo and underscore the ability of this ubiquitous DNA to parasitize the eukaryotic genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gueiros-Filho, F J -- Beverley, S M -- AI2964/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1716-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Biological Evolution ; *Cinnamates ; DNA Nucleotidyltransferases/chemistry/*genetics ; *DNA Transposable Elements ; Drosophila/*genetics ; Drug Resistance ; Genes, Protozoan ; Genome, Protozoan ; Hygromycin B/analogs & derivatives/pharmacology ; Leishmania major/drug effects/*genetics ; Mutagenesis, Insertional ; RNA, Messenger/genetics/metabolism ; RNA, Protozoan/genetics/metabolism ; Species Specificity ; Transfection ; Transposases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 1997-09-20
    Description: Renal 25-hydroxyvitamin D3 1alpha-hydroxylase [1alpha(OH)ase] catalyzes metabolic activation of 25-hydroxyvitamin D3 into 1alpha, 25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], an active form of vitamin D, and is inhibited by 1alpha,25(OH)2D3. 1alpha(OH)ase, which was cloned from the kidney of mice lacking the vitamin D receptor (VDR-/- mice), is a member of the P450 family of enzymes (P450VD1alpha). Expression of 1alpha(OH)ase was suppressed by 1alpha, 25(OH)2D3 in VDR+/+ and VDR+/- mice but not in VDR-/- mice. These results indicate that the negative feedback regulation of active vitamin D synthesis is mediated by 1alpha(OH)ase through liganded VDR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeyama, K -- Kitanaka, S -- Sato, T -- Kobori, M -- Yanagisawa, J -- Kato, S -- New York, N.Y. -- Science. 1997 Sep 19;277(5333):1827-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9295274" target="_blank"〉PubMed〈/a〉
    Keywords: 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/*genetics/*metabolism ; Amino Acid Sequence ; Animals ; COS Cells ; Calcifediol/metabolism ; Calcitriol/*biosynthesis/metabolism/pharmacology ; Cloning, Molecular ; Feedback ; *Gene Expression Regulation, Enzymologic ; Kidney/enzymology/metabolism ; Ligands ; Mice ; Mice, Knockout ; Molecular Sequence Data ; RNA, Messenger/genetics/metabolism ; Receptors, Calcitriol/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-25
    Description: Transcription of c-myc in plasma cells, which are terminally differentiated B cells, is repressed by plasmacytoma repressor factor. This factor was identified as Blimp-1, known for its ability to induce B cell differentiation. Blimp-1 repressed c-myc promoter activity in a binding site-dependent manner. Treatment of BCL1 lymphoma cells with interleukin-2 (IL-2) plus IL-5 induced Blimp-1 and caused a subsequent decline in c-Myc protein. Ectopic expression of Blimp-1 in Abelson-transformed precursor B cells repressed endogenous c-Myc and caused apoptosis; Blimp-1-induced death was partially overcome by ectopic expression of c-Myc. Thus, repression of c-myc is a component of the Blimp-1 program of terminal B cell differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Y -- Wong, K -- Calame, K -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):596-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110979" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; B-Lymphocytes/*cytology/metabolism ; Binding Sites ; Cell Differentiation ; Cell Line ; Gene Expression Regulation ; *Genes, myc ; Interleukin-2/pharmacology ; Interleukin-5/pharmacology ; Mice ; Mutagenesis, Site-Directed ; Plasmacytoma ; Promoter Regions, Genetic ; *Repressor Proteins ; Transcription Factors/genetics/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 1997-02-21
    Description: Previous genetic studies of the nematode Caenorhabditis elegans identified three important components of the cell death machinery. CED-3 and CED-4 function to kill cells, whereas CED-9 protects cells from death. Here CED-9 and its mammalian homolog Bcl-xL (a member of the Bcl-2 family of cell death regulators) were both found to interact with and inhibit the function of CED-4. In addition, analysis revealed that CED-4 can simultaneously interact with CED-3 and its mammalian counterparts interleukin-1beta-converting enzyme (ICE) and FLICE. Thus, CED-4 plays a central role in the cell death pathway, biochemically linking CED-9 and the Bcl-2 family to CED-3 and the ICE family of pro-apoptotic cysteine proteases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chinnaiyan, A M -- O'Rourke, K -- Lane, B R -- Dixit, V M -- 7863/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 21;275(5303):1122-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Michigan Medical School, Department of Pathology, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9027312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Apoptosis Regulatory Proteins ; Caenorhabditis elegans/*cytology/genetics/metabolism ; *Caenorhabditis elegans Proteins ; Calcium-Binding Proteins/genetics/*metabolism ; Caspase 1 ; Caspase 8 ; Caspase 9 ; *Caspases ; Cell Line ; Cysteine Endopeptidases/genetics/*metabolism ; Genes, Helminth ; Helminth Proteins/genetics/*metabolism ; Humans ; Mutation ; Proto-Oncogene Proteins/genetics/*metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Transfection ; Tumor Cells, Cultured ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...