ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cells, Cultured  (50)
  • American Association for the Advancement of Science (AAAS)  (50)
  • American Meteorological Society
  • Institute of Physics
  • 2020-2024
  • 1995-1999  (50)
  • 1945-1949
  • 1997  (50)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (50)
  • American Meteorological Society
  • Institute of Physics
Years
  • 2020-2024
  • 1995-1999  (50)
  • 1945-1949
Year
  • 1
    Publication Date: 1997-07-04
    Description: Angiogenesis is thought to depend on a precise balance of positive and negative regulation. Angiopoietin-1 (Ang1) is an angiogenic factor that signals through the endothelial cell-specific Tie2 receptor tyrosine kinase. Like vascular endothelial growth factor, Ang1 is essential for normal vascular development in the mouse. An Ang1 relative, termed angiopoietin-2 (Ang2), was identified by homology screening and shown to be a naturally occurring antagonist for Ang1 and Tie2. Transgenic overexpression of Ang2 disrupts blood vessel formation in the mouse embryo. In adult mice and humans, Ang2 is expressed only at sites of vascular remodeling. Natural antagonists for vertebrate receptor tyrosine kinases are atypical; thus, the discovery of a negative regulator acting on Tie2 emphasizes the need for exquisite regulation of this angiogenic receptor system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maisonpierre, P C -- Suri, C -- Jones, P F -- Bartunkova, S -- Wiegand, S J -- Radziejewski, C -- Compton, D -- McClain, J -- Aldrich, T H -- Papadopoulos, N -- Daly, T J -- Davis, S -- Sato, T N -- Yancopoulos, G D -- New York, N.Y. -- Science. 1997 Jul 4;277(5322):55-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9204896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Angiopoietin-1 ; Angiopoietin-2 ; Animals ; Blood Vessels/embryology/*metabolism ; Cells, Cultured ; Cloning, Molecular ; Embryo, Mammalian/metabolism ; Endothelial Growth Factors/genetics/metabolism ; Endothelium, Vascular/*cytology/metabolism ; Female ; Humans ; Ligands ; Lymphokines/genetics/metabolism ; Membrane Glycoproteins/antagonists & inhibitors/metabolism ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Neovascularization, Physiologic ; Phosphorylation ; Proteins/chemistry/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Receptor, TIE-2 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thomas, K R -- Capecchi, M R -- New York, N.Y. -- Science. 1997 Mar 7;275(5305):1404-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9072801" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Anemia, Sickle Cell/*genetics ; B-Lymphocytes ; Cells, Cultured ; DNA, Recombinant ; *Gene Conversion ; Hemoglobin, Sickle/*genetics ; Humans ; Mutation ; Oligonucleotides/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-06-13
    Description: Two families of small peptides that bind to the human thrombopoietin receptor and compete with the binding of the natural ligand thrombopoietin (TPO) were identified from recombinant peptide libraries. The sequences of these peptides were not found in the primary sequence of TPO. Screening libraries of variants of one of these families under affinity-selective conditions yielded a 14-amino acid peptide (Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala) with high affinity (dissociation constant approximately 2 nanomolar) that stimulates the proliferation of a TPO-responsive Ba/F3 cell line with a median effective concentration (EC50) of 400 nanomolar. Dimerization of this peptide by a carboxyl-terminal linkage to a lysine branch produced a compound with an EC50 of 100 picomolar, which was equipotent to the 332-amino acid natural cytokine in cell-based assays. The peptide dimer also stimulated the in vitro proliferation and maturation of megakaryocytes from human bone marrow cells and promoted an increase in platelet count when administered to normal mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cwirla, S E -- Balasubramanian, P -- Duffin, D J -- Wagstrom, C R -- Gates, C M -- Singer, S C -- Davis, A M -- Tansik, R L -- Mattheakis, L C -- Boytos, C M -- Schatz, P J -- Baccanari, D P -- Wrighton, N C -- Barrett, R W -- Dower, W J -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1696-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Affymax Research Institute, 4001 Miranda Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180079" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding, Competitive ; Blood Platelets/cytology ; Cell Division ; Cell Line ; Cells, Cultured ; Consensus Sequence ; Dimerization ; Erythropoietin/pharmacology ; Hematopoiesis/drug effects ; Humans ; Megakaryocytes/cytology ; Mice ; Molecular Sequence Data ; *Neoplasm Proteins ; Oligopeptides/*metabolism/*pharmacology ; Peptide Library ; Peptides/metabolism/pharmacology ; Platelet Count ; Proto-Oncogene Proteins/*agonists/metabolism ; *Receptors, Cytokine ; Receptors, Thrombopoietin ; Recombinant Proteins/metabolism/pharmacology ; Thrombopoietin/*metabolism/pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-08-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9289850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Axonal Transport ; Axons/*metabolism ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; Gene Expression Regulation ; Nerve Growth Factors/*metabolism ; Neurons/*metabolism ; Proto-Oncogene Proteins/metabolism ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, trkA ; Receptors, Nerve Growth Factor/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1997 May 2;276(5313):682.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9157547" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/diagnosis/enzymology/*genetics ; Brain/*enzymology ; Cells, Cultured ; Electron Transport Complex IV/*genetics/metabolism ; Energy Metabolism ; Humans ; Mitochondria/*genetics ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1997-04-25
    Description: Spinal cord injuries result in paralysis, because when damaged neurons die they are not replaced. Neurogenesis of electrophysiologically functional neurons occurred in spinal cord cultured from postnatal rats. In these cultures, the numbers of immunocytochemically identified neurons increased over time. Additionally, neurons identified immunocytochemically or electrophysiologically incorporated bromodeoxyuridine, confirming they had differentiated from mitotic cells in vitro. These findings suggest that postnatal spinal cord retains the capacity to generate functional neurons. The presence of neuronal precursor cells in postnatal spinal cord may offer new therapeutic approaches for restoration of function to individuals with spinal cord injuries.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kehl, L J -- Fairbanks, C A -- Laughlin, T M -- Wilcox, G L -- DA07097/DA/NIDA NIH HHS/ -- DA07234/DA/NIDA NIH HHS/ -- DE00225/DE/NIDCR NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):586-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA. 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110976" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Bromodeoxyuridine/metabolism ; Cell Differentiation ; Cells, Cultured ; Culture Media ; Glial Fibrillary Acidic Protein/analysis ; Immunohistochemistry ; Mitosis ; Neurons/chemistry/*cytology/metabolism ; Phosphopyruvate Hydratase/analysis ; Rats ; Spinal Cord/chemistry/*cytology ; Tubulin/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1997-12-31
    Description: Natural killer T (NKT) lymphocytes express an invariant T cell antigen receptor (TCR) encoded by the Valpha14 and Jalpha281 gene segments. A glycosylceramide-containing alpha-anomeric sugar with a longer fatty acyl chain (C26) and sphingosine base (C18) was identified as a ligand for this TCR. Glycosylceramide-mediated proliferative responses of Valpha14 NKT cells were abrogated by treatment with chloroquine-concanamycin A or by monoclonal antibodies against CD1d/Vbeta8, CD40/CD40L, or B7/CTLA-4/CD28, but not by interference with the function of a transporter-associated protein. Thus, this lymphocyte shares distinct recognition systems with either T or NK cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawano, T -- Cui, J -- Koezuka, Y -- Toura, I -- Kaneko, Y -- Motoki, K -- Ueno, H -- Nakagawa, R -- Sato, H -- Kondo, E -- Koseki, H -- Taniguchi, M -- New York, N.Y. -- Science. 1997 Nov 28;278(5343):1626-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CREST (Core Research for Evolutional Science and Technology) Project, Japan Science and Technology Corporation (JST), 1-8-1 Inohana, Chuo, Chiba 260, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9374463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD1/*immunology ; Carbohydrate Conformation ; Cells, Cultured ; Ceramides/chemistry/metabolism/*pharmacology ; Cerebrosides/chemistry/metabolism/*pharmacology ; Coculture Techniques ; Galactosylceramides/chemistry/metabolism/pharmacology ; Glucosylceramides/chemistry/metabolism/pharmacology ; Killer Cells, Natural/*immunology ; Ligands ; *Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Receptors, Antigen, T-Cell, alpha-beta/*immunology ; Structure-Activity Relationship ; T-Lymphocyte Subsets/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keulen, W -- Nijhuis, M -- Schuurman, R -- Berkhout, B -- Boucher, C -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):229; author reply 230-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999550" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/*pharmacology ; Cells, Cultured ; Drug Resistance, Microbial ; Drug Therapy, Combination ; Genetic Variation ; HIV Infections/drug therapy/virology ; HIV Reverse Transcriptase/*genetics/metabolism ; HIV-1/drug effects/*enzymology/genetics ; Humans ; Lamivudine/*pharmacology/therapeutic use ; Mutation ; Reverse Transcriptase Inhibitors/*pharmacology ; Zidovudine/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, J -- New York, N.Y. -- Science. 1997 Feb 28;275(5304):1258.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9064779" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*immunology/virology ; CD4-Positive T-Lymphocytes/immunology/*virology ; Cells, Cultured ; HIV/*physiology ; Humans ; Immunity, Innate ; Male ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-05-30
    Description: Despite myriads of biological activities ascribed to uteroglobin (UG), a steroid-inducible secreted protein, its physiological functions are unknown. Mice in which the uteroglobin gene was disrupted had severe renal disease that was associated with massive glomerular deposition of predominantly multimeric fibronectin (Fn). The molecular mechanism that normally prevents Fn deposition appears to involve high-affinity binding of UG with Fn to form Fn-UG heteromers that counteract Fn self-aggregation, which is required for abnormal tissue deposition. Thus, UG is essential for maintaining normal renal function in mice, which raises the possibility that an analogous pathogenic mechanism may underlie genetic Fn-deposit human glomerular disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Z -- Kundu, G C -- Yuan, C J -- Ward, J M -- Lee, E J -- DeMayo, F -- Westphal, H -- Mukherjee, A B -- HL47620/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 May 30;276(5317):1408-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development (NICHD), National Insitutes of Health (NIH), Bethesda, MD 20892-1830, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9162006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Crosses, Genetic ; Fibronectins/*metabolism ; Gene Targeting ; Humans ; Kidney Diseases/embryology/genetics/pathology ; *Kidney Glomerulus/embryology/metabolism/ultrastructure ; Mice ; Mice, Inbred C57BL ; Uteroglobin/deficiency/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: Interest in bacterial pathogenesis has recently increased because of antibiotic resistance, the emergence of new pathogens and the resurgence of old ones, and the lack of effective therapeutics. The molecular and cellular mechanisms of microbial pathogenesis are currently being defined, with precise knowledge of both the common strategies used by multiple pathogenic bacteria and the unique tactics evolved by individual species to help establish infection. What is emerging is a new appreciation of how bacterial pathogens interact with host cells. Many host cell functions, including signal transduction pathways, cytoskeletal rearrangements, and vacuolar trafficking, are exploited, and these are the focus of this review. A bonus of this work is that bacterial virulence factors are providing new tools to study various aspects of mammalian cell functions, in addition to mechanisms of bacterial disease. Together these developments may lead to new therapeutic strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finlay, B B -- Cossart, P -- New York, N.Y. -- Science. 1997 May 2;276(5313):718-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Laboratory, University of British Columbia, Vancouver, B.C., Canada, V6T-1Z3. bfinlay@unixg.ubc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Bacteria/genetics/*pathogenicity ; *Bacterial Adhesion ; Bacterial Infections/*microbiology ; Bacterial Physiological Phenomena ; Bacterial Toxins/toxicity ; Cells, Cultured ; Cytoskeleton/physiology ; Epithelial Cells ; Epithelium/microbiology ; Humans ; Phagocytosis ; Signal Transduction ; Vacuoles/microbiology ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1997-07-11
    Description: BOB.1/OBF.1 is a transcriptional coactivator that is constitutively expressed in B cells and interacts with the Oct1 and Oct2 transcription factors. Upon activation of Jurkat T cells and primary murine thymocytes with phorbol esters and ionomycin, BOB.1/OBF.1 expression and transactivation function were induced. BOB.1/OBF.1 was phosphorylated at Ser184 both in vivo and in vitro, and this modification was required for inducible activation. Mutation of Ser184 also diminished transactivation function in B cells, suggesting that the activating phosphorylation that is inducible in T cells is constitutively present in B cells. Thus, BOB.1/OBF.1 is a transcriptional coactivator that is critically regulated by posttranslational modifications to mediate cell type-specific gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zwilling, S -- Dieckmann, A -- Pfisterer, P -- Angel, P -- Wirth, T -- New York, N.Y. -- Science. 1997 Jul 11;277(5323):221-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MSZ, Institut fur Medizinische Strahlenkunde und Zellforschung, Universitat Wurzburg, Versbacher Strasse 5, 97078 Wurzburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9211847" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/metabolism ; Cells, Cultured ; *DNA-Binding Proteins ; *Gene Expression Regulation ; HeLa Cells ; Homeodomain Proteins/metabolism ; Host Cell Factor C1 ; Humans ; Immunosuppressive Agents/pharmacology ; Ionomycin/pharmacology ; Jurkat Cells ; *Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Octamer Transcription Factor-1 ; Phosphorylation ; Phosphoserine/metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/immunology/*metabolism ; Tetradecanoylphorbol Acetate/pharmacology ; Trans-Activators/genetics/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1997-10-10
    Description: The clonal selection theory states that B lymphocytes producing high-affinity immunoglobulins are selected from a pool of cells undergoing antibody gene mutation. Somatic hypermutation is a well-documented mechanism for achieving diversification of immune responses in mature B cells. Antibody genes were also found to be modified in such cells in germinal centers by recombination of the variable (V), diversity (D), and joining (J) segments. The ability to alter immunoglobulin expression by V(D)J recombination in the selective environment of the germinal center may be an additional mechanism for inactivation or diversification of immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papavasiliou, F -- Casellas, R -- Suh, H -- Qin, X F -- Besmer, E -- Pelanda, R -- Nemazee, D -- Rajewsky, K -- Nussenzweig, M C -- AI33890/AI/NIAID NIH HHS/ -- R01 AI033608/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 10;278(5336):298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9323210" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Diversity ; B-Lymphocytes/*immunology ; Cells, Cultured ; DNA Nucleotidyltransferases/genetics/metabolism ; DNA-Binding Proteins/genetics ; Gene Expression ; *Gene Rearrangement, B-Lymphocyte ; Genes, Immunoglobulin ; Genes, RAG-1 ; Germinal Center/cytology/immunology ; Immunoglobulin Joining Region/*genetics ; Immunoglobulin M/biosynthesis/genetics ; Immunoglobulin Variable Region/*genetics ; Lymphocyte Activation ; Mice ; *Recombination, Genetic ; VDJ Recombinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1997-03-28
    Description: Signal transmission by many cell surface receptors results in the activation of phosphoinositide (PI) 3-kinases that phosphorylate the 3' position of polyphosphoinositides. From a screen for mouse proteins that bind phosphoinositides, the protein GRP1was identified. GRP1 binds phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4, 5)P3] through a pleckstrin homology (PH) domain and displays a region of high sequence similarity to the yeast Sec7 protein. The PH domain of the closely related protein cytohesin-1, which, through its Sec7 homology domain, regulates integrin beta2 and catalyzes guanine nucleotide exchange of the small guanine nucleotide-binding protein ARF1, was also found to specifically bind PtdIns(3,4,5)P3. GRP1 and cytohesin-1 appear to connect receptor-activated PI 3-kinase signaling pathways with proteins that mediate biological responses such as cell adhesion and membrane trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klarlund, J K -- Guilherme, A -- Holik, J J -- Virbasius, J V -- Chawla, A -- Czech, M P -- DK30648/DK/NIDDK NIH HHS/ -- DK30898/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 28;275(5308):1927-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9072969" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factor 1 ; ADP-Ribosylation Factors ; Adipocytes/chemistry ; Amino Acid Sequence ; Animals ; Antigens, CD18/metabolism ; Blood Proteins/*chemistry ; Brain Chemistry ; Cell Adhesion Molecules/chemistry/*metabolism ; Cell Membrane/metabolism ; Cells, Cultured ; Cloning, Molecular ; DNA, Complementary ; Fungal Proteins/*chemistry ; GTP-Binding Proteins/metabolism ; *Guanine Nucleotide Exchange Factors ; Humans ; Mice ; Molecular Sequence Data ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/*metabolism ; *Phosphoproteins ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor)/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Homology, Amino Acid ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1997-01-31
    Description: The N-methyl-D-aspartate (NMDA) receptor mediates synaptic transmission and plasticity in the central nervous system (CNS) and is regulated by tyrosine phosphorylation. In membrane patches excised from mammalian central neurons, the endogenous tyrosine kinase Src was shown to regulate the activity of NMDA channels. The action of Src required a sequence [Src(40-58)] within the noncatalytic, unique domain of Src. In addition, Src coprecipitated with NMDA receptor proteins. Finally, endogenous Src regulated the function of NMDA receptors at synapses. Thus, NMDA receptor regulation by Src may be important in development, plasticity, and pathology in the CNS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, X M -- Askalan, R -- Keil, G J 2nd -- Salter, M W -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):674-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto, Ontario, M5G 1X8 Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005855" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cells, Cultured ; Ion Channel Gating ; Ion Channels/*metabolism ; Molecular Sequence Data ; N-Methylaspartate/metabolism ; Neurons/*metabolism ; Oligopeptides/pharmacology ; Patch-Clamp Techniques ; Phosphorylation ; Phosphotyrosine/metabolism ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Spinal Cord/cytology ; Synapses/*metabolism ; Synaptic Transmission ; src-Family Kinases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 1997-02-14
    Description: Posttetanic potentiation (PTP) is a common form of short-term synaptic plasticity that is generally thought to be entirely presynaptic. Consistent with that idea, PTP of evoked excitatory postsynaptic potentials at Aplysia sensory-motor neuron synapses in cell culture was reduced by presynaptic injection of a slow calcium chelator and was accompanied by an increase in the frequency but not the amplitude of spontaneous excitatory postsynaptic potentials. However, PTP was also reduced by postsynaptic injection of a rapid calcium chelator or postsynaptic hyperpolarization. Thus, PTP at these synapses is likely to involve a postsynaptic induction mechanism in addition to the known presynaptic mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bao, J X -- Kandel, E R -- Hawkins, R D -- MH 26212/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):969-73.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020078" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Octanol ; Action Potentials ; Animals ; Aplysia ; Calcium/physiology ; Cells, Cultured ; Chelating Agents/pharmacology ; Egtazic Acid/analogs & derivatives/pharmacology ; Long-Term Potentiation ; Motor Neurons/*physiology ; *Neuronal Plasticity ; Neurons, Afferent/*physiology ; Octanols/pharmacology ; Serotonin/pharmacology ; Synapses/*physiology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-10
    Description: In vivo, cytoplasmic microtubules are nucleated and anchored by their minus ends at the centrosome and are believed to turn over by a mechanism termed dynamic instability: depolymerization and repolymerization at their plus ends. In cytoplasmic fragments of fish melanophores, microtubules were shown to detach from their nucleation site and depolymerize from their minus ends. Free microtubules moved toward the periphery by treadmilling-growth at one end and shortening from the opposite end. Frequent release from nucleation sites may be a general property of centrosomes and permit a minus-end mechanism of microtubule turnover and treadmilling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodionov, V I -- Borisy, G G -- GM25062/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):215-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA. ggborisy@facstaf.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8985015" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; Cells, Cultured ; Centrosome/metabolism ; Cytoplasm/metabolism/ultrastructure ; Fishes ; Kinetics ; Melanophores/ultrastructure ; Microtubules/metabolism/*physiology/ultrastructure ; Movement ; Pigments, Biological/metabolism ; Polymers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelner, K L -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):547.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9148416" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Calcium-Binding Proteins ; Cells, Cultured ; Electric Stimulation ; Hippocampus ; Membrane Glycoproteins/metabolism ; Membrane Proteins/metabolism ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Neurotransmitter Agents/*metabolism ; R-SNARE Proteins ; Rats ; Recombinant Fusion Proteins/metabolism ; Synapses/*metabolism ; Synaptic Transmission ; Synaptotagmins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1997-01-31
    Description: The relation between an antigenic peptide that can stimulate a mature T cell and the natural peptide that promoted selection of this cell in the thymus is still unknown. An experimental system was devised to address this issue in vivo-mice expressing neopeptides in thymic stromal cells after adenovirus-mediated delivery of invariant chain-peptide fusion proteins. In this system, selection of T cells capable of responding to a given antigenic peptide could be promoted by the peptide itself, by closely related analogs lacking agonist and antagonist activity, or by ostensibly unrelated peptides. However, the precise repertoire of T cells selected was dictated by the particular neopeptide expressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakano, N -- Rooke, R -- Benoist, C -- Mathis, D -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):678-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (INSERM, CNRS, Universite Louis Pasteur), 1 rue Laurent Fries, 67404 Illkirch, C.U. de Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005856" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics ; Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/immunology ; Antigens, Differentiation, B-Lymphocyte/genetics ; Cells, Cultured ; Cloning, Molecular ; Cross Reactions ; Cytochrome c Group/immunology ; DNA, Complementary/genetics ; Genetic Vectors ; Histocompatibility Antigens Class II/genetics ; Hybridomas ; Interleukin-2/biosynthesis ; *Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Peptides/chemistry/*immunology ; Receptors, Antigen, T-Cell/*immunology ; Recombinant Fusion Proteins ; T-Lymphocytes/*immunology ; Thymus Gland/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 1997-04-11
    Description: Osteoclasts are multinucleated cells responsible for bone resorption. During the resorption cycle, osteoclasts undergo dramatic changes in their polarity, and resorbing cells reveal four functionally and structurally different membrane domains. Bone degradation products, both organic and inorganic, were endocytosed from the ruffled border membrane. They were then found to be transported in vesicles through the cell to the plasma membrane domain, located in the middle of the basal membrane, where they were liberated into the extracellular space. These results explain how resorbing osteoclasts can simultaneously remove large amounts of matrix degradation products and penetrate into bone.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salo, J -- Lehenkari, P -- Mulari, M -- Metsikko, K -- Vaananen, H K -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):270-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Biocenter, University of Oulu, Kajaanintie 52 A, 90220 Oulu, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092479" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Biological Transport ; Biotin/metabolism ; Bone Matrix/*metabolism ; *Bone Resorption ; Cattle ; Cell Membrane/metabolism/ultrastructure ; Cell Polarity ; Cells, Cultured ; Endocytosis ; Extracellular Space/metabolism ; Microscopy, Confocal ; Microscopy, Electron ; Minerals/metabolism ; Organelles/metabolism ; Osteocalcin/metabolism ; Osteoclasts/*metabolism/ultrastructure ; Rats ; Tetracycline/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1997-10-23
    Description: A mechanism by which members of the ciliary neurotrophic factor (CNTF)-leukemia inhibitory factor cytokine family regulate gliogenesis in the developing mammalian central nervous system was characterized. Activation of the CNTF receptor promoted differentiation of cerebral cortical precursor cells into astrocytes and inhibited differentiation of cortical precursors along a neuronal lineage. Although CNTF stimulated both the Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Ras-mitogen-activated protein kinase signaling pathways in cortical precursor cells, the JAK-STAT signaling pathway selectively enhanced differentiation of these precursors along a glial lineage. These findings suggest that cytokine activation of the JAK-STAT signaling pathway may be a mechanism by which cell fate is controlled during mammalian development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bonni, A -- Sun, Y -- Nadal-Vicens, M -- Bhatt, A -- Frank, D A -- Rozovsky, I -- Stahl, N -- Yancopoulos, G D -- Greenberg, M E -- NIHP30-HD 18655/HD/NICHD NIH HHS/ -- R01 CA43855/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 17;278(5337):477-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neuroscience, Children's Hospital, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9334309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/metabolism ; Astrocytes/*cytology/drug effects/metabolism ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cells, Cultured ; Cerebral Cortex/*cytology/embryology ; Ciliary Neurotrophic Factor ; Cytokine Receptor gp130 ; DNA-Binding Proteins/*metabolism ; Dimerization ; Glial Fibrillary Acidic Protein/biosynthesis ; Growth Inhibitors/metabolism/pharmacology ; *Interleukin-6 ; Janus Kinase 1 ; Leukemia Inhibitory Factor ; Leukemia Inhibitory Factor Receptor alpha Subunit ; Lymphokines/metabolism/pharmacology ; Membrane Glycoproteins/metabolism ; Nerve Growth Factors/pharmacology ; Nerve Tissue Proteins/metabolism/pharmacology ; Platelet-Derived Growth Factor/pharmacology ; Protein-Tyrosine Kinases/*metabolism ; Rats ; Receptor Protein-Tyrosine Kinases/metabolism ; Receptor, Ciliary Neurotrophic Factor ; Receptors, Cytokine/metabolism ; Receptors, Nerve Growth Factor/metabolism ; Receptors, OSM-LIF ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; *Signal Transduction ; Stem Cells/cytology ; Trans-Activators/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1997-10-24
    Description: CD8(+) T lymphocytes from individuals infected with human immunodeficiency virus-type 1 (HIV-1) secrete a soluble activity that suppresses infection by HIV-1. A protein associated with this activity was purified from the culture supernatant of an immortalized CD8(+) T cell clone and identified as the beta-chemokine macrophage-derived chemokine (MDC). MDC suppressed infection of CD8(+) cell-depleted peripheral blood mononuclear cells by primary non-syncytium-inducing and syncytium-inducing isolates of HIV-1 and the T cell line-adapted isolate HIV-1IIIB. MDC was expressed in activated, but not resting, peripheral blood mononuclear cells and binds a receptor on activated primary T cells. These observations indicate that beta-chemokines are responsible for a major proportion of HIV-1-specific suppressor activity produced by primary T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pal, R -- Garzino-Demo, A -- Markham, P D -- Burns, J -- Brown, M -- Gallo, R C -- DeVico, A L -- N01-AI-55279/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 24;278(5338):695-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Advanced BioScience Laboratories, 5510 Nicholson Lane, Kensington, MD 20895, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9381181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antiviral Agents/*immunology ; Blotting, Northern ; CD8-Positive T-Lymphocytes/*immunology ; Calcium/blood ; Cell Line ; Cell Line, Transformed ; Cells, Cultured ; Chemokine CCL22 ; Chemokines, CC/chemistry/*immunology/isolation & purification/metabolism ; HIV Core Protein p24/biosynthesis ; HIV Infections/immunology ; HIV-1/*immunology/physiology ; Humans ; Leukocytes, Mononuclear/immunology/metabolism/*virology ; Lymphocyte Activation ; Receptors, Chemokine/metabolism ; Receptors, HIV/metabolism ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1997-04-11
    Description: The chemokine receptors CXCR4 and CCR5 have recently been shown to act as coreceptors, in concert with CD4, for human immunodeficiency virus-type 1 (HIV-1) infection. RANTES and other chemokines that interact with CCR5 and block infection of peripheral blood mononuclear cell cultures inhibit infection of primary macrophages inefficiently at best. If used to treat HIV-1-infected individuals, these chemokines could fail to influence HIV replication in nonlymphocyte compartments while promoting unwanted inflammatory side effects. A derivative of RANTES that was created by chemical modification of the amino terminus, aminooxypentane (AOP)-RANTES, did not induce chemotaxis and was a subnanomolar antagonist of CCR5 function in monocytes. It potently inhibited infection of diverse cell types (including macrophages and lymphocytes) by nonsyncytium-inducing, macrophage-tropic HIV-1 strains. Thus, activation of cells by chemokines is not a prerequisite for the inhibition of viral uptake and replication. Chemokine receptor antagonists like AOP-RANTES that achieve full receptor occupancy at nanomolar concentrations are strong candidates for the therapy of HIV-1-infected individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Simmons, G -- Clapham, P R -- Picard, L -- Offord, R E -- Rosenkilde, M M -- Schwartz, T W -- Buser, R -- Wells, T N -- Proudfoot, A E -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):276-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Virology Group, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/metabolism ; Binding, Competitive ; Cats ; Cell Line ; Cells, Cultured ; Chemokine CCL4 ; Chemokine CCL5/metabolism/pharmacology ; Chemotaxis, Leukocyte ; HIV-1/*drug effects/physiology ; HeLa Cells ; Humans ; Macrophage Inflammatory Proteins/metabolism ; Macrophages/drug effects/*virology ; Receptors, CCR5 ; *Receptors, Chemokine ; Receptors, Cytokine/*antagonists & inhibitors/metabolism ; Receptors, HIV/*antagonists & inhibitors/metabolism ; T-Lymphocytes/drug effects/*virology ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 1997-02-14
    Description: A lymphocyte population that expresses surface markers found on T cells and natural killer (NK) cells secretes large amounts of interleukin-4 (IL-4) immediately after T cell receptor ligation. These NK-like T cells are thus thought to be important for the initiation of type 2 T helper cell (TH2) responses. CD1-deficient mice were found to lack this lymphocyte subset, but they could nevertheless mount a protypical TH2 response; after immunization with antibody to immunoglobulin D (IgD), CD1-deficient mice produced IgE. Thus, although dependent on CD1 for their development, IL-4-secreting NK-like T cells are not required for TH2 responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smiley, S T -- Kaplan, M H -- Grusby, M J -- R01 A140171/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):977-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Harvard School of Public Health (HSPH), Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020080" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology ; Antibodies, Anti-Idiotypic/immunology ; Antigens, CD1/genetics/*physiology ; Antigens, CD3/immunology ; Cells, Cultured ; Gene Targeting ; Immunoglobulin D/immunology ; Immunoglobulin E/*biosynthesis ; Immunophenotyping ; Interferon-gamma/genetics/secretion ; Interleukin-4/biosynthesis/genetics/*secretion ; Killer Cells, Natural/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; RNA, Messenger/genetics/metabolism ; Receptors, Antigen, T-Cell/immunology ; T-Lymphocyte Subsets/*immunology ; Th2 Cells/immunology ; beta 2-Microglobulin/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1997-02-14
    Description: The mechanisms responsible for thyrocyte destruction in Hashimoto's thyroiditis (HT) are poorly understood. Thyrocytes from HT glands, but not from nonautoimmune thyroids, expressed Fas. Interleukin-1beta (IL-1beta), abundantly produced in HT glands, induced Fas expression in normal thyrocytes, and cross-linking of Fas resulted in massive thyrocyte apoptosis. The ligand for Fas (FasL) was shown to be constitutively expressed both in normal and HT thyrocytes and was able to kill Fas-sensitive targets. Exposure to IL-1beta induced thyrocyte apoptosis, which was prevented by antibodies that block Fas, suggesting that IL-1beta-induced Fas expression serves as a limiting factor for thyrocyte destruction. Thus, Fas-FasL interactions among HT thyrocytes may contribute to clinical hypothyroidism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Giordano, C -- Stassi, G -- De Maria, R -- Todaro, M -- Richiusa, P -- Papoff, G -- Ruberti, G -- Bagnasco, M -- Testi, R -- Galluzzo, A -- A.066/Telethon/Italy -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):960-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, Endocrinology Section, Institute of Clinica Medica, University of Palermo, Palermo, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020075" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/immunology ; Antigens, CD95/biosynthesis/immunology/*metabolism ; *Apoptosis ; Cells, Cultured ; Cytokines/pharmacology ; Fas Ligand Protein ; Humans ; Immunoenzyme Techniques ; Interleukin-1/pharmacology ; Membrane Glycoproteins/biosynthesis/*metabolism ; Nucleic Acid Synthesis Inhibitors/pharmacology ; Polymerase Chain Reaction ; Protein Synthesis Inhibitors/pharmacology ; RNA, Messenger/genetics/metabolism ; Recombinant Proteins/pharmacology ; Thyroid Gland/*metabolism/pathology ; Thyroiditis, Autoimmune/*etiology/metabolism/pathology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 1997-03-14
    Description: The organization of calcium (Ca2+) stores in the sarcoplasmic and endoplasmic reticulum (S-ER) is poorly understood. The dynamics of the storage and release of calcium in the S-ER of intact, cultured astrocytes and arterial myocytes were studied with high-resolution imaging methods. The S-ER appeared to be a continuous tubular network; nevertheless, calcium stores in the S-ER were organized into small, spatially distinct compartments that functioned as discrete units. Cyclopiazonic acid (an inhibitor of the calcium pump in the S-ER membrane) and caffeine or ryanodine unloaded different, spatially separate compartments. Heterogeneity of calcium stores was also revealed in cells activated by physiological agonists. These results suggest that cells can generate spatially and temporally distinct calcium signals to control individual calcium-dependent processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golovina, V A -- Blaustein, M P -- HL-32276/HL/NHLBI NIH HHS/ -- NS-16106/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1997 Mar 14;275(5306):1643-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Center for Vascular Biology and Hypertension, University of Maryland School of Medicine, Baltimore, MD 21201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9054358" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/*metabolism/ultrastructure ; Caffeine/pharmacology ; Calcium/*metabolism ; Calcium-Transporting ATPases/antagonists & inhibitors ; Cells, Cultured ; Endoplasmic Reticulum, Smooth/*metabolism/ultrastructure ; Fluorescent Dyes/metabolism ; Fura-2/analogs & derivatives/metabolism ; Glutamic Acid/pharmacology ; Indoles/pharmacology ; Mice ; Mitochondria/metabolism ; Mitochondria, Muscle/metabolism ; Muscle, Smooth, Vascular/cytology/*metabolism/ultrastructure ; Rats ; Ryanodine/pharmacology ; Sarcoplasmic Reticulum/*metabolism/ultrastructure ; Serotonin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1997-08-08
    Description: Most somatic cells die after a finite number of cell divisions, a phenomenon described as senescence. The p21(CIP1/WAF1) gene encodes an inhibitor of cyclin-dependent kinases. Inactivation of p21 by two sequential rounds of targeted homologous recombination was sufficient to bypass senescence in normal diploid human fibroblasts. At the checkpoint between the prereplicative phase of growth and the phase of chromosome replication, cells lacking p21 failed to arrest the cell cycle in response to DNA damage, but their apoptotic response and genomic stability were unaltered. These results establish the feasibility of using gene targeting for genetic studies of normal human cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, J P -- Wei, W -- Sedivy, J M -- GM41690/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):831-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242615" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; Aspartate Carbamoyltransferase/genetics ; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics ; Cell Aging/*genetics ; Cell Division ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/*genetics/physiology ; DNA Damage ; Dihydroorotase/genetics ; Electroporation ; Fibroblasts ; G1 Phase ; *Gene Deletion ; Gene Targeting ; Genetic Vectors ; Humans ; Multienzyme Complexes/genetics ; Telomere/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1997-04-11
    Description: Activation of CD4(+) T lymphocytes from human immunodeficiency virus-type 1 (HIV-1)-infected donors with immobilized antibodies to CD3 and CD28 induces a virus-resistant state. This effect is specific for macrophage-tropic HIV-1. Transcripts encoding CXCR4/Fusin, the fusion cofactor used by T cell line-tropic isolates, were abundant in CD3/CD28-stimulated cells, but transcripts encoding CCR5, the fusion cofactor used by macrophage-tropic viruses, were not detectable. Thus, CD3/CD28 costimulation induces an HIV-1-resistant phenotype similar to that seen in some highly exposed and HIV-uninfected individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carroll, R G -- Riley, J L -- Levine, B L -- Feng, Y -- Kaushal, S -- Ritchey, D W -- Bernstein, W -- Weislow, O S -- Brown, C R -- Berger, E A -- June, C H -- St Louis, D C -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):273-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092480" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/immunology ; Antigens, CD28/*immunology ; Antigens, CD3/immunology ; CD4-Positive T-Lymphocytes/*immunology/metabolism/*virology ; Cells, Cultured ; Gene Expression Regulation ; HIV-1/*physiology ; Humans ; Interleukin-2/immunology ; *Lymphocyte Activation ; Membrane Fusion ; Membrane Proteins/*genetics ; Muromonab-CD3/immunology ; Phytohemagglutinins/pharmacology ; RNA, Messenger/genetics/metabolism ; Receptors, CCR5 ; Receptors, CXCR4 ; Receptors, Cytokine/genetics ; Receptors, HIV/*genetics ; Up-Regulation ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-26
    Description: The upper cervical corticospinal tract was transected on one side in adult rats. A suspension of ensheathing cells cultured from adult rat olfactory bulb was injected into the lesion site. This induced unbranched, elongative growth of the cut corticospinal axons. The axons grew through the transplant and continued to regenerate into the denervated caudal host tract. Rats with complete transections and no transplanted cells did not use the forepaw on the lesioned side for directed reaching. Rats in which the transplanted cells had formed a continuous bridge across the lesion exhibited directed forepaw reaching on the lesioned side.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Y -- Field, P M -- Raisman, G -- New York, N.Y. -- Science. 1997 Sep 26;277(5334):2000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Norman and Sadie Lee Research Centre, Division of Neurobiology, National Institute for Medical Research, Medical Research Council, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9302296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology/ultrastructure ; Brain Tissue Transplantation ; Cell Transplantation ; Cells, Cultured ; Denervation ; Female ; Microscopy, Electron ; Myelin Sheath/physiology ; *Nerve Regeneration ; Neuroglia/physiology/*transplantation/ultrastructure ; Olfactory Bulb/*cytology ; Olfactory Nerve/*cytology ; Rats ; Spinal Cord/*physiology ; Spinal Cord Injuries/*surgery
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 1997-06-27
    Description: Parsley cells recognize the fungal plant pathogen Phytophthora sojae through a plasma membrane receptor. A pathogen-derived oligopeptide elicitor binds to this receptor and thereby stimulates a multicomponent defense response through sequential activation of ion channels and an oxidative burst. An elicitor-responsive mitogen-activated protein (MAP) kinase was identified that acts downstream of the ion channels but independently or upstream of the oxidative burst. Upon receptor-mediated activation, the MAP kinase is translocated to the nucleus where it might interact with transcription factors that induce expression of defense genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ligterink, W -- Kroj, T -- zur Nieden, U -- Hirt, H -- Scheel, D -- New York, N.Y. -- Science. 1997 Jun 27;276(5321):2054-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology and Genetics, Vienna Biocenter, Dr.-Bohr-Gasse 9, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9197271" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amphotericin B/pharmacology ; Anthracenes/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Cell Nucleus/enzymology ; Cells, Cultured ; Enzyme Activation ; Fungal Proteins/*pharmacology ; Ion Channels/drug effects/metabolism ; Membrane Glycoproteins/*pharmacology ; Molecular Sequence Data ; Onium Compounds/pharmacology ; Peptide Fragments/pharmacology ; Phosphorylation ; Phytophthora/metabolism ; Plants/*enzymology/genetics/microbiology ; Respiratory Burst/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 1997-04-25
    Description: It is unclear whether organ-specific autoantigens are critical for the development of primary Sjogren's syndrome (SS). A 120-kilodalton organ-specific autoantigen was purified from salivary gland tissues of an NFS/sld mouse model of human SS. The amino-terminal residues were identical to those of the human cytoskeletal protein alpha-fodrin. The purified antigen induced proliferative T cell responses and production of interleukin-2 and interferon-gamma in vitro. Neonatal immunization with the 120-kilodalton antigen prevented the disease in mice. Sera from patients with SS reacted positively with purified antigen and recombinant human alpha-fodrin protein, whereas those from patients with systemic lupus erythematosus and rheumatoid arthritis did not. Thus, the immune response to 120-kilodalton alpha-fodrin could be important in the initial development of primary SS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haneji, N -- Nakamura, T -- Takio, K -- Yanagi, K -- Higashiyama, H -- Saito, I -- Noji, S -- Sugino, H -- Hayashi, Y -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):604-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Tokushima University School of Dentistry, 3 Kuramotocho, Tokushima 770, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110981" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arthritis, Rheumatoid/immunology ; Autoantibodies/biosynthesis/immunology ; Autoantigens/*immunology/isolation & purification ; Carrier Proteins/*immunology/isolation & purification ; Cells, Cultured ; Disease Models, Animal ; Humans ; Immunization ; Immunoblotting ; Interferon-gamma/biosynthesis ; Interleukin-2/biosynthesis ; Lupus Erythematosus, Systemic/immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred Strains ; Microfilament Proteins/*immunology/isolation & purification ; Molecular Sequence Data ; Organ Specificity ; Recombinant Fusion Proteins/immunology ; Salivary Glands/immunology ; Sjogren's Syndrome/*immunology/prevention & control ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-04
    Description: Marrow stromal cells can be isolated from other cells in marrow by their tendency to adhere to tissue culture plastic. The cells have many of the characteristics of stem cells for tissues that can roughly be defined as mesenchymal, because they can be differentiated in culture into osteoblasts, chondrocytes, adipocytes, and even myoblasts. Therefore, marrow stromal cells present an intriguing model for examining the differentiation of stem cells. Also, they have several characteristics that make them potentially useful for cell and gene therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prockop, D J -- New York, N.Y. -- Science. 1997 Apr 4;276(5309):71-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Gene Therapy, Allegheny University of the Health Sciences, MCP-Hahnemann School of Medicine, 245 North 15 Street, Mail Stop 421, Philadelphia, PA 19102, USA. prockop@allegheny.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9082988" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology ; Animals ; *Bone Marrow Cells ; Bone Marrow Transplantation ; Cartilage/cytology ; Cell Differentiation ; Cells, Cultured ; Cytokines/metabolism ; Genetic Therapy ; Humans ; Muscle Fibers, Skeletal/cytology ; Osteoblasts/cytology ; Stem Cells/*cytology/physiology ; Stromal Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1997-08-22
    Description: Nerve growth factor (NGF) is a neurotrophic factor secreted by cells that are the targets of innervation of sympathetic and some sensory neurons. However, the mechanism by which the NGF signal is propagated from the axon terminal to the cell body, which can be more than 1 meter away, to influence biochemical events critical for growth and survival of neurons has remained unclear. An NGF-mediated signal transmitted from the terminals and distal axons of cultured rat sympathetic neurons to their nuclei regulated phosphorylation of the transcription factor CREB (cyclic adenosine monophosphate response element-binding protein). Internalization of NGF and its receptor tyrosine kinase TrkA, and their transport to the cell body, were required for transmission of this signal. The tyrosine kinase activity of TrkA was required to maintain it in an autophosphorylated state upon its arrival in the cell body and for propagation of the signal to CREB within neuronal nuclei. Thus, an NGF-TrkA complex is a messenger that delivers the NGF signal from axon terminals to cell bodies of sympathetic neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riccio, A -- Pierchala, B A -- Ciarallo, C L -- Ginty, D D -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1097-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9262478" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; *Axonal Transport ; Axons/*metabolism ; Carbazoles/pharmacology ; Cell Membrane/metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/*metabolism ; Indole Alkaloids ; Microspheres ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins/antagonists & inhibitors/*metabolism ; Rats ; Receptor Protein-Tyrosine Kinases/antagonists & inhibitors/*metabolism ; Receptor, trkA ; Receptors, Nerve Growth Factor/antagonists & inhibitors/*metabolism ; Signal Transduction ; Superior Cervical Ganglion/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1997-11-21
    Description: Induction of apoptosis by oncogenes like c-myc may be important in restraining the emergence of neoplasia. However, the mechanism by which c-myc induces apoptosis is unknown. CD95 (also termed Fas or APO-1) is a cell surface transmembrane receptor of the tumor necrosis factor receptor family that activates an intrinsic apoptotic suicide program in cells upon binding either its ligand CD95L or antibody. c-myc-induced apoptosis was shown to require interaction on the cell surface between CD95 and its ligand. c-Myc acts downstream of the CD95 receptor by sensitizing cells to the CD95 death signal. Moreover, IGF-I signaling and Bcl-2 suppress c-myc-induced apoptosis by also acting downstream of CD95. These findings link two apoptotic pathways previously thought to be independent and establish the dependency of Myc on CD95 signaling for its killing activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hueber, A O -- Zornig, M -- Lyon, D -- Suda, T -- Nagata, S -- Evan, G I -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1305-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imperial Cancer Research Fund (ICRF) Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360929" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; *Adaptor Proteins, Signal Transducing ; Animals ; Antigens, CD95/*metabolism ; *Apoptosis ; Autocrine Communication ; Carrier Proteins/metabolism ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Fas Ligand Protein ; Fas-Associated Death Domain Protein ; Gene Expression Regulation ; Genes, myc ; Insulin-Like Growth Factor I/pharmacology/physiology ; Membrane Glycoproteins/*metabolism ; Mice ; Proto-Oncogene Proteins c-bcl-2/pharmacology/physiology ; Proto-Oncogene Proteins c-myc/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1997-02-07
    Description: Generally, impulse propagation in cardiac tissue is assumed to be impaired by a reduction of intercellular electrical coupling or by the presence of structural discontinuities. Contrary to this notion, the spatially uniform reduction of electrical coupling induced successful conduction in discontinuous cardiac tissue structures exhibiting unidirectional conduction block. This seemingly paradoxical finding can be explained by a nonsymmetric effect of uncoupling on the current source and the current sink in the preparations used. It suggests that partial cellular uncoupling might prevent the initiation of cardiac arrhythmias that are dependent on the presence of unidirectional conduction block.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohr, S -- Kucera, J P -- Fast, V G -- Kleber, A G -- New York, N.Y. -- Science. 1997 Feb 7;275(5301):841-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Bern, Buhlplatz 5, CH-3012 Bern, Switzerland. rohr@pyl.unibe.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9012353" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Arrhythmias, Cardiac/physiopathology ; Cells, Cultured ; Diffusion ; Fatty Acids, Monounsaturated/pharmacology ; Gap Junctions/physiology ; Heart/*physiology ; Heart Conduction System/*physiology ; Microscopy, Video ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, G -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):621.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9019818" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Chromosome Mapping ; *Chromosomes, Human, Pair 1 ; Chromosomes, Human, Pair 3 ; Cytoskeletal Proteins ; Eye Proteins/*genetics ; Genetic Linkage ; Genetic Markers ; Glaucoma, Open-Angle/*genetics ; *Glycoproteins ; Humans ; Mice ; Mutation ; Proteins/secretion ; Steroids/pharmacology ; Trabecular Meshwork/cytology/drug effects/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 1997-10-10
    Description: Substance P is released in the spinal cord in response to painful stimuli, but its role in nociceptive signaling remains unclear. When a conjugate of substance P and the ribosome-inactivating protein saporin was infused into the spinal cord, it was internalized and cytotoxic to lamina I spinal cord neurons that express the substance P receptor. This treatment left responses to mild noxious stimuli unchanged, but markedly attenuated responses to highly noxious stimuli and mechanical and thermal hyperalgesia. Thus, lamina I spinal cord neurons that express the substance P receptor play a pivotal role in the transmission of highly noxious stimuli and the maintenance of hyperalgesia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mantyh, P W -- Rogers, S D -- Honore, P -- Allen, B J -- Ghilardi, J R -- Li, J -- Daughters, R S -- Lappi, D A -- Wiley, R G -- Simone, D A -- MH56368/MH/NIMH NIH HHS/ -- NS23970/NS/NINDS NIH HHS/ -- NS31223/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1997 Oct 10;278(5336):275-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Laboratory (151), Veterans Administration Medical Center, Minneapolis, MN 55417, USA. manty001@maroon.tc.umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9323204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsaicin ; Cell Membrane/metabolism ; Cells, Cultured ; Fluorescent Antibody Technique ; Hyperalgesia/physiopathology/*therapy ; *Immunotoxins ; Injections, Spinal ; *N-Glycosyl Hydrolases ; Neurons/cytology/*metabolism ; Pain/physiopathology ; *Pain Management ; Pain Measurement ; Plant Proteins/metabolism/pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Neurokinin-1/biosynthesis/*metabolism ; Ribosome Inactivating Proteins, Type 1 ; Signal Transduction ; Spinal Cord/*cytology/metabolism ; Substance P/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 1997-04-25
    Description: The gene encoding the BCL-6 transcriptional repressor is frequently translocated and mutated in diffuse large cell lymphoma. Mice with a disrupted BCL-6 gene developed myocarditis and pulmonary vasculitis, had no germinal centers, and had increased expression of T helper cell type 2 cytokines. The BCL-6 DNA recognition motif resembled sites bound by the STAT (signal transducers and activators of transcription) transcription factors, which mediate cytokine signaling. BCL-6 could repress interleukin-4 (IL-4)-induced transcription when bound to a site recognized by the IL-4-responsive transcription factor Stat6. Thus, dysregulation of STAT-responsive genes may underlie the inflammatory disease in BCL-6-deficient mice and participate in lymphoid malignancies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dent, A L -- Shaffer, A L -- Yu, X -- Allman, D -- Staudt, L M -- New York, N.Y. -- Science. 1997 Apr 25;276(5312):589-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9110977" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; Cells, Cultured ; Cytokines/*biosynthesis ; DNA-Binding Proteins/genetics/*physiology ; Ficoll/analogs & derivatives/immunology ; Germinal Center/*immunology ; Hemocyanin/immunology ; Immunoglobulins/biosynthesis ; Inflammation/*immunology/pathology ; Interferon-gamma/biosynthesis ; Interleukin-4/metabolism ; Interleukins/biosynthesis/metabolism ; Lymphocyte Activation ; Mice ; Myocarditis/immunology/pathology ; Proto-Oncogene Proteins/genetics/*physiology ; Proto-Oncogene Proteins c-bcl-6 ; Receptors, IgE/genetics ; STAT6 Transcription Factor ; Signal Transduction ; Spleen/immunology ; T-Lymphocytes/immunology ; Th2 Cells/immunology ; Trans-Activators/metabolism ; Transcription Factors/genetics/*physiology ; Transcription, Genetic ; Trinitrobenzenes/immunology ; Vasculitis/immunology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 1997-07-18
    Description: Proteins of the Bcl-2 family are intracellular membrane-associated proteins that regulate programmed cell death (apoptosis) either positively or negatively by as yet unknown mechanisms. Bax, a pro-apoptotic member of the Bcl-2 family, was shown to form channels in lipid membranes. Bax triggered the release of liposome-encapsulated carboxyfluorescein at both neutral and acidic pH. At physiological pH, release could be blocked by Bcl-2. Bcl-2, in contrast, triggered carboxyfluorescein release at acidic pH only. In planar lipid bilayers, Bax formed pH- and voltage-dependent ion-conducting channels. Thus, the pro-apoptotic effects of Bax may be elicited through an intrinsic pore-forming activity that can be antagonized by Bcl-2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Antonsson, B -- Conti, F -- Ciavatta, A -- Montessuit, S -- Lewis, S -- Martinou, I -- Bernasconi, L -- Bernard, A -- Mermod, J J -- Mazzei, G -- Maundrell, K -- Gambale, F -- Sadoul, R -- Martinou, J C -- New York, N.Y. -- Science. 1997 Jul 18;277(5324):370-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geneva Biomedical Research Institute, Glaxo Wellcome R&D S. A., 1288 Plan les Ouates, Geneva, Switzerland. beau6063@ggr.co.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9219694" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Cell Membrane Permeability ; Cells, Cultured ; Erythrocytes/cytology ; Fluoresceins/metabolism ; Hemolysis ; Humans ; Hydrogen-Ion Concentration ; Ion Channels/*physiology ; Lipid Bilayers ; Liposomes ; Membrane Potentials ; Neurons/cytology ; Patch-Clamp Techniques ; Proto-Oncogene Proteins/pharmacology/*physiology ; Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors/pharmacology/*physiology ; Sheep ; Sympathetic Nervous System/cytology ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 1997-08-01
    Description: The c-Jun amino-terminal kinase (JNK) is a member of the stress-activated group of mitogen-activated protein (MAP) kinases that are implicated in the control of cell growth. A murine cytoplasmic protein that binds specifically to JNK [the JNK interacting protein-1 (JIP-1)] was characterized and cloned. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression. In addition, JIP-1 suppressed the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. This analysis identifies JIP-1 as a specific inhibitor of the JNK signal transduction pathway and establishes protein targeting as a mechanism that regulates signaling by stress-activated MAP kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dickens, M -- Rogers, J S -- Cavanagh, J -- Raitano, A -- Xia, Z -- Halpern, J R -- Greenberg, M E -- Sawyers, C L -- Davis, R J -- CA43855/CA/NCI NIH HHS/ -- CA65861/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Aug 1;277(5326):693-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Program in Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9235893" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 2 ; Animals ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Carrier Proteins/chemistry/*metabolism ; Cell Nucleus/metabolism ; Cell Transformation, Neoplastic ; Cells, Cultured ; Cloning, Molecular ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cytoplasm/metabolism ; Fusion Proteins, bcr-abl/metabolism ; Gene Expression Regulation ; JNK Mitogen-Activated Protein Kinases ; Mitogen-Activated Protein Kinase 9 ; *Mitogen-Activated Protein Kinases ; Molecular Sequence Data ; Phosphorylation ; Protein Kinases/metabolism ; Proto-Oncogene Proteins c-jun/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 1997-02-14
    Description: Putative endothelial cell (EC) progenitors or angioblasts were isolated from human peripheral blood by magnetic bead selection on the basis of cell surface antigen expression. In vitro, these cells differentiated into ECs. In animal models of ischemia, heterologous, homologous, and autologous EC progenitors incorporated into sites of active angiogenesis. These findings suggest that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarian angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asahara, T -- Murohara, T -- Sullivan, A -- Silver, M -- van der Zee, R -- Li, T -- Witzenbichler, B -- Schatteman, G -- Isner, J M -- 2824/PHS HHS/ -- 53354/PHS HHS/ -- 57516/PHS HHS/ -- New York, N.Y. -- Science. 1997 Feb 14;275(5302):964-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, 736 Cambridge Street, Boston, MA 02135, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9020076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD34/analysis ; Biomarkers/analysis ; Cell Differentiation ; Cell Separation ; Cells, Cultured ; Endothelium, Vascular/chemistry/*cytology ; Flow Cytometry ; Hindlimb/blood supply ; Humans ; Ischemia/physiopathology ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Mice, Transgenic ; *Neovascularization, Physiologic ; Nitric Oxide Synthase/analysis ; Rabbits ; Receptor Protein-Tyrosine Kinases/analysis ; Receptors, Growth Factor/analysis ; Receptors, Vascular Endothelial Growth Factor ; Stem Cells/chemistry/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-04-04
    Description: In the vertebrate central nervous system, multipotential cells have been identified in vitro and in vivo. Defined mitogens cause the proliferation of multipotential cells in vitro, the magnitude of which is sufficient to account for the number of cells in the brain. Factors that control the differentiation of fetal stem cells to neurons and glia have been defined in vitro, and multipotential cells with similar signaling logic can be cultured from the adult central nervous system. Transplanting cells to new sites emphasizes that neuroepithelial cells have the potential to integrate into many brain regions. These results focus attention on how information in external stimuli is translated into the number and types of differentiated cells in the brain. The development of therapies for the reconstruction of the diseased or injured brain will be guided by our understanding of the origin and stability of cell type in the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKay, R -- New York, N.Y. -- Science. 1997 Apr 4;276(5309):66-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9082987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/embryology ; Brain Tissue Transplantation ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cell Movement ; Cell Transplantation ; Cells, Cultured ; Central Nervous System/*cytology/embryology ; Central Nervous System Diseases/therapy ; Humans ; Neuroglia/*cytology ; Neurons/*cytology ; Spinal Cord/cytology/embryology ; Stem Cells/*cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 1997-01-31
    Description: A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudek, H -- Datta, S R -- Franke, T F -- Birnbaum, M J -- Yao, R -- Cooper, G M -- Segal, R A -- Kaplan, D R -- Greenberg, M E -- DK39519/DK/NIDDK NIH HHS/ -- R01 CA18689/CA/NCI NIH HHS/ -- R01 CA43855/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005851" target="_blank"〉PubMed〈/a〉
    Keywords: Androstadienes/pharmacology ; Animals ; *Apoptosis/drug effects ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Survival/drug effects ; Cells, Cultured ; Cerebellum/cytology ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Insulin/pharmacology ; Insulin-Like Growth Factor I/*pharmacology ; Morpholines/pharmacology ; Neurons/*cytology/drug effects/enzymology ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 1997-08-22
    Description: Anandamide, an endogenous ligand for central cannabinoid receptors, is released from neurons on depolarization and rapidly inactivated. Anandamide inactivation is not completely understood, but it may occur by transport into cells or by enzymatic hydrolysis. The compound N-(4-hydroxyphenyl)arachidonylamide (AM404) was shown to inhibit high-affinity anandamide accumulation in rat neurons and astrocytes in vitro, an indication that this accumulation resulted from carrier-mediated transport. Although AM404 did not activate cannabinoid receptors or inhibit anandamide hydrolysis, it enhanced receptor-mediated anandamide responses in vitro and in vivo. The data indicate that carrier-mediated transport may be essential for termination of the biological effects of anandamide, and may represent a potential drug target.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beltramo, M -- Stella, N -- Calignano, A -- Lin, S Y -- Makriyannis, A -- Piomelli, D -- New York, N.Y. -- Science. 1997 Aug 22;277(5329):1094-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Neurosciences Institute, 10640 J. J. Hopkins Drive, San Diego, CA 92121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9262477" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics/pharmacology ; Animals ; Arachidonic Acids/antagonists & inhibitors/*metabolism/pharmacology ; Astrocytes/drug effects/*metabolism ; Benzoxazines ; Biological Transport/drug effects ; Bromcresol Green/pharmacology ; Cannabinoids/antagonists & inhibitors/*metabolism/pharmacology ; Cells, Cultured ; Colforsin/pharmacology ; Cyclic AMP/metabolism ; Endocannabinoids ; Male ; Mice ; Morpholines/pharmacology ; Naphthalenes/pharmacology ; Neurons/drug effects/*metabolism ; Piperidines/pharmacology ; Polyunsaturated Alkamides ; Pyrazoles/pharmacology ; Rats ; Receptors, Cannabinoid ; Receptors, Drug/agonists/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 1997-01-24
    Description: Heterotrimeric GTP-binding proteins (G proteins) participate in cellular signaling and regulate a variety of physiological processes. Disruption of the gene encoding the G protein subunit alpha13 (Galpha13) in mice impaired the ability of endothelial cells to develop into an organized vascular system, resulting in intrauterine death. In addition, Galpha13 (-/-) embryonic fibroblasts showed greatly impaired migratory responses to thrombin. These results demonstrate that Galpha13 participates in the regulation of cell movement in response to specific ligands, as well as in developmental angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Offermanns, S -- Mancino, V -- Revel, J P -- Simon, M I -- AG 12288/AG/NIA NIH HHS/ -- GM 34236/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 24;275(5299):533-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology 147-75, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8999798" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood ; Bradykinin/pharmacology ; Cell Differentiation ; *Cell Movement/drug effects ; Cells, Cultured ; Embryo, Mammalian/metabolism ; Embryonic and Fetal Development ; Endothelium, Vascular/*cytology/embryology ; Female ; Fibronectins/pharmacology ; GTP-Binding Proteins/genetics/*physiology ; Gene Expression ; Gene Targeting ; Heterozygote ; Homozygote ; Lysophospholipids/pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; *Neovascularization, Physiologic ; Signal Transduction ; Thrombin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 1997-06-20
    Description: The avian sarcoma virus 16 (ASV 16) is a retrovirus that induces hemangiosarcomas in chickens. Analysis of the ASV 16 genome revealed that it encodes an oncogene that is derived from the cellular gene for the catalytic subunit of phosphoinositide 3-kinase (PI 3-kinase). The gene is referred to as v-p3k, and like its cellular counterpart c-p3k, it is a potent transforming gene in cultured chicken embryo fibroblasts (CEFs). The products of the viral and cellular p3k genes have PI 3-kinase activity. CEFs transformed with either gene showed elevated levels of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate and activation of Akt kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, H W -- Aoki, M -- Fruman, D -- Auger, K R -- Bellacosa, A -- Tsichlis, P N -- Cantley, L C -- Roberts, T M -- Vogt, P K -- CA 42564/CA/NCI NIH HHS/ -- GM 41890/GM/NIGMS NIH HHS/ -- R01 GM041890/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1848-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9188528" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Avian Sarcoma Viruses/*genetics/physiology ; *Cell Transformation, Neoplastic ; *Cell Transformation, Viral ; Cells, Cultured ; Chick Embryo ; Chickens ; Cloning, Molecular ; Enzyme Activation ; Genes, Viral ; Hemangiosarcoma/genetics/virology ; Molecular Sequence Data ; *Oncogenes ; Phosphatidylinositol 3-Kinases ; Phosphatidylinositol Phosphates/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/*genetics/metabolism ; Platelet-Derived Growth Factor/pharmacology ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-30
    Description: Human and bovine capillary endothelial cells were switched from growth to apoptosis by using micropatterned substrates that contained extracellular matrix-coated adhesive islands of decreasing size to progressively restrict cell extension. Cell spreading also was varied while maintaining the total cell-matrix contact area constant by changing the spacing between multiple focal adhesion-sized islands. Cell shape was found to govern whether individual cells grow or die, regardless of the type of matrix protein or antibody to integrin used to mediate adhesion. Local geometric control of cell growth and viability may therefore represent a fundamental mechanism for developmental regulation within the tissue microenvironment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, C S -- Mrksich, M -- Huang, S -- Whitesides, G M -- Ingber, D E -- CA55833/CA/NCI NIH HHS/ -- GM30367/GM/NIGMS NIH HHS/ -- HL47699/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1997 May 30;276(5317):1425-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Children's Hospital-Harvard Medical School, Enders 1007, 300 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9162012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD29/physiology ; Apoptosis/*physiology ; Cattle ; Cell Adhesion/physiology ; Cell Division/*physiology ; Cell Size/*physiology ; Cells, Cultured ; Endothelium, Vascular/*cytology/physiology ; Extracellular Matrix/physiology ; Fibronectins/physiology ; Humans ; Integrins/physiology ; Ligands ; Vitronectin/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gura, T -- New York, N.Y. -- Science. 1997 Jun 20;276(5320):1788-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9206838" target="_blank"〉PubMed〈/a〉
    Keywords: Bone Marrow/pathology/virology ; Cells, Cultured ; Dendritic Cells/*virology ; Herpesvirus 8, Human/metabolism/*pathogenicity ; Humans ; Interleukin-6/*biosynthesis/genetics ; Multiple Myeloma/pathology/*virology ; Paraproteinemias/pathology ; Polymerase Chain Reaction ; RNA, Messenger/analysis/genetics ; Sarcoma, Kaposi/virology ; Stromal Cells/metabolism/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-12
    Description: In the developing nervous system, glial cells guide axons to their target areas, but it is unknown whether they help neurons to establish functional synaptic connections. The role of glial cells in synapse formation and function was studied in cultures of purified neurons from the rat central nervous system. In glia-free cultures, retinal ganglion cells formed synapses with normal ultrastructure but displayed little spontaneous synaptic activity and high failure rates in evoked synaptic transmission. In cocultures with neuroglia, the frequency and amplitude of spontaneous postsynaptic currents were potentiated by 70-fold and 5-fold, respectively, and fewer transmission failures occurred. Glial cells increased the action potential-independent quantal release by 12-fold without affecting neuronal survival. Thus, developing neurons in culture form inefficient synapses that require glial signals to become fully functional.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfrieger, F W -- Barres, B A -- New York, N.Y. -- Science. 1997 Sep 12;277(5332):1684-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University, School of Medicine, Sherman Fairchild Science Building, 299 Campus Drive, Stanford, CA 94305-5125, USA. fpfrieg@mdc-berlin.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9287225" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Astrocytes/physiology ; Cell Survival ; Cells, Cultured ; Coculture Techniques ; Microglia/physiology ; Neuroglia/*physiology ; Oligodendroglia/physiology ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/cytology/*physiology/ultrastructure ; Synapses/*physiology/ultrastructure ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...