ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-11-10
    Description: The molecular mechanisms controlling synaptogenesis in the central nervous system (CNS) are poorly understood. Previous reports showed that a glia-derived factor strongly promotes synapse development in cultures of purified CNS neurons. Here, we identify this factor as cholesterol complexed to apolipoprotein E-containing lipoproteins. CNS neurons produce enough cholesterol to survive and grow, but the formation of numerous mature synapses demands additional amounts that must be provided by glia. Thus, the availability of cholesterol appears to limit synapse development. This may explain the delayed onset of CNS synaptogenesis after glia differentiation and neurobehavioral manifestations of defects in cholesterol or lipoprotein homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mauch, D H -- Nagler, K -- Schumacher, S -- Goritz, C -- Muller, E C -- Otto, A -- Pfrieger, F W -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1354-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synapse Group and, Protein Chemistry Group, Max-Delbruck-Center for Molecular Medicine, D-13092 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anticholesteremic Agents/pharmacology ; Apolipoproteins E/metabolism ; Cells, Cultured ; Cholesterol/*metabolism/pharmacology ; Culture Media, Conditioned ; Excitatory Postsynaptic Potentials ; Lovastatin/*analogs & derivatives/pharmacology ; Neuroglia/*metabolism ; Patch-Clamp Techniques ; Phosphatidylcholines/pharmacology ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/metabolism/*physiology ; Sphingomyelins/pharmacology ; Synapses/drug effects/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-09-12
    Description: In the developing nervous system, glial cells guide axons to their target areas, but it is unknown whether they help neurons to establish functional synaptic connections. The role of glial cells in synapse formation and function was studied in cultures of purified neurons from the rat central nervous system. In glia-free cultures, retinal ganglion cells formed synapses with normal ultrastructure but displayed little spontaneous synaptic activity and high failure rates in evoked synaptic transmission. In cocultures with neuroglia, the frequency and amplitude of spontaneous postsynaptic currents were potentiated by 70-fold and 5-fold, respectively, and fewer transmission failures occurred. Glial cells increased the action potential-independent quantal release by 12-fold without affecting neuronal survival. Thus, developing neurons in culture form inefficient synapses that require glial signals to become fully functional.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfrieger, F W -- Barres, B A -- New York, N.Y. -- Science. 1997 Sep 12;277(5332):1684-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University, School of Medicine, Sherman Fairchild Science Building, 299 Campus Drive, Stanford, CA 94305-5125, USA. fpfrieg@mdc-berlin.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9287225" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Astrocytes/physiology ; Cell Survival ; Cells, Cultured ; Coculture Techniques ; Microglia/physiology ; Neuroglia/*physiology ; Oligodendroglia/physiology ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells/cytology/*physiology/ultrastructure ; Synapses/*physiology/ultrastructure ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-06-01
    Print ISSN: 1420-682X
    Electronic ISSN: 1420-9071
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...