ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (75,059)
  • Frontiers Media  (31,867)
  • 2020-2023  (247)
  • 2020-2022  (71,047)
  • 1970-1974  (35,632)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Atmospheres, Wiley, 127(3), pp. 1-18, ISSN: 0148-0227
    Publication Date: 2022-02-28
    Description: Fram Strait in the northern North Atlantic is a key region for marine cold air outbreaks (MCAOs), southward discharges of polar air under northerly air flow, which have a strong impact on air-sea heat fluxes, boundary layer processes and severe weather. This study investigates climatologies and decadal trends of Fram Strait MCAOs of different intensity classes based on the ERA5 reanalysis product for 1979–2020. Among striking interannual variability, it is shown that the main MCAO season is December through March, when MCAOs occur around 2/3 of the time. We report on significant decadal MCAO decreases in December and January, and a significant increase in March. While the mid-winter decrease is mainly related to the different paces of warming between the surface and the lower atmosphere, the increase in March can be related to changes in synoptic circulation patterns. As an explanation for the latter, a possible feedback between retreating Barents Sea sea ice, enhanced cyclonic activity and Fram Strait MCAOs is postulated. Exemplifying the trend toward stronger MCAOs during March, the study details the recordbreaking MCAO season in early 2020, and an observational case study of an extreme MCAO event in March 2020 is conducted. Thereby, radiosonde observations are combined with kinematic air back-trajectories to provide rare observational evidence for the diabatic cooling and drying during the MCAO preconditioning phase.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-24
    Description: Hillaire‐Marcelet al. bring forward several physical and geochemical arguments against our finding of an Arctic glaciolacustrine system in the past. In brief, we find that a physical approach to further test our hypothesis should additionally consider the actual bathymetry of the Greenland–Scotland Ridge (GSR), the density maximum of freshwater at 3–4°C, the sensible heat flux from rivers, and the actual volumes that are being mixed and advected. Their geochemical considerations acknowledge our original argument, but they also add a number of assumptions that are neither required to explain the observations, nor do they correspond to the lithology of the sediments. Rather than being additive in nature, their arguments of high particle flux, low particle flux, export of 230Th and accumulation of 230Th, are mutually exclusive. We first address the arguments above, before commenting on some misunderstandings of our original claim in their contribution, especially regarding our dating approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-03
    Description: Shallow seabed depressions attributed to focused fluid seepage, known as pock- marks, have been documented in all continental margins. In this study, we dem- onstrate how pockmark formation can be the result of a combination of multiple factors— fluid type, overpressures, seafloor sediment type, stratigraphy and bot- tom currents. We integrate multibeam echosounder and seismic reflection data, sediment cores and pore water samples, with numerical models of groundwa- ter and gas hydrates, from the Canterbury Margin (off New Zealand). More than 6800 surface pockmarks, reaching densities of 100 per km2, and an undefined number of buried pockmarks, are identified in the middle to outer shelf and lower continental slope. Fluid conduits across the shelf and slope include shal- low to deep chimneys/pipes. Methane with a biogenic and/or thermogenic origin is the main fluid forming flow and escape features, although saline and fresh- ened groundwaters may also be seeping across the slope. The main drivers of fluid flow and seepage are overpressure across the slope generated by sediment loading and thin sediment overburden above the overpressured interval in the outer shelf. Other processes (e.g. methane generation and flow, a reduction in hydrostatic pressure due to sea- level lowering) may also account for fluid flow and seepage features, particularly across the shelf. Pockmark occurrence coin- cides with muddy sediments at the seafloor, whereas their planform is elongated by bottom currents.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-16
    Description: Tectono-stratigraphic interpretation and sequential restoration modelling was performed over two high-resolution seismic profiles crossing the Western Ionian Basin of southern Italy. This analysis was undertaken in order to provide greater insights and a more reliable assessment of the deformation rate affecting the area. Offshore seismic profiling illuminates the sub-seafloor setting where a belt of active normal faults slice across the foot of the Malta Escarpment, a regional-scale structural boundary inherited from the Permo-Triassic palaeotectonic setting. A sequential restoration workflow was established to back-deform the entire investigated sector with the primary aim of analysing the deformation history of the three major normal faults affecting the area. Restoration of the tectono-stratigraphic model reveals how deformation rates evolved through time. In the early stage, the studied area experienced a significant deformation with the horizontal component prevailing over the vertical element. In this context, the three major faults contribute to only one third of the total deformation. The overall throw and extension then notably reduced through time towards the present day and, since the middle Pliocene, ongoing crustal deformation is accommodated almost entirely by the three major normal faults. Unloading and decompaction indicate that when compared to the unrestored seismic sections, a revision and a reduction of roughly one third of the vertical displacement of the faults offset is required. This analysis ultimately allows us to better understand the seismic potential of the region.
    Description: Published
    Description: 321-341
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography Letters, Wiley, 7(2), pp. 167-174, ISSN: 2378-2242
    Publication Date: 2022-03-25
    Description: The end of the polar night with the concurrent onset of photosynthetic biomass production ultimately leads to the spring bloom, which represents the most important event of primary production for the Arctic marine ecosystem. This dataset shows, for the first time, significant in situ biomass accumulation during the dark–light transition in the high Arctic, as well as the earliest recorded positive net primary production rates together with constant chlorophyll a-normalized potential for primary production through winter and spring. The results indicate a high physiological capacity to perform photosynthesis upon re-illumination, which is in the same range as that observed during the spring bloom. Put in context with other data, the results of this study indicate that also active cells originating from the low winter standing stock in the water column, rather than solely resting stages from the sediment, can seed early spring bloom assemblages.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-17
    Description: Free access at https://onlinelibrary.wiley.com/doi/10.1111/1755-6724.14824
    Description: Earthquake is a sudden release of energy due to fault motions. The severity of the damages can be minimized by development of a culture of prevention which includes the Seismic Hazard Assessment, microzonation studies and appropriate building codes. Earthquake risk assessment methods require seismo tectonic information usually organized in earthquake catalogues utilized in Probabilistic Seismic Hazard Assessment (PSHA) based on initial work by Cornell (1968), where probability distributions for magnitudes and source site distances reported in earthquake catalogues were utilized for the first time. In following years the method furtherly improved reporting an upper bound on the earthquake magnitude in each region avoiding the inclusion of unrealistically big earthquakes. A different approach has been followed in Countries characterized by significant incompletenesses in available earthquake catalogues. In these places the Deterministic Seismic Hazard Assessment (DSHA) methods have been often utilized. In particular the DSHA takes into account the maximum possible earthquake to evaluate the intensity of seismic ground motion distribution at a site by taking account the seismotectonic setup of the area. A deepening in the knowledge of seismotectonics and of morphostructural features of the studied area has been carried out in pattern recognition studies (Gelfand et al., 1976 and references therein). More updated applications named Neo-Deterministic Seismic Hazard Assessment (NDSHA) proposed by Wang et al. (2021) also consider morphostructural zoning which, in turn, considers nodes (fractured areas), lineaments and topographical features like the maximal elevation and the minimal elevation of the studied area. The steepness of topographic surfaces and sharp variations in morphostructural parameters indicate high tectonic activity. Some geological features are also presently utilized in PSHA methods in some Countries and considers basic parameters like the top and the bottom of seismogenic layers deduced by faults geometry within the frame of the Earthquake Rupture Forecasting (Bird and Liu, 2007).
    Description: Published
    Description: 31-33
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: probabilistic seismic hazard assessment, deterministic seismic hazard assessment, helium isotopes, geochemical prospection, earthquake precursors ; seismic hazard estimation by geochemical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-21
    Description: Relative sea‐level (RSL) evolution during Marine Isotopic Stage (MIS) 5 in the Mediterranean basin is still not fully understood despite a plethora of morphological, stratigraphic and geochronological studies carried out on highstand deposits of this area. In this review we assembled a database of 323 U/Th‐dated samples (e.g. corals, molluscs, speleothems) which were used to chronologically constrain RSL evolution within MIS 5. The application of strict geochemical criteria to the U/Th samples indicates that only ~33% of data available for the Mediterranean Sea can be considered ‘reliable’. Most of these data (~65%) refer to the MIS 5e highstand, while only ~17% could be related to the MIS 5a. No attribution to MIS 5c can be unequivocally supported. Nevertheless, the resulting framework does not allow us to define a satisfactory RSL trend during the MIS 5e highstand and subsequent MIS 5 substages. Overall, the proposed selection of reliable/unreliable data would be useful for detecting areas where MIS 5 substage attributions are not supported by confident U/Th chronological data and thus the related reconstructions need to be revised. In this regard, the resulting framework calls for a reappraisal and re‐examination of the Mediterranean records with advanced geochronological methodologies.
    Description: Published
    Description: 1174-1189
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-25
    Description: The Apennines are a retreating collisional belt where the foreland basin system, across large domains, is floored by a subaerial forebulge unconformity developed due to forebulge uplift and erosion. This unconformity is overlain by a diachronous sequence of three lithostratigraphic units made of (a) shallow-water carbonates, (b) hemipelagic marls and shales and (c) siliciclastic turbidites. Typically, the latter two have been interpreted regionally as the onset of syn-orogenic deposition in the foredeep depozone, whereas little attention has been given to the underlying unit. Accordingly, the rate of migration of the central-southern Apennine fold-thrust beltforeland basin system has been constrained, so far, exclusively considering the age of the hemipelagites and turbidites, which largely post-date the onset of foredeep depozone. In this work, we provide new high-resolution ages obtained by strontium isotope stratigraphy applied to calcitic bivalve shells sampled at the base of the first syn-orogenic deposits overlying the Eocene-Cretaceous pre-orogenic substratum. Integration of our results with published data indicates progressive rejuvenation of the strata sealing the forebulge unconformity towards the outer portions of the foldthrust belt. In particular, the age of the forebulge unconformity linearly scales with the pre-orogenic position of the analysed sites, pointing to an overall constant migration velocity of the forebulge wave in the last 25 Myr.
    Description: Published
    Description: 2817-2836
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: central-southern Apennines (Italy) ; fold-thrust belt ; forebulge ; foredeep
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-11
    Description: Mt Etna has made headlines over the last weeks and months with spectacular eruptions, some of them highly explosive. This type of paroxysmal eruptive behaviour is characteristic of Etna’s activity over the past few decades and so it is no surprise that Etna is among the most active volcanoes worldwide. Etna is well-known for its extraordinary geology and due to its repeated eruptive activity it provides a continuous supply of new scientific opportunities to understand the inner workings of large basaltic volcanic systems. In addition to its scientific value, Etna is also a world famous tourist attraction and has been listed as a UNESCO World Heritage site in 2013 for its geological and cultural value and not least for its fine agricultural products. Etna’s status as an iconic volcano is not a recent phenomenon; in fact, Etna has been a literary fixture for at least 3000 years, giving rise to many ancient myths and legends that mark it as a special place, deserving of human respect. From the ancient eruptions to the latest events in February–April 2021, people try to explain and understand the processes that occur within and beneath the volcano. In this article, we briefly summarize the recent eruptive activity of Etna as well as the ancient myths and legends that surround this volcano, from the underground forge of Hephaestus to the adventures of Odysseus, all the way to the benefits and dangers the volcano provides to those living on its flanks today.
    Description: Published
    Description: 141-149
    Description: 2TM. Divulgazione Scientifica
    Description: N/A or not JCR
    Keywords: Etna, mythology, 2021 paroxysms, economy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suca, J., Ji, R., Baumann, H., Pham, K., Silva, T., Wiley, D., Feng, Z., & Llopiz, J. Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31(3), (2022): 333– 352, https://doi.org/10.1111/fog.12580.
    Description: Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.
    Description: Funding came from the National Oceanic and Atmospheric Administration Woods Hole Sea Grant Program (Woods Hole Sea Grant, Woods Hole Oceanographic Institution, NA18OAR4170104, Project No. R/O-57; RJ, HB, and JKL), the Bureau of Ocean Energy Management (IA agreement M17PG0019; DNW, HB, and JKL) including a subaward via the National Marine Sanctuary Foundation (18-11-B-203), and a National Science Foundation Long-term Ecological Research grant for the Northeast US Shelf Ecosystem (OCE 1655686; RJ and JKL). JJS was funded by the National Science Foundation Graduate Research Fellowship program.
    Keywords: Gulf of Maine ; larval retention ; otolith microstructure ; particle tracking ; population connectivity ; sand lance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-08-31
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fay, R., Hamel, S., van de Pol, M., Gaillard, J.-M., Yoccoz, N. G., Acker, P., Authier, M., Larue, B., Le Coeur, C., Macdonald, K. R., Nicol-Harper, A., Barbraud, C., Bonenfant, C., Van Vuren, D. H., Cam, E., Delord, K., Gamelon, M., Moiron, M., Pelletier, F., Rotella, J., Teplitsky, C., Visser, M. E., Wells, C. P., Wheelwright, N. T., Jenouvrier, S., & Saether, B.-E. Temporal correlations among demographic parameters are ubiquitous but highly variable across species. Ecology Letters, 25(7), (2022): 1640-1654, https://doi.org/10.1111/ele.14026.
    Description: Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species’ life histories. Here, we use long-term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow-fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long-run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.
    Description: This project was funded by the CNRS, including a long-term support by the OSU-OREME. Data collection for Weddell seals was supported by the National Science Foundation, Division of Polar Programs under grant number ANT-1640481 to J.J. Rotella, R.A. Garrott and D.B. Siniff and prior NSF Grants to R. A. Garrott, J. J. Rotella, D. B. Siniff and J. Ward Testa. Stéphanie Jenouvrier acknowledges the support of the NSF 1840058.
    Keywords: capture-recapture ; demographic correlation ; demography ; environmental stochasticity ; slow-fast continuum ; stochastic population dynamics ; temporal covariation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stunz, E., Fetcher, N., Lavretsky, P., Mohl, J., Tang, J., & Moody, M. Landscape genomics provides evidence of ecotypic adaptation and a barrier to gene flow at treeline for the arctic foundation species Eriophorum vaginatum. Frontiers in Plant Science, 13, (2022): 860439, https://doi.org/10.3389/fpls.2022.860439.
    Description: Global climate change has resulted in geographic range shifts of flora and fauna at a global scale. Extreme environments, like the Arctic, are seeing some of the most pronounced changes. This region covers 14% of the Earth’s land area, and while many arctic species are widespread, understanding ecotypic variation at the genomic level will be important for elucidating how range shifts will affect ecological processes. Tussock cottongrass (Eriophorum vaginatum L.) is a foundation species of the moist acidic tundra, whose potential decline due to competition from shrubs may affect ecosystem stability in the Arctic. We used double-digest Restriction Site-Associated DNA sequencing to identify genomic variation in 273 individuals of E. vaginatum from 17 sites along a latitudinal gradient in north central Alaska. These sites have been part of 30 + years of ecological research and are inclusive of a region that was part of the Beringian refugium. The data analyses included genomic population structure, demographic models, and genotype by environment association. Genome-wide SNP investigation revealed environmentally associated variation and population structure across the sampled range of E. vaginatum, including a genetic break between populations north and south of treeline. This structure is likely the result of subrefugial isolation, contemporary isolation by resistance, and adaptation. Forty-five candidate loci were identified with genotype-environment association (GEA) analyses, with most identified genes related to abiotic stress. Our results support a hypothesis of limited gene flow based on spatial and environmental factors for E. vaginatum, which in combination with life history traits could limit range expansion of southern ecotypes northward as the tundra warms. This has implications for lower competitive attributes of northern plants of this foundation species likely resulting in changes in ecosystem productivity.
    Description: This research was made possible by funding provided by NSF/PLR-1417645 to MM. The Botanical Society of America Graduate Student Research Award and the Dodson Research Grant from the Graduate School of the University of Texas at El Paso provided assistance to ES. The grant 5U54MD007592 from the National Institute on Minority Health and Health Disparities (NIMHD), a component of the National Institutes of Health (NIH) provided bioinformatics resources and support of JM.
    Keywords: Arctic ; Climate change ; Eriophorum vaginatum ; Landscape genomics ; Environmental niche modeling ; Genotype-environment association analyses ; Refugia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuehn, E., Clausen, D. S., Null, R. W., Metzger, B. M., Willis, A. D., & Ozpolat, B. D. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, (2021.): 1-16, https://doi.org/10.1002/jez.b.23100.
    Description: Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth-reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free-roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion.
    Description: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM138008 (to BDÖ) and R35GM133420 (to ADW) and Hibbitt Startup Funds (to BDÖ).
    Keywords: Annelida ; Critical size ; Developmental transition ; Gametogenesis ; Sexual reproduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grearson, A. G., Dugan, A., Sakmar, T., Sivitilli, D. M., Gire, D. H., Caldwell, R. L., Niell, C. M., Doelen, G., Wang, Z. Y., & Grasse, B. The lesser Pacific Striped Octopus, Octopus chierchiae: an emerging laboratory model. Frontiers in Marine Science, 8, (2021): 753483, https://doi.org/10.3389/fmars.2021.753483.
    Description: Cephalopods have the potential to become useful experimental models in various fields of science, particularly in neuroscience, physiology, and behavior. Their complex nervous systems, intricate color- and texture-changing body patterns, and problem-solving abilities have attracted the attention of the biological research community, while the high growth rates and short life cycles of some species render them suitable for laboratory culture. Octopus chierchiae is a small octopus native to the central Pacific coast of North America whose predictable reproduction, short time to maturity, small adult size, and ability to lay multiple egg clutches (iteroparity) make this species ideally suited to laboratory culture. Here we describe novel methods for multigenerational culture of O. chierchiae, with emphasis on enclosure designs, feeding regimes, and breeding management. O. chierchiae bred in the laboratory grow from a 3.5 mm mantle length at hatching to an adult mantle length of approximately 20–30 mm in 250–300 days, with 15 and 14% survivorship to over 400 days of age in first and second generations, respectively. O. chierchiae sexually matures at around 6 months of age and, unlike most octopus species, can lay multiple clutches of large, direct-developing eggs every ∼30–90 days. Based on these results, we propose that O. chierchiae possesses both the practical and biological features needed for a model octopus that can be cultured repeatedly to address a wide range of biological questions.
    Description: The cephalopod program at the Marine Biological Laboratory (MBL) was supported by NSF 1827509 and NSF 1723141 grants. CN received funding from HFSP RGP0042. DG and DS received funding and research support from the University of Washington Friday Harbor Laboratories. ZYW was supported by funds from the Whitman Center at the MBL.
    Keywords: Iteroparity ; Cephalopod ; Model organism ; Aquaculture ; Reproduction – mollusk ; Developmental biology ; Neurobiology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castagno, K., Ganju, N., Beck, M., Bowden, A., & Scyphers, S. How much marsh restoration is enough to deliver wave attenuation coastal protection benefits? Frontiers in Marine Science, 8, (2022): 756670, https://doi.org/10.3389/fmars.2021.756670.
    Description: As coastal communities grow more vulnerable to sea-level rise and increased storminess, communities have turned to nature-based solutions to bolster coastal resilience and protection. Marshes have significant wave attenuation properties and can play an important role in coastal protection for many communities. Many restoration projects seek to maximize this ecosystem service but how much marsh restoration is enough to deliver measurable coastal protection benefits is still unknown. This question is critical to guiding assessments of cost effectiveness and for funding, implementation, and optimizing of marsh restoration for risk reduction projects. This study uses SWAN model simulations to determine empirical relationships between wave attenuation and marsh vegetation. The model runs consider several different common marsh morphologies (including systems with channels, ponds, and fringing mudflats), vegetation placement, and simulated storm intensity. Up to a 95% reduction in wave energy is seen at as low as 50% vegetation cover. Although these empirical relationships between vegetative cover and wave attenuation provide essential insight for marsh restoration, it is also important to factor in lifespan estimates of restored marshes when making overall restoration decisions. The results of this study are important for coastal practitioners and managers seeking performance goals and metrics for marsh restoration, enhancement, and creation.
    Keywords: Salt marsh ; Restoration ; Coastal protection ; UVVR ; Cost effectiveness ; Vegetation ; Numerical model ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-10-31
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in O’Brien, J., McParland, E. L., Bramucci, A. R., Ostrowski, M., Siboni, N., Ingleton, T., Brown, M. V., Levine, N. M., Laverock, B., Petrou, K., & Seymour, J. The microbiological drivers of temporally dynamic Dimethylsulfoniopropionate cycling processes in Australian coastal shelf waters. Frontiers in Microbiology, 13, (2022): 894026, https://doi.org/10.3389/fmicb.2022.894026.
    Description: The organic sulfur compounds dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) play major roles in the marine microbial food web and have substantial climatic importance as sources and sinks of dimethyl sulfide (DMS). Seasonal shifts in the abundance and diversity of the phytoplankton and bacteria that cycle DMSP are likely to impact marine DMS (O) (P) concentrations, but the dynamic nature of these microbial interactions is still poorly resolved. Here, we examined the relationships between microbial community dynamics with DMS (O) (P) concentrations during a 2-year oceanographic time series conducted on the east Australian coast. Heterogenous temporal patterns were apparent in chlorophyll a (chl a) and DMSP concentrations, but the relationship between these parameters varied over time, suggesting the phytoplankton and bacterial community composition were affecting the net DMSP concentrations through differential DMSP production and degradation. Significant increases in DMSP were regularly measured in spring blooms dominated by predicted high DMSP-producing lineages of phytoplankton (Heterocapsa, Prorocentrum, Alexandrium, and Micromonas), while spring blooms that were dominated by predicted low DMSP-producing phytoplankton (Thalassiosira) demonstrated negligible increases in DMSP concentrations. During elevated DMSP concentrations, a significant increase in the relative abundance of the key copiotrophic bacterial lineage Rhodobacterales was accompanied by a three-fold increase in the gene, encoding the first step of DMSP demethylation (dmdA). Significant temporal shifts in DMS concentrations were measured and were significantly correlated with both fractions (0.2–2 μm and 〉2 μm) of microbial DMSP lyase activity. Seasonal increases of the bacterial DMSP biosynthesis gene (dsyB) and the bacterial DMS oxidation gene (tmm) occurred during the spring-summer and coincided with peaks in DMSP and DMSO concentration, respectively. These findings, along with significant positive relationships between dsyB gene abundance and DMSP, and tmm gene abundance with DMSO, reinforce the significant role planktonic bacteria play in producing DMSP and DMSO in ocean surface waters. Our results highlight the highly dynamic nature and myriad of microbial interactions that govern sulfur cycling in coastal shelf waters and further underpin the importance of microbial ecology in mediating important marine biogeochemical processes.
    Description: This research was supported by the Australian Research Council Grants FT130100218 and DP180100838 awarded to JS and DP140101045 awarded to JS and KP, as well as an Australian Government Research Training Program Scholarship awarded to JO’B.
    Keywords: DMSP ; DMS ; DLA ; Phytoplankton ; Bacteria ; qPCR ; 16S rRNA gene ; 18S rRNA gene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa Jr, C., Galford, G. L., Coe, M. T., Macedo, M., Jankowski, K., O’Connell, C., & Neill, C. Modeling nitrous oxide emissions from large-scale intensive cropping systems in the southern Amazon. Frontiers in Sustainable Food Systems, 5, (2021): 701416. https://doi.org/10.3389/fsufs.2021.701416.
    Description: Nitrogen (N) fertilizer use is rapidly intensifying on tropical croplands and has the potential to increase emissions of the greenhouse gas, nitrous oxide (N2O). Since about 2005 Mato Grosso (MT), Brazil has shifted from single-cropped soybeans to double-cropping soybeans with maize, and now produces 1.5% of the world's maize. This production shift required an increase in N fertilization, but the effects on N2O emissions are poorly known. We calibrated the process-oriented biogeochemical DeNitrification-DeComposition (DNDC) model to simulate N2O emissions and crop production from soybean and soybean-maize cropping systems in MT. After model validation with field measurements and adjustments for hydrological properties of tropical soils, regional simulations suggested N2O emissions from soybean-maize cropland increased almost fourfold during 2001–2010, from 1.1 ± 1.1 to 4.1 ± 3.2 Gg 1014 N-N2O. Model sensitivity tests showed that emissions were spatially and seasonably variable and especially sensitive to soil bulk density and carbon content. Meeting future demand for maize using current soybean area in MT might require either (a) intensifying 3.0 million ha of existing single soybean to soybean-maize or (b) increasing N fertilization to ~180 kg N ha−1 on existing 2.3 million ha of soybean-maize area. The latter strategy would release ~35% more N2O than the first. Our modifications of the DNDC model will improve estimates of N2O emissions from agricultural production in MT and other tropical areas, but narrowing model uncertainty will depend on more detailed field measurements and spatial data on soil and cropping management.
    Description: This work was supported by National Science Foundation (NSF#1257944) and CNPq-Ciências Sem Fronteiras Post-Doctoral Fellowship (249380/2013-7).
    Keywords: GHG emission ; Agriculture ; Nitrogen fertilization management ; Amazon ; Food system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kalra, T. S., Ganju, N. K., Aretxabaleta, A. L., Carr, J. A., Defne, Z., & Moriarty, J. M. Modeling marsh dynamics using a 3-D coupled wave-flow-sediment model. Frontiers in Marine Science, 8, (2021): 740921, https://doi.org/10.3389/fmars.2021.740921.
    Description: Salt marshes are dynamic biogeomorphic systems that respond to external physical factors, including tides, sediment transport, and waves, as well as internal processes such as autochthonous soil formation. Predicting the fate of marshes requires a modeling framework that accounts for these processes in a coupled fashion. In this study, we implement two new marsh dynamic processes in the 3-D COAWST (coupled-ocean-atmosphere-wave sediment transport) model. The processes added are the erosion of the marsh edge scarp caused by lateral wave thrust from surface waves and vertical accretion driven by biomass production on the marsh platform. The sediment released from the marsh during edge erosion causes a change in bathymetry, thereby modifying the wave-energy reaching the marsh edge. Marsh vertical accretion due to biomass production is considered for a single vegetation species and is determined by the hydroperiod parameters (tidal datums) and the elevation of the marsh cells. Tidal datums are stored at user-defined intervals as a hindcast (on the order of days) and used to update the vertical growth formulation. Idealized domains are utilized to verify the lateral wave thrust formulation and show the dynamics of lateral wave erosion leading to horizontal retreat of marsh edge. The simulations of Reedy and Dinner Creeks within the Barnegat Bay estuary system demonstrate the model capability to account for both lateral wave erosion and vertical accretion due to biomass production in a realistic marsh complex. The simulations show that vertical accretion is dominated by organic deposition in the marsh interior, whereas deposition of mineral estuarine sediments occurs predominantly along the channel edges. The ability of the model to capture the fate of the sediment can be extended to model to simulate the impacts of future storms and relative sea-level rise (RSLR) scenarios on salt-marsh ecomorphodynamics.
    Description: This work was supported by USGS Coastal and Marine Hazards and Resources Program.
    Keywords: Marsh morphology ; Sediment transport ; Numerical model ; COAWST model ; Marsh accretion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wigand, C., Oczkowski, A. J., Branoff, B. L., Eagle, M., Hanson, A., Martin, R. M., Balogh, S., Miller, K. M., Huertas, E., Loffredo, J., & Watson, E. B. Recent nitrogen storage and accumulation rates in mangrove soils exceed historic rates in the urbanized San Juan Bay Estuary (Puerto Rico, United States). Frontiers in Forests and Global Change, 4, (2021): 765896, https://doi.org/10.3389/ffgc.2021.765896.
    Description: Tropical mangrove forests have been described as “coastal kidneys,” promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 – 2016) and historic (1930 – 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g m–2 y–1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g m–2 y–1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha–1) was stored in the soils with 7.1 Mg ha–1 sequestered during 1970–2017 (0–18 cm) and 2.3 Mg ha–1 during 1930–1970 (19–28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha–1y–1) than historically (0.08 ± 0.001 Mg ha–1y–1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha–1 y–1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.
    Description: Some funding was provided by the United States Geological Coastal and Marine Hazards and Resources Program.
    Keywords: Nitrogen storage ; Nitrogen accumulation ; Mangrove forest ; Wastewater ; Anthropogenic stressors ; Peri-urban mangrove ; Urbanization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fouke, K. E., Wegman, M. E., Weber, S. A., Brady, E. B., Roman-Vendrell, C., & Morgan, J. R. Synuclein regulates synaptic vesicle clustering and docking at a vertebrate synapse. Frontiers in Cell and Developmental Biology, 9, (2021): 774650, https://doi.org/10.3389/fcell.2021.774650.
    Description: Neurotransmission relies critically on the exocytotic release of neurotransmitters from small synaptic vesicles (SVs) at the active zone. Therefore, it is essential for neurons to maintain an adequate pool of SVs clustered at synapses in order to sustain efficient neurotransmission. It is well established that the phosphoprotein synapsin 1 regulates SV clustering at synapses. Here, we demonstrate that synuclein, another SV-associated protein and synapsin binding partner, also modulates SV clustering at a vertebrate synapse. When acutely introduced to unstimulated lamprey reticulospinal synapses, a pan-synuclein antibody raised against the N-terminal domain of α-synuclein induced a significant loss of SVs at the synapse. Both docked SVs and the distal reserve pool of SVs were depleted, resulting in a loss of total membrane at synapses. In contrast, antibodies against two other abundant SV-associated proteins, synaptic vesicle glycoprotein 2 (SV2) and vesicle-associated membrane protein (VAMP/synaptobrevin), had no effect on the size or distribution of SV clusters. Synuclein perturbation caused a dose-dependent reduction in the number of SVs at synapses. Interestingly, the large SV clusters appeared to disperse into smaller SV clusters, as well as individual SVs. Thus, synuclein regulates clustering of SVs at resting synapses, as well as docking of SVs at the active zone. These findings reveal new roles for synuclein at the synapse and provide critical insights into diseases associated with α-synuclein dysfunction, such as Parkinson’s disease.
    Description: Funding support for this project was provided by the National Institutes of Health NINDS/NIA R01 NS078165 (to JM); University of Chicago Jeff Metcalf Fellowship Grant (to SW).
    Keywords: Exocytosis ; Endocytosis ; Synapsin ; Lamprey ; Liquid phase separation ; VAMP2
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zottoli, S. J., Faber, D. S., Hering, J., Dannhauer, A. C., & Northen, S. Survival and axonal outgrowth of the Mauthner cell following spinal cord crush does not drive post-injury startle responses. Frontiers in Cell and Developmental Biology, 9, (2021): 744191, https://doi.org/10.3389/fcell.2021.744191.
    Description: A pair of Mauthner cells (M-cells) can be found in the hindbrain of most teleost fish, as well as amphibians and lamprey. The axons of these reticulospinal neurons cross the midline and synapse on interneurons and motoneurons as they descend the length of the spinal cord. The M-cell initiates fast C-type startle responses (fast C-starts) in goldfish and zebrafish triggered by abrupt acoustic/vibratory stimuli. Starting about 70 days after whole spinal cord crush, less robust startle responses with longer latencies manifest in adult goldfish, Carassius auratus. The morphological and electrophysiological identifiability of the M-cell provides a unique opportunity to study cellular responses to spinal cord injury and the relation of axonal regrowth to a defined behavior. After spinal cord crush at the spinomedullary junction about one-third of the damaged M-axons of adult goldfish send at least one sprout past the wound site between 56 and 85 days postoperatively. These caudally projecting sprouts follow a more lateral trajectory relative to their position in the fasciculus longitudinalis medialis of control fish. Other sprouts, some from the same axon, follow aberrant pathways that include rostral projections, reversal of direction, midline crossings, neuromas, and projection out the first ventral root. Stimulating M-axons in goldfish that had post-injury startle behavior between 198 and 468 days postoperatively resulted in no or minimal EMG activity in trunk and tail musculature as compared to control fish. Although M-cells can survive for at least 468 day (∼1.3 years) after spinal cord crush, maintain regrowth, and elicit putative trunk EMG responses, the cell does not appear to play a substantive role in the emergence of acoustic/vibratory-triggered responses. We speculate that aberrant pathway choice of this neuron may limit its role in the recovery of behavior and discuss structural and functional properties of alternative candidate neurons that may render them more supportive of post-injury startle behavior.
    Description: Support for this research came in part from NSF grant (BNS 8809445), NIH grant (2-P01-NS24707-09), and HHMI and Essel Foundation grants to Williams College.
    Keywords: Spinal cord regeneration ; Functional recovery ; Startle responses ; Mauthner cells ; Adult goldfish
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ruff, S. E. Editorial: microbial communities and metabolisms involved in the degradation of cellular and extracellular organic biopolymers. Frontiers in Microbiology, 12, (2022): 802619, https://doi.org/10.3389/fmicb.2021.802619.
    Description: Most organic matter on Earth occurs in the form of macromolecules and complex biopolymers, which include the building blocks of every organism. Plant, animal, fungal, and microbial cells largely consist of macromolecules belonging to four compound classes: proteins, polysaccharides, nucleic acids, and lipids (Figure 1). The percentage of these compounds per dry weight can vary greatly between lineages, but also between individuals of the same species or developmental stages of the same organism. Living and lysing cells release a substantial quantity and variety of macromolecules to the environment. These compounds often contain nitrogen, phosphorus, and sulfur, in addition to carbon, and are thus ideal food sources for heterotrophic organisms. Although the degradation of biopolymers and macromolecules has received considerable attention, many knowledge gaps remain, particularly in very complex ecosystems such as soils and sediments.
    Keywords: Macromolecule ; Necromass ; Heterotrophic microorganism ; Protein ; Polysaccharide ; Carbohydrate ; Nucleic acid ; Lipid
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Klein, S., Frazier, V., Readdean, T., Lucas, E., Diaz-Jimenez, E. P., Sogin, M., Ruff, E. S., & Echeverri, K. Common environmental pollutants negatively affect development and regeneration in the sea anemone Nematostella vectensis holobiont. Frontiers in Ecology and Evolution, 9, (2021): 786037, https://doi.org/10.3389/fevo.2021.786037.
    Description: The anthozoan sea anemone Nematostella vectensis belongs to the phylum of cnidarians which also includes jellyfish and corals. Nematostella are native to United States East Coast marsh lands, where they constantly adapt to changes in salinity, temperature, oxygen concentration and pH. Its natural ability to continually acclimate to changing environments coupled with its genetic tractability render Nematostella a powerful model organism in which to study the effects of common pollutants on the natural development of these animals. Potassium nitrate, commonly used in fertilizers, and Phthalates, a component of plastics are frequent environmental stressors found in coastal and marsh waters. Here we present data showing how early exposure to these pollutants lead to dramatic defects in development of the embryos and eventual mortality possibly due to defects in feeding ability. Additionally, we examined the microbiome of the animals and identified shifts in the microbial community that correlated with the type of water that was used to grow the animals, and with their exposure to pollutants.
    Description: This work was funded by a Pilot Program award to ER and KE from the Microbiome Center at the University of Chicago. The microbiome sequencing was funded by a grant from the McDonnell Initiative to ER. KE was supported by a grant from NICHD R01 HD092451, start-up funds from the MBL and funding from the Owens Family Foundation. ER was supported by start-up funds from the MBL and MLS receives support from the Unger G. Vetlesen Foundation.
    Keywords: Nematostella ; Growth ; Microbiome ; Stressors ; Development
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Katz, H. R., Arcese, A. A., Bloom, O., & Morgan, J. R. Activating transcription factor 3 (ATF3) is a highly conserved pro-regenerative transcription factor in the vertebrate nervous system. Frontiers in Cell and Developmental Biology, 10, (2022): 824036, https://doi.org/10.3389/fcell.2022.824036.
    Description: The vertebrate nervous system exhibits dramatic variability in regenerative capacity across species and neuronal populations. For example, while the mammalian central nervous system (CNS) is limited in its regenerative capacity, the CNS of many other vertebrates readily regenerates after injury, as does the peripheral nervous system (PNS) of mammals. Comparing molecular responses across species and tissues can therefore provide valuable insights into both conserved and distinct mechanisms of successful regeneration. One gene that is emerging as a conserved pro-regenerative factor across vertebrates is activating transcription factor 3 (ATF3), which has long been associated with tissue trauma. A growing number of studies indicate that ATF3 may actively promote neuronal axon regrowth and regeneration in species ranging from lampreys to mammals. Here, we review data on the structural and functional conservation of ATF3 protein across species. Comparing RNA expression data across species that exhibit different abilities to regenerate their nervous system following traumatic nerve injury reveals that ATF3 is consistently induced in neurons within the first few days after injury. Genetic deletion or knockdown of ATF3 expression has been shown in mouse and zebrafish, respectively, to reduce axon regeneration, while inducing ATF3 promotes axon sprouting, regrowth, or regeneration. Thus, we propose that ATF3 may be an evolutionarily conserved regulator of neuronal regeneration. Identifying downstream effectors of ATF3 will be a critical next step in understanding the molecular basis of vertebrate CNS regeneration.
    Description: This work was supported by: a Morton Cure Paralysis Fund Research Grant (to HK); a NIH/NINDS R03 Research Grant (No. 1R03NS078519) and the New York State Spinal Cord Injury Research Board (to OB); and the Marine Biological Laboratory Eugene Bell Center Endowment, Rowe Endowment for Regenerative Biology, and Charles Evans Research Development award (to JM).
    Keywords: Regeneration ; Spinal cord injury ; Zebrafish ; Lamprey ; Dorsal root ganglia (DRG) neurons
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sanders‐DeMott, R., Eagle, M., Kroeger, K., Wang, F., Brooks, T., Suttles, J., Nick, S., Mann, A., & Tang, J. Impoundment increases methane emissions in Phragmites‐invaded coastal wetlands. Global Change Biology, 28(15), (2022): 4539– 4557. https://doi.org/10.1111/gcb.16217.
    Description: Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by Phragmites, that affect ecosystem carbon balance. Understanding controls and scaling of carbon exchange in these understudied ecosystems is critical for informing climate consequences of blue carbon restoration and/or management interventions. Here, we (1) examine how carbon fluxes vary across a salinity gradient (4–25 psu) in impounded and natural, tidally unrestricted Phragmites wetlands using static chambers and (2) probe drivers of carbon fluxes within an impounded coastal wetland using eddy covariance at the Herring River in Wellfleet, MA, United States. Freshening across the salinity gradient led to a 50-fold increase in CH4 emissions, but effects on carbon dioxide (CO2) were less pronounced with uptake generally enhanced in the fresher, impounded sites. The impounded wetland experienced little variation in water-table depth or salinity during the growing season and was a strong CO2 sink of −352 g CO2-C m−2 year−1 offset by CH4 emission of 11.4 g CH4-C m−2 year−1. Growing season CH4 flux was driven primarily by temperature. Methane flux exhibited a diurnal cycle with a night-time minimum that was not reflected in opaque chamber measurements. Therefore, we suggest accounting for the diurnal cycle of CH4 in Phragmites, for example by applying a scaling factor developed here of ~0.6 to mid-day chamber measurements. Taken together, these results suggest that although freshened, impounded wetlands can be strong carbon sinks, enhanced CH4 emission with freshening reduces net radiative balance. Restoration of tidal flow to impounded ecosystems could limit CH4 production and enhance their climate regulating benefits.
    Description: This project was supported by USGS-NPS Natural Resources Preservation Program #2021-07, U.S. Geological Survey Coastal & Marine Hazards and Resources Program and the USGS Land Change Science Program's LandCarbon program, and NOAA National Estuarine Research Reserve Science Collaborative NA14NOS4190145. R Sanders-DeMott was supported by a USGS Mendenhall Fellowship and partnership with Restore America's Estuaries.
    Keywords: Blue carbon ; Coastal wetland ; Dike ; Eddy covariance ; Impoundment ; Methane ; Net ecosystem exchange ; Phragmites ; Restoration ; Static chambers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chowdhury, P. R., Golas, S. M., Alteio, L., Stevens, J. T. E., Billings, A. F., Blanchard, J. L., Melillo, J. M., & DeAngelis, K. M. The transcriptional response of soil bacteria to long-term warming and short-term seasonal fluctuations in a terrestrial forest. Frontiers in Microbiology, 12, (2021): 666558, https://doi.org/10.3389/fmicb.2021.666558.
    Description: Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to microbial degradation with climate warming. After 30 years of experimental warming, carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, as was the warming treatment effect. We therefore hypothesized that long-term warming will have higher expressions of genes related to carbohydrate and lipid metabolism due to increased utilization of recalcitrant carbon pools compared to controls. Because of the seasonal effect of soil respiration and the warming treatment, we further hypothesized that these patterns will be seasonal. We used RNA sequencing to show how the microbial community responds to long-term warming (~30 years) in Harvard Forest, MA. Total RNA was extracted from mineral and organic soil types from two treatment plots (+5°C heated and ambient control), at two time points (June and October) and sequenced using Illumina NextSeq technology. Treatment had a larger effect size on KEGG annotated transcripts than on CAZymes, while soil types more strongly affected CAZymes than KEGG annotated transcripts, though effect sizes overall were small. Although, warming showed a small effect on overall CAZymes expression, several carbohydrate-associated enzymes showed increased expression in heated soils (~68% of all differentially expressed transcripts). Further, exploratory analysis using an unconstrained method showed increased abundances of enzymes related to polysaccharide and lipid metabolism and decomposition in heated soils. Compared to long-term warming, we detected a relatively small effect of seasonal variation on community gene expression. Together, these results indicate that the higher carbohydrate degrading potential of bacteria in heated plots can possibly accelerate a self-reinforcing carbon cycle-temperature feedback in a warming climate.
    Description: Funding for this study was provided by the Department of Energy Terrestrial Ecosystem Sciences program under contract number DE-SC0010740. Sites for sample collection were maintained with funding in part from the National Science Foundation (NSF) Long-Term Ecological Research (DEB 1237491) and the NSF Long-Term Research in Environmental Biology (DEB 1456528) programs.
    Keywords: Meta-transcriptomes ; Microbial ; Terrestrial ; Carbon cycle ; Global warming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Uhran, B., Windham-Myers, L., Bliss, N., Nahlik, A. M., Sundquist, E., & Stagg, C. L. Improved wetland soil organic carbon stocks of the conterminous U.S. through data harmonization. Frontiers in Soil Science, 1, (2021): 706701, https://doi.org/10.3389/fsoil.2021.706701.
    Description: Wetland soil stocks are important global repositories of carbon (C) but are difficult to quantify and model due to varying sampling protocols, and geomorphic/spatio-temporal discontinuity. Merging scales of soil-survey spatial extents with wetland-specific point-based data offers an explicit, empirical and updatable improvement for regional and continental scale soil C stock assessments. Agency-collected and community-contributed soil datasets were compared for representativeness and bias, with the goal of producing a harmonized national map of wetland soil C stocks with error quantification for wetland areas of the conterminous United States (CONUS) identified by the USGS National Landcover Change Dataset. This allowed an empirical predictive model of SOC density to be applied across the entire CONUS using relational %OC distribution alone. A broken-stick quantile-regression model identified %OC with its relatively high analytical confidence as a key predictor of SOC density in soil segments; soils 〈6% OC (hereafter, mineral wetland soils, 85% of the dataset) had a strong linear relationship of %OC to SOC density (RMSE = 0.0059, ~4% mean RMSE) and soils 〉6% OC (organic wetland soils, 15% of the dataset) had virtually no predictive relationship of %OC to SOC density (RMSE = 0.0348 g C cm−3, ~56% mean RMSE). Disaggregation by vegetation type or region did not alter the breakpoint significantly (6% OC) and did not improve model accuracies for inland and tidal wetlands. Similarly, SOC stocks in tidal wetlands were related to %OC, but without a mappable product for disaggregation to improve accuracy by soil class, region or depth. Our layered harmonized CONUS wetland soil maps revised wetland SOC stock estimates downward by 24% (9.5 vs. 12.5Pg C) with the overestimation being entirely an issue of inland organic wetland soils (35% lower than SSURGO-derived SOC stocks). Further, SSURGO underestimated soil carbon stocks at depth, as modeled wetland SOC stocks for organic-rich soils showed significant preservation downcore in the NWCA dataset (〈3% loss between 0 and 30 cm and 30 and 100 cm depths) in contrast to mineral-rich soils (37% downcore stock loss). Future CONUS wetland soil C assessments will benefit from focused attention on improved organic wetland soil measurements, land history, and spatial representativeness.
    Description: This project was funded through the U.S. Geological Survey's Land Carbon Program and a grant to ES through the U.S. Geological Survey's Community for Data Integration Program for generating cross-agency assessments.
    Keywords: Soil organic carbon ; Soil carbon density ; Wetland ; Organic matter ; Soil profile ; Soil carbon stock vulnerability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sanchez Trivino, C. A., Landinez, M. P., Duran, S., Gomez, M. del P., & Nasi, E. Modulation of G(q)/PLC-mediated signaling by acute lithium exposure. Frontiers in Cellular Neuroscience, 16, (2022): 838939, https://doi.org/10.3389/fncel.2022.838939.
    Description: Although lithium has long been one of the most widely used pharmacological agents in psychiatry, its mechanisms of action at the cellular and molecular levels remain poorly understood. One of the targets of Li+ is the phosphoinositide pathway, but whereas the impact of Li+ on inositol lipid metabolism is well documented, information on physiological effects at the cellular level is lacking. We examined in two mammalian cell lines the effect of acute Li+ exposure on the mobilization of internal Ca2+ and phospholipase C (PLC)-dependent membrane conductances. We first corroborated by Western blots and immunofluorescence in HEK293 cells the presence of key signaling elements of a muscarinic PLC pathway (M1AchR, Gq, PLC-β1, and IP3Rs). Stimulation with carbachol evoked a dose-dependent mobilization of Ca, as determined with fluorescent indicators. This was due to release from internal stores and proved susceptible to the PLC antagonist U73122. Li+ exposure reproducibly potentiated the Ca response in a concentration-dependent manner extending to the low millimolar range. To broaden those observations to a neuronal context and probe potential Li modulation of electrical signaling, we next examined the cell line SHsy5y. We replicated the potentiating effects of Li on the mobilization of internal Ca, and, after characterizing the basic properties of the electrical response to cholinergic stimulation, we also demonstrated an equally robust upregulation of muscarinic membrane currents. Finally, by directly stimulating the signaling pathway at different links downstream of the receptor, the site of action of the observed Li effects could be narrowed down to the G protein and its interaction with PLC-β. These observations document a modulation of Gq/PLC/IP3-mediated signaling by acute exposure to lithium, reflected in distinct physiological changes in cellular responses.
    Description: This work was supported by DIB-Universidad Nacional de Colombia, grant Hermes No. 41821.
    Keywords: Lithium ; Phospholipase C ; Gq ; Calcium ; SHSY5Y ; HEK-293
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Winters, G., Teichberg, M., Reuter, H., Viana, I. G., & Willette, D. A. Editorial: seagrasses under times of change. Frontiers in Plant Science, 13, (2022): 870478, https://doi.org/10.3389/fpls.2022.870478.
    Description: Awareness of the ecological importance of seagrasses is growing due to recent attention to their role in carbon sequestration as a potential blue carbon sink (Fourqurean et al., 2012; Bedulli et al.), as well as their role in nutrient cycling (Romero et al., 2006), sediment stabilization (James et al., 2019), pathogen filtration (Lamb et al., 2017), and the formation of essential habitats for economically important marine species (Jackson et al., 2001; Jones et al.). Despite their importance and the increasing public and scientific awareness of seagrasses, simultaneous global (e.g., ocean warming, increase in frequency and severity of extreme events, introduction and spread of invasive species) and local (e.g., physical disturbances, eutrophication, and sedimentation) anthropogenic stressors continue to be the main causes behind the ongoing global decline of seagrass meadows (Orth et al., 2006; Waycott et al., 2009).
    Description: This research was partially funded through the BMBF project SEANARIOS (Seagrass scenarios under thermal and nutrient stress: FKZ 03F0826A) to HR and MT. MT was partially funded through the DFG project SEAMAC (Seagrass and macroalgal community dynamics and performance under environmental change; TE 1046/3-1). IV was supported by a postdoctoral research grant Juan de la Cierva-Incorporación (IJC2019-040554-I) and from MCIN/AEI /10.13039/501100011033 (Spain).
    Keywords: Seagrasses ; Climate change ; Eutrophication ; Responses of seagrasses to single and combined stressors ; Spatial-temporal modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tsakalakis, I., Follows, M. J., Dutkiewicz, S., Follett, C. L., & Vallino, J. J. Diel light cycles affect phytoplankton competition in the global ocean. Global Ecology and Biogeography, 31(9), (2022): 1838-1849, https://doi.org/10.1111/geb.13562.
    Description: Aim Light, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. Location Global ocean. Major taxa studied Phytoplankton. Methods We use a three-dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. Results Simulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusions Understanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.
    Description: Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems supported M.J.F. and S.D. on CBIOMES grant #549931; C.L.F. on CBIOMES grants #827829 and #553242; and J.J.V. and I.T. on CBIOMES grant #549941. The National Science Foundation supported I.T. and J.J.V. on award #1558710 and J.J.V. on awards #1637630, #1655552 and #1841599.
    Keywords: Biogeography ; Diel light cycle ; Global ocean ; Modelling ; Nutrient cycles ; Phytoplankton ; Resource competition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022]. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Suter, E. A., Pachiadaki, M., Taylor, G. T., & Edgcomb, V. P. Eukaryotic parasites are integral to a productive microbial food web in oxygen-depleted waters. Frontiers in Microbiology, 12, (2022): 764605, https://doi.org/10.3389/fmicb.2021.764605.
    Description: Oxygen-depleted water columns (ODWCs) host a diverse community of eukaryotic protists that change dramatically in composition over the oxic-anoxic gradient. In the permanently anoxic Cariaco Basin, peaks in eukaryotic diversity occurred in layers where dark microbial activity (chemoautotrophy and heterotrophy) were highest, suggesting a link between prokaryotic activity and trophic associations with protists. Using 18S rRNA gene sequencing, parasites and especially the obligate parasitic clade, Syndiniales, appear to be particularly abundant, suggesting parasitism is an important, but overlooked interaction in ODWC food webs. Syndiniales were also associated with certain prokaryotic groups that are often found in ODWCs, including Marinimicrobia and Marine Group II archaea, evocative of feedbacks between parasitic infection events, release of organic matter, and prokaryotic assimilative activity. In a network analysis that included all three domains of life, bacterial and archaeal taxa were putative bottleneck and hub species, while a large proportion of edges were connected to eukaryotic nodes. Inclusion of parasites resulted in a more complex network with longer path lengths between members. Together, these results suggest that protists, and especially protistan parasites, play an important role in maintaining microbial food web complexity, particularly in ODWCs, where protist diversity and microbial productivity are high, but energy resources are limited relative to euphotic waters.
    Description: This work was supported by the National Science Foundation (NSF) grants (OCE-1336082 to VE and OCE-1335436 and OCE-1259110 to GT). The Cyverse infrastructure and resources are supported by the NSF under Award Numbers DBI-0735191, DBI-1265383, and DBI-1743442 (www.cyverse.org). Support was also provided by the Faculty Scholarship and Academic Advancement Committee at Molloy College.
    Keywords: 18S (SSU) rRNA gene ; Oxygen-depleted environment ; Oxygen minimum zone (OMZ) ; Protist ; Syndiniales ; Parasite ; Eukaryotes ; Network analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in D’Angelo, T., Goordial, J., Poulton, N., Seyler, L., Huber, J., Stepanauskas, R., & Orcutt, B. Oceanic crustal fluid single cell genomics complements metagenomic and metatranscriptomic surveys with orders of magnitude less sample volume. Frontiers in Microbiology, 12, (2022): 738231, https://doi.org/10.3389/fmicb.2021.738231.
    Description: Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 103 cells ml–1) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to ‘omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.
    Description: The borehole observatories that form the backbone of this project were funded by the Integrated Ocean Drilling Program (IODP, now the International Ocean Discovery Program), the United States National Science Foundation (NSF), and the Gordon and Betty Moore Foundation (grant GBMF1609). Cruise AT39-01 was funded by the NSF (OCE-1634025 to C. Geoff Wheat). Analyses were funded by the NSF (OCE-1536623 to BO; OIA-1826734 to RS, NP, and BO; and OCE-16435208 and OCE-1745589 to JH), the NSF-funded Center for Dark Energy Biosphere Investigations (C-DEBI) Science and Technology Center (via subawards from OIA-0939564 to BO and JH), and the NASA Exobiology program (80NSSC19K0466 to BO). This is C-DEBI publication 571.
    Keywords: Deep biosphere ; Oceanic crust ; Crustal fluid ; Single cell genomics ; Metatranscriptomics ; IODP ; CORKS ; North Pond
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marlow, J., Anderson, R., Reysenbach, A.-L., Seewald, J., Shank, T., Teske, A., Wanless, V., & Soule, S. New opportunities and untapped scientific potential in the abyssal ocean. Frontiers in Marine Science, 8, (2022): 798943, https://doi.org/10.3389./fmars.2021.798943
    Description: The abyssal ocean covers more than half of the Earth’s surface, yet remains understudied and underappreciated. In this Perspectives article, we mark the occasion of the Deep Submergence Vehicle Alvin’s increased depth range (from 4500 to 6500 m) to highlight the scientific potential of the abyssal seafloor. From a geologic perspective, ultra-slow spreading mid-ocean ridges, Petit Spot volcanism, transform faults, and subduction zones put the full life cycle of oceanic crust on display in the abyss, revealing constructive and destructive forces over wide ranges in time and space. Geochemically, the abyssal pressure regime influences the solubility of constituents such as silica and carbonate, and extremely high-temperature fluid-rock reactions in the shallow subsurface lead to distinctive and potentially unique geochemical profiles. Microbial residents range from low-abundance, low-energy communities on the abyssal plains to fast growing thermophiles at hydrothermal vents. Given its spatial extent and position as an intermediate zone between coastal and deep hadal settings, the abyss represents a lynchpin in global-scale processes such as nutrient and energy flux, population structure, and biogeographic diversity. Taken together, the abyssal ocean contributes critical ecosystem services while facing acute and diffuse anthropogenic threats from deep-sea mining, pollution, and climate change.
    Description: We would like to thank the National Science Foundation for their support through grants NSF 2009117 and 2129431 to SAS.
    Keywords: Abyssal ocean ; Geochemistry ; Microbiology ; Geology ; Ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ostrander, C. M., Kendall, B., Gordon, G. W., Nielsen, S. G., Zheng, W., & Anbar, A. D. Shale heavy metal isotope records of low environmental O2 between two Archean Oxidation Events. Frontiers in Earth Science, 10, (2022): 833609, https://doi.org/10.3389/feart.2022.833609.
    Description: Evidence of molecular oxygen (O2) accumulation at Earth’s surface during the Archean (4.0–2.5 billion years ago, or Ga) seems to increase in its abundance and compelling nature toward the end of the eon, during the runup to the Great Oxidation Event. Yet, many details of this late-Archean O2 story remain under-constrained, such as the extent, tempo, and location of O2 accumulation. Here, we present a detailed Fe, Tl, and U isotope study of shales from a continuous sedimentary sequence deposited between ∼2.6 and ∼2.5 Ga and recovered from the Pilbara Craton of Western Australia (the Wittenoom and Mt. Sylvia formations preserved in drill core ABDP9). We find a progressive decrease in bulk-shale Fe isotope compositions moving up core (as low as δ56Fe = –0.78 ± 0.08‰; 2SD) accompanied by invariant authigenic Tl isotope compositions (average ε205TlA = –2.0 ± 0.6; 2SD) and bulk-shale U isotope compositions (average δ238U = –0.30 ± 0.05‰; 2SD) that are both not appreciably different from crustal rocks or bulk silicate Earth. While there are multiple possible interpretations of the decreasing δ56Fe values, many, to include the most compelling, invoke strictly anaerobic processes. The invariant and near-crustal ε205TlA and δ238U values point even more strongly to this interpretation, requiring reducing to only mildly oxidizing conditions over ten-million-year timescales in the late-Archean. For the atmosphere, our results permit either homogenous and low O2 partial pressures (between 10−6.3 and 10−6 present atmospheric level) or heterogeneous and spatially restricted O2 accumulation nearest the sites of O2 production. For the ocean, our results permit minimal penetration of O2 in marine sediments over large areas of the seafloor, at most sufficient for the burial of Fe oxide minerals but insufficient for the burial of Mn oxide minerals. The persistently low background O2 levels implied by our dataset between ∼2.6 and ∼2.5 Ga contrast with the timeframes immediately before and after, where strong evidence is presented for transient Archean Oxidation Events. Viewed in this broader context, our data support the emerging narrative that Earth’s initial oxygenation was a dynamic process that unfolded in fits-and-starts over many hundreds-of-millions of years.
    Description: This work was supported financially by the NSF Frontiers in Earth System Dynamics program award NSF EAR-1338810 (AA), a Woods Hole Oceanographic Institution Postdoctoral Scholarship (CO), a NSERC Discovery Grant (RGPIN-435930) and the Canada Research Chair program (BK), and a NASA Exobiology award 80NSSC20K0615 (SN).
    Keywords: Archean ; Thallium ; Iron ; Uranium ; Isotopes ; Oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cordone, A., D’Errico, G., Magliulo, M., Bolinesi, F., Selci, M., Basili, M., de Marco, R., Saggiomo, M., Rivaro, P., Giovannelli, D., & Mangoni, O. Bacterioplankton diversity and distribution in relation to phytoplankton community structure in the Ross Sea surface waters. Frontiers in Microbiology, 13, (2022): 722900, https://doi.org/10.3389/fmicb.2022.722900.
    Description: Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community. However, the number of studies reporting the simultaneous diversity of the phytoplankton and bacterioplankton in Antarctic waters are limited. Here, we report data on the bacterial diversity in relation to phytoplankton community structure in the surface waters of the Ross Sea during the Austral summer 2017. Our results show partially overlapping bacterioplankton communities between the stations located in the Terra Nova Bay (TNB) coastal waters and the Ross Sea Open Waters (RSOWs), with a dominance of members belonging to the bacterial phyla Bacteroidetes and Proteobacteria. In the TNB coastal area, microbial communities were characterized by a higher abundance of sequences related to heterotrophic bacterial genera such as Polaribacter spp., together with higher phytoplankton biomass and higher relative abundance of diatoms. On the contrary, the phytoplankton biomass in the RSOW were lower, with relatively higher contribution of haptophytes and a higher abundance of sequences related to oligotrophic and mixothrophic bacterial groups like the Oligotrophic Marine Gammaproteobacteria (OMG) group and SAR11. We show that the rate of diversity change between the two locations is influenced by both abiotic (salinity and the nitrogen to phosphorus ratio) and biotic (phytoplankton community structure) factors. Our data provide new insight into the coexistence of the bacterioplankton and phytoplankton in Antarctic waters, suggesting that specific rather than random interaction contribute to the organic matter cycling in the Southern Ocean.
    Description: Samples were collected in the framework of Plankton biodiversity and functioning of the Ross Sea ecosystems in a changing Southern Ocean [P-ROSE – (PNRA16_00239)], and CDW Effects on glacial mElting and on Bulk of Fe in the Western Ross sea [CELEBeR – (PNRA16_00207)] projects – Italian National Antarctic Program – funded by the Ministry of Education, University and Research (MIUR), awarded to OM and PR, respectively. MM was supported by an Earth-Life Science Institute (Tokyo, Japan) visiting fellowship. This work was partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 948972) to DG.
    Keywords: Bacterial diversity ; Bacterioplankton ; Phytoplankton ; Ross Sea ; Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Woods, D., Cheadle, M., John, B., German, C., & Van Dover, C. Making use of relicts: brisingid seastars aggregate on hydrothermally inactive sulfide chimneys near black smokers. Frontiers in Marine Science, 9, (2022): 774628, https://doi.org/10.3389/fmars.2022.774628.
    Description: When hydrothermal activity ceases at black-smoker chimneys on mid-ocean ridges, populations of associated invertebrates hosting chemoautotrophic endosymbionts decline and then disappear, but the chimneys can persist on the seabed as relicts. Suspension-feeding brisingid seastars colonize hydrothermally inactive (relict) chimneys on the East Pacific Rise (EPR), though their distribution relative to available hard substrata and proximity to hydrothermal activity is poorly documented. In this study, brisingid abundance on sulfide and basalt substrata was assessed along an ∼3,700 m ROV Jason II transect at the summit of Pito Seamount (SE Pacific; ∼2,275 m). Brisingids were non-randomly distributed, with highest densities (up to ∼300 m–2) on relict sulfides chimneys near active black smokers. Brisingids were relatively uncommon on basalt substrata, and absent on black smokers. We infer that both relict sulfide structures and proximity to black smokers play key roles in the maintenance of dense brisingid populations on Pito Seamount and in similar environments on the EPR. Our observations suggest that experimental introduction of “artificial” relict chimneys providing microtopographic relief could test whether such an approach might mitigate potential impacts of mineral extraction on populations of suspension-feeding invertebrates.
    Description: his project was partially supported by the Global Ocean Biodiversity Initiative through the International Climate Initiative (IKI; grant no. 16_IV_049_Global_A_Global Ocean Biodiversity Initiative GOBI). The Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) supports IKI on the basis of a decision adopted by the German Bundestag. DW was supported by Duke University funds to CV. CG’s participation was funded through WHOI’s Deep Ocean Exploration Institute. The AT37-08 cruise was funded by NSF OCE-1459462 (MC and BJ) and OCE-1459387 (J Gee, Scripps Institution of Oceanography).
    Keywords: Brisingid seastar ; East Pacific Rise (EPR) ; Hydrothermal vent ; Pito Seamount ; Nautile Hydrothermal Field ; Deep-sea mining (DSM) ; Black smoker ; Hydrothermally inactive sulfide
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Walter, J. A., Castorani, M. C. N., Bell, T. W., Sheppard, L. W., Cavanaugh, K. C., & Reuman, D. C. Tail-dependent spatial synchrony arises from nonlinear driver-response relationships. Ecology Letters, 25, (2022): 1189– 1201, https://doi.org/10.1111/ele.13991.
    Description: Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, ‘tail-dependent’ follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.
    Description: This research was supported by NSF-OCE awards 2023555, 2023523, 2140335, 2023474, and the James S McDonnell Foundation. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE 1831937.
    Keywords: Copula ; Disturbance ; Giant kelp ; Macrocystis pyrifera ; Nutrients ; Stability ; Synchrony ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Hu, C., Kourafalou, V., Liu, Y., McGillicuddy, D., Barnes, B., & Hummon, J. Physical characteristics and evolution of a long-lasting mesoscale cyclonic eddy in the Straits of Florida. Frontiers in Marine Science, 9, (2022): 779450, https://doi.org/10.3389/fmars.2022.779450.
    Description: Ocean eddies along the Loop Current (LC)/Florida Current (FC) front have been studied for decades, yet studies of the entire evolution of individual eddies are rare. Here, satellite altimetry and ocean color observations, Argo profiling float records and shipborne acoustic Doppler current profiler (ADCP) measurements, together with high-resolution simulations from the global Hybrid Coordinate Ocean Model (HYCOM) are used to investigate the physical and biochemical properties, 3-dimensional (3-D) structure, and evolution of a long-lasting cyclonic eddy (CE) in the Straits of Florida (SoF) along the LC/FC front during April–August 2017. An Angular Momentum Eddy Detection Algorithm (AMEDA) is used to detect and track the CE during its evolution process. The long-lasting CE is found to form along the eastern edge of the LC on April 9th, and remained quasi-stationary for about 3 months (April 23 to July 15) off the Dry Tortugas (DT) until becoming much smaller due to its interaction with the FC and topography. This frontal eddy is named a Tortugas Eddy (TE) and is characterized with higher Chlorophyll (Chl) and lower temperature than surrounding waters, with a mean diameter of ∼100 km and a penetrating depth of ∼800 m. The mechanisms that contributed to the growth and evolution of this long-lasting TE are also explored, which reveal the significant role of oceanic internal instability.
    Description: This work was supported by the NASA student fellowship program “Future Investigators in NASA Earth and Space Science and Technology” (FINESST, 80NSSC19K1358), the National Academies of Sciences, Engineering and Medicine (NASEM) UGOS-1 (2000009918), the NOAA IOOS SECOORA Program [IOOS.21(097)USF.BW.OBS.1], and the NOAA RESTORE Science Program (NA17NOS4510099).
    Keywords: Satellite altimetry ; Ocean color ; Argo profiling float ; ADCP ; Global HYCOM ; Cyclonic eddy ; Straits of Florida ; Dry Tortugas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rypkema, N., Schmidt, H., & Fischell, E. Synchronous-clock range-angle relative acoustic navigation: a unified approach to multi-AUV localization, command, control, and coordination. Journal of Field Robotics, 2(1), (2022): 774–806, https://doi.org/10.55417/fr.2022026.
    Description: This paper presents a scalable acoustic navigation approach for the unified command, control, and coordination of multiple autonomous underwater vehicles (AUVs). Existing multi-AUV operations typically achieve coordination manually by programming individual vehicles on the surface via radio communications, which becomes impractical with large vehicle numbers; or they require bi-directional intervehicle acoustic communications to achieve limited coordination when submerged, with limited scalability due to the physical properties of the acoustic channel. Our approach utilizes a single, periodically broadcasting beacon acting as a navigation reference for the group of AUVs, each of which carries a chip-scale atomic clock and fixed ultrashort baseline array of acoustic receivers. One-way travel-time from synchronized clocks and time-delays between signals received by each array element allow any number of vehicles within receive distance to determine range, angle, and thus determine their relative position to the beacon. The operator can command different vehicle behaviors by selecting between broadcast signals from a predetermined set, while coordination between AUVs is achieved without intervehicle communication by defining individual vehicle behaviors within the context of the group. Vehicle behaviors are designed within a beacon-centric moving frame of reference, allowing the operator to control the absolute position of the AUV group by repositioning the navigation beacon to survey the area of interest. Multiple deployments with a fleet of three miniature, low-cost SandShark AUVs performing closed-loop acoustic navigation in real-time provide experimental results validated against a secondary long-baseline positioning system, demonstrating the capabilities and robustness of our approach with real-world data.
    Description: This work was partially supported by the Office of Naval Research, the Defense Advanced Research Projects Agency, Lincoln Laboratory, and the Reuben F. and Elizabeth B. Richards Endowed Funds at WHOI.
    Keywords: Underwater robotics ; Navigation ; Multirobot systems ; Localization ; Marine robotics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castorani, M. C. N., Bell, T. W., Walter, J. A., Reuman, D. C., Cavanaugh, K. C., & Sheppard, L. W. Disturbance and nutrients synchronise kelp forests across scales through interacting Moran effects. Ecology Letters, 25(8), (2022): 1854-1868, https://doi.org/10.1111/ele.14066.
    Description: Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987–2019) and 〉900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)—underpinned by climatic variability—act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.
    Description: This study was funded by the U.S. National Science Foundation (NSF) through linked NSF-OCE awards 2023555, 2023523, 2140335, and 2023474 to M.C.N.C., K.C.C., T.W.B., and D.C.R., respectively. The research was initiated during a synthesis working group at the Long Term Ecological Research Network Office and National Center for Ecological Analysis and Synthesis funded under NSF-DEB award 1545288. D.C.R. and L.W.S. were also partly supported by NSF award 1714195, the McDonnell Foundation, and the California Department of Fish and Wildlife Delta Science Program. This project used data developed through the Santa Barbara Coastal Long Term Ecological Research project, funded through NSF-OCE award 1831937.
    Keywords: Coherence ; Disturbance ; Moran effect ; Nitrate ; North Pacific Gyre Oscillation ; Oceanography ; Population dynamics ; Remote sensing ; Spatial synchrony ; Wavelet transforms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Duguid, Z., & Camilli, R. Improving resource management for unattended observation of the marginal ice zone using autonomous underwater gliders. Frontiers in Robotics and AI, 7, (2020): 579256, https://doi.org/10.3389/frobt.2020.579256.
    Description: We present control policies for use with a modified autonomous underwater glider that are intended to enable remote launch/recovery and long-range unattended survey of the Arctic's marginal ice zone (MIZ). This region of the Arctic is poorly characterized but critical to the dynamics of ice advance and retreat. Due to the high cost of operating support vessels in the Arctic, the proposed glider architecture minimizes external infrastructure requirements for navigation and mission updates to brief and infrequent satellite updates on the order of once per day. This is possible through intelligent power management in combination with hybrid propulsion, adaptive velocity control, and dynamic depth band selection based on real-time environmental state estimation. We examine the energy savings, range improvements, decreased communication requirements, and temporal consistency that can be attained with the proposed glider architecture and control policies based on preliminary field data, and we discuss a future MIZ survey mission concept in the Arctic. Although the sensing and control policies presented here focus on under ice missions with an unattended underwater glider, they are hardware independent and are transferable to other robotic vehicle classes, including in aerial and space domains.
    Description: Support for this research was provided through NASA PSTAR Grant #NNX16AL08G and the National Science Foundation Navigating the New Arctic grant #1839063.
    Keywords: Autonomous underwater glider ; Under-ice ; Long-range ; Onboard acoustic sensing ; Environment state estimation ; Marginal ice zone ; Adaptive control ; Energy efficiency
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cadigan, J., Bekkaye, J., Jafari, N., Zhu, L., Booth, A., Chen, Q., Raubenheimer, B., Harris, B., O’Connor, C., Lane, R., Kemp, G., Day, J., Day, J., & Ulloa, H. Impacts of coastal infrastructure on shoreline response to major hurricanes in southwest Louisiana. Frontiers in Built Environment, 8, (2022): 885215. https://doi.org/10.3389/fbuil.2022.885215.
    Description: The Rockefeller Wildlife Refuge, located along the Chenier Plain in Southwest Louisiana, was the location of the sequential landfall of two major hurricanes in the 2020 hurricane season. To protect the rapidly retreating coastline along the Refuge, a system of breakwaters was constructed, which was partially completed by the 2020 hurricane season. Multi-institutional, multi-disciplinary rapid response deployments of wave gauges, piezometers, geotechnical measurements, vegetation sampling, and drone surveys were conducted before and after Hurricanes Laura and Delta along two transects in the Refuge; one protected by a breakwater system and one which was the natural, unprotected shoreline. Geomorphological changes were similar on both transects after Hurricane Laura, while after Delta there was higher inland sediment deposition on the natural shoreline. Floodwaters drained from the transect with breakwater protection more slowly than the natural shoreline, though topography profiles are similar, indicating a potential dampening or complex hydrodynamic interactions between the sediment—wetland—breakwater system. In addition, observations of a fluidized mud deposit in Rollover Bayou in the Refuge are presented and discussed in context of the maintenance of wetland elevation and stability in the sediment starved Chenier Plain.
    Description: Funding for the study has been partially provided by the National Science Foundation through grants NSF 2139882, 2139883, 1829136, 1848650, and 1939275, as well as through the United States Army Corps of Engineers Regional Sediment Management program. Student support provided through the National Science Foundation Graduate Research Fellowship Program and the Louisiana Coastal Science Assistantship Program.
    Keywords: Hurricane impact ; Wave attenuation and erosion control ; Storm surge ; Chenier plain ; Breakwater ; Field measured data ; Natural infrastructure ; Shoreline retreat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cavanaugh, K. C., Bell, T., Costa, M., Eddy, N. E., Gendall, L., Gleason, M. G., Hessing-Lewis, M., Martone, R., McPherson, M., Pontier, O., Reshitnyk, L., Beas-Luna, R., Carr, M., Caselle, J. E., Cavanaugh, K. C., Miller, R. F., Hamilton, S., Heady, W. N., Hirsh, H. K., Hohman R., Lee L. C., Lorda J., Ray J., Reed D. C., Saccomanno V. R., Schroeder, S. B. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Frontiers in Marine Science, 8, (2021): 753531, https://doi.org/10.3389/fmars.2021.753531.
    Description: Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.
    Description: Funding was provided by the Nature Conservancy (Grant No. 02042019-5719), the U.S. National Science Foundation (Grant No. OCE 1831937), and the U.S. Department of Energy ARPA-E (Grant No. DE-AR0000922).
    Keywords: Kelp forest ; Remote sensing ; North America ; Coastal management ; Kelp management ; Bull kelp ; Giant kelp
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Oliveira, T. C. A., Lin, Y.-T., & Porter, M. B. Underwater sound propagation modeling in a complex shallow water environment. Frontiers in Marine Science, 8, (2021): 751327, https://doi.org/10.3389/fmars.2021.751327.
    Description: Three-dimensional (3D) effects can profoundly influence underwater sound propagation in shallow-water environments, hence, affecting the underwater soundscape. Various geological features and coastal oceanographic processes can cause horizontal reflection, refraction, and diffraction of underwater sound. In this work, the ability of a parabolic equation (PE) model to simulate sound propagation in the extremely complicated shallow water environment of Long Island Sound (United States east coast) is investigated. First, the 2D and 3D versions of the PE model are compared with state-of-the-art normal mode and beam tracing models for two idealized cases representing the local environment in the Sound: (i) a 2D 50-m flat bottom and (ii) a 3D shallow water wedge. After that, the PE model is utilized to model sound propagation in three realistic local scenarios in the Sound. Frequencies of 500 and 1500 Hz are considered in all the simulations. In general, transmission loss (TL) results provided by the PE, normal mode and beam tracing models tend to agree with each other. Differences found emerge with (1) increasing the bathymetry complexity, (2) expanding the propagation range, and (3) approaching the limits of model applicability. The TL results from 3D PE simulations indicate that sound propagating along sand bars can experience significant 3D effects. Indeed, for the complex shallow bathymetry found in some areas of Long Island Sound, it is challenging for the models to track the interference effects in the sound pattern. Results emphasize that when choosing an underwater sound propagation model for practical applications in a complex shallow-water environment, a compromise will be made between the numerical model accuracy, computational time, and validity.
    Description: TO thanks FCT/MCTES for the financial support to CESAM (UIDP/50017/2020 + UIDB/50017/2020), through national funds. The funding support from the Office of Naval Research for Y-TL via the grant N00014-21-1-2416 was also acknowledged. MP was supported by the Office of Naval Research under contracts N68335-17-C-0553 and N00014-18-C-7007.
    Keywords: Underwater soundscape ; 3D PE ; Bellhop3D ; Kraken3D ; Long Island Sound ; Sand bars
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Billings, G., Walter, M., Pizarro, O., Johnson-Roberson, M., & Camilli, R. Towards automated sample collection and return in extreme underwater environments. Journal of Field Robotics, 2(1), (2022): 1351–1385, https://doi.org/10.55417/fr.2022045.
    Description: In this report, we present the system design, operational strategy, and results of coordinated multivehicle field demonstrations of autonomous marine robotic technologies in search-for-life missions within the Pacific shelf margin of Costa Rica and the Santorini-Kolumbo caldera complex, which serve as analogs to environments that may exist in oceans beyond Earth. This report focuses on the automation of remotely operated vehicle (ROV) manipulator operations for targeted biological sample-collection-and-return from the seafloor. In the context of future extraterrestrial exploration missions to ocean worlds, an ROV is an analog to a planetary lander, which must be capable of high-level autonomy. Our field trials involve two underwater vehicles, the SuBastian ROV and the Nereid Under Ice (NUI) hybrid ROV for mixed initiative (i.e., teleoperated or autonomous) missions, both equipped seven-degrees-of-freedom hydraulic manipulators. We describe an adaptable, hardware-independent computer vision architecture that enables high-level automated manipulation. The vision system provides a three-dimensional understanding of the workspace to inform manipulator motion planning in complex unstructured environments. We demonstrate the effectiveness of the vision system and control framework through field trials in increasingly challenging environments, including the automated collection and return of biological samples from within the active undersea volcano Kolumbo. Based on our experiences in the field, we discuss the performance of our system and identify promising directions for future research.
    Description: This work was funded under a NASA PSTAR grant, number NNX16AL08G, and by the National Science Foundation under grants IIS-1830660 and IIS-1830500. The authors would like to thank the Costa Rican Ministry of Environment and Energy and National System of Conservation Areas for permitting research operations at the Costa Rican shelf margin, and the Schmidt Ocean Institute (including the captain and crew of the R/V Falkor and ROV SuBastian) for their generous support and making the FK181210 expedition safe and highly successful. Additionally, the authors would like to thank the Greek Ministry of Foreign Affairs for permitting the 2019 Kolumbo Expedition to the Kolumbo and Santorini calderas, as well as Prof. Evi Nomikou and Dr. Aggelos Mallios for their expert guidance and tireless contributions to the expedition.
    Keywords: Underwater robotics ; Mobile manipulation ; Marine robotics ; Exploration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jiang, L.-Q., Pierrot, D., Wanninkhof, R., Feely, R. A., Tilbrook, B., Alin, S., Barbero, L., Byrne, R. H., Carter, B. R., Dickson, A. G., Gattuso, J.-P., Greeley, D., Hoppema, M., Humphreys, M. P., Karstensen, J., Lange, N., Lauvset, S. K., Lewis, E. R., Olsen, A., Pérez, F. F., Sabine, C., Sharp, J. D., Tanhua, T., Trull, T. W., Velo, A., Allegra, A. J., Barker, P., Burger, E., Cai, W-J., Chen, C-T. A., Cross, J., Garcia, H., Hernandez-Ayon J. M., Hu, X., Kozyr, A., Langdon, C., Lee., K, Salisbury, J., Wang, Z. A., & Xue, L. Best practice data standards for discrete chemical oceanographic observations. Frontiers in Marine Science, 8, (2022): 705638, https://doi.org/10.3389/fmars.2021.705638.
    Description: Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.
    Description: Funding for L-QJ and AK was from NOAA Ocean Acidification Program (OAP, Project ID: 21047) and NOAA National Centers for Environmental Information (NCEI) through NOAA grant NA19NES4320002 [Cooperative Institute for Satellite Earth System Studies (CISESS)] at the University of Maryland/ESSIC. BT was in part supported by the Australia’s Integrated Marine Observing System (IMOS), enabled through the National Collaborative Research Infrastructure Strategy (NCRIS). AD was supported in part by the United States National Science Foundation. AV and FP were supported by BOCATS2 Project (PID2019-104279GB-C21/AEI/10.13039/501100011033) funded by the Spanish Research Agency and contributing to WATER:iOS CSIC interdisciplinary thematic platform. MH was partly funded by the European Union’s Horizon 2020 Research and Innovation Program under grant agreement N°821001 (SO-CHIC).
    Keywords: Data standard for chemical oceanography ; Discrete chemical oceanographic observations ; Column header abbreviations ; WOCE WHP exchange formats ; Quality control flags ; Content vs. concentration ; CO2SYS ; TEOS-10
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, S., Longnecker, K., Kujawinski, E., Vergin, K., Bolaños, L., Giovannoni, S., Parsons, R., Opalk, K., Halewood, E., Hansell, D., Johnson, R., Curry, R., & Carlson, C. Linkages among dissolved organic matter export, dissolved metabolites, and associated microbial community structure response in the northwestern Sargasso Sea on a seasonal scale. Frontiers in Microbiology, 13, (2022): 833252, https://doi.org/10.3389/fmicb.2022.833252.
    Description: Deep convective mixing of dissolved and suspended organic matter from the surface to depth can represent an important export pathway of the biological carbon pump. The seasonally oligotrophic Sargasso Sea experiences annual winter convective mixing to as deep as 300 m, providing a unique model system to examine dissolved organic matter (DOM) export and its subsequent compositional transformation by microbial oxidation. We analyzed biogeochemical and microbial parameters collected from the northwestern Sargasso Sea, including bulk dissolved organic carbon (DOC), total dissolved amino acids (TDAA), dissolved metabolites, bacterial abundance and production, and bacterial community structure, to assess the fate and compositional transformation of DOM by microbes on a seasonal time-scale in 2016–2017. DOM dynamics at the Bermuda Atlantic Time-series Study site followed a general annual trend of DOC accumulation in the surface during stratified periods followed by downward flux during winter convective mixing. Changes in the amino acid concentrations and compositions provide useful indices of diagenetic alteration of DOM. TDAA concentrations and degradation indices increased in the mesopelagic zone during mixing, indicating the export of a relatively less diagenetically altered (i.e., more labile) DOM. During periods of deep mixing, a unique subset of dissolved metabolites, such as amino acids, vitamins, and benzoic acids, was produced or lost. DOM export and compositional change were accompanied by mesopelagic bacterial growth and response of specific bacterial lineages in the SAR11, SAR202, and SAR86 clades, Acidimicrobiales, and Flavobacteria, during and shortly following deep mixing. Complementary DOM biogeochemistry and microbial measurements revealed seasonal changes in DOM composition and diagenetic state, highlighting microbial alteration of the quantity and quality of DOM in the ocean.
    Description: This project was funded by the Simons Foundation International’s BIOS-SCOPE program and US National Science Foundation (NSF OCE-1756105 for BATS cruises).
    Keywords: Dissolved organic matter ; Amino acids ; Metabolites ; Bacterioplankton ; Sargasso Sea ; Seasonal ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Matabos, M., Barreyre, T., Juniper, S., Cannat, M., Kelley, D., Alfaro-Lucas, J., Chavagnac, V., Colaço, A., Escartin, J., Escobar, E., Fornari, D., Hasenclever, J., Huber, J., Laës-Huon, A., Lantéri, N., Levin, L., Mihaly, S., Mittelstaedt, E., Pradillon, F., Lantéri, N., Levin, L. A., Mihaly, S., Mittelstaedt, E., Pradillon, F., Sarradin, P-M., Sarrazin, J., Tomasi, B., Venkatesan, R., & Vic, C. Integrating Multidisciplinary Observations in Vent Environments (IMOVE): decadal progress in deep-sea observatories at hydrothermal vents. Frontiers in Marine Science, 9, (2022): 866422, https://doi.org/10.3389/fmars.2022.866422.
    Description: The unique ecosystems and biodiversity associated with mid-ocean ridge (MOR) hydrothermal vent systems contrast sharply with surrounding deep-sea habitats, however both may be increasingly threatened by anthropogenic activity (e.g., mining activities at massive sulphide deposits). Climate change can alter the deep-sea through increased bottom temperatures, loss of oxygen, and modifications to deep water circulation. Despite the potential of these profound impacts, the mechanisms enabling these systems and their ecosystems to persist, function and respond to oceanic, crustal, and anthropogenic forces remain poorly understood. This is due primarily to technological challenges and difficulties in accessing, observing and monitoring the deep-sea. In this context, the development of deep-sea observatories in the 2000s focused on understanding the coupling between sub-surface flow and oceanic and crustal conditions, and how they influence biological processes. Deep-sea observatories provide long-term, multidisciplinary time-series data comprising repeated observations and sampling at temporal resolutions from seconds to decades, through a combination of cabled, wireless, remotely controlled, and autonomous measurement systems. The three existing vent observatories are located on the Juan de Fuca and Mid-Atlantic Ridges (Ocean Observing Initiative, Ocean Networks Canada and the European Multidisciplinary Seafloor and water column Observatory). These observatories promote stewardship by defining effective environmental monitoring including characterizing biological and environmental baseline states, discriminating changes from natural variations versus those from anthropogenic activities, and assessing degradation, resilience and recovery after disturbance. This highlights the potential of observatories as valuable tools for environmental impact assessment (EIA) in the context of climate change and other anthropogenic activities, primarily ocean mining. This paper provides a synthesis on scientific advancements enabled by the three observatories this last decade, and recommendations to support future studies through international collaboration and coordination. The proposed recommendations include: i) establishing common global scientific questions and identification of Essential Ocean Variables (EOVs) specific to MORs, ii) guidance towards the effective use of observatories to support and inform policies that can impact society, iii) strategies for observatory infrastructure development that will help standardize sensors, data formats and capabilities, and iv) future technology needs and common sampling approaches to answer today’s most urgent and timely questions.
    Description: The first workshop in Bergen was additionally funded by the K.G. Jebsen Centre for Deep Sea Research and the University of Bergen. The second workshop was supported by ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015) and co-funded by a grant from the French government under the program “Investissements d’Avenir”. Additional funding was provided by Ifremer, and the départment du Finistère. The operation and maintenance of the EMSO-Azores observatory is funded by the by the EMSO-FR Research Infrastructure (MESR), which is managed by an Ifremer-CNRS collaboration. The operation and maintenance of the Endeavour observatory is funded by the Canada Foundation for Innovation’s Major Science Infrastructure program and the Department of Fisheries and Oceans (Canada). The operation and maintenance of the Axial Seamount observatory is funded by the National Science Foundation as part of the Ocean Observatories Initiative Regional Cabled Array. MM, JS and PMS acknowledge funding from the EU Horizon 2020 iAtlantic project (Grant Agreement No. 818123). AC was supported by the Operational Program AZORES 2020, through the Fund 01-0145-FEDER-1279 000140 “MarAZ Researchers: Consolidate a body of researchers in Marine Sciences in the Azores” of the European Union. She was also supported by FCT – Foundation for Science and Technology, I.P., under the project UIDB/05634/2020 and UIDP/05634/2020 and through the Regional Government of the Azores through the initiative to support the Research Centers of the University of the Azores and through the project M1.1.A/REEQ.CIENTÍFICO UI&D/2021/010.
    Keywords: Essential ocean variables (EOVs) ; Essential biological variables (EBVs) ; Mid-ocean ridge (MOR) ; Sensors, seabed platforms ; Vent fluid dynamics ; Vent communities dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cohen, N., Alexander, H., Krinos, A., Hu, S., & Lampe, R. Marine microeukaryotem metatranscriptomics: sample processing and bioinformatic workflow recommendations for ecological applications. Frontiers in Marine Science, 9, (2022): 867007, https://doi.org/10.3389/fmars.2022.867007.
    Description: Microeukaryotes (protists) serve fundamental roles in the marine environment as contributors to biogeochemical nutrient cycling and ecosystem function. Their activities can be inferred through metatranscriptomic investigations, which provide a detailed view into cellular processes, chemical-biological interactions in the environment, and ecological relationships among taxonomic groups. Established workflows have been individually put forth describing biomass collection at sea, laboratory RNA extraction protocols, and bioinformatic processing and computational approaches. Here, we present a compilation of current practices and lessons learned in carrying out metatranscriptomics of marine pelagic protistan communities, highlighting effective strategies and tools used by practitioners over the past decade. We anticipate that these guidelines will serve as a roadmap for new marine scientists beginning in the realms of molecular biology and/or bioinformatics, and will equip readers with foundational principles needed to delve into protistan metatranscriptomics.
    Description: We acknowledge funding support from the University of Georgia Skidaway Institute of Oceanography (to NRC), National Science Foundation (NSF) (OCE-1948025 to HA), and Department of Energy Computational Science Graduate Fellowship (DE-SC0020347 to AIK). SKH participation was supported through NSF OCE-1947776.
    Keywords: Metatranscriptomics ; Phytoplankton ; Biological oceanography ; Microbial ecology ; Bioinformatics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cavaco, M. A., Bhatia, M. P., Hawley, A. K., Torres-Beltran, M., Johnson, W. M., Longnecker, K., Konwar, K., Kujawinski, E. B., & Hallam, S. J. Pathway-centric analysis of microbial metabolic potential and expression along nutrient and energy gradients in the western Atlantic Ocean. Frontiers in Marine Science, 9, (2022): 867310, https://doi.org/10.3389/fmars.2022.867310.
    Description: Microbial communities play integral roles in driving nutrient and energy transformations in the ocean, collectively contributing to fundamental biogeochemical cycles. Although it is well known that these communities are stratified within the water column, there remains limited knowledge of how metabolic pathways are distributed and expressed. Here, we investigate pathway distribution and expression patterns from surface (5 m) to deep dark ocean (4000 m) at three stations along a 2765 km transect in the western South Atlantic Ocean. This study is based on new data, consisting of 43 samples for 16S rRNA gene sequencing, 20 samples for metagenomics and 19 samples for metatranscriptomics. Consistent with previous observations, we observed vertical zonation of microbial community structure largely partitioned between light and dark ocean waters. The metabolic pathways inferred from genomic sequence information and gene expression stratified with depth. For example, expression of photosynthetic pathways increased in sunlit waters. Conversely, expression of pathways related to carbon conversion processes, particularly those involving recalcitrant and organic carbon degradation pathways (i.e., oxidation of formaldehyde) increased in dark ocean waters. We also observed correlations between indicator taxa for specific depths with the selective expression of metabolic pathways. For example, SAR202, prevalent in deep waters, was strongly correlated with expression of the methanol oxidation pathway. From a biogeographic perspective, microbial communities along the transect encoded similar metabolic potential with some latitudinal stratification in gene expression. For example, at a station influenced by input from the Amazon River, expression of pathways related to oxidative stress was increased. Finally, when pairing distinct correlations between specific particulate metabolites (e.g., DMSP, AMP and MTA) and both the taxonomic microbial community and metatranscriptomic pathways across depth and space, we were able to observe how changes in the marine metabolite pool may be influenced by microbial function and vice versa. Taken together, these results indicate that marine microbial communities encode a core repertoire of widely distributed metabolic pathways that are differentially regulated along nutrient and energy gradients. Such pathway distribution patterns are consistent with robustness in microbial food webs and indicate a high degree of functional redundancy.
    Description: This work was funded by the NSF Division of Ocean Sciences (Grant no. OCE-1154320 to EK and KL) and a small (“Microbial controls on marine organic carbon cycling”) and large (“Marine microbial communities from the Southern Atlantic Ocean transect to study dissolved organic matter and carbon cycling”) community sequencing grants from the Joint Genome Institute (US Department of Energy, Walnut Creek, CA) to SH and MB. MB was supported by an NSERC post-doctoral fellowship and a CIFAR Global Scholars fellowship. MC was supported by a Campus Alberta Innovates Program (CAIP) chair to MB.
    Keywords: Marine microbiology ; Metagenomics ; Metatranscriptomics ; Metabolites ; Atlantic Ocean ; Biogeochemistry ; Metabolic pathways ; Functional redundancy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Caramanna, G., Sievert, S. M., & Buehring, S. I. Submarine shallow-water fluid emissions and their geomicrobiological imprint: a global overview. Frontiers in Marine Science, 8, (2021): 727199, https://doi.org/10.3389/fmars.2021.727199.
    Description: Submarine fluids emissions in the form of geothermal vents are widespread in a variety of geological settings ranging from volcanic to tectonically active areas. This overview aims to describe representative examples of submarine vents in shallow-water areas around the globe. The areas described include: Iceland, Azores, Mediterranean Sea (Italy and Greece), Caribbean, Baja California, Japan, Papua, New Zealand, Taiwan. Common and divergent characteristics in terms of origin and geochemistry of the emitted fluids and their impact on the indigenous organisms and the surrounding environment have been identified. In the hottest vents seawater concentration is common as well as some water vapor phase separation. Carbon dioxide is the most common gas often associated with compounds of sulfur and methane. In several vents precipitation of minerals can be identified in the surrounding sediments. The analyses of the microbial communities often revealed putative chemoautotrophs, with Campylobacteria abundantly present at many vents where reduced sulfur compounds are available. The techniques that can be used for the detection and quantification of underwater vents are also described, including geophysical and geochemical tools. Finally, the main geobiological effects due to the presence of the hydrothermal activity and the induced changes in water chemistry are assessed.
    Description: SMS was supported by the United States National Science Foundation (OCE-1124272) and the WHOI Investment in Science Fund and SIB by the Deutsche Forschungsgemeinschaft (Emmy Noether grant BU 2606/1).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jenouvrier, S., Long, M. C., Coste, C. F. D., Holland, M., Gamelon, M., Yoccoz, N., & Saether, B.-E. Detecting climate signals in populations across life histories. Global Change Biology, 28, (2022): 2236– 2258, https://doi.org/10.1111/gcb.16041.
    Description: Climate impacts are not always easily discerned in wild populations as detecting climate change signals in populations is challenged by stochastic noise associated with natural climate variability, variability in biotic and abiotic processes, and observation error in demographic rates. Detection of the impact of climate change on populations requires making a formal distinction between signals in the population associated with long-term climate trends from those generated by stochastic noise. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from natural climate variability. This concept has been applied extensively in the climate sciences, but has not been explored in the context of population dynamics. Here, we outline an approach to detecting climate-driven signals in populations based on an assessment of when climate change drives population dynamics beyond the envelope characteristic of stochastic variations in an unperturbed state. Specifically, we present a theoretical assessment of the time of emergence of climate-driven signals in population dynamics (ToEpop). We identify the dependence of (ToEpop)on the magnitude of both trends and variability in climate and also explore the effect of intrinsic demographic controls on (ToEpop). We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction), and the relationships between climate and demographic rates yield population dynamics that filter climate trends and variability differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from stochastic noise for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.
    Description: We acknowledge the support of NASA 80NSSC20K1289 to SJ, ML, and MH; NSF OPP 1744794 to SJ and NSF OPP 2037561 to SJ and MH.
    Keywords: climate change ; emperor penguin ; life histories ; population trend ; population variability ; signal to noise ; time of emergence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Robuck, A. R., Hudak, C. A., Agvent, L., Emery, G., Ryan, P. G., Perold, V., Powers, K. D., Pedersen, J., Thompson, M. A., Suca, J. J., Moore, M. J., Harms, C. A., Bugoni, L., Shield, G., Glass, T., Wiley, D. N., & Lohmann, R. Birds of a feather eat plastic together: high levels of plastic ingestion in Great Shearwater adults and juveniles across their annual migratory cycle. Frontiers in Marine Science, 8, (2022): 719721, https://doi.org/10.3389/fmars.2021.719721.
    Description: Limited work to date has examined plastic ingestion in highly migratory seabirds like Great Shearwaters (Ardenna gravis) across their entire migratory range. We examined 217 Great Shearwaters obtained from 2008–2019 at multiple locations spanning their yearly migration cycle across the Northwest and South Atlantic to assess accumulation of ingested plastic as well as trends over time and between locations. A total of 2328 plastic fragments were documented in the ventriculus portion of the gastrointestinal tract, with an average of 9 plastic fragments per bird. The mass, count, and frequency of plastic occurrence (FO) varied by location, with higher plastic burdens but lower FO in South Atlantic adults and chicks from the breeding colonies. No fragments of the same size or morphology were found in the primary forage fish prey, the Sand Lance (Ammodytes spp., n = 202) that supports Great Shearwaters in Massachusetts Bay, United States, suggesting the birds directly ingest the bulk of their plastic loads rather than accumulating via trophic transfer. Fourier-transform infrared spectroscopy indicated that low- and high-density polyethylene were the most common polymers ingested, within all years and locations. Individuals from the South Atlantic contained a higher proportion of larger plastic items and fragments compared to analogous life stages in the NW Atlantic, possibly due to increased use of remote, pelagic areas subject to reduced inputs of smaller, more diverse, and potentially less buoyant plastics found adjacent to coastal margins. Different signatures of polymer type, size, and category between similar life stages at different locations suggests rapid turnover of ingested plastics commensurate with migratory stage and location, though more empirical evidence is needed to ground-truth this hypothesis. This work is the first to comprehensively measure the accumulation of ingested plastics by Great Shearwaters over the last decade and across multiple locations spanning their yearly trans-equatorial migration cycle and underscores their utility as sentinels of plastic pollution in Atlantic ecosystems.
    Description: This project was supported by the NOAA Fisheries National Seabird Program and the Volgenau Foundation. AR acknowledges support from the National Oceanic and Atmospheric Administration Dr. Nancy Foster Scholarship Program (NOAA Award Number NA17NOS4290028), the Robert and Patricia Switzer Foundation, the STEEP Superfund Research Program (NIEHS Award Number P42ES027706), and the Oak Ridge Institute for Science and Education (ORISE) program. LB was funded by INCT-Mar COI and PQ Grant No. 311409/2018-0, both by the Brazilian National Research Council (CNPq). JS was funded by the National Science Foundation Graduate Research Fellowship program.
    Keywords: Ardenna gravis ; migration ; pollution ; shearwaters ; marine debris ; microplastic ; nurdles ; bycatch
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yamhure, G. M., Reyns, N., & Pineda, J. High larval concentrations and onshore transport of barnacle cyprids associated with thermal stratification. Frontiers in Marine Science, 8, (2021): 748389, https://doi.org/10.3389/fmars.2021.748389.
    Description: To better understand the hydrodynamic and hydrographic conditions experienced by larvae in the nearshore (within 1 km of shore), and the role that larval behavior plays in mediating shoreward transport to adult benthic habitats, we examined the vertical distribution and concentration of barnacle cyprids in a shallow, nearshore region in southern California, United States. We collected high-resolution physical measurements of currents and temperature at 3 stations (8, 5, and 4 m depths), and high-frequency measurements of barnacle larvae at a 4 m deep station ∼300 m from shore. Larvae were sampled from distinct 1 m depth intervals between the surface and the bottom (0–1 m, 1–2 m, 2–3 m, 3 m-bottom), each hour for overnight periods that ranged between 13 to 24 h in five cruises during the summers of 2017 and 2018. Barnacle cyprids of Chthamalus fissus predominated in all samples. Thermal stratification decreased closer to shore, but when the nearshore-most station remained stratified (Δ°C m–1 ≥ 0.1), C. fissus cyprid concentrations were high to extremely abundant (exceeding 200 and 4,000 individuals m–3, respectively). There were significant positive correlations between thermal stratification and the log-transformed C. fissus concentration at cruise-to-cruise scales, and between stratification and vertical variability in the high-frequency cross-shore currents at 2-day scales. Additionally, estimated larval transport was relatively high and shoreward when nearshore thermal stratification was greatest. Significant, albeit small, diel differences in cyprid distributions were also observed, with the proportion of cyprids increasing near the surface at night, and concentrations greater during the day than at night. Collectively, these results suggest that thermal stratification increases larval supply to the nearshore, and may enhance onshore larval transport to augment chances of successful settlement and recruitment to the intertidal adult habitat.
    Description: This study was funded by the National Science Foundation under grants OCE-1357290, OCE-1357327, OCE-1630459, and OCE-1630474.
    Keywords: larval vertical distribution ; thermocline ; larval transport ; Chthamalus fissus ; diel cycles ; nearshore
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ketten, D. R., Simmons, J. A., Riquimaroux, H., & Simmons, A. M. Functional analyses of peripheral auditory system adaptations for echolocation in air vs. water. Frontiers in Ecology and Evolution, 09, (2021): 661216, https://doi.org/10.3389/fevo.2021.661216.
    Description: The similarity of acoustic tasks performed by odontocete (toothed whale) and microchiropteran (insectivorous bat) biosonar suggests they may have common ultrasonic signal reception and processing mechanisms. However, there are also significant media and prey dependent differences, notably speed of sound and wavelengths in air vs. water, that may be reflected in adaptations in their auditory systems and peak spectra of out-going signals for similarly sized prey. We examined the anatomy of the peripheral auditory system of two species of FM bat (big brown bat Eptesicus fuscus; Japanese house bat Pipistrellus abramus) and two toothed whales (harbor porpoise Phocoena phocoena; bottlenose dolphin Tursiops truncatus) using ultra high resolution (11–100 micron) isotropic voxel computed tomography (helical and microCT). Significant differences were found for oval and round window location, cochlear length, basilar membrane gradients, neural distributions, cochlear spiral morphometry and curvature, and basilar membrane suspension distributions. Length correlates with body mass, not hearing ranges. High and low frequency hearing range cut-offs correlate with basilar membrane thickness/width ratios and the cochlear radius of curvature. These features are predictive of high and low frequency hearing limits in all ears examined. The ears of the harbor porpoise, the highest frequency echolocator in the study, had significantly greater stiffness, higher basal basilar membrane ratios, and bilateral bony support for 60% of the basilar membrane length. The porpoise’s basilar membrane includes a “foveal” region with “stretched” frequency representation and relatively constant membrane thickness/width ratio values similar to those reported for some bat species. Both species of bats and the harbor porpoise displayed unusual stapedial input locations and low ratios of cochlear radii, specializations that may enhance higher ultrasonic frequency signal resolution and deter low frequency cochlear propagation.
    Description: MicroCT scanning, data analyses, and manuscript preparation were assisted by funding to DK from the Joint Industry Program (contract JIP22 III-16-08 – 55205300) and fellowships from the Hanse-Wissenschaftskolleg ICBM Fellowship and the Helmholtz International Fellow research programs. Big brown bat data collection and analysis were supported by an Office of Naval Research grant N00014-14-1-05880 to JS and an Office of Naval Research MURI grant N00014-17-1-2736 to JS and AS. Specimen collection, histology processing, and helical scanning related to the data reported in this study were supported through multiple grants and contracts since 2010 to DK from NIH, N45/LMRS-United States Navy Environmental Division (EnvDiv), Office of Naval Research, and ONR Global.
    Keywords: biosonar ; cochlea ; basilar membrane ; stapes ; inner ear ; echolocation ; bat ; dolphin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bongarts Lebbe, T., Rey-Valette, H., Chaumillon, E., Camus, G., Almar, R., Cazenave, A., Claudet, J., Rocle, N., Meur-Ferec, C., Viard, F., Mercier, D., Dupuy, C., Menard, F., Rossel, B. A., Mullineaux, L., Sicre, M.-A., Zivian, A., Gaill, F., & Euzen, A. Designing coastal adaptation strategies to tackle sea level rise. Frontiers in Marine Science, 8, (2021): 740602, https://doi.org/10.3389/fmars.2021.740602.
    Description: Faced with sea level rise and the intensification of extreme events, human populations living on the coasts are developing responses to address local situations. A synthesis of the literature on responses to coastal adaptation allows us to highlight different adaptation strategies. Here, we analyze these strategies according to the complexity of their implementation, both institutionally and technically. First, we distinguish two opposing paradigms – fighting against rising sea levels or adapting to new climatic conditions; and second, we observe the level of integrated management of the strategies. This typology allows a distinction between four archetypes with the most commonly associated governance modalities for each. We then underline the need for hybrid approaches and adaptation trajectories over time to take into account local socio-cultural, geographical, and climatic conditions as well as to integrate stakeholders in the design and implementation of responses. We show that dynamic and participatory policies can foster collective learning processes and enable the evolution of social values and behaviors. Finally, adaptation policies rely on knowledge and participatory engagement, multi-scalar governance, policy monitoring, and territorial solidarity. These conditions are especially relevant for densely populated areas that will be confronted with sea level rise, thus for coastal cities in particular.
    Description: This work was conducted as part of the project SEA’TIES led by the Ocean & Climate Platform. SEA’TIES is funded by the Prince Albert II Foundation (No. 3112), Veolia Foundation (No. 20EB2004), and Fondation de France, Monaco. It was coordinated by the CNRS, in the framework of the RTPi (International Multidisciplinary Thematic Network) which drives the scientific component of the SEA’TIES project.
    Keywords: climate change ; sea level rise ; adaptation ; governance ; nature-based solutions ; multidisciplinary approach ; vulnerability ; coastal cities
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kim, D., Ji, R., Park, H. J., Feng, Z., Jang, J., Lee, C. l, Kang, Y.-H., & Kang, C.-K. Impact of shifting subpolar front on phytoplankton dynamics in the western margin of East/Japan Sea. Frontiers in Marine Science, 8, (2021): 790703, https://doi.org/10.3389/fmars.2021.790703.
    Description: A subpolar front (SPF) generated between the East Korea Warm Current (EKWC) and the North Korea Cold Current (NKCC) in the western margin of the East/Japan Sea has shifted northward in recent decades. This study investigated the biomass and composition of the phytoplankton assemblage in relation to hydrological and biogeochemical features in the shallow shelf and slope off the Korean coast from January to June in 2016 and 2017, to determine the mechanistic effects of SPF on spring–summer phytoplankton bloom dynamics. Monthly average depth-integrated chlorophyll a (Chl a) levels and the contribution of phytoplankton classes revealed bimodal diatom blooms in early spring and summer in the frontal zone. Canonical correspondence analysis showed that the distribution of high Chl a was associated with cold, low-salinity NKCC water in March 2016. No Chl a peak was observed in March 2017 when the warm saline EKWC water mass invaded. These results suggest that the NKCC intrusion acts as a forcing mechanism leading to enhanced phytoplankton biomass in the frontal zone. In contrast, positive correlations of Chl a concentration with water density and nutrient concentrations suggest that summer blooms were fed by the subsurface chlorophyll maximum (SCM) driven by shoaling of the pycnocline and nitracline. Varying water-column stratification determined the thickness of the SCM layer, driving year-to-year variability in the magnitude of diatom blooms. These findings further suggest that seasonal/interannual variability in the timing of algal blooms affects regional trophodynamics and hence could be an important factor in explaining ecosystem changes in this region.
    Description: This research was supported by “Long-term change of structure and function in marine ecosystems of Korea” and “Walleye pollock stock management based on marine information and communication technology” funded by the Ministry of Oceans and Fisheries, South Korea.
    Keywords: phytoplankton ; diatom bloom ; photosynthetic pigments ; subpolar front ; Ulleung Basin ; East/Japan Sea ; trophodynamics ; ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-07-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carson, M., Doberneck, D., Hart, Z., Kelsey, H., Pierce, J., Porter, D., Richlen, M., Schandera, L., & Triezenberg, H. A strategic framework for community engagement in oceans and human health, Community Science, 1(1), (2022): e2022CSJ000001, https://doi.org/10.1029/2022csj000001.
    Description: Over the past two decades, scientific research on the connections between the health and resilience of marine ecosystems and human health, well-being, and community prosperity has expanded and evolved into a distinct “metadiscipline” known as Oceans and Human Health (OHH), recognized by the scientific community as well as policy makers. OHH goals are diverse and seek to improve public health outcomes, promote sustainable use of aquatic systems and resources, and strengthen community resilience. OHH research has historically included some level of community outreach and partner involvement; however, the increasing disruption of aquatic environments and urgency of public health impacts calls for a more systematic approach to effectively identify and engage with community partners to achieve project goals and outcomes. Herein, we present a strategic framework developed collaboratively by community engagement personnel from the four recently established U.S. Centers for Oceans and Human Health (COHH). This framework supports researchers in defining levels of community engagement and in aligning partners, purpose, activities, and approaches intentionally in their community engagement efforts. Specifically, we describe: (a) a framework for a range of outreach and engagement approaches; (b) the need for identifying partners, purpose, activities, and approaches; and (c) the importance of making intentional alignment among them. Misalignment across these dimensions may lead to wasting time or resources, eroding public trust, or failing to achieve intended outcomes. We illustrate the framework with examples from current COHH case studies and conclude with future directions for strategic community engagement in OHH and other environmental health contexts.
    Description: This publication was prepared by Heather Triezenberg and the team under award NA180AR4170102 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce through the Regents of the University of Michigan, and supported by funding from the NIH (1P01ES028939-01) and the NSF (1840715) to the Bowling Green State University Great Lakes Center for Fresh Waters and Human Health. Funding for M. L. Richlen was provided by the NSF (OCE1840381) and NIH (1P01-ES028938-01) through the Woods Hole Center for Oceans and Human Health. Research at the Center for Oceans and Human Health and Climate Change Interactions (OHHC2I) at the University of South Carolina is supported by the NIH Award Number P01ES028942, granted to Principal Investigators Geoffrey Scott and Paul Sandifer. M. A. Carson, Z. Hart, H. Kelsey, D. E. Porter, and L. Schandera are Community Engagement Core investigators at this Center. Funding for J. Pierce is provided by the NSF (grant number OCE-1841811) and the NIH (P01ES028949) through the Greater Caribbean Center for Ciguatera Research at the Florida Gulf Coast University.
    Keywords: harmful algal blooms ; human health ; pollutants ; ocean health
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-08-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bucklin, A., Batta-Lona, P., Questel, J., Wiebe, P., Richardson, D., Copley, N., & O’Brien, T. COI metabarcoding of zooplankton species diversity for time-series monitoring of the NW Atlantic continental shelf. Frontiers in Marine Science, 9, (2022): 867893, https://doi.org/10.3389/fmars.2022.867893.
    Description: Marine zooplankton are rapid-responders and useful indicators of environmental variability and climate change impacts on pelagic ecosystems on time scales ranging from seasons to years to decades. The systematic complexity and taxonomic diversity of the zooplankton assemblage has presented significant challenges for routine morphological (microscopic) identification of species in samples collected during ecosystem monitoring and fisheries management surveys. Metabarcoding using the mitochondrial Cytochrome Oxidase I (COI) gene region has shown promise for detecting and identifying species of some – but not all – taxonomic groups in samples of marine zooplankton. This study examined species diversity of zooplankton on the Northwest Atlantic Continental Shelf using 27 samples collected in 2002-2012 from the Gulf of Maine, Georges Bank, and Mid-Atlantic Bight during Ecosystem Monitoring (EcoMon) Surveys by the NOAA NMFS Northeast Fisheries Science Center. COI metabarcodes were identified using the MetaZooGene Barcode Atlas and Database (https://metazoogene.org/MZGdb) specific to the North Atlantic Ocean. A total of 181 species across 23 taxonomic groups were detected, including a number of sibling and cryptic species that were not discriminated by morphological taxonomic analysis of EcoMon samples. In all, 67 species of 15 taxonomic groups had ≥ 50 COI sequences; 23 species had 〉1,000 COI sequences. Comparative analysis of molecular and morphological data showed significant correlations between COI sequence numbers and microscopic counts for 5 of 6 taxonomic groups and for 5 of 7 species with 〉1,000 COI sequences for which both types of data were available. Multivariate statistical analysis showed clustering of samples within each region based on both COI sequence numbers and EcoMon counts, although differences among the three regions were not statistically significant. The results demonstrate the power and potential of COI metabarcoding for identification of species of metazoan zooplankton in the context of ecosystem monitoring.
    Description: This publication resulted in part from support provided by the Scientific Committee on Oceanic Research (SCOR). Funds were also contributed by the U.S. National Science Foundation (Grant OCE-1840868) and by national SCOR committees.
    Keywords: zooplankton ; metabarcoding ; cytochrome oxidase I ; species diversity ; ecosystem monitoring ; Northwest Atlantic continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-06-29
    Description: Rapid and profound climatic and environmental changes have been predicted for the Antarctic Peninsula with so far unknown impact on the biogeochemistry of the continental shelves. In this study, we investigate benthic carbon sedimentation, remineralization and iron cycling using sediment cores retrieved on a 400 mile transect with contrasting sea ice conditions along the eastern shelf of the Antarctic Peninsula. Sediments at comparable water depths of 330-450 m showed sedimentation and remineralization rates of organic carbon, ranging from 2.5-13 and 1.8-7.2 mmol C m-2 d-1, respectively. Both rates were positively correlated with the occurrence of marginal sea ice conditions (5-35% ice cover) along the transect, suggesting a favorable influence of the corresponding light regime and water column stratification on algae growth and sedimentation rates. From south to north, the burial efficiency of organic carbon decreased from 58% to 27%, while bottom water temperatures increased from -1.9 to -0.1 °C. Net iron reduction rates, as estimated from pore-water profiles of dissolved iron, were significantly correlated with carbon degradation rates and contributed 0.7-1.2% to the total organic carbon remineralization. Tightly coupled phosphate-iron recycling was indicated by significant covariation of dissolved iron and phosphate concentrations, which almost consistently exhibited P/Fe flux ratios of 0.26. Iron efflux into bottom waters of 0.6-4.5 µmol Fe m-2 d-1 was estimated from an empirical model. Despite the deep shelf waters, a clear bentho-pelagic coupling is indicated, shaped by the extent and duration of marginal sea ice conditions during summer, and likely to be affected by future climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-06-24
    Description: A variety of tectonic processes spread along the circum-Mediterranean orogenic belts driven by the convergence of major plates, episodes of slab retreat and lateral and vertical mantle flows. Here, we provide an updated view of crustal stress and strain-rate fields for the Albanides belt in the eastern Adria-Eurasia convergence boundary. We framed a new geodetic-based source model for the 2019 Mw6.4 Durrёs earthquake in light of the regional deformation, propending for a transpressional west-dipping seismogenic fault. Our results highlight a fault-scale complexity which mirrors the long-time scale deformation of the Albanides plate boundary, where the rotation induced by the fast Hellenic rollback is accommodated also by transpression on inherited structures.
    Description: Published
    Description: 244–252
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-24
    Description: Pyroclastic currents are described as gravity currents, and the classic conceptual model gives a first-order importance to the density of such currents. This directs quantitative models to assume specific flow structures (shallow water or equilib rium turbulent boundary layer), which may apply to restricted volcanic areas inde pendently of source dynamics or may correspond to source dynamics separate from topographic interaction. The recent introduction of two end-members of pyroclastic currents, inertial and forced, is further developed here, leading to a global conceptual model in which source dynamics and topographic interaction are both taken into account. The concept of energy facies is defined here as the ensemble of the first order indicators of pyroclastic currents (topological aspect ratio, competence ratio and emplacement temperature) that are proxies of the energy of such currents. Nine energy facies are introduced with general applicability and with the goal to globally characterize pyroclastic currents from vent to deposit.
    Description: Published
    Description: 1-11
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Energy facies ; pyroclastic currents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-07-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Edgcomb, V., Teske, A., & Mara, P. Microbial hydrocarbon degradation in Guaymas Basin—exploring the roles and potential interactions of fungi and sulfate-reducing bacteria. Frontiers in Microbiology, 13, (2022): 831828, https://doi.org/10.3389/fmicb.2022.831828.
    Description: Hydrocarbons are degraded by specialized types of bacteria, archaea, and fungi. Their occurrence in marine hydrocarbon seeps and sediments prompted a study of their role and their potential interactions, using the hydrocarbon-rich hydrothermal sediments of Guaymas Basin in the Gulf of California as a model system. This sedimented vent site is characterized by localized hydrothermal circulation that introduces seawater sulfate into methane- and hydrocarbon-rich sediments, and thus selects for diverse hydrocarbon-degrading communities of which methane, alkane- and aromatics-oxidizing sulfate-reducing bacteria and archaea have been especially well-studied. Current molecular and cultivation surveys are detecting diverse fungi in Guaymas Basin hydrothermal sediments, and draw attention to possible fungal-bacterial interactions. In this Hypothesis and Theory article, we report on background, recent results and outcomes, and underlying hypotheses that guide current experiments on this topic in the Edgcomb and Teske labs in 2021, and that we will revisit during our ongoing investigations of bacterial, archaeal, and fungal communities in the deep sedimentary subsurface of Guaymas Basin.
    Description: This project was supported by collaborative NSF Biological Oceanography grants OCE-1829903 and OCE-1829680 “Hydrothermal fungi in the Guaymas Basin Hydrocarbon Ecosystem” to VE and AT, and collaborative NSF Biological Oceanography grants OCE-2046799 and OCE-2048489 “IODP-enabled Insights into Fungi and Their Metabolic Interactions with Other Microorganisms in Deep Subsurface Hydrothermal Sediments” to VE and AT. PM was supported by OCE-2046799 and OCE-1829903. Sampling in Guaymas Basin was supported by collaborative NSF Biological Oceanography grant 1357238 “Collaborative Research: Microbial carbon cycling and its interaction with sulfur and nitrogen transformations in Guaymas Basin hydrothermal sediments” to AT.
    Keywords: hydrocarbon ; fungi ; sulfate-reducing bacteria ; microbial interaction ; Guaymas Basin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-09-15
    Description: Phytoplankton stand at the base of the marine food-web, and play a major role in global carbon cycling. Rising CO2 levels and temperatures are expected to enhance growth and alter carbon:nutrient stoichiometry of marine phytoplankton, with possible consequences for the functioning of marine food-webs and the oceanic carbon pump. To date, however, the consistency of phytoplankton stoichiometric responses remains unclear. We therefore performed a meta-analysis on data from experimental studies on stoichiometric responses of marine phytoplankton to elevated pCO2 and 3–5° warming under nutrient replete and limited conditions. Our results demonstrate that elevated pCO2 increased overall phytoplankton C:N (by 4%) and C:P (by 9%) molar ratios under nutrient replete conditions, as well as phytoplankton growth rates (by 6%). Nutrient limitation amplified the CO2 effect on C:N and C:P ratios, with increases to 27% and 17%, respectively. In contrast to elevated pCO2, warming did not consistently alter phytoplankton elemental composition. This could be attributed to species- and study-specific increases and decreases in stoichiometry in response to warming. While our observed moderate CO2-driven changes in stoichiometry are not likely to drive marked changes in food web functioning, they are in the same order of magnitude as current and projected estimations of oceanic carbon export. Therefore, our results may indicate a stoichiometric compensation mechanism for reduced oceanic carbon export due to declining primary production in the near future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-09-14
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Thomas, M., Jensen, F. H., Averly, B., Demartsev, V., Manser, M. B., Sainburg, T., Roch, M. A., & Strandburg-Peshkin, A. A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations. The Journal of Animal Ecology, 91(8), (2022): 1567– 1581, https://doi.org/10.1111/1365-2656.13754.
    Description: 1. Background: The manual detection, analysis and classification of animal vocalizations in acoustic recordings is laborious and requires expert knowledge. Hence, there is a need for objective, generalizable methods that detect underlying patterns in these data, categorize sounds into distinct groups and quantify similarities between them. Among all computational methods that have been proposed to accomplish this, neighbourhood-based dimensionality reduction of spectrograms to produce a latent space representation of calls stands out for its conceptual simplicity and effectiveness. 2. Goal of the study/what was done: Using a dataset of manually annotated meerkat Suricata suricatta vocalizations, we demonstrate how this method can be used to obtain meaningful latent space representations that reflect the established taxonomy of call types. We analyse strengths and weaknesses of the proposed approach, give recommendations for its usage and show application examples, such as the classification of ambiguous calls and the detection of mislabelled calls. 3. What this means: All analyses are accompanied by example code to help researchers realize the potential of this method for the study of animal vocalizations.
    Description: This work was supported by HFSP Research Grant RGP0051/2019 to ASP, MBM and MAR, and funded by the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy (EXC-2117-422037984). ASP received additional funding from the Gips-Schüle Stiftung, the Zukunftskolleg at the University of Konstanz and the Max-Planck-Institute of Animal Behaviour. VD was funded by the Minerva Stiftung and Alexander von Humboldt Foundation.
    Keywords: animal sounds ; animal vocalizations ; bioacoustics ; call classification ; dimensionality reduction ; spectrogram ; UMAP ; unsupervised learning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-09-22
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grattepanche, J.-D., Jeffrey, W., Gast, R., & Sanders, R. Diversity of microbial eukaryotes along the West Antarctic Peninsula in austral spring. Frontiers in Microbiology, 13, (2022): 844856, https://doi.org/10.3389/fmicb.2022.844856.
    Description: During a cruise from October to November 2019, along the West Antarctic Peninsula, between 64.32 and 68.37°S, we assessed the diversity and composition of the active microbial eukaryotic community within three size fractions: micro- (〉 20 μm), nano- (20–5 μm), and pico-size fractions (5–0.2 μm). The communities and the environmental parameters displayed latitudinal gradients, and we observed a strong similarity in the microbial eukaryotic communities as well as the environmental parameters between the sub-surface and the deep chlorophyll maximum (DCM) depths. Chlorophyll concentrations were low, and the mixed layer was shallow for most of the 17 stations sampled. The richness of the microplankton was higher in Marguerite Bay (our southernmost stations), compared to more northern stations, while the diversity for the nano- and pico-plankton was relatively stable across latitude. The microplankton communities were dominated by autotrophs, mostly diatoms, while mixotrophs (phototrophs-consuming bacteria and kleptoplastidic ciliates, mostly alveolates, and cryptophytes) were the most abundant and active members of the nano- and picoplankton communities. While phototrophy was the dominant trophic mode, heterotrophy (mixotrophy, phagotrophy, and parasitism) tended to increase southward. The samples from Marguerite Bay showed a distinct community with a high diversity of nanoplankton predators, including spirotrich ciliates, and dinoflagellates, while cryptophytes were observed elsewhere. Some lineages were significantly related—either positively or negatively—to ice coverage (e.g., positive for Pelagophyceae, negative for Spirotrichea) and temperature (e.g., positive for Cryptophyceae, negative for Spirotrichea). This suggests that climate changes will have a strong impact on the microbial eukaryotic community.
    Description: This work was supported by the National Science Foundation (Grant Nos. ANT 1744767 to RS, ANT 1744663 to RG, and ANT 1744638 to WJ). This research was based, in part, upon sequencing conducted using the Rhode Island Genomics and Sequencing Center, which was supported in part by the National Science Foundation (MRI Grant No. DBI-0215393 and EPSCoR Grant Nos. 0554548 and EPS-1004057), the US Department of Agriculture (Grant Nos. 2002-34438-12688 and 2003-34438-13111), and the University of Rhode Island. This research includes calculations carried out on Temple University HPC resources supported in part by the National Science Foundation through major research instrumentation (Grant No. 1625061) and by the US Army Research Laboratory under (Contract No. W911NF-16-2-0189).
    Keywords: picoplankton ; nanoplankton ; microplankton ; Antarctic protists ; high-throughput sequencing ; RNA community
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-06-09
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Parsons, M., Lin, T.-H., Mooney, T., Erbe, C., Juanes, F., Lammers, M., Li, S., Linke, S., Looby, A., Nedelec, S., Van Opzeeland, I., Radford, C., Rice, A., Sayigh, L., Stanley, J., Urban, E., & Di Iorio, L. Sounding the call for a global library of underwater biological sounds. Frontiers in Ecology and Evolution, 10, (2022): 810156, https://doi.org/10.3389/fevo.2022.810156.
    Description: Aquatic environments encompass the world’s most extensive habitats, rich with sounds produced by a diversity of animals. Passive acoustic monitoring (PAM) is an increasingly accessible remote sensing technology that uses hydrophones to listen to the underwater world and represents an unprecedented, non-invasive method to monitor underwater environments. This information can assist in the delineation of biologically important areas via detection of sound-producing species or characterization of ecosystem type and condition, inferred from the acoustic properties of the local soundscape. At a time when worldwide biodiversity is in significant decline and underwater soundscapes are being altered as a result of anthropogenic impacts, there is a need to document, quantify, and understand biotic sound sources–potentially before they disappear. A significant step toward these goals is the development of a web-based, open-access platform that provides: (1) a reference library of known and unknown biological sound sources (by integrating and expanding existing libraries around the world); (2) a data repository portal for annotated and unannotated audio recordings of single sources and of soundscapes; (3) a training platform for artificial intelligence algorithms for signal detection and classification; and (4) a citizen science-based application for public users. Although individually, these resources are often met on regional and taxa-specific scales, many are not sustained and, collectively, an enduring global database with an integrated platform has not been realized. We discuss the benefits such a program can provide, previous calls for global data-sharing and reference libraries, and the challenges that need to be overcome to bring together bio- and ecoacousticians, bioinformaticians, propagation experts, web engineers, and signal processing specialists (e.g., artificial intelligence) with the necessary support and funding to build a sustainable and scalable platform that could address the needs of all contributors and stakeholders into the future.
    Description: Support for the initial author group to meet, discuss, and build consensus on the issues within this manuscript was provided by the Scientific Committee on Oceanic Research, Monmouth University Urban Coast Institute, and Rockefeller Program for the Human Environment. The U.S. National Science Foundation supported the publication of this article through Grant OCE-1840868 to the Scientific Committee on Oceanic Research.
    Keywords: soundscape ; bioacoustics database ; artificial intelligence ; biodiversity ; passive acoustic monitoring ; ecological informatics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-07-20
    Description: The Antarctic krill (Euphausia superba Dana) is a keystone species in the Southern Ocean that uses an arsenal of hydrolases for biomacromolecule decomposition to effectively digest its omnivorous diet. The present study builds on a hybrid-assembled transcriptome (13,671 ORFs) combined with comprehensive proteome profiling. The analysis of individual krill compartments allowed detection of significantly more different proteins compared to that of the entire animal (1,464 vs. 294 proteins). The nearby krill sampling stations in the Bransfield Strait (Antarctic Peninsula) yielded rather uniform proteome datasets. Proteins related to energy production and lipid degradation were particularly abundant in the abdomen, agreeing with the high energy demand of muscle tissue. A total of 378 different biomacromolecule hydrolysing enzymes were detected, including 250 proteases, 99 CAZymes, 14 nucleases and 15 lipases. The large repertoire in proteases is in accord with the protein-rich diet affiliated with E. superba’s omnivorous lifestyle and complex biology. The richness in chitin-degrading enzymes allows not only digestion of zooplankton diet, but also the utilization of the discharged exoskeleton after moulting.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-12-06
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boss, E., Waite, A., Karstensen, J., Trull, T., Muller-Karger, F., Sosik, H., Uitz, J., Acinas, S., Fennel, K., Berman-Frank, I., Thomalla, S., Yamazaki, H., Batten, S., Gregori, G., Richardson, A., & Wanninkhof, R. Recommendations for plankton measurements on OceanSITES moorings with relevance to other observing sites. Frontiers in Marine Science, 9, (2022): 929436, https://doi.org/10.3389/fmars.2022.929436.
    Description: Measuring plankton and associated variables as part of ocean time-series stations has the potential to revolutionize our understanding of ocean biology and ecology and their ties to ocean biogeochemistry. It will open temporal scales (e.g., resolving diel cycles) not typically sampled as a function of depth. In this review we motivate the addition of biological measurements to time-series sites by detailing science questions they could help address, reviewing existing technology that could be deployed, and providing examples of time-series sites already deploying some of those technologies. We consider here the opportunities that exist through global coordination within the OceanSITES network for long-term (climate) time series station in the open ocean. Especially with respect to data management, global solutions are needed as these are critical to maximize the utility of such data. We conclude by providing recommendations for an implementation plan.
    Description: This work was partially supported from funding to SCOR WG 154 (P-OBS) provided by national committees of the Scientific Committee on Oceanic Research (SCOR) and from a grant to SCOR from the U.S. National Science Foundation (OCE-1840868). FM-K acknowledges the support provided for participation by the Marine Biodiversity Observation Network (MBON) sponsored by NASA, NOAA, ONR, BOEM. HS acknowledges support from the Simons Foundation.
    Keywords: Plankton ; Ocean ; Measurements ; Sensors ; OceanSITES ; Ocean biology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-12-12
    Description: Author Posting. © The Author(s), 2022. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in . Journal of Phycology (2022), https://doi.org/10.1111/jpy.13230.
    Description: The marine green alga Brilliantia kiribatiensis gen. et sp. nov. is described from samples collected from the coral reefs of the Southern Line Islands, Republic of Kiribati, Pacific Ocean. Phylogenetic analysis of sequences of the large- and small-subunit rDNA and the rDNA internal transcribed spacer region revealed that Brilliantia is a member of the Boodleaceae (Cladophorales), containing the genera Apjohnia, Boodlea, Cladophoropsis, Chamaedoris, Phyllodictyon, and Struvea. Within this clade it formed a distinct lineage, sister to Struvea elegans, but more distantly related to the bona fide Struvea species (including the type S. plumosa). Brilliantia differs from the other genera by having a very simple architecture forming upright, unbranched, single-celled filaments attached to the substratum by a rhizoidal mat. Cell division occurs by segregative cell division only at the onset of reproduction. Based on current sample collection, B. kiribatiensis seems to be largely restricted to the Southern Line Islands, although it was also observed on neighboring islands, including Orona Atoll in the Phoenix Islands of Kiribati, and the Rangiroa and Takapoto Atolls in the Tuamotus of French Polynesia. This discovery highlights the likeliness that there is still much biodiversity yet to be discovered from these remote and pristine reefs of the central Pacific.
    Description: National Geographic Society
    Description: 2022-12-12
    Keywords: 18S nuclear ribosomal DNA ; Chlorophyta ; Cladophorales ; Molecular phylogeny ; Siphonocladales ; Ulvophyceae
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tuchen, F., Brandt, P., Hahn, J., Hummels, R., Krahmann, G., Bourlès, B., Provost, C., McPhaden, M., & Toole, J. Two decades of full-depth current velocity observations from a moored observatory in the central equatorial Atlantic at 0°N, 23°W. Frontiers in Marine Science, 9, (2022): 910979, https://doi.org/10.3389/fmars.2022.910979.
    Description: Regional climate variability in the tropical Atlantic, from interannual to decadal time scales, is inevitably connected to changes in the strength and position of the individual components of the tropical current system with impacts on societally relevant climate hazards such as anomalous rainfall or droughts over the surrounding continents (Bourlès et al., 2019; Foltz et al., 2019). Furthermore, the lateral supply of dissolved oxygen in the tropical Atlantic upper-ocean is closely linked to the zonal current bands (Brandt et al., 2008; Brandt et al., 2012; Burmeister et al., 2020) and especially to the Equatorial Undercurrent (EUC) and its long-term variations with potential implications for regional marine ecosystems (Brandt et al., 2021). The eastward flowing EUC is located between 70 to 200 m depth and forms one of the strongest tropical currents with maximum velocities of up to 1 m s-1 and maximum variability on seasonal time scales (Brandt et al., 2014; Johns et al., 2014). In the intermediate to deep equatorial Atlantic, variability on longer time scales is mainly governed by alternating, vertically-stacked, zonal currents (equatorial deep jets (EDJs); Johnson and Zhang, 2003). At a fixed location, the phases of these jets are propagating downward with time, implying that parts of their energy must propagate upward towards the surface (Brandt et al., 2011). In fact, a pronounced interannual cycle of about 4.5 years, that is associated with EDJs, is projected onto surface parameters such as sea surface temperature or precipitation (Brandt et al., 2011) further demonstrating the importance of understanding equatorial circulation variability and its role in tropical climate variability.
    Description: This study was funded by EU H2020 under grant agreement 817578 TRIATLAS project, by the Deutsche Forschungsgemeinschaft as part of the Sonderforschungsbereich754 “Climate–Biogeochemistry Interactions in the Tropical Ocean” and through several research cruises with RV Meteor, RV Maria S. Merian, RV L'Atalante, and RV Sonne and by the Deutsche Bundesministerium für Bildung und Forschung (BMBF) as part of the projects RACE (03F06518) and by the European Union 7th Framework Programme (FP7) under Grant Agreement 603521. Moored velocity observations were acquired in cooperation with the PIRATA project supported by NOAA (USA), IRD and Meteo-France (France), INPE (Brazil) and the Brazil Navy. This research was performed while FPT held an NRC Research Associateship Award at NOAA’s Atlantic Oceanographic and Meteorological Laboratory. FPT, PB, JH, RH, and GK are grateful for continuing support from GEOMAR Helmholtz Centre for Ocean Research Kiel. MM acknowledges the support of NOAA; PMEL contribution no. 5359. JT's contributions to this study were supported by the U.S. National Science Foundation.
    Keywords: Ocean observations ; Physical oceanography ; Equatorial Atlantic circulation ; Ocean currents ; Moored observations ; Climate variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yu, L., & Yang, K. A warm and a cold spot in Cape Cod waters amid the recent New England Shelf Warming. Frontiers in Marine Science, 9, (2022): 922046, https://doi.org/10.3389/fmars.2022.922046.
    Description: Despite the widely recognized warming of the New England Continental Shelf (NES), climate patterns of the shelf’s economically and ecologically important coastal environments remain less examined. Here we use a satellite sea-surface temperature (SST) analysis gridded on 0.05°C spatial resolution to show, for the first time, the existence of a warm and a cold spot in the environs of Cape Cod, Massachusetts amid the NES warming of the past 15 years. The warm spot refers to an increasing warming trend in shallow waters of Nantucket Sound sheltered by the islands of Martha’s Vineyard and Nantucket. The summer SST maxima have increased by 3.1±1.0°C (p〈0.1), about three times faster than the warming elsewhere on the NES, and the summer season has lengthened by 20 ± 7 days (p〈0.1). The cold spot refers to an increasing cooling trend over Nantucket Shoals, an area of shallow sandy shelf that extends south and southeast from Nantucket Island and also known for strong tidal mixing. The strong cooling trend during June–August reduced the SST maxima by -2.5±1.2°C (p〈0.1) and shortened the warm season by -32 ± 11 days (p〈0.1). Away from the Cape Cod waters, the broad warming on the shelf is attributable to a forward shifted annual cycle. The shift is most significant in August–November, during which the summer temperatures lingered longer into the fall, producing a pronounced warming and delaying the onset of the fall season by 13 ± 6 days (p〈0.1). The three different patterns of SST phenology trends displayed by the respective warm spot, the cold spot, and the broad shelf highlight the highly dynamically diverse responses of coastal waters under climate warming. Finally, the study showed that spatial resolution of SST datasets affects the characterization of the spatial heterogeneity in the nearshore SSTs. The widely used Optimum Interpolation SST (OISST) on 0.25°C resolution was examined. Although the two SST datasets agree well with the measurements from the moored buoys at four locations, OISST does not have the cold spot and shows a higher rate of warming on the shelf.
    Description: This study is supported by NOAA Global Ocean Monitoring and Observation (GOMO) Program, grand number NA19OAR4320074.
    Keywords: New England continental shelf warming ; Cape Cod ; Phenology change of sea surface temperature ; Fine-resolution satellite observations ; Coastal warm spot ; Coastal cold spot
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-12-22
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Subhas, A., Marx, L., Reynolds, S., Flohr, A., Mawji, E., Brown, P., & Cael, B. Microbial ecosystem responses to alkalinity enhancement in the North Atlantic Subtropical Gyre. Frontiers in Climate, 4, (2022): 784997, https://doi.org/10.3389./fclim.2022.784997
    Description: In addition to reducing carbon dioxide (CO2) emissions, actively removing CO2 from the atmosphere is widely considered necessary to keep global warming well below 2°C. Ocean Alkalinity Enhancement (OAE) describes a suite of such CO2 removal processes that all involve enhancing the buffering capacity of seawater. In theory, OAE both stores carbon and offsets ocean acidification. In practice, the response of the marine biogeochemical system to OAE must be demonstrably negligible, or at least manageable, before it can be deployed at scale. We tested the OAE response of two natural seawater mixed layer microbial communities in the North Atlantic Subtropical Gyre, one at the Western gyre boundary, and one in the middle of the gyre. We conducted 4-day microcosm incubation experiments at sea, spiked with three increasing amounts of alkaline sodium salts and a 13C-bicarbonate tracer at constant pCO2. We then measured a suite of dissolved and particulate parameters to constrain the chemical and biological response to these additions. Microbial communities demonstrated occasionally measurable, but mostly negligible, responses to alkalinity enhancement. Neither site showed a significant increase in biologically produced CaCO3, even at extreme alkalinity loadings of +2,000 μmol kg−1. At the gyre boundary, alkalinity enhancement did not significantly impact net primary production rates. In contrast, net primary production in the central gyre decreased by ~30% in response to alkalinity enhancement. The central gyre incubations demonstrated a shift toward smaller particle size classes, suggesting that OAE may impact community composition and/or aggregation/disaggregation processes. In terms of chemical effects, we identify equilibration of seawater pCO2, inorganic CaCO3 precipitation, and immediate effects during mixing of alkaline solutions with seawater, as important considerations for developing experimental OAE methodologies, and for practical OAE deployment. These initial results underscore the importance of performing more studies of OAE in diverse marine environments, and the need to investigate the coupling between OAE, inorganic processes, and microbial community composition.
    Description: AS was supported through WHOI internal and Assistant Scientist Startup funding. LM and SR were supported by the University of Portsmouth Ph.D. scheme and the UK NERC National Capability programme CLASS (Climate Linked Atlantic Sector Science) ECR Fellowship. BC, AF, EM, and PB were supported by the UK NERC National Capability programme CLASS, grant number NE/R015953/1.
    Keywords: Climate—change ; Ocean alkalinity enhancement ; Biogeochemistry ; North Atlantic ; Carbon flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clayton, S., Alexander, H., Graff, J. R., Poulton, N. J., Thompson, L. R., Benway, H., Boss, E., & Martiny, A. Bio-GO-SHIP: the time is right to establish global repeat sections of ocean biology. Frontiers in Marine Science, 8, (2022): 767443, https://doi.org/10.3389/fmars.2021.767443.
    Description: In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-optical sensors and 'omic tools, can be combined to provide overlapping measurements of key biological and ecosystem EOVs. New developments in data management and open sharing can facilitate meaningful synthesis and integration with concurrent physical and chemical data. Here we outline how Bio-GO-SHIP leverages these technological advances to greatly expand our knowledge and understanding of the constituents and function of the global ocean plankton ecosystem.
    Description: The Bio-GO-SHIP pilot program was funded under the National Oceanographic Partnership Program as an inter-agency partnership between NOAA and NASA, with the US Integrated Ocean Observing System and NOAA's Global Ocean Monitoring and Observing program (HA, SC, JG, AM, and NP). HA was supported by a WHOI Independent Research and Development award. AM was supported by funding from NSF OCE-1848576 and 1948842 and NASA 80NSSC21K1654. JG was funded by NASA from grants 80NSSC17K0568 and NNX15AAF30G. LT was supported by award NA06OAR4320264 06111039 to the Northern Gulf Institute by NOAA's Office of Oceanic and Atmospheric Research, U.S. Department of Commerce.
    Keywords: Biological oceanography ; Plankton ecosystems ; Ocean observing ; Repeat hydrography ; GO-SHIP program
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lamborg, C. H., Hansel, C. M., Bowman, K. L., Voelker, B. M., Marsico, R. M., Oldham, V. E., Swarr, G. J., Zhang, T., & Ganguli, P. M. Dark reduction drives evasion of mercury from the ocean. Frontiers in Environmental Chemistry, 2, (2021): 659085, https://doi.org/10.3389/fenvc.2021.659085.
    Description: Much of the surface water of the ocean is supersaturated in elemental mercury (Hg0) with respect to the atmosphere, leading to sea-to-air transfer or evasion. This flux is large, and nearly balances inputs from the atmosphere, rivers and hydrothermal vents. While the photochemical production of Hg0 from ionic and methylated mercury is reasonably well-studied and can produce Hg0 at fairly high rates, there is also abundant Hg0 in aphotic waters, indicating that other important formation pathways exist. Here, we present results of gross reduction rate measurements, depth profiles and diel cycling studies to argue that dark reduction of Hg2+ is also capable of sustaining Hg0 concentrations in the open ocean mixed layer. In locations where vertical mixing is deep enough relative to the vertical penetration of UV-B and photosynthetically active radiation (the principal forms of light involved in abiotic and biotic Hg photoreduction), dark reduction will contribute the majority of Hg0 produced in the surface ocean mixed layer. Our measurements and modeling suggest that these conditions are met nearly everywhere except at high latitudes during local summer. Furthermore, the residence time of Hg0 in the mixed layer with respect to evasion is longer than that of redox, a situation that allows dark reduction-oxidation to effectively set the steady-state ratio of Hg0 to Hg2+ in surface waters. The nature of these dark redox reactions in the ocean was not resolved by this study, but our experiments suggest a likely mechanism or mechanisms involving enzymes and/or important redox agents such as reactive oxygen species and manganese (III).
    Description: This work was supported by NSF Grant OCE-1355720 (to CH, CL, and BV).
    Keywords: Mercury ; Evasion ; Elemental ; Dark ; Ocean ; Reactive oxygen species ; Manganese ; Global model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barry, P. H., De Moor, J. M., Chiodi, A., Aguilera, F., Hudak, M. R., Bekaert, D. V., Turner, S. J., Curtice, J., Seltzer, A. M., Jessen, G. L., Osses, E., Blamey, J. M., Amenabar, M. J., Selci, M., Cascone, M., Bastianoni, A., Nakagawa, M., Filipovich, R., Bustos, E., Schrenk, M. O. , Buongiorno, J., Ramírez, C. J., Rogers, T. J., Lloyd, K. G. & Giovannelli, D. The helium and carbon isotope characteristics of the Andean Convergent Margin. Frontiers in Earth Science, 10, (2022): 897267, https://doi.org/10.3389/feart.2022.897267.
    Description: Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 RA (n = 23), with the highest values in the Puna and the lowest in the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 RA (n = 19). Taken together, these data reveal a clear southeastward increase in 3He/4He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 RA), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 RA). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from (n = 11) sites in the CVZ, where δ13C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO2/3He values that vary by over two orders of magnitude (6.9 × 108–1.7 × 1011). In the SVZ, carbon isotope ratios are also reported from (n = 13) sites and vary between −17.2‰ and −4.1‰. CO2/3He values vary by over four orders of magnitude (4.7 × 107–1.7 × 1012). Low δ13C and CO2/3He values are consistent with CO2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions.
    Description: This work was principally supported by the NSF-FRES award 2121637 to PB, KL, and JM. Field work was also supported by award G-2016-7206 from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to PB, KL, DG, and JM. Additional support came from The National Fund for Scientific and Technological Development of Chile (FONDECYT) Grant 11191138 (The National Research and Development Agency of Chile, ANID Chile), and COPAS COASTAL ANID FB210021 to GJ. DG was partially supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program Grant Agreement No. 948972—COEVOLVE—ERC-2020-STG.
    Keywords: Helium ; Carbon ; SVZ ; CVZ ; Andes (Argentina and Chile)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rathore, S., Goyal, R., Jangir, B., Ummenhofer, C., Feng, M., & Mishra, M. Interactions between a marine heatwave and tropical cyclone Amphan in the Bay of Bengal in 2020. Frontiers in Climate, 4, (2022): 861477, https://doi.org/10.3389/fclim.2022.861477.
    Description: Interactions are diagnosed between a marine heatwave (MHW) event and tropical super cyclone Amphan in the Bay of Bengal. In May 2020, an MHW developed in the Bay of Bengal driven by coupled ocean-atmosphere processes which included shoaling of the mixed layer depth due to reduced wind speed, increased net surface shortwave radiation flux into the ocean, increased upper ocean stratification, and increased sub-surface warming. Ocean temperature, rather than salinity, dominated the stratification that contributed to the MHW development and the subsurface ocean warming that also increased tropical cyclone heat potential. The presence of this strong MHW with sea surface temperature anomalies 〉2.5°C in the western Bay of Bengal coincided with the cyclone track and facilitated the rapid intensification of tropical cyclone Amphan to a super cyclone in just 24 h. This rapid intensification of a short-lived tropical cyclone, with a lifespan of 5 days over the ocean, is unprecedented in the Bay of Bengal during the pre-monsoon period (March-May). As the cyclone approached landfall in northern India, the wind-induced mixing deepened the mixed layer, cooled the ocean's surface, and reduced sub-surface warming in the bay, resulting in the demise of the MHW. This study provides new perspectives on the interactions between MHWs and tropical cyclones that could aid in improving the current understanding of compound extreme events that have severe socio-economic consequences in affected countries.
    Description: CU acknowledges support from the James E. and Barbara V. Moltz Fellowship for Climate-Related Research and the Independent Research & Development Program at WHOI. MF was supported by the Centre for Southern Hemisphere Oceans Research (CSHOR), which is a joint initiative between the Qingdao National Laboratory for Marine Science and Technology (QNLM), CSIRO, University of New South Wales, and the University of Tasmania.
    Keywords: Compound extreme events ; Marine heatwave ; Tropical cyclone ; Amphan ; Fani ; Super cyclone ; Rapid intensification ; Extremely severe cyclone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Großelindemann, H., Ryan, S., Ummenhofer, C., Martin, T., & Biastoch, A. Marine Heatwaves and their depth structures on the Northeast U.S. continental shelf. Frontiers in Climate, 4, (2022): 857937, https://doi.org/10.3389/fclim.2022.857937.
    Description: Marine Heatwaves (MHWs) are ocean extreme events, characterized by anomalously high temperatures, which can have significant ecological impacts. The Northeast U.S. continental shelf is of great economical importance as it is home to a highly productive ecosystem. Local warming rates exceed the global average and the region experienced multiple MHWs in the last decade with severe consequences for regional fisheries. Due to the lack of subsurface observations, the depth-extent of MHWs is not well-known, which hampers the assessment of impacts on pelagic and benthic ecosystems. This study utilizes a global ocean circulation model with a high-resolution (1/20°) nest in the Atlantic to investigate the depth structure of MHWs and associated drivers on the Northeast U.S. continental shelf. It is shown that MHWs exhibit varying spatial extents, with some only occurring at depth. The highest intensities are found around 100 m depth with temperatures exceeding the climatological mean by up to 7°C, while surface intensities are typically smaller (around 3°C). Distinct vertical structures are associated with different spatial MHW patterns and drivers. Investigation of the co-variability of temperature and salinity reveals that over 80% of MHWs at depth (〉50 m) coincide with extreme salinity anomalies. Two case studies provide insight into opposing MHW patterns at the surface and at depth, being forced by anomalous air-sea heat fluxes and Gulf Stream warm core ring interaction, respectively. The results highlight the importance of local ocean dynamics and the need to realistically represent them in climate models.
    Description: This work was supported by a DAAD RISE Worldwide fellowship (to HG), a Feodor-Lynen Fellowship by the Alexander von Humboldt Foundation and the WHOI Postdoctoral Scholar program (to SR), and the James E. and Barbara V. Moltz Fellowship for Climate-Related Research (to CU). Franziska Schwarzkopf performed the integration of the OGCM simulations, which was performed on the Earth System Modeling Project (ESM) partition of the supercomputer JUWELS at the Jülich Supercomputing Centre (JSC).
    Keywords: Marine heatwaves ; Northeast U.S. continental shelf ; Ecosystem impacts ; Subsurface marine heatwaves ; Gulf Stream warm core rings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Smith, A. R., Mueller, R., Fisk, M. R., & Colwell, F. S. Ancient metabolisms of a thermophilic subseafloor bacterium. Frontiers in Microbiology, 12, (2021): 764631, https://doi.org/10.3389/fmicb.2021.764631.
    Description: The ancient origins of metabolism may be rooted deep in oceanic crust, and these early metabolisms may have persisted in the habitable thermal anoxic aquifer where conditions remain similar to those when they first appeared. The Wood–Ljungdahl pathway for acetogenesis is a key early biosynthetic pathway with the potential to influence ocean chemistry and productivity, but its contemporary role in oceanic crust is not well established. Here, we describe the genome of a novel acetogen from a thermal suboceanic aquifer olivine biofilm in the basaltic crust of the Juan de Fuca Ridge (JdFR) whose genome suggests it may utilize an ancient chemosynthetic lifestyle. This organism encodes the genes for the complete canonical Wood–Ljungdahl pathway, but is potentially unable to use sulfate and certain organic carbon sources such as lipids and carbohydrates to supplement its energy requirements, unlike other known acetogens. Instead, this organism may use peptides and amino acids for energy or as organic carbon sources. Additionally, genes involved in surface adhesion, the import of metallic cations found in Fe-bearing minerals, and use of molecular hydrogen, a product of serpentinization reactions between water and olivine, are prevalent within the genome. These adaptations are likely a reflection of local environmental micro-niches, where cells are adapted to life in biofilms using ancient chemosynthetic metabolisms dependent on H2 and iron minerals. Since this organism is phylogenetically distinct from a related acetogenic group of Clostridiales, we propose it as a new species, Candidatus Acetocimmeria pyornia.
    Description: Metagenome sequencing was made possible by the Deep Carbon Observatory Census of Deep Life supported by the Alfred P. Sloan Foundation and was performed at the Marine Biological Laboratory (Woods Hole, MA, United States). This work was funded by NASA grant NNX08AO22G and a graduate fellowship from the NSF Center for Dark Energy Biosphere Investigations. The flow cells were funded under J0972A from the U.S. Science Support Program of Joint Oceanographic Institutions.
    Keywords: Metabolism ; Carbon fixation ; Acetogenesis ; Bacteria ; Seafloor ; Hydrogen ; Amino acid ; Clostridia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johri, S., Carnevale, M., Porter, L., Zivian, A., Kourantidou, M., Meyer, E. L., Seevers, J., & Skubel, R. A. Pathways to justice, equity, diversity, and inclusion in marine science and conservation. Frontiers in Marine Science, 8, (2021): 696180, https://doi.org/10.3389/fmars.2021.696180.
    Description: Marine conservation sciences have traditionally been, and remain, non-diverse work environments with many barriers to justice, equity, diversity, and inclusion (JEDI). These barriers disproportionately affect entry of early career scientists and practitioners and limit the success of marine conservation professionals from under-represented, marginalized, and overburdened groups. These groups specifically include women, LGBTQ+, Black, Indigenous, and people of color (BIPOC). However, the issues also arise from the global North/South and East/West divide with under-representation of scientists from the South and East in the global marine conservation and science arena. Persisting inequities in conservation, along with a lack of inclusiveness and diversity, also limit opportunities for innovation, cross-cultural knowledge exchange, and effective implementation of conservation and management policies. As part of its mandate to increase diversity and promote inclusion of underrepresented groups, the Diversity and Inclusion committee of the Society for Conservation Biology-Marine Section (SCB Marine) organized a JEDI focus group at the Sixth International Marine Conservation Congress (IMCC6) which was held virtually. The focus group included a portion of the global cohort of IMCC6 attendees who identified issues affecting JEDI in marine conservation and explored pathways to address those issues. Therefore, the barriers and pathways identified here focus on issues pertinent to participants’ global regions and experiences. Several barriers to just, equitable, diverse, and inclusive conservation science and practice were identified. Examples included limited participation of under-represented minorities (URM) in research networks, editorial biases against URM, limited professional development and engagement opportunities for URM and non-English speakers, barriers to inclusion of women, LGBTQ+, and sensory impaired individuals, and financial barriers to inclusion of URM in all aspects of marine conservation and research. In the current policy brief, we explore these barriers, assess how they limit progress in marine conservation research and practice, and seek to identify initiatives for improvements. We expect the initiatives discussed here to advances practices rooted in principles of JEDI, within SCB Marine and, the broader conservation community. The recommendations and perspectives herein broadly apply to conservation science and practice, and are critical to effective and sustainable conservation and management outcomes.
    Description: The Society for Conservation – Marine Section provided partial funding to support publication costs of this manuscript.
    Keywords: Equity ; Diversity ; Inclusion ; Conferences ; Peer-review ; Bias ; Marine ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Little, S. N., van Hengstum, P. J., Beddows, P. A., Donnelly, J. P., Winkler, T. S., & Albury, N. A. . Unique habitat for benthic foraminifera in subtidal blue holes on carbonate platforms. Frontiers in Ecology and Evolution, 9, (2021): 794728, https://doi.org/10.3389/fevo.2021.794728.
    Description: Dissolution of carbonate platforms, like The Bahamas, throughout Quaternary sea-level oscillations have created mature karst landscapes that can include sinkholes and off-shore blue holes. These karst features are flooded by saline oceanic waters and meteoric-influenced groundwaters, which creates unique groundwater environments and ecosystems. Little is known about the modern benthic meiofauna, like foraminifera, in these environments or how internal hydrographic characteristics of salinity, dissolved oxygen, or pH may influence benthic habitat viability. Here we compare the total benthic foraminiferal distributions in sediment-water interface samples collected from 〈2 m water depth on the carbonate tidal flats, and the two subtidal blue holes Freshwater River Blue Hole and Meredith’s Blue Hole, on the leeward margin of Great Abaco Island, The Bahamas. All samples are dominated by miliolid foraminifera (i.e., Quinqueloculina and Triloculina), yet notable differences emerge in the secondary taxa between these two environments that allows identification of two assemblages: a Carbonate Tidal Flats Assemblage (CTFA) vs. a Blue Hole Assemblage (BHA). The CTFA includes abundant common shallow-water lagoon foraminifera (e.g., Peneroplis, Rosalina, Rotorbis), while the BHA has higher proportions of foraminifera that are known to tolerate stressful environmental conditions of brackish and dysoxic waters elsewhere (e.g., Pseudoeponides, Cribroelphidium, Ammonia). We also observe how the hydrographic differences between subtidal blue holes can promote different benthic habitats for foraminifera, and this is observed through differences in both agglutinated and hyaline fauna. The unique hydrographic conditions in subtidal blue holes make them great laboratories for assessing the response of benthic foraminiferal communities to extreme environmental conditions (e.g., low pH, dysoxia).
    Description: The financial support for this work was provided by grants from the National Science Foundation to PvH (EAR-1833117) and JD (EAR-1702946).
    Keywords: The Bahamas ; Groundwater ; Benthic foraminifera ; Blue holes ; Karst landscapes ; Environmental stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Loomis, R., Cooley, S. R., Collins, J. R., Engler, S., & Suatoni, L. A code of conduct is imperative for ocean carbon dioxide removal research. Frontiers in Marine Science, 9, (2022): 872800, https://doi.org/10.3389/fmars.2022.872800.
    Description: As the impacts of rising temperatures mount and the global transition to clean energy advances only gradually, scientists and policymakers are looking towards carbon dioxide removal (CDR) methods to prevent the worst impacts of climate change. Attention has increasingly focused on ocean CDR techniques, which enhance or restore marine systems to sequester carbon. Ocean CDR research presents the risk of uncertain impacts to human and environmental welfare, yet there are no domestic regulations aimed at ensuring the safety and efficacy of this research. A code of conduct that establishes principles of responsible research, fairness, and equity is needed in this field. This article presents fifteen key components of an ocean CDR research code of conduct.
    Description: JC acknowledges funding support from Bezos Earth Fund.
    Keywords: Carbon dioxide removal ; Ocean ; Policy ; Research governance ; Geoengineering
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-11-15
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in LeKieffre, C., Jauffrais, T., Bernhard, J., Filipsson, H., Schmidt, C., Roberge, H., Maire, O., Panieri, G., Geslin, E., & Meibom, A. Ammonium and sulfate assimilation is widespread in benthic foraminifera. Frontiers in Marine Science, 9, (2022): 861945, https://doi.org/10.3389/fmars.2022.861945.
    Description: Nitrogen and sulfur are key elements in the biogeochemical cycles of marine ecosystems to which benthic foraminifera contribute significantly. Yet, cell-specific assimilation of ammonium, nitrate and sulfate by these protists is poorly characterized and understood across their wide range of species-specific trophic strategies. For example, detailed knowledge about ammonium and sulfate assimilation pathways is lacking and although some benthic foraminifera are known to maintain intracellular pools of nitrate and/or to denitrify, the potential use of nitrate-derived nitrogen for anabolic processes has not been systematically studied. In the present study, NanoSIMS isotopic imaging correlated with transmission electron microscopy was used to trace the incorporation of isotopically labeled inorganic nitrogen (ammonium or nitrate) and sulfate into the biomass of twelve benthic foraminiferal species from different marine environments. On timescales of twenty hours, no detectable 15N-enrichments from nitrate assimilation were observed in species known to perform denitrification, indicating that, while denitrifying foraminifera store intra-cellular nitrate, they do not use nitrate-derived nitrogen to build their biomass. Assimilation of both ammonium and sulfate, with corresponding 15N and 34S-enrichments, were observed in all species investigated (with some individual exceptions for sulfate). Assimilation of ammonium and sulfate thus can be considered widespread among benthic foraminifera. These metabolic capacities may help to underpin the ability of benthic foraminifera to colonize highly diverse marine habitats.
    Description: This work was supported by the Swiss National Science Foundation (grant no. 200021_149333), and a postdoctoral fellowship allowed to CL by the University Loire-Bretagne. SBB sampling was funded by US National Science Foundation grant BIO IOS 1557430 to JMB, who also acknowledges NASA grant #80NSSC21K0478 for partial support. HF acknowledges funding from the Swedish Research Council VR (grant number 2017-04190). Svalbard sampling was supported by the Research Council of Norway through CAGE (Center for Excellence in Arctic Gas Hydrate Environment and Climate, project number 223259) and NORCRUST (project number 255150) to GP and the fellowship MOPGA (Make Our Planet Great Again) by CAMPUS France to CS.
    Keywords: Marine protists ; Coastal environments ; Biogeochemical cycles ; NanoSIMS ; Nitrogen ; Sulfur
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-11-07
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kourantidou, M., & Jin, D. Mesopelagic-epipelagic fish nexus in viability and feasibility of commercial-scale mesopelagic fisheries. Natural Resource Modeling, 35(4), (2022): e12350, https://doi.org/10.1111/nrm.12350.
    Description: While considerable scientific uncertainties persist for mesopelagic ecosystems, the fishing industry has developed a great interest in commercial exploitation with improved technologies as part of their search for new sources of feed for fishmeal and fish oil for aquaculture, which will intensify with the planet's growing population. The multiple uncertainties surrounding the ecosystem structure and particularly the size of biomass, hinder a good understanding of the risks associated with large-scale exploitation, which is needed for a management framework for sustainable ocean uses. Despite concerns regarding irreversible losses triggered by commercial fishing, work exploring the vulnerability of mesopelagic fish to harvesting is largely missing. This study investigates the economic feasibility of mesopelagic fishing which is the primary driver for any possible future expansion. Using very limited information currently available, we conduct a high-level assessment focusing on key ecological and economic interactions and develop an initial understanding of the economic feasibility of commercial harvesting for mesopelagic fish in the coming years. We conduct simulations using a classical bioeconomic model that captures two species groups, mesopelagic and epipelagic fish, using a wide range of price and cost parameters. We analyze different scenarios for the economic profitability of the fishery in a regional fishery management context. The results of our study highlight the importance of better understanding key biological and ecological mechanisms and parameters which can in turn help inform policies aimed at protecting the mesopelagic.
    Description: This study is supported by WHOI's Ocean Twilight Zone program which is part of the Audacious Project, a collaborative endeavor, housed at TED.
    Keywords: Bioeconomic analysis ; Commercial fisheries ; Ecological interactions ; Economic feasibility ; Mesopelagic fish ; Twilight zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Semper, S., Glessmer, M., Våge, K., & Pickart, R. How warm Gulf Stream water sustains a cold underwater waterfall. Frontiers for Young Minds, 10, (2022): 765740, https://doi.org/10.3389/frym.2022.765740.
    Description: The most famous ocean current, the Gulf Stream, is part of a large system of currents that brings warm water from Florida to Europe. It is a main reason for northwestern Europe’s mild climate. What happens to the warm water that flows northward, since it cannot just pile up? It turns out that the characteristics of the water change: in winter, the ocean warms the cold air above it, and the water becomes colder. Cold seawater, which is heavier than warm seawater, sinks down to greater depths. But what happens to the cold water that disappears from the surface? While on a research ship, we discovered a new ocean current that solves this riddle. The current brings the cold water to an underwater mountain ridge. The water spills over the ridge as an underwater waterfall before it continues its journey, deep in the ocean, back toward the equator.
    Description: Support for this work was provided by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101022251 (SS), the Trond Mohn Foundation Grant BFS2016REK01 (SS and KV), and the U.S. National Science Foundation Grants OCE-1558742 and OCE-1259618 (RP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-11-10
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in van Beek, P., François, R., Honda, M., Charette, M., Reyss, J.-L., Ganeshram, R., Monnin, C., & Honjo, S. Fractionation of 226Ra and Ba in the upper North Pacific Ocean. Frontiers in Marine Science, 9, (2022): 859117, https://doi.org/10.3389/fmars.2022.859117.
    Description: Investigations conducted during the GEOSECS program concluded that radium-226 (T1/2 = 1602 y) and barium are tightly correlated in waters above 2500 m in the Atlantic, Pacific and Antarctic Oceans, with a fairly uniform 226Ra/Ba ratio of 2.3 ± 0.2 dpm µmol-1 (4.6 nmol 226Ra/mol Ba). Here, we report new 226Ra and Ba data obtained at three different stations in the Pacific Ocean: stations K1 and K3 in the North-West Pacific and station old Hale Aloha, off Hawaii Island. The relationship between 226Ra and Ba found at these stations is broadly consistent with that reported during the GEOSECS program. At the three investigated stations, however, we find that the 226Ra/Ba ratios are significantly lower in the upper 500 m of the water column than at greater depths, a pattern that was overlooked during the GEOSECS program, either because of the precision of the measurements or because of the relatively low sampling resolution in the upper 500 m. Although not always apparent in individual GEOSECS profiles, this trend was noted before from the non-zero intercept of the linear regression when plotting the global data set of Ba versus 226Ra seawater concentration and was attributed, at least in part, to the predominance of surface input from rivers for Ba versus bottom input from sediments for 226Ra. Similarly, low 226Ra/Ba ratios in the upper 500 m have been reported in other oceanic basins (e.g. Atlantic Ocean). Parallel to the low 226Ra/Ba ratios in seawater, higher 226Ra/Ba ratios were found in suspended particles collected in the upper 500 m. This suggests that fractionation between the two elements may contribute to the lower 226Ra/Ba ratios found in the upper 500 m, with 226Ra being preferentially removed from surface water, possibly as a result of mass fractionation during celestite formation by acantharians and/or barite precipitation, since both chemical elements have similar ionic radius and the same configuration of valence electrons. This finding has implications for dating of marine carbonates by 226Ra, which requires a constant initial 226Ra/Ba ratio incorporated in the shells and for using 226Ra as an abyssal circulation and mixing tracer.
    Description: This work was supported by a Lavoisier fellowship attributed by the French Ministry of Foreign Affairs to PB in year 2002 and by the Woods Hole Oceanographic Institution (WHOI). This work was completed at the University of Edinburgh in 2003, while PB was a postdoctoral fellow there, with a Marie Curie fellowship from the European Union. The European Union is thus also thanked. MC acknowledges support from the National Science Foundation, Chemical Oceanography program.
    Keywords: Radium ; Barium ; Seawater ; Ratio ; Fractionation ; Dating ; Ocean circulation ; Suspended particles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
  • 88
    Publication Date: 2022-01-01
    Electronic ISSN: 2096-3955
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
  • 90
    Publication Date: 2022-01-01
    Electronic ISSN: 2096-3955
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-01-01
    Electronic ISSN: 2096-3955
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-12-19
    Description: New sedimentological data of facies and diagenesis as well as chronological data including strontium (87Sr/86Sr)-isotope ratios and uranium (U)-series dating, radiocarbon (14C) accelerator mass spectrometry (AMS) dating and biostratigraphy from elevated reef terraces (makatea) in the southern Cook Islands of Mangaia, Rarotonga and Aitutaki contribute to controversial discussions regarding age and sea-level relationships of these occurrences during the Neogene and Quaternary. The oldest limestones of the uplifted makatea island of Mangaia include reef-related facies which are mid-Miocene in age, based on new Sr-isotope and biostratigraphical data. In between these older deposits and the lowest coastal reef terrace of marine isotope stage (MIS) 5e, various older Pleistocene reef-related facies were identified. Based on Sr-isotope ratios, these were deposited during earlier Pleistocene highstands (as old as 2.28 Ma). Rare reef terraces on Rarotonga belong to the Plio-Pleistocene and the late Miocene, according to 87Sr/86Sr ratios. The late Miocene age is enigmatic as it exceeds the age of subaerially exposed volcanic rocks of Rarotonga island. The fossil reef could have formed on an older submarine volcanic high that was later displaced by younger volcanism to its present position, or the Sr-age could be too old due to diagenetic resetting. The Plio-Pleistocene Rarotonga reef terraces are overlain irregularly by Holocene reef deposits that are interpreted as storm rubble. Reef terraces on Aitutaki represent evidence of a higher-than-present (up to 1 m) sea-level during the late Holocene, based on 14C AMS age data. They are very similar to elevated late Holocene reefs of adjacent French Polynesia with regard to composition, elevation and age.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-01-20
    Description: Multivariate analysis of the elemental composition of hemipelagic sedimentary successions has provided invaluable information about palaeoenvironmental evolution, including records of short-lived Eocene hyperthermal events. However, few studies have analyzed the sedimentary record of these climatic events in turbidite-rich continental margin successions. In order to test the usefulness of multivariate statistical techniques (factor and cluster analysis) in palaeonvironmental and palaeoclimatic research on turbiditic successions, the lowermost Eocene Solondota section, which accumulated on the North Iberian continental margin, was studied. A prominent negative carbon isotope excursion from Solondota was correlated with the Ypresian (early Eocene) hyperthermal event J, also known as C24n.2rH1. High-resolution sedimentological, geochemical (stable isotopes, major and trace elements) and mineralogical (bulk and clay mineralogy) data show that multivariate statistical analysis helps to manage large-sized quantitative datasets objectively, avoiding arbitrary choice of representative elements and identifying environmental factors (virtual variables) that may not be evident otherwise. Variations in major and minor elements from hemipelagic carbonates across the Solondota carbon isotope excursion suggest a temporarily more humid continental climate, which caused increased terrigenous material input into the marine environment. The finer grained fraction boosted hemipelagic carbonate dilution, whereas the coarser grained sediment was transported by temporarily more frequent and voluminous turbidity currents. Thus, the results from the Solondota carbon isotope excursion revealed similarities with deep marine records of other early Eocene minor hyperthermal events. This demonstrates the validity of deep-marine turbiditic successions for providing reliable sedimentological, mineralogical and geochemical records of global palaeoclimatic significance, complementing the information obtained from other sedimentary environments. Furthermore, the generally expanded nature of turbiditic successions can potentially provide palaeoclimatic information at very high resolution, enriching, and perhaps improving, the commonly condensed and sometimes discontinuous record of hemipelagic- only successions.
    Description: Published
    Description: 881-904
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-05-12
    Description: We introduce a mathematical model for the composting process in biocells. The model includes several phenomena, like the aerobic biodegradation of the soluble substrate by means of a bacterial population, the hydrolysis of insoluble substrate, and the biomass decay. We investigate the best strategies to reduce substrate components in minimal time by controlling the effects of cell oxygen concentration on the degradation phenomenon. It is shown that singular controls are not optimal for this model and the optimal control time profiles are of bang or bang-bang type. The occurrence of switching curves is discussed. In the case of a bang-bang control we prove that optimal control profiles have a unique switching time and the corresponding switching curve is determined.
    Description: Published
    Description: 1251-1266
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-06-14
    Description: Southwestern Sicily is an area of infrequent seismic activity; however, some studies carried out in the archaeological Selinunte site suggest that, between the fourth century BC and the early Middle Ages, probably at least two earthquakes strucked this area with enough energy to damage and cause the collapse and kinematics of much of the architecture of Selinunte. Take into account that, in 2008, a noninvasive archaeological prospection and traditional data gathering methods along the Acropolis north fortifications were carried out. Following these first studies, after about 10 years, a new geophysical campaign was carried out. This second campaign benefited from the application of modern technologies for the acquisition and processing of the point cloud data on the northern part of the Acropolis, like terrestrial laser scanning and unmanned aerial vehicle photogrammetry. In this paper, we present the application of these techniques and a strategy for their integration for the 3D modelling of buildings and cultural heritages. We show how the integration of data acquired independently by these two techniques is an added value able to overcome the intrinsic limits of the individual techniques. The application to Selinunte's Acropolis allowed it to highlight and measure with high accuracy fractures, dislocation, inclinations of walls, depressions of some areas and other interesting observations, which may be important starting points for future investigations.
    Description: Published
    Description: 153-165
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: 3D reconstruction ; archaeological survey ; digital elevation model ; Selinunte Archaeological Park ; terrestrial laser scanning ; unmanned aerial vehicle photogrammetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics ; 05.02. Data dissemination ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-01-18
    Description: This paper provides a new methodological framework to generate empirical ground shaking scenarios, designed for engineering applications and civil protection planning. The methodology is useful both to reconstruct the ground motion pattern of past events and to generate future shaking scenarios, in regions where strong-motion datasets from multiple events and multiple stations are available. The proposed methodology combines (1) an ad-hoc nonergodic ground motion model (GMM) with (2) a spatial correlation model for the source region-, site-, and path-systematic residual terms, and (3) a model of the remaining aleatory error to take into account for directivity effects. The associated variability is a function of the type of scenario generated (bedrock or site, past or future event) and it is minimal for source areas where several events have occurred and for sites where recordings are available. In order to develop the region-specific fully nonergodic GMM and to compute robust estimation of the residual terms, the approach is calibrated on a highly dense dataset compiled for the area of central Italy. Example tests demonstrate the validity of the approach, which allows to simulate acceleration response spectra at unsampled sites, as well as to capture peculiar physical features of ground motion patterns in the region. The proposed approach could be usefully adopted for data-driven simulations of ground shaking maps, as alternative or complementary tool to physic-based and stochastic-based approaches.
    Description: Published
    Description: 60-80
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-03-03
    Description: The present work aims to study the main chemical and physical water parameters in the upper and middle Volturno river catchment (southern Italy), between the Capo Volturno springs and the confluence with the Calore river. This study makes use of morphology, geolithology, tectonic, land use, and physico‐chemical (pH, electrical conductivity, redox potential, temperature, major ions, and 222Rn) data for the identification of the main sources of surface and groundwaters in the Volturno catchment and of their evolution and mixing both in base flow and peak flow conditions. The study was also performed to assess whether the alteration due to potential anthropogenic contamination may hamper the identification of natural “primitive” sources of surface waters, especially in the populated and farmed plains far from the river headwaters. Our data suggest that water chemistry of this stretch of the Volturno river is dominated mainly by lithology and, only marginally, by the intense exogenous activities and that this trend is appreciable in both base flow and peak flow conditions. The proposed simple geochemical approach based on easy‐to‐sample matrices and on cost‐effective standard methods is a valuable tool to address catchment functionality especially in upland areas, where complex geologic and structural settings, heterogeneous groundwater flow, and logistical issues are the rule rather than the exception. Because the upper and middle Volturno catchment is comparable with numerous valleys of the Mediterranean area, this study could be a reference for analogous applications.
    Description: Published
    Description: 627–638
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-03-02
    Description: El Chichon is an active volcano located in the north-western Chiapas, southern Mexico. The crater hosts a lake, a spring, named Soap Pool, emerging from the underlying volcanic aquifer and several mud pools/hot springs on the internal flanks of the crater which strongly interact with the current fumarolic system (steam-heated pools). Some of these pools, the crater lake and a cold spring emerging from the 1982 pumice deposits, have been sampled and analysed. Water–volcanic gas interactions determine the heating (43–99°C) and acidification (pH 2–4) of the springs, mainly by H2S oxidation. Significantly, in the study area, a significant NH3 partial pressure has been also detected. Such a geochemically aggressive environment enhances alteration of the rock in situ and strongly increases the mineralization of the waters (and therefore their electrical conductivity). Two different mineralization systems were detected for the crater waters: the soap pool-lake (Na+/Cl = 0.4, Na/Mg〉10) and the crater mud pools (Na+/Cl 〉 10, Na/Mg 〈 4). A deep boiling, Na+-K+-Cl -rich water reservoir generally influences the Soap Pool-lake, while the mud pool is mainly dominated by water-gas–rock interactions. In the latter case, conductivity of sampled water is directly proportional to the presence of reactive gases in solution. Therefore, chemical evolution proceeds through neutralization due to both rock alteration and bacterial oxidation of ammonium to nitrate. The chemical compositions show that El Chichon aqueous fluids, within the crater, interact with gases fed by a geothermal reservoir, without clear additions of deep magmatic fluids. This new geochemical dataset, together with previously published data, can be used as a base line with which to follow-up the activity of this deadly volcano.
    Description: Published
    Description: 331–343
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-02-03
    Description: Gases present in the Earth crust are important in various branches of human activities. Hydrocarbons are a significant energy resource, helium is applied in many high-tech instruments, and studies of crustal gas dynamics provide insight in the geodynamic processes and help monitor seismic and volcanic hazards. Quantitative analysis of methane and CO2 migration is important for climate change studies. Some of them are toxic (H2S, CO2, CO); radon is responsible for the major part of human radiation dose. The development of analytical techniques in gas geochemistry creates opportunities of applying this science in numerous fields. Noble gases, hydrocarbons, CO2, N2, H2, CO, and Hg vapor are measured by advanced methods in various environments and matrices including fluid inclusions. Following the “Geochemical Applications of Noble Gases”(2009), “Frontiers in Gas Geochemistry” (2013), and “Progress in the Application of Gas Geochemistry to Geothermal, Tectonic and Magmatic Studies” (2017) published as special issues of Chemical Geology and “Gas geochemistry: From conventional to unconventional domains” (2018) published as a special issue of Marine and Petroleum Geology, this volume continues the tradition of publishing papers reflecting the diversity in scope and application of gas geochemistry.
    Description: Published
    Description: 976190
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: geochemistry ; Atmosphere ; 03. Hydrosphere ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-05-10
    Description: In this work we describe the compilation and homogenization of an extensive dataset of aerosol iodine field observations in the period between 1963 and 2018 and we discuss the spatial and temporal dependences of total iodine in bulk aerosol by comparing the observations with CAM-Chem model imulations. Total iodine in aerosol shows a distinct latitudinal dependence, with an enhancement towards the northern hemisphere (NH) tropics and lower values towards the poles. This behavior, which has been predicted by atmospheric models to depend on the global distribution of the main ceanic iodine source (which in turn depends on the reaction of surface ozone with aqueous iodide on he sea water-air interface, generating gas-phase I2 and HOI), is confirmed here by field observations for the first time. Longitudinally, there is some indication of a wave-one profile in the Tropics, which peaks in the Atlantic and shows a minimum in the Pacific, following the wave-one longitudinal variation of tropical tropospheric ozone. New data from Antarctica show that the south polar seasonal variation of iodine in aerosol mirrors that observed previously in the Arctic, with two equinoctial maxima and the dominant maximum occurring in spring. While no clear seasonal variability is observed in NH middle latitudes, there is an indication of different seasonal cycles in the NH tropical Atlantic and Pacific. A weak positive long-term trend is observed in the tropical annual averages, which is consistent with an enhancement of the anthropogenic ozone-driven global oceanic source of iodine over the last 50 years.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...