ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-27
    Description: Oct. 07 2019 – Oct. 10, 2019 Kiel (Germany) – Kiel (Germany) MNF-Pher-110The main purpose of the ALKOR cruise AL529 was the training of students in observational techniques applied by physical oceanographers. The students who participated in the trip attend the module "Measurement Methods of Oceanography" which is offered in the Bachelor program "Physics of the Earth System" at CAU Kiel. During the AL529 the students were instructed in instrument calibration and in the interpretation of measurement data at sea. In addition, the students had the opportunity to learn about working and living at sea and to explore and study the impact of physical processes in the western Baltic Sea, the sea at their doorstep. The observations show a quasi-synoptic picture of the hydrography and currents in the western Baltic Sea. Twice-repeated hydrographic and current sections across the Fehmarn Belt show well the short time scales where significant changes occur. A zonal section along the deepest topography, from about 10°40'E to 014°21'E, shows very nicely the two-layer system of outflowing low salinity and inflowing North Sea water. A bottom shield anchorage shows the currents in the water column and the near-bottom temperature and salinity variations in the Fehmarnbelt area.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Marine Heatwaves (MHWs) are ocean extreme events, characterized by anomalously high temperatures, which can have significant ecological impacts. The Northeast U.S. continental shelf is of great economical importance as it is home to a highly productive ecosystem. Local warming rates exceed the global average and the region experienced multiple MHWs in the last decade with severe consequences for regional fisheries. Due to the lack of subsurface observations, the depth-extent of MHWs is not well-known, which hampers the assessment of impacts on pelagic and benthic ecosystems. This study utilizes a global ocean circulation model with a high-resolution (1/20°) nest in the Atlantic to investigate the depth structure of MHWs and associated drivers on the Northeast U.S. continental shelf. It is shown that MHWs exhibit varying spatial extents, with some only occurring at depth. The highest intensities are found around 100 m depth with temperatures exceeding the climatological mean by up to 7°C, while surface intensities are typically smaller (around 3°C). Distinct vertical structures are associated with different spatial MHW patterns and drivers. Investigation of the co-variability of temperature and salinity reveals that over 80% of MHWs at depth (〉50 m) coincide with extreme salinity anomalies. Two case studies provide insight into opposing MHW patterns at the surface and at depth, being forced by anomalous air-sea heat fluxes and Gulf Stream warm core ring interaction, respectively. The results highlight the importance of local ocean dynamics and the need to realistically represent them in climate models.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-20
    Keywords: Course of study: BSc Physics of the Earth System
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-20
    Description: The Agulhas Leakage (AL) transports warm and salty Indian Ocean waters into the Atlantic Ocean and as such is an important component of the global ocean circulation. These waters are part of the upper limb of the Atlantic Meridional Overturning Circulation (AMOC) and AL variability has been linked to AMOC variability. The AL is expected to increase under a warming climate due to a shift in the Southern Hemisphere westerlies, which could further influence the AMOC dynamics. This study investigates the AL transport variability on long time scales in the pre-industrial and under a warming climate and its relation to the AMOC. It uses a high-resolution configuration of the Community Earth System Model (CESM) with a nominal horizontal resolution of 0.1° for the ocean and sea-ice and 0.25° for the atmosphere and land, which resolves the necessary spatial scales. The simulated AL transport of 19.7 ± 3 Sv lies well within the observed range of 21.3 ± 4.7 Sv. A positive correlation between the Agulhas Current and the AL is shown, meaning that an increase of the Agulhas Current transport leads to an increase in AL. Furthermore, the salt flux associated with the AL influences AMOC dynamics through the salt-advection feedback by reducing the AMOC’s freshwater transport at 34°S. In a warming climate, the AL transport was indeed found to increase due to strengthened and southward shifting winds while the Agulhas Current transport was found to decrease. Consequently, a larger fraction of the Agulhas Current will flow into the Atlantic Ocean rather than being recirculated into the Indian Ocean. The increase in AL is accompanied by a higher salt flux into the Atlantic Ocean, which destabilises the AMOC within the salt-advection-feedback. But whether and to what extent this additional salt advected to the North Atlantic could also dampen an AMOC weakening induced by increased meltwater input under climate change still needs further research.
    Keywords: Course of study: MSc Climate Physics
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Großelindemann, H., Ryan, S., Ummenhofer, C., Martin, T., & Biastoch, A. Marine Heatwaves and their depth structures on the Northeast U.S. continental shelf. Frontiers in Climate, 4, (2022): 857937, https://doi.org/10.3389/fclim.2022.857937.
    Description: Marine Heatwaves (MHWs) are ocean extreme events, characterized by anomalously high temperatures, which can have significant ecological impacts. The Northeast U.S. continental shelf is of great economical importance as it is home to a highly productive ecosystem. Local warming rates exceed the global average and the region experienced multiple MHWs in the last decade with severe consequences for regional fisheries. Due to the lack of subsurface observations, the depth-extent of MHWs is not well-known, which hampers the assessment of impacts on pelagic and benthic ecosystems. This study utilizes a global ocean circulation model with a high-resolution (1/20°) nest in the Atlantic to investigate the depth structure of MHWs and associated drivers on the Northeast U.S. continental shelf. It is shown that MHWs exhibit varying spatial extents, with some only occurring at depth. The highest intensities are found around 100 m depth with temperatures exceeding the climatological mean by up to 7°C, while surface intensities are typically smaller (around 3°C). Distinct vertical structures are associated with different spatial MHW patterns and drivers. Investigation of the co-variability of temperature and salinity reveals that over 80% of MHWs at depth (〉50 m) coincide with extreme salinity anomalies. Two case studies provide insight into opposing MHW patterns at the surface and at depth, being forced by anomalous air-sea heat fluxes and Gulf Stream warm core ring interaction, respectively. The results highlight the importance of local ocean dynamics and the need to realistically represent them in climate models.
    Description: This work was supported by a DAAD RISE Worldwide fellowship (to HG), a Feodor-Lynen Fellowship by the Alexander von Humboldt Foundation and the WHOI Postdoctoral Scholar program (to SR), and the James E. and Barbara V. Moltz Fellowship for Climate-Related Research (to CU). Franziska Schwarzkopf performed the integration of the OGCM simulations, which was performed on the Earth System Modeling Project (ESM) partition of the supercomputer JUWELS at the Jülich Supercomputing Centre (JSC).
    Keywords: Marine heatwaves ; Northeast U.S. continental shelf ; Ecosystem impacts ; Subsurface marine heatwaves ; Gulf Stream warm core rings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...