ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-01-06
    Description: The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean, and sampled the surface of oceanic waters at 249 locations, resulting in the collection of nearly 58,000 samples. The expedition was designed to systematically study corals, fish, plankton, and seawater, and included the collection of samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide the total dissolvable (i.e. acidified unfiltered whole seawater) Fe, Zn, Mn, Ni, Cd, Co, Cu, and Pb concentrations for 242 surface seawater samples. Trace metal analyses were performed with the goals of characterizing the surface seawater trace metal distribution across the open ocean and coastal regions in both the Atlantic and Pacific, and exploring metal-dependent ecosystem structure and metabolism. Some of the findings include high concentrations of iron (Fe) and manganese (Mn) in several regions, such as the North Atlantic Ocean and near the South Pacific islands, possibly due to Saharan dust and hydrothermal vent input, respectively. Elevated lead (Pb) was found in the North Pacific near southeast Asia, where anthropogenic sources may contribute. We also observe interbasin differences in concentrations for most of the metals, such as cobalt (Co), which is relatively high in the North Atlantic in comparison to the Pacific, perhaps due to dust deposition or continental weathering. There are also intrabasin differences in metal concentrations between oligotrophic and upwelling regions, exemplified by the higher cadmium (Cd) concentrations near the Peruvian coast, likely due to upwelling. Overall we captured high-resolution trace metal data that depicts the nuances in the metal distribution of the global ocean.
    Keywords: Bottle, multi level trace metal; Cadmium, dissolved; Cobalt, dissolved; Comment; Copper, dissolved; Depth, bottom/max; Depth, top/min; DEPTH, water; Environmental feature; Event label; Fondation Tara Expeditions; FondTara; HANDHELD-BOW-POLE; INLINE-PUMP; Iron, dissolved; Lead, dissolved; Manganese, dissolved; MLTM; Nickel, dissolved; OA000-I00-S00; OA000-I10-S01; OA000-I10-S02; OA000-I14-S00; OA000-I18-S03; OA000-I21-S01; OA000-I21-S02; OA000-I31-S00; OA001-I00-S00; OA002-I00-S00; OA003-I00-S00; OA004-I00-S00; OA005-I00-S00; OA006-I00-S00; OA009-I00-S00; OA010-I00-S00; OA011-I00-S00; OA012-I00-S00; OA013-I00-S00; OA014-I00-S00; OA015-I00-S00; OA016-I00-S00; OA017-I00-S00; OA018-I00-S00; OA019-I00-S00; OA020-I00-S00; OA021-I00-S00; OA022-I00-S00; OA023-I00-S00; OA024-I00-S00; OA025-I00-S00; OA026-I00-S00; OA027-I00-S00; OA028-I00-S00; OA029-I03-S00; OA030-I03-S00; OA031-I00-S00; OA032-I00-S00; OA033-I00-S00; OA039-I00-S00; OA040-I00-S00; OA041-I04-S00; OA042-I04-S00; OA043-I04-S00; OA044-I04-S00; OA045-I00-S00; OA046-I00-S00; OA047-I00-S00; OA048-I05-S00; OA049-I05-S00; OA050-I05-S00; OA051-I00-S00; OA052-I00-S00; OA053-I06-S00; OA054-I06-S00; OA055-I06-S00; OA056-I00-S00; OA057-I00-S00; OA058-I00-S00; OA061-I07-S00; OA062-I00-S00; OA063-I08-S00; OA064-I08-S00; OA065-I00-S00; OA066-I09-S00; OA067-I09-S00; OA068-I10-S00; OA069-I10-S00; OA070-I10-S00; OA071-I10-S00; OA072-I11-S00; OA073-I11-S00; OA074-I11-S00; OA075-I12-S00; OA076-I12-S00; OA077-I12-S00; OA078-I00-S00; OA079-I00-S00; OA080-I13-S00; OA081-I13-S00; OA082-I13-S00; OA083-I13-S00; OA084-I00-S00; OA085-I00-S00; OA086-I00-S00; OA087-I00-S00; OA088-I00-S00; OA089-I14-S00; OA090-I14-S00; OA091-I14-S00; OA092-I15-S00; OA093-I15-S00; OA094-I00-S00; OA095-I16-S00; OA096-I00-S00; OA097-I00-S00; OA098-I00-S00; OA099-I00-S00; OA100-I00-S00; OA101-I00-S00; OA102-I00-S00; OA103-I00-S00; OA104-I00-S00; OA105-I00-S00; OA106-I00-S00; OA107-I00-S00; OA108-I00-S00; OA109-I00-S00; OA110-I00-S00; OA111-I00-S00; OA112-I00-S00; OA113-I00-S00; OA114-I00-S00; OA115-I00-S00; OA116-I00-S00; OA117-I00-S00; OA118-I00-S00; OA119-I00-S00; OA120-I00-S00; OA121-I00-S00; OA122-I00-S00; OA123-I00-S00; OA124-I00-S00; OA125-I00-S00; OA126-I00-S00; OA127-I18-S00; OA128-I18-S00; OA129-I18-S00; OA130-I18-S00; OA131-I00-S00; OA132-I00-S00; OA133-I00-S00; OA134-I00-S00; OA135-I00-S00; OA136-I00-S00; OA137-I00-S00; OA139-I00-S00; OA140-I19-S00; OA141-I19-S00; OA142-I19-S00; OA143-I19-S00; OA144-I00-S00; OA145-I20-S00; OA146-I20-S00; OA147-I00-S00; OA148-I21-S00; OA149-I21-S00; OA150-I00-S00; OA151-I00-S00; OA152-I00-S00; OA153-I00-S00; OA154-I00-S00; OA155-I22-S00; OA156-I23-S00; OA157-I23-S00; OA158-I23-S00; OA159-I23-S00; OA160-I24-S00; OA161-I24-S00; OA162-I24-S00; OA163-I00-S00; OA164-I00-S00; OA165-I00-S00; OA166-I25-S00; OA167-I26-S00; OA168-I26-S00; OA169-I00-S00; OA170-I27-S00; OA171-I27-S00; OA172-I28-S00; OA173-I00-S00; OA174-I00-S00; OA175-I00-S00; OA176-I00-S00; OA177-I00-S00; OA178-I00-S00; OA179-I00-S00; OA180-I00-S00; OA181-I00-S00; OA182-I00-S00; OA184-I00-S00; OA185-I00-S00; OA186-I00-S00; OA187-I00-S00; OA188-I00-S00; OA189-I00-S00; OA190-I29-S00; OA191-I29-S00; OA192-I00-S00; OA193-I00-S00; OA194-I00-S00; OA195-I00-S00; OA196-I00-S00; OA197-I00-S00; OA198-I00-S00; OA199-I00-S00; OA200-I00-S00; OA201-I00-S00; OA202-I00-S00; OA203-I00-S00; OA204-I00-S00; OA205-I00-S00; OA206-I00-S00; OA207-I00-S00; OA208-I00-S00; OA209-I00-S00; OA210-I00-S00; OA211-I00-S00; OA212-I00-S00; OA213-I00-S00; OA214-I00-S00; OA216-I30-S00; OA217-I00-S00; OA218-I00-S00; OA221-I31-S00; OA223-I00-S00; OA224-I00-S00; OA225-I00-S00; OA226-I00-S00; OA227-I00-S00; OA228-I00-S00; OA229-I00-S00; OA230-I32-S00; OA232-I32-S00; OA233-I00-S00; OA234-I00-S00; OA235-I00-S00; OA236-I00-S00; OA237-I00-S00; OA238-I00-S00; OA240-I00-S00; OA241-I00-S00; OA242-I00-S00; OA243-I00-S00; OA244-I00-S00; OA245-I00-S00; OA246-I00-S00; OA247-I00-S00; OA249-I00-S00; Pacific; Quality control; Sample code/label; Sample comment; Sample ID; surface seawater; SV Tara; TARA_20160529T1635Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160530T1630Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160531T1345Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160601T1629Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160602T1436Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160604T1445Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160605T1850Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160608T1605Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160609T1734Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160610T1502Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160611T1513Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160613T1430Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160614T1325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160615T1643Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160616T1906Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160617T1920Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160618T1702Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160619T1928Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160620T2234Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160621T1710Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160622T1700Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160623T1715Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160624T2100Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160625T1800Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160626T1800Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160627T1350Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160706T2202Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160712T1649Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160816T2000Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160817T2124Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160818T2253Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160819T2150Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160819T2355Z_D_O-SRF_INLINE-PUMP; TARA_20160820T2229Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160822T2300Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160823T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160824T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160825T2355Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160828T0013Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160828T1845Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160829T1944Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160830T1644Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160831T0515Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160831T1723Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160908T0615Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160909T2325Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160910T1615Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160911T1802Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160912T1712Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160917T1520Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160917T2237Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160919T0110Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160919T1708Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160920T2340Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20160921T0603Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160928T0751Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20160929T0110Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20160929T1905Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161001T1721Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161111T0102Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161111T1810Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161112T1810Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161118T0317Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161119T1921Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20161120T1915Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161120T2155Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161127T0232Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161127T2023Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161128T0826Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20161130T0206Z_D_S-SRF_HANDHELD-BOW-POLE; TARA_20161201T0215Z_D_S-SRF_HANDHELD-BOW-POLE; TARA_20161203T1902Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161204T0303Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161204T1723Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161228T0551Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161228T2150Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20161229T2310Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170103T0931Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20170103T2210Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170104T2118Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20170105T2251Z_D_O-SRF_HANDHELD-BOW-POLE; TARA_20170106T0955Z_N_I-SRF_HANDHELD-BOW-POLE; TARA_20170106T2245Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170112T0647Z_D_I-SRF_HANDHELD-BOW-POLE; TARA_20170112T2125Z_D_I-SRF_HANDHELD-
    Type: Dataset
    Format: text/tab-separated-values, 14588 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115(52), (2018): E12275-E12284. doi: 10.1073/pnas.1805243115.
    Description: Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms, Pseudo-nitzschia were favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile, Chaetoceros and Thalassiosira gene expression aligned with vacuolar storage mechanisms. Pseudo-nitzschia also showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.
    Description: We thank the captain and crew of the R/V Melville and the CCGS J. P. Tully as well as the participants of the IRNBRU (MV1405) cruise for the California-based data, particularly K. Ellis [University of North Carolina (UNC)], T. Coale (University of California, San Diego), F. Kuzminov (Rutgers), H. McNair [University of California, Santa Barbara (UCSB)], and J. Jones (UCSB). W. Burns (UNC), S. Haines (UNC), and S. Bargu (Louisiana State University) assisted with sample processing and analysis. This work was funded by the National Science Foundation Grants OCE-1334935 (to A.M.), OCE-1334632 (to B.S.T.), OCE-1333929 (to K.T.), OCE-1334387 (to M.A.B.), OCE-1259776 (to K.W.B), and DGE-1650116 (Graduate Research Fellowship to R.H.L).
    Description: 2019-06-11
    Keywords: phytoplankton ; iron limitation ; Pseudo-nitzschia ; ferritin ; metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gorsky, G., Bourdin, G., Lombard, F., Pedrotti, M. L., Audrain, S., Bin, N., Boss, E., Bowler, C., Cassar, N., Caudan, L., Chabot, G., Cohen, N. R., Cron, D., De Vargas, C., Dolan, J. R., Douville, E., Elineau, A., Flores, J. M., Ghiglione, J. F., Haentjens, N., Hertau, M., John, S. G., Kelly, R. L., Koren, I., Lin, Y., Marie, D., Moulin, C., Moucherie, Y., Pesant, S., Picheral, M., Poulain, J., Pujo-Pay, M., Reverdin, G., Romac, S., Sullivan, M. B., Trainic, M., Tressol, M., Trouble, R., Vardi, A., Voolstra, C. R., Wincker, P., Agostini, S., Banaigs, B., Boissin, E., Forcioli, D., Furla, P., Galand, P. E., Gilson, E., Reynaud, S., Sunagawa, S., Thomas, O. P., Thurber, R. L. V., Zoccola, D., Planes, S., Allemand, D., Karsenti, E. Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016-2018). Frontiers in Marine Science, 6, (2019): 750, doi: 10.3389/fmars.2019.00750.
    Description: Interactions between the ocean and the atmosphere occur at the air-sea interface through the transfer of momentum, heat, gases and particulate matter, and through the impact of the upper-ocean biology on the composition and radiative properties of this boundary layer. The Tara Pacific expedition, launched in May 2016 aboard the schooner Tara, was a 29-month exploration with the dual goals to study the ecology of reef ecosystems along ecological gradients in the Pacific Ocean and to assess inter-island and open ocean surface plankton and neuston community structures. In addition, key atmospheric properties were measured to study links between the two boundary layer properties. A major challenge for the open ocean sampling was the lack of ship-time available for work at “stations”. The time constraint led us to develop new underway sampling approaches to optimize physical, chemical, optical, and genomic methods to capture the entire community structure of the surface layers, from viruses to metazoans in their oceanographic and atmospheric physicochemical context. An international scientific consortium was put together to analyze the samples, generate data, and develop datasets in coherence with the existing Tara Oceans database. Beyond adapting the extensive Tara Oceans sampling protocols for high-resolution underway sampling, the key novelties compared to Tara Oceans’ global assessment of plankton include the measurement of (i) surface plankton and neuston biogeography and functional diversity; (ii) bioactive trace metals distribution at the ocean surface and metal-dependent ecosystem structures; (iii) marine aerosols, including biological entities; (iv) geography, nature and colonization of microplastic; and (v) high-resolution underway assessment of net community production via equilibrator inlet mass spectrometry. We are committed to share the data collected during this expedition, making it an important resource important resource to address a variety of scientific questions.
    Description: We are thankful for the commitment of the people and the following institutions, for their financial and scientific support that made this singular expedition possible: CNRS, PSL, CSM, EPHE, Genoscope/CEA, Inserm, Université Cote d’Azur, ANR, the Tara Ocean Foundation and its partners agnès b., UNESCO-IOC, the Veolia Environment Foundation, Région Bretagne, Serge Ferrari, Billerudkorsnas, Amerisource Bergen Company, Altran, Lorient Agglomeration, Oceans by Disney, the Prince Albert II de Monaco Foundation, L’Oréal, Biotherm, France Collectivités, Kankyo Station, Fonds Français pour l’Environnement Mondial (FFEM), Etienne Bourgois, the Tara Ocean Foundation teams and crew. Tara Pacific would not exist without the continuous support of the participating institutes. This study has been conducted using E.U. Copernicus Marine Service Information and Mercator Ocean products. We acknowledge funding from the Investissement d’avenir project France Génomique (ANR-10-INBS-09). FL is supported by Sorbonne Université, Institut Universitaire de France and the Fondation CA-PCA. The in-line and atmospheric optics dataset was collected and analyzed with support from NASA Ocean Biology and Biogeochemistry program under grants NNX13AE58G and NNX15AC08G to University of Maine. MF, IK, and AV are supported by a research grant from Scott Jordan and Gina Valdez, the De Botton for Marine Science, the Yeda-Sela center for Basic research, and the Sustainability and Energy Research Initiative (SAERI). NCo was supported by a grant from the Simons Foundation/SFARI (544236). NCa and YL were supported by the “Laboratoire d’Excellence” LabexMER (ANR-10-LABX-19) and co-funded by a grant from the French government under the program “Investissements d’Avenir.” The support of Pr. Alan Fuchs, President of CNRS, was crucial for the success of the surface sampling undertaken during the Tara Pacific expedition. We thank A. Gavilli from TECA Inc. France, and E. Tanguy and D. Delhommeau from the Institut de la Mer, Villefranche-sur-Mer for the helpful collaboration in the conception of the High Speed Net and the Dolphin systems. This publication is number 2 of the Tara Pacific Consortium.
    Keywords: Neuston/plankton genomics/taxonomy/imaging ; Aerosols ; NCP ; IOP ; Trace metals ; Microplastic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cohen, N., Alexander, H., Krinos, A., Hu, S., & Lampe, R. Marine microeukaryotem metatranscriptomics: sample processing and bioinformatic workflow recommendations for ecological applications. Frontiers in Marine Science, 9, (2022): 867007, https://doi.org/10.3389/fmars.2022.867007.
    Description: Microeukaryotes (protists) serve fundamental roles in the marine environment as contributors to biogeochemical nutrient cycling and ecosystem function. Their activities can be inferred through metatranscriptomic investigations, which provide a detailed view into cellular processes, chemical-biological interactions in the environment, and ecological relationships among taxonomic groups. Established workflows have been individually put forth describing biomass collection at sea, laboratory RNA extraction protocols, and bioinformatic processing and computational approaches. Here, we present a compilation of current practices and lessons learned in carrying out metatranscriptomics of marine pelagic protistan communities, highlighting effective strategies and tools used by practitioners over the past decade. We anticipate that these guidelines will serve as a roadmap for new marine scientists beginning in the realms of molecular biology and/or bioinformatics, and will equip readers with foundational principles needed to delve into protistan metatranscriptomics.
    Description: We acknowledge funding support from the University of Georgia Skidaway Institute of Oceanography (to NRC), National Science Foundation (NSF) (OCE-1948025 to HA), and Department of Energy Computational Science Graduate Fellowship (DE-SC0020347 to AIK). SKH participation was supported through NSF OCE-1947776.
    Keywords: Metatranscriptomics ; Phytoplankton ; Biological oceanography ; Microbial ecology ; Bioinformatics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cohen, N. R., Noble, A. E., Moran, D. M., McIlvin, M. R., Goepfert, T. J., Hawco, N. J., German, C. R., Horner, T. J., Lamborg, C. H., McCrow, J. P., Allen, A. E., & Saito, M. A. Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean. Biogeosciences, 18(19), (2021): 5397–5422, https://doi.org/10.5194/bg-18-5397-2021.
    Description: Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an important source of metals to microorganisms, especially those inhabiting low-iron waters, such as in the southwest Pacific Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the northeastern (NE) Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1500–2000 m depth (Lupton et al., 2004). Studies investigating the long-range transport of trace metals associated with such dispersing plumes are rare, and the biogeochemical impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE Lau Basin and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense signal was detected near the Mangatolo Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close proximity to the previously reported 3He signature. Protein content in distal-plume-influenced seawater, which was high in metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, protein degradation, and chemoautotrophy were abundant compared to deep waters outside of the distal plume. Our results demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest Pacific Ocean and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep-sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.
    Description: This research has been supported by the National Science Foundation (grant nos. 1031271, 1924554, 1850719, 1736599, and 1851007); the Gordon and Betty Moore Foundation (grant no. 3782); and the Simons Foundation (grant no. 544236).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-21
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kellogg, R., Moosburner, M., Cohen, N., Hawco, N., McIlvin, M., Moran, D., DiTullio, G., Subhas, A., Allen, A., & Saito, M. Adaptive responses of marine diatoms to zinc scarcity and ecological implications. Nature Communications, 13(1), (2022): 1995, https://doi.org/10.1038/s41467-022-29603-y.
    Description: Scarce dissolved surface ocean concentrations of the essential algal micronutrient zinc suggest that Zn may influence the growth of phytoplankton such as diatoms, which are major contributors to marine primary productivity. However, the specific mechanisms by which diatoms acclimate to Zn deficiency are poorly understood. Using global proteomic analysis, we identified two proteins (ZCRP-A/B, Zn/Co Responsive Protein A/B) among four diatom species that became abundant under Zn/Co limitation. Characterization using reverse genetic techniques and homology data suggests putative Zn/Co chaperone and membrane-bound transport complex component roles for ZCRP-A (a COG0523 domain protein) and ZCRP-B, respectively. Metaproteomic detection of ZCRPs along a Pacific Ocean transect revealed increased abundances at the surface (〈200 m) where dZn and dCo were scarcest, implying Zn nutritional stress in marine algae is more prevalent than previously recognized. These results demonstrate multiple adaptive responses to Zn scarcity in marine diatoms that are deployed in low Zn regions of the Pacific Ocean.
    Description: This work was funded by the National Science Foundation (OCE-1736599 and OCE-1657766), NIH (R01GM135709), Gordon and Betty Moore Foundation (GBMF3782) to M.A.S., and Simons Foundation award 544236 to N.R.C. This work was further supported by the National Science Foundation (NSF-OCE-1756884 and NSF-MCB-1818390), United States Department of Energy (DE-SC0018344), and Gordon and Betty Moore Foundation grants GBMF3828 and GBMF5006 to A.E.A.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Held, N. A., Webb, E. A., McIlvin, M. M., Hutchins, D. A., Cohen, N. R., Moran, D. M., Kunde, K., Lohan, M. C., Mahaffey, C., Woodward, E. M. S., & Saito, M. A. Co-occurrence of fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences, 17(9), (2020): 2537-2551, doi:10.5194/bg-17-2537-2020.
    Description: Trichodesmium is a globally important marine microbe that provides fixed nitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixation is likely regulated by iron or phosphate availability, but the extent and interaction of these controls are unclear. From metaproteomics analyses using established protein biomarkers for nutrient stress, we found that iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in the North Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was more abundant under co-stress as opposed to single nutrient stress. This is consistent with the idea that Trichodesmium has a specific physiological state during nutrient co-stress. Organic nitrogen uptake was observed and occurred simultaneously with nitrogen fixation. The quantification of the phosphate ABC transporter PstA combined with a cellular model of nutrient uptake suggested that Trichodesmium is generally confronted by the biophysical limits of membrane space and diffusion rates for iron and phosphate acquisition in the field. Colony formation may benefit nutrient acquisition from particulate and organic sources, alleviating these pressures. The results highlight that to predict the behavior of Trichodesmium, both Fe and P stress must be evaluated simultaneously.
    Description: This research has been supported by the National Science Foundation (Division of Graduate Education (grant nos. 1122274), Division of Ocean Sciences (grant nos. 1657755, 1657757, and 1851222), Directorate for Geosciences (grant no. 1639714)), the Gordon and Betty Moore Foundation (grant no. 3782), and the Natural Environment Research Council (NERC) (grant nos. NE/N001079/1 and NE/N001125/1).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-11
    Description: Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms, Pseudo-nitzschia were favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile, Chaetoceros and Thalassiosira gene expression aligned with vacuolar storage mechanisms. Pseudo-nitzschia also showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-01
    Print ISSN: 1434-4610
    Electronic ISSN: 1618-0941
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-12
    Description: Trichodesmium is a globally important marine microbe that provides fixed nitrogen (N) to otherwise N-limited ecosystems. In nature, nitrogen fixation is likely regulated by iron or phosphate availability, but the extent and interaction of these controls are unclear. From metaproteomics analyses using established protein biomarkers for nutrient stress, we found that iron–phosphate co-stress is the norm rather than the exception for Trichodesmium colonies in the North Atlantic Ocean. Counterintuitively, the nitrogenase enzyme was more abundant under co-stress as opposed to single nutrient stress. This is consistent with the idea that Trichodesmium has a specific physiological state during nutrient co-stress. Organic nitrogen uptake was observed and occurred simultaneously with nitrogen fixation. The quantification of the phosphate ABC transporter PstA combined with a cellular model of nutrient uptake suggested that Trichodesmium is generally confronted by the biophysical limits of membrane space and diffusion rates for iron and phosphate acquisition in the field. Colony formation may benefit nutrient acquisition from particulate and organic sources, alleviating these pressures. The results highlight that to predict the behavior of Trichodesmium, both Fe and P stress must be evaluated simultaneously.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...