ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4,223)
  • MDPI Publishing
  • Periodicals Archive Online (PAO)
  • 2025-2025  (2)
  • 2020-2024  (4,223)
  • 2015-2019  (2)
  • 1965-1969
  • 2022  (4,223)
Collection
Years
Year
  • 101
    Publication Date: 2024-02-07
    Description: Highlights: • Biological invasions have become a growing threat affecting biodiversity. • Links between functional diversity and biological invasion concepts are explored. • Functional diversity indices are valuable tools for testing ecological hypotheses. • Functional diversity indices can reveal unexpected effects incurred by alien species. • Novel directions are proposed to advance functional diversity indices in this field. Abstract: Pioneering investigations on the effects of introduced populations on community structure, ecosystem functioning and services have focused on the effects of invaders on taxonomic diversity. However, taxonomic-based diversity metrics overlook the heterogeneity of species roles within and among communities. As the homogenizing effects of biological invasions on community and ecosystem processes can be subtle, they may require the use of functional diversity indices to be properly evidenced. Starting from the listing of major functional diversity indices, alongside the presentation of their strengths and limitations, we focus on studies pertaining to the effects of invasive species on native communities and recipient ecosystems using functional diversity indices. By doing so, we reveal that functional diversity of the recipient community may strongly vary at the onset of the invasion process, while it stabilizes at intermediate and high levels of invasion. As functional changes occurring during the lag phase of an invasion have been poorly investigated, we show that it is still unknown whether there are consistent changes in functional diversity metrics that could indicate the end of the lag phase. Thus, we recommend providing information on the invasion stage under consideration when computing functional diversity metrics. For the existing literature, it is also surprising that very few studies explored the functional difference between organisms from the recipient communities and invaders of the same trophic levels, or assessed the effects of non-native organism establishment into a non-analogue versus an analogue community. By providing valuable tools for obtaining in-depth diagnostics of community structure and functioning, functional diversity indices can be applied for timely implementation of restoration plans and improved conservation strategies. To conclude, our work provides a first synthetic guide for their use in hypothesis testing in invasion biology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2024-02-07
    Description: Highlights: • F1 heat acclimation significantly affected S. cerealella F2 offspring CTmax. • Lower- but not higher -ramping rates significantly reduced F2 CTmax. • Both F1 fasting and heat acclimation reduced F2 offspring HKDT. • Dynamic heat acclimation significantly reduced heat tolerance of F2 offspring. Abstract: Transgenerational plasticity (TGP) is a physiological mechanism where environmental experiences of parents affect phenotypes of the offspring, and potentially facilitates organisms' survival in stressful environments. The Angouimois grain moth, Sitotroga cerealella (Olivier), is a dominant primary grain pest in Africa, particularly affecting sorghum and maize staples. Despite its widely known economic significance, little is known on its thermal responses, particularly how acclimation in one generation impacts fitness in successive generations. We tested how heat (acute and dynamic) as well as fasting acclimation in one generation affects physiological tolerance (i.e., critical thermal maxima [CTmax] and heat knock down time [HKDT]) using laboratory-reared S. cerealella populations. Specifically, we assessed whether pre-exposure to heat or fasting stress confers fitness costs or benefits in subsequent generations (i.e., through TGP). Results showed acclimation had significant effects in interaction with temperature ramping rates on CTmax. Moderate acute heat (34 °C) and dynamic temperature (28–38 °C) acclimations reduced F1 CTmax and HKDT, particularly at low ramping rates (for CTmax). We did not find fasting acclimation to significantly affect CTmax, indicating a lack of evidence for cross tolerance and/or susceptibility. For HKDT, all acclimation treatments (including fasting) showed significantly lower HKDT compared to controls, and mostly so, for the 38 °C and dynamic acclimation (28–38 °C) treatments, indicating a transgenerational fitness cost of acclimation. This is the first report of the costs of transgenerational plasticity in a stored product pest of economic significance and has implications in designing heat-based phytosanitary grain treatments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-02-07
    Description: Highlights: • Baetidae, Corixidae, Coenogrionidae, Dytiscidae and Physidae were the most abundant families. • Functional feeding group ratios indicated that all sites were strongly autotrophic. • Environmental variables and fish had an influence on macroinvertebrate community. • Different macroinvertebrate taxa respond differently to seasonal changes. Abstract: Wetlands in the Global South are under increasing pressure due to multiple stressors associated with global change. Water and sediment quality assessments, as well as biomonitoring using macroinvertebrates communities, are fundamental tools for informing wetland condition and management strategies. Here, we examine water and sediment parameters affecting aquatic macroinvertebrates in Nlyslvey Wetland, Limpopo Province, South Africa. Water quality, sediments, fish and macroinvertebrate community data were collected across three seasons (hot-dry, hot-wet, cool-dry) from five sites. Baetidae, Corixidae, Coenogrionidae, Dytiscidae and Physidae were the most abundant and dominant families, with functional feeding group (FFG) ratios indicating that all sites were strongly autotrophic, had high predator-prey ratios, few shredders and had a stable substrate across seasons. Fish abundances increased significantly towards the cool-dry season. Based on redundancy analysis, P, Ca, pH, Cu and Na were strongly positively associated with macroinvertebrates, including Physidae, Corixidae, Planorbidae, Ostracoda, Potamonautidae and Hydropyschidae; turbidity and sulphur were associated with Dytiscidae, Oligochaetae, Libellulidae, Gerridae and Dixidae, and fish abundance, Fe, oxygen reduction potential and total dissolved solids were negatively associated with Baetidae, Belostomatidae, Hydrophilidae and Leptoceridae. Therefore, these variables accounted for large levels of variation in macroinvertebrate families, with the cool-dry season clearly distinguished from the hot-wet and hot-dry seasons according to functional feeding groups. Being a protected area, this information could provide a useful baseline for further studies into wetlands in the region subject to greater anthropogenic stresses, as well as future studies in this Ramsar site under global changes. Further studies are required to assess the importance of environmental factors influencing the richness and distribution of macroinvertebrate communities in wetlands under growing anthropogenic pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-02-07
    Description: Highlights • A high concentration BEP and DBP were detected from LDPE, HDPE and RP polymer films. • The impact salinity, temperature and UVR on leaching and re-adsorption of PaEs were investigated. • A mass balance approach was used to determine the adsorption loss of each target compounds during the leaching process. • Surface adsorption of PEs removed 40 to 80% of the leached PEs. Abstract In this study, the leaching of six phthalic acid esters (PAEs) from three common consumer plastics was investigated: low and high density polyethylene (LDPE, HDPE) and recycled polyethylene (RP). The effects of salinity, temperature, and ultraviolet irradiation (UVR) on leaching were investigated. The study of leaching of phthalates in aqueous environments in batch experiments is challenging due to their readsorption by the high hydrophobicity of PAEs, and there are no standard methods to study release processes. Here with the experiments, leaching (A) and spiking (B) using six PAEs to study the readsorption in the leaching process. PAEs were identified and quantified using GC–MS. Dibutyl phthalate (DBP) and benzyl butyl phthalate (DEHP) showed considerable leaching during the 5-day incubation: 14 ± 1 to 128 ± 14 and 25 ± 2 to 79 ± 5 ng/cm2, respectively, under UVR, corresponding approximately to (1.9–13%) and (12.4–22.4%) of the solvent extracted mass. The highest Kd values were measured for RP polymers (0.3–9.4), followed by LDPE (0.5–5.4) and HDPE (0.2–2.2) polymers. Thus, readsorption of PAEs at the surface removed 30–80% of the leached PAEs in the dissolved phase. For example in LDPE, the calculated total release of DBP was up to 54 ± 4 ng/cm2, while the dissolved amount was 8.5 ± 1 ng/cm2 during the 5-day incubation under freshwater conditions. Increasing salinity negatively affected the leaching rate, which decreased for DBP from 54 ± 4 ng/cm2 in freshwater to 44 ± 3 and 38 ± 3 ng/cm2 at salinity of 20 and 40 g/L, respectively, from LDPE during the 5-day incubation. Temperature and UVR had a positive effect on the leaching rate, with the release of DBP from LDPE increasing from 44 ± 3 ng/cm2 at room temperature (25 °C) to 60 ± 6 and 128 ± 14 ng/cm2 at high temperature (40 °C) and UVR, respectively. Overall, this study highlights the positive relationship between temperatures, UVR on the extent of leaching and surface adsorption on the leaching measurements. Graphical abstract Schematic of the leaching process in experiment (A: polymer) and in Experiment B (Polymer + spikes), shows that part of leachate were re-adsorbed on the surface of the polymer were may affect the dissolution concentration. The total leached mass (adsorbed and dissolved) were estimation by compared to a treatment containing both polymer and PAEs spike (P + S; Experiment B). The influence of salinities (0.1, 20 and 40 g/L), temperature (10, 25, and 40 °C), and ultraviolet radiation (UVR 350 nm) on the leaching and re-adsorption of PEs was investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2024-02-07
    Description: A 1/60° numerical simulation is carried out within the Labrador Sea to investigate eddies produced along the western coast of Greenland. These eddies, known as Irminger Rings, carry relatively buoyant water from the West Greenland Current system into the interior Labrador Sea. These eddies can survive for up to 2 years; we detect and track 232 eddies produced within our 14 year simulation to investigate how they evolve during their lifetime. Irminger Rings start with a significant layer of freshwater (median 4.4 m) that quickly erodes during the convective winter. The freshwater layer, as opposed to the warm Irminger Water layer, constitutes the majority of the stratification within each eddy. Eddies generally travel southwestwards after formation, and eddies whose trajectory is close to the continental slope tend to have a reduced lifespan and quicker speed than those which drift into the interior deep basin. We find that eddies which spawn further north are more likely to end up influenced by the boundary currents, while those which form to the south are more likely to live longer and enter the deep interior basin. While the formation rate of eddies is generally uniform across our 2005–2018 simulation, Irminger Rings are far more likely to decay during the convective wintertime. We find that most eddies quickly decay within a few months, although some survive long enough to endure two convective winters. All Irminger Rings increase the local stratification in the Labrador Sea, limiting convection. However, the eddies which endure some part of two winters experience a significant buoyancy loss over a long time span such that they may produce Labrador Sea Water within their core during their second winter. This constitutes a small but non-negligible volume of Labrador Sea Water (0.02 to 0.09 Sv) and updates our understanding of Irminger Ring’s role on stratifying the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-02-07
    Description: Highlights • Foraminifera and halophytes showed a relationship with pore water properties. • Soil salinity and evaporation are the governing environmental factors. • Agglutinated foraminifera were rather related to pore water pCO2 than to submergence time or elevation. • Calcareous foraminifera specialised to tolerate carbonate-corrosive conditions prevailed at lowest saturation levels. Benthic foraminifera showed a vertical zonation in tidally influenced salt marshes, which has been used for sea level reconstructions. Growing evidence suggested that freshwater influx, salinity, or the pH of interstitial waters has also an impact on the foraminiferal distribution. A tidal flat and salt marsh transect was investigated in the north-western Ria Formosa coastal lagoon, Algarve, Portugal, to constrain the relationship of benthic foraminifera, halophytes, and pore water properties. The dominance of saltworts from the subfamily Salicornioideae and landward increasing soil salinities depicted evaporation as governing environmental factor. The carbonate chemistry from lagoonal and pore waters identified anoxic tidal flat sediments of as main source of total alkalinity. The alkalinity was lower in the salt marsh, where the pCO2 was extremely high. Salt marsh pore waters showed a high variability of carbonate system parameters, which mirrored small-scale spatial heterogeneities in the soil. The distribution of textulariid salt marsh foraminifera was confined to the vegetated zones, where their abundance increased with elevation. Calcareous species were frequent on the tidal flat and in the highest salt marsh. Many of them were specialised to high salinities or to extreme and variable environmental conditions. Two levels of faunal change in the salt marsh coincide with vegetation zonal boundaries, mean tide or mean high water levels. The two other faunal changes were related to changes in calcite saturation state or organic carbon concentrations. The proportion of textulariids showed a negative correlation with submergence time or elevation, and a significant correlation with pore water pCO2. The faunal distribution, pore water calcite saturation, and Ammonia dissolution patterns indicated that calcareous species specialised to tolerate carbonate-corrosive conditions prevailed even at lowest saturation levels.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-02-07
    Description: The Atacama Desert is one of the driest and oldest deserts on Earth. The extreme scarcity of rainfall and hence very limited runoff, paired with endorheism, allow sediments and deposited materials to largely remain in the pedosphere for long periods of time, thereby leading to the generation of thick sediment, salt, and soil deposits. Aerosols are the main inputs of exogenous material to this system. The dominant aerosols deposited in the region are from sea spray, soil and salar playa deflation, volcanic emissions, along with secondary aerosols. The whole Atacama region receives particulate matter (minerals, salts, organic compounds, and microorganisms of variable content) from the Pacific Ocean, the coastal desert, and the Andes Cordillera and Altiplano. Some water may reach the western margin of the Atacama hyper arid core due to fog advection via the Coastal Cordillera. However, despite its aridity, large dust outbreaks from the Atacama Desert are rare. Atmospheric deposition is of great relevance for the landscape evolution of the Atacama Desert. This review summarizes current knowledge on the evolution of the landscape and the climatic conditions that led to it, and the salt and soil deposits, along with other geophysical features, in order to identify the frontier of aerosol research in the Atacama Desert.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-02-07
    Description: Vertical variations in physical and chemical conditions drive changes in marine zooplankton community composition. In turn, zooplankton communities play a critical role in regulating the transfer of organic matter produced in the surface ocean to deeper layers. Yet, the links between zooplankton community composition and the strength of vertical fluxes of particles remain elusive, especially on a global scale. Here, we provide a comprehensive analysis of variations in zooplankton community composition and vertical particle flux in the upper kilometer of the global ocean. Zooplankton samples were collected across five depth layers and vertical particle fluxes were assessed using continuous profiles of the Underwater Vision Profiler (UVP5) at 57 stations covering seven ocean basins. Zooplankton samples were analysed using a Zooscan and individual organisms were classified into 19 groups for the quantitative analyses. Zooplankton abundance, biomass and vertical particle flux decreased from the surface to 1000 m depth at all latitudes. The zooplankton abundance decrease rate was stronger at sites characterised by oxygen minima (〈5µmol O2.kg−1) where most zooplankton groups showed a marked decline in abundance, except the jellyfishes, molluscs, annelids, large protists and a few copepod families. The attenuation rate of vertical particle fluxes was weaker at such oxygen-depleted sites. Canonical redundancy analyses showed that the epipelagic zooplankton community composition depended on the temperature, on the phytoplankton size distribution and the surface large particulate organic matter while oxygen was an additional important factor for structuring zooplankton in the mesopelagic. Our results further suggest that future changes in surface phytoplankton size and taxa composition and mesopelagic oxygen loss might lead to profound shift in zooplankton abundance and community structure in both the euphotic and mesopelagic ocean. These changes may affect the vertical export and hereby the strength of the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-02-07
    Description: Differences in phenolic composition across different ontogenic stages can be crucial in determining the interaction outcomes between plants and their surrounding biotic environment. In seagrasses, specific phenolic compounds have rarely been analyzed and remain unexplored in ontogenic stages other than non-reproductive adults. Furthermore, it is generally accepted that plants would prioritize defense (e.g., through increased phenolic content) on tissues or stages that are critical for plant fitness but how this affects nutritional quality or plant resources has been scarcely explored. We analyzed how phenolic composition, N and C content and carbohydrate resources varied among different life stages (i.e. old and young leaves of reproductive and non-reproductive plants, and leaves of seedlings) in the seagrass Posidonia oceanica. We identified five phenolic compounds, whose structures were established as hydroxycinnamate esters of tartaric acid. Also, our results show that in all examined ontogenic stages phenolic compounds have the same qualitative composition but inflorescences exhibit higher contents than vegetative tissues. We did not find a reduction in stored resources in reproductive plants, pointing to some kind of compensatory mechanism in the production or storage of resources. In contrast, seedlings seemed to have less phenolic compounds than reproductive plants, perhaps due to limited resources available to allocate to phenolic production. Our results demonstrate how different ontogenic stages change their investment in specialized phenolic compounds prioritizing different functions according to the needs and limitations of that stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-02-07
    Description: Highlights: • Effects of microplastic on marine biota reflect the quality of experimental research. • The quality of published experiments can be quantified from an “ideal” experiment. • Previously published experiments have significantly deviated from “ideal”. • Implementation of proposed criteria can improve future microplastic experiments. Abstract: This article presents a novel conceptual blueprint for an ‘ideal’, i.e., ecologically relevant, microplastic effect study. The blueprint considers how microplastics should be characterized and applied in laboratory experiments, and how biological responses should be measured to assure unbiased data that reliably reflect the effects of microplastics on aquatic biota. This ‘ideal’ experiment, although practically unachievable, serves as a backdrop to improve specific aspects of experimental research on microplastic effects. In addition, a systematic and quantitative literature review identified and quantified departures of published experiments from the proposed ‘ideal’ design. These departures are related mainly to the experimental design of microplastic effect studies failing to mimic natural environments, and experiments with limited potential to be scaled-up to ecosystem level. To produce a valid and generalizable assessment of the effect of microplastics on biota, a quantitative meta-analysis was performed that incorporated the departure of studies from the ‘ideal’ experiment (a measure of experimental quality) and inverse variance (a measure of the study precision) as weighting coefficients. Greater weights were assigned to experiments with higher quality and/or with lower variance in the response variables. This double-weighting captures jointly the technical quality, ecological relevance and precision of estimates provided in each study. The blueprint and associated meta-analysis provide an improved baseline for the design of ecologically relevant and technically sound experiments to understand the effects of microplastics on single species, populations and, ultimately, entire ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-02-07
    Description: Reliable quantification of natural and anthropogenic gas release (e.g. CO2, methane) from the seafloor into the water column, and potentially to the atmosphere, is a challenging task. While ship-based echo sounders such as single beam and multibeam systems allow detection of free gas, bubbles, in the water even from a great distance, exact quantification utilizing the hydroacoustic data requires additional parameters such as rise speed and bubble size distribution. Optical methods are complementary in the sense that they can provide high temporal and spatial resolution of single bubbles or bubble streams from close distance. In this contribution we introduce a complete instrument and evaluation method for optical bubble stream characterization targeted at flows of up to 100 ml/min and bubbles with a few millimeters radius. The dedicated instrument employs a high-speed deep sea capable stereo camera system that can record terabytes of bubble imagery when deployed at a seep site for later automated analysis. Bubble characteristics can be obtained for short sequences, then relocating the instrument to other locations, or in autonomous mode of definable intervals up to several days, in order to capture bubble flow variations due to e.g. tide dependent pressure changes or reservoir depletion. Beside reporting the steps to make bubble characterization robust and autonomous, we carefully evaluate the reachable accuracy to be in the range of 1–2% of the bubble radius and propose a novel auto-calibration procedure that, due to the lack of point correspondences, uses only the silhouettes of bubbles. The system has been operated successfully in 1000 m water depth at the Cascadia margin offshore Oregon to assess methane fluxes from various seep locations. Besides sample results we also report failure cases and lessons learnt during deployment and method development.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-02-07
    Description: Highlights: • Modelled fish biomass was affected by interannual variability in the plankton food. • The effects were small compared with the high variability in observations. • Fish were highly affected by changes in the larval mortality of anchovy. Abstract: The Northern Humboldt Current System is the most productive eastern boundary upwelling system, generating about 10 % of the global fish production, mainly coming from small pelagic fish. It is bottom-up and top-down affected by environmental and anthropogenic variability, such as El-Niño Southern Oscillation and fishing pressure, respectively. The high variability of small pelagic fish in this system, as well as their economic importance, call for a careful management aided by the use of end-to-end models. This type of models represent the ecosystem as a whole, from the physics, through plankton up to fish dynamics. In this study, we utilised an end-to-end model consisting of a physical–biogeochemical model (CROCO-BioEBUS) coupled one-way with an individual-based fish model (OSMOSE). We investigated how time-variability in plankton food production affects fish populations in OSMOSE and contrasted it against the sensitivity of the model to two parameters with high uncertainty: the plankton accessibility to fish and fish larval mortality. Relative interannual variability in the modelled fish is similar to plankton variability. It is, however, small compared with the high variability seen in fish observations in this productive ecosystem. In contrast, changes in larval mortality have a strong effect on anchovies. In OSMOSE, it is a common practice to scale plankton food for fish, accounting for processes that may make part of the total plankton in the water column unavailable. We suggest that this scaling should be done constant across all plankton groups when previous knowledge on the different availabilities is lacking. In addition, end-to-end modelling systems should consider environmental impacts on other biological processes such as larval mortality in order to better capture the interactions between environmental processes, plankton and fish.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-02-07
    Description: Viruses carrying phoH genes are an important functional group that may boost phosphate metabolism of their prokaryote hosts and affect phosphorus cycle in the ocean. However, at present, very little is known about the phoH-carrying viruses' community structure and diversity in marine sediments, as well as their correlation network with prokaryotes and environment. Here, via a large spatial scale investigation along the Bohai Sea, Yellow Sea, and East China Sea, for the first time, diverse unknown benthic phoH-carrying viruses were uncovered, which were mainly affiliated to three clusters. Interestingly, these viruses presented a very distinct community structure compared to those in seawaters. Correlation network analysis implied that these viruses might mainly infect the prokaryotes of Gamm-/Delta-proteobacteria, Thaumarchaeota, and Cyanobacteria in sediments. Distinct virus-prokaryote correlation network modules were shown in different sea areas. These modules' highly nested feature implied their coevolution with prokaryotes during long-term arms race. Their distribution in sediments was influenced by multiple factors including geographic separation and the key environmental variables of total organic carbon and total phosphorus, and responded to terrestrial inputs and coastal aquaculture activities. The results of this study provide novel insights into the benthic virus communities potentially participating in phosphorus cycling in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-02-07
    Description: Enhanced weathering (EW) is a promising negative-emission technology that artificially accelerates the dissolution of natural minerals, promotes biomass growth, and alleviates the acidification of soils and natural waters. EW aims to increase the alkalinity of natural waters (alkalinization) to promote a transfer of CO2 from the atmosphere to the water. Here we provide a quantification of the alkalinization carbon-capture efficiency (ACE) as a function of the water chemistry. ACE can be used for any alkaline mineral in various natural waters. We show that ACE strongly depends on the water pH, with a sharp transition from minimum to maximum in a narrow interval of pH values. We also quantify ACE in three compartments of the land-to-ocean aquatic continuum: the world topsoils, the lakes of an acid-sensitive area, and the global surface ocean. The results reveal that the efficiency of terrestrial EW varies markedly, from 0 to 100 %, with a significant trade-off in acidic conditions between carbon-capture efficiency and enhanced chemical dissolution. The efficiency is more stable in the ocean, with a typical value of around 80 % and a latitudinal pattern driven by differences in seawater temperature and salinity. Our results point to the importance of an integrated hydrological and biogeochemical theory to assess the fate of the weathering products across the aquatic continuum from land to ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-02-07
    Description: Despite its great ecological importance, the main factors governing tree cover in tropical savannas as well as savanna-forest boundaries are still largely unknown. Here we address this issue by investigating marine sediment records of long-chain n-alkane stable carbon (δ13Cwax) and hydrogen (δDwax) isotopes from a core collected off eastern tropical South America spanning the last ca. 45 thousand years. While δ13Cwax is a proxy for the main photosynthetic pathway of terrestrial vegetation, tracking the relative proportion of C3 (mainly trees) versus C4 (mainly grasses) plants, δDwax is a proxy for continental precipitation, tracking the intensity of rainfall. The investigated core was collected off the mouth of the São Francisco River drainage basin, a tropical savanna-dominated region with dry austral autumn, winter and spring. On top of millennial-scale changes, driven by anomalies in the amount of precipitation associated with Heinrich Stadials, we identify a marked obliquity control over the expansion and contraction of tree and grass cover. During periods of maximum (minimum) obliquity, trees (grasses) reached maximum coverage. We suggest that maximum (minimum) obliquity decreased (increased) the length of the dry season allowing (hampering) the expansion of tree-dominated vegetation. Periods of maximum obliquity induced an anomalous heating (cooling) of the summer (winter) hemisphere that in combination with a delayed response of the climate system slightly increased autumn precipitation over the São Francisco River drainage basin, through a shift of the Intertropical Convergence Zone towards or further into the anomalously heated hemisphere. We found that atmospheric CO2 concentration has only a secondary effect on tree cover. Our results underline the importance of the dry season length as a governing factor in the long-term control of tree cover in tropical landscapes.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-02-07
    Description: Arc volcanism in the Ryukyu subduction system shows an along-arc variation characterized by the development of subaerial volcanoes in the northern arc and submarine ones in the southern arc. The central arc is a transitional area in arc volcanism, but its characteristics and tectonic controls remain largely unknown. This paper presents detailed new data on the tectonic and volcanic features of the Amami Calderas in the central Ryukyu Arc based on high-resolution bathymetry and a seismic reflection profile. Ship-based bathymetry reveals that ENE–WSW to E–W trending normal faults form a local rift structure which is ~60 km long, ~10 km wide and ~ 400 m deep. Small volcanic edifices and crater-like depressions are scattered in and around the rift. A number of bubble plumes were detected by shipboard multibeam sonar in the rift. AUV near-bottom mapping confirmed positive temperature anomalies near the bubble plumes, indicative of hydrothermal venting. Our observations demonstrate that the previously named Amami Calderas are not volcanic in origin, but are instead tectonic, and we therefore re-name these features the Amami Rift. The Amami Rift is the northernmost active rift along the central Ryukyu Arc and its unique location provides new insights into the interaction of rifting and arc volcanism. Yokoate-jima Island is a large volcanic edifice close to the Amami Rift whose surrounding seafloor shows no distinctive rift structures and few diffuse lineaments. In contrast, the Amami Rift consists of small scattered volcanic edifices and a prominent focused rift. This sharp volcano-tectonic contrast between Yokoate-jima Island and Amami Rift suggests that focused rifting makes arc volcanism scattered rather than focused in the area, with relatively small volcanic edifices. Another notable feature of the Amami Rift and surrounding area is that volcanic edifices, indicators of hydrothermal activity and bubble plumes are aligned not parallel to the rift, but in the cross-arc direction, indicating the presence of cross-arc volcanism. Cross-arc volcanism has been recently reported in the northern Ryukyu Arc, but this is the first time it has been observed in the central arc. Our observations combined with previous studies suggest a combination of cross-arc volcanism and crustal extension characterizes the spatial distribution of active magmatism in the central Ryukyu Arc.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-02-07
    Description: Underwater cameras are typically placed behind glass windows to protect them from the water. Spherical glass, a dome port, is well suited for high water pressures at great depth, allows for a large field of view, and avoids refraction if a pinhole camera is positioned exactly at the sphere’s center. Adjusting a real lens perfectly to the dome center is a challenging task, both in terms of how to actually guide the centering process (e.g. visual servoing) and how to measure the alignment quality, but also, how to mechanically perform the alignment. Consequently, such systems are prone to being decentered by some offset, leading to challenging refraction patterns at the sphere that invalidate the pinhole camera model. We show that the overall camera system becomes an axial camera, even for thick domes as used for deep sea exploration and provide a non-iterative way to compute the center of refraction without requiring knowledge of exact air, glass or water properties. We also analyze the refractive geometry at the sphere, looking at effects such as forward- vs. backward decentering, iso-refraction curves and obtain a 6th-degree polynomial equation for forward projection of 3D points in thin domes. We then propose a pure underwater calibration procedure to estimate the decentering from multiple images. This estimate can either be used during adjustment to guide the mechanical position of the lens, or can be considered in photogrammetric underwater applications.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-02-07
    Description: Vegetated coastal ecosystems (VCEs; i.e., mangroves, saltmarshes, and seagrasses) represent important sources of natural methane emission. Despite recent advances in the understanding of novel taxa and pathways associated with methanogenesis in these ecosystems, the key methanogenic players and the contribution of different substrates to methane formation remain elusive. Here, we systematically investigate the community and activity of methanogens using publicly available metatranscriptomes at a global scale together with our in-house metatranscriptomic dataset. Taxonomic profiling reveals that 13 groups of methanogenic archaea were transcribed in the investigated VCEs, and they were predominated by Methanosarcinales. Among these VCEs, methanogens exhibited all the three known methanogenic pathways in some mangrove sediments, where methylotrophic methanogens Methanosarcinales/Methanomassiliicoccales grew on diverse methyl compounds and coexisted with hydrogenotrophic (mainly Methanomicrobiales) and acetoclastic (mainly Methanothrix) methanogens. Contrastingly, the predominant methanogenic pathway in saltmarshes and seagrasses was constrained to methylotrophic methanogenesis. These findings reveal different archaeal methanogens in VCEs and suggest the potentially distinct methanogenesis contributions in these VCEs to the global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-02-07
    Description: Highlights: • Invasive alien fish species have cost at least $37.08 billion globally since 1960s. • Annual costs increased from 〈$0.01 million in the 1960s to $1 billion since 2000. • Reported costs are unevenly distributed, with a bias towards North America. • Impacts are less reported than other taxa based on research effort. • Gaps in available data indicate underestimation and a need to improve cost reporting. Abstract: Invasive alien fishes have had pernicious ecological and economic impacts on both aquatic ecosystems and human societies. However, a comprehensive and collective assessment of their monetary costs is still lacking. In this study, we collected and reviewed reported data on the economic impacts of invasive alien fishes using InvaCost, the most comprehensive global database of invasion costs. We analysed how total (i.e. both observed and potential/predicted) and observed (i.e. empirically incurred only) costs of fish invasions are distributed geographically and temporally and assessed which socioeconomic sectors are most affected. Fish invasions have potentially caused the economic loss of at least US$37.08 billion (US2017 value) globally, from just 27 reported species. North America reported the highest costs (〉85% of the total economic loss), followed by Europe, Oceania and Asia, with no costs yet reported from Africa or South America. Only 6.6% of the total reported costs were from invasive alien marine fish. The costs that were observed amounted to US$2.28 billion (6.1% of total costs), indicating that the costs of damage caused by invasive alien fishes are often extrapolated and/or difficult to quantify. Most of the observed costs were related to damage and resource losses (89%). Observed costs mainly affected public and social welfare (63%), with the remainder borne by fisheries, authorities and stakeholders through management actions, environmental, and mixed sectors. Total costs related to fish invasions have increased significantly over time, from 〈US$0.01 million/year in the 1960s to over US$1 billion/year in the 2000s, while observed costs have followed a similar trajectory. Despite the growing body of work on fish invasions, information on costs has been much less than expected, given the overall number of invasive alien fish species documented and the high costs of the few cases reported. Both invasions and their economic costs are increasing, exacerbating the need for improved cost reporting across socioeconomic sectors and geographic regions, for more effective invasive alien fish management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-02-07
    Description: Seasonal variations of phenolic compounds, in leaves of Zostera marina L. from the Baltic Sea near Kiel/Germany were investigated. Dominant compounds were mono- and disulfated flavonoids and phenylpropanoic acids, in particular luteolin 7,3ʹ-O-disulfate and diosmetin 7-O-sulfate as well as rosmarinic acid, a dimeric phenylpropanoid. All detected sulfated flavones showed similar seasonal trends: there were two significant concentration peaks in June and November. Moreover, two geographically distinct flavonoid chemotypes were identified based on their respective main flavonoid; one chemotype was characterized by the prevalence of luteolin 7,3ʹ-O-disulfate (German Baltic Sea), and the other by the prevalence of diosmetin 7-O-sulfate (Norwegian North Sea). Furthermore, an undescribed tetrameric phenylpropanoid, 7ʹʹ,8ʹʹ-didehydrosalvianolic acid B, was isolated and its structure was established by extensive NMR, MS, and CD experiments. This compound inhibited activity of Na+/K+-ATPase in the micro-molar range without any cytotoxic effects against human cancer and normal cells.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-02-07
    Description: Highlights • Ancient and modern hydrothermal venting systems occur offshore mid-Norway and Java. • They can share morphologies, eruptive behavior and develop similarly. • Modern hydrothermal venting systems are relevant analogues for ancient systems. Abstract Ancient hydrothermal vent complexes have released large volumes of greenhouse gases in the past causing global warming, and similar modern vent structures are potential geohazards. In the NE Atlantic, thousands of hydrothermal vent complexes were formed during the Paleocene-Eocene Thermal Maximum. In Java, Indonesia, the erupting Lusi sediment-hosted geothermal system caused the displacement of 40,000 people. In order to determine how ancient and modern hydrothermal venting systems are related, we map a well-defined buried hydrothermal vent complex offshore mid-Norway using 3D seismic reflection data and then compare it to the active Lusi eruption (since 2006) and the neighboring inactive Porong Structure. These are characterized using 2D seismic reflection data, borehole data and field observations. The venting structures are subcircular in plan-view and a few kilometers in diameter. They are funnel-shaped in profiles, with inward-dipping beds surrounding the conduits. The hydrothermal vent complex offshore mid-Norway reveals five seismically-distinct vent fill facies units. Importantly, two of the facies units are separated by an angular unconformity, clearly indicating that the depositional events within the vent fill were distinct. Hydrothermal fluids are interpreted to have led to the fluidization of mud-rich sediments which were erupted and deposited in and around the vent complex. Interpretation of a seismically transparent body along the conduit of the Norwegian venting structure, and the abrupt widening of the conduit at the Porong Structure, are interpreted to be caused by changes in fluid-flow dynamics as the fluids rise and get released from the host-rock. The hydrothermal venting systems in Java and offshore mid-Norway are found to be morphologically similar and are interpreted to form as the result of the transport and eruption of fluidized sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-02-07
    Description: Highlights • Red Sea salt deposits are loaded by only 200–300 m hemipelagics in deep water • Internal growth stratigraphy shows that they were deforming while being deposited • Power spectra of their surface shows they are inverse power-law over 1–13 km scale • Variograms suggest that their surface is stochastic with average lengthscale of ~3 km • Their stochastic character rules out Rayleigh-Taylor models of diapirism here Rayleigh-Taylor models for diapirism predict that diapirs should develop with characteristic spacings, whereas other models predict varied spacings. The deep-water Miocene evaporites in the Red Sea provide a useful opportunity to quantify length scales of diapirism to compare with model predictions. We first review the stratigraphy of the uppermost evaporites in high-resolution seismic data, revealing tectonic growth stratigraphy indicating that halokinetic movements occurred while the evaporites were being deposited. In some places, movements continued after the Miocene evaporite phase. The S-reflection marking the top of the evaporites is an erosional surface, in places, truncating anticlines of layered evaporites. In others, reflections within the uppermost evaporites are conformable, suggesting a lack of erosion. The top of the evaporites therefore had relief at the end of the Miocene. We select for numerical analysis 14 long profiles of topography of the S-reflection. Variograms derived from them after detrending reveal minor periodicity, though with varied wavelength, and varied roughness of the surface. However, an average variogram computed from these profiles is nearly exponential, indicating that the evaporite surface is mostly stochastic with no uniform scale of diapirism. An exponential model fitted to that average variogram suggests a spatial range over which the S-reflection topography becomes decorrelated of 3 km, which is comparable with the mean vertical thickness of the evaporite body. Power spectra of the evaporite surface are flatter at long wavelengths, which we interpret as due to weakness of halite preventing large surface relief from developing. The results suggest only modest periodicity, so the Rayleigh-Taylor model does not explain deformation in the Red Sea evaporites studied here. Their topography may turn out to be useful for suggesting the vertical scales and lengthscales of relief to expect of early stages of other salt giants, such as that of the Santo Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-02-07
    Description: Highlights • Exposure to increased Cu concentrations suppressed coral calcification. • Calcification was suppressed further when exposed to Cu under high pCO2. • Respiration decreased after two weeks when stressors were applied in combination. A decrease in ocean pH of 0.3 units will likely double the proportion of dissolved copper (Cu) present as the free metal ion, Cu2+, the most bioavailable form of Cu, and one of the most common marine pollutants. We assess the impact of ocean acidification and Cu, separately and in combination, on calcification, photosynthesis and respiration of sub-colonies of a single tropical Stylophora pistillata colony. After 15 days of treatment, total calcification rates were significantly decreased in corals exposed to high seawater pCO2 (∼1000-μatm, 2100 scenario) and at both ambient (1.6–1.9 nmols) and high (2.5–3.6 nmols) dissolved Cu concentrations compared to controls. The effect was increased when both stressors were combined. Coral respiration rates were significantly reduced by the combined stressors after 2 weeks of exposure, indicating the importance of experiment duration. It is therefore likely rising atmospheric CO2 will exacerbate the negative effects of Cu pollution to S. pistillata.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2024-02-07
    Description: Highlights • Dissolved gaseous mercury can be calculated from modeled dissolved inorganic carbon. • Modeled dissolved gaseous mercury agrees well with worldwide observations. • Dissolved gaseous mercury is related to depth and macronutrients concentrations. Mercury (Hg) in seawater is subject to interconversions via (photo)chemical and (micro)biological processes that determine the extent of dissolved gaseous mercury (DGM) (re)emission and the production of monomethylmercury. We investigated Hg speciation in the South Atlantic Ocean on a GEOTRACES cruise along a 40°S section between December 2011 and January 2012 (354 samples collected at 24 stations from surface to 5250 m maximum depth). Using statistical analysis, concentrations of methylated mercury (MeHg, geometric mean 35.4 fmol L−1) were related to seawater temperature, salinity, and fluorescence. DGM concentrations (geometric mean 0.17 pmol L−1) were related to water column depth, concentrations of macronutrients and dissolved inorganic carbon (DIC). The first-ever observed linear correlation between DGM and DIC obtained from high-resolution data indicates possible DGM production by organic matter remineralization via biological or dark abiotic reactions. DGM concentrations projected from literature DIC data using the newly discovered DGM–DIC relationship agreed with published DGM observations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-02-07
    Description: Highlights • Dual geochemical approach using δ11B and B/Ca to evaluate coral calcifying fluids from West Maui, Hawai'i. • NMR analysis confirms boron is present as borate with no evidence of boric acid inclusion. • Increased pH up-regulation in corals exposed to high nutrient / low pH submarine groundwater discharge. • Calcifying fluid aragonite saturate state 9 to 10 times higher than ambient seawater. • Up-regulation as an internal coping mechanism to combat multiple stressors from land-based sources of pollution. Coral reefs and their ecosystems are threatened by both global stressors, including increasing sea-surface temperatures and ocean acidification (OA), and local stressors such as land-based sources of pollution that can magnify the effects of OA. Corals can physiologically control the chemistry of their internal calcifying fluids (CF) and can thereby regulate their calcification process. Specifically, increasing aragonite saturation state in the CF (ΩCF) may allow corals to calcify even under external low saturation conditions. Questions remain regarding the physiological processes that govern the CF chemistry and how they change in response to multiple stressors. To address this knowledge gap, the boron systematics (δ11B and B/Ca) were analyzed in tropical corals, Porites lobata, collected at submarine groundwater seeps impacted by the release of treated wastewater in west Maui, Hawai'i, to document the interactions between high nutrient / low pH seep water on CF carbonate chemistry. Results show substantial up-regulation of pH and dissolved inorganic carbon (DIC) with respect to seawater in P. lobata corals collected from within the wastewater impacted area at Kahekili Beach Park compared to the control site at Olowalu Beach. The ΩCF was 9 to 10 times higher than ambient seawater Ω, and 13 to 26% higher than in corals from the control site and from previously observed in tropical Porites spp. corals. Such elevated up-regulation suggests that corals exposed to nutrient-enriched, low pH effluent sustain CF supersaturated with respect to aragonite, possibly as an internal coping mechanism to combat multiple stressors from land-based sources of pollution. This elevated up-regulation has implications to coral vulnerability to future climate- and ocean-change scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-02-07
    Description: Climate change is taking place due to significant emissions of greenhouse gases into the atmosphere. CO2 storage in geological formations is a promising approach that can help to reduce greenhouse gas emissions from large emitters such as the steel and cement industries. However, effective storage in underground formations requires active trapping mechanisms to reduce the likelihood of leakage. Carbon mineralization is a trapping technique that can permanently store CO2 in reactive rocks such as basalt. Although this method has been known for a long time, only two pilot projects in Iceland and the USA practiced CO2 injection into basalts. This could be mainly due to the complexity of the interactions, the rapid carbon mineralization, and the difficulty to estimate the storage capacity in the long term. In this paper, we discuss different mechanisms and technical challenges of CO2 storage in igneous rocks and propose a selection criterion based on laboratory and field-scale experience. It appears that basalt is a suitable rock for rapid carbon mineralization given its worldwide distribution, vesicular texture, and favourable mineral composition, but the lack of effective monitoring techniques and the amount of water required for injection are two major challenges that need to be addressed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-02-07
    Description: Ocean environmental conditions can be inferred from the chemical composition of bamboo coral skeletons. The high magnesium calcite internodes of these long-living octocorals may therefore represent a potential archive for seawater properties such as salinity or temperature where instrumental time series are absent. To extend these time series into the past using a natural archive the principles of temperature and salinity signal incorporation into cold-water coral skeletal material need to be investigated. Since skeletal Na and S concentrations have been proposed as environmental proxies, we mapped the spatial distribution and concentration of these elements in two Atlantic specimens of Keratoisis grayi (family Isididae). These measurements were conducted with an electron microprobe applying a spatial resolution of 4 μm. The mean apparent distribution coefficient of Na/Ca for the two samples was within 2.5 and 2.8*10−4, while that of S shows a similar depletion relative to seawater with 3.8 and 3.6*10−3. The two elements show an inverse correlation in bamboo coral skeletons. The mean apparent distribution coefficient of Na is similar to that of abiotic calcites. This similarity can be interpreted as the absence of significant vital effects for skeletal Na/Ca. Hence it corroborates the idea that the average skeletal composition of bamboo corals holds the potential to record past seawater conditions. In contrast, it appears unlikely that the spatial variations of the element distribution of seemingly simultaneously precipitated material along growth rings are exclusively controlled by environmental factors. We further exclude Rayleigh fractionation, ion-specific pumping, and Ca/proton exchange as the driver of Na and S distribution in bamboo corals. Instead, we adapt a calcification model originally proposed for scleractinians to bamboo corals. This model can explain the observed distribution of Na and S in the skeleton by a combination of Ca/proton pumping, bicarbonate active transport, and the formation of an organic skeletal matrix. The adapted model can further be used to predict the theoretical behaviour of other elements and disentangle vital effects from external factors influencing compositional features. It is therefore a useful tool for future studies on the potential of bamboo corals as environmental archives.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-02-07
    Description: The Ordos Block in the western part of the North China Craton is enigmatic in having contrasting topographic structure in the northern and southern parts, while previous geophysical studies show little difference in crustal and upper mantle structure across the region. Here we present a new model of upper mantle structure in the Ordos Block region in order to test the importance of mantle heterogeneity for topographic differences. Our model is based on P- and S-wave seismic receiver functions calculated for data from 171 stations. It documents the presence of an uppermost mantle low-velocity zone between the Mid Lithospheric Discontinuity (MLD) and the Lehmann discontinuity. Clear converters at the 410 and 660 km discontinuities show constant Mantle Transition Zone (MTZ) thickness within the Ordos Block region, which indicates that no deep mantle thermal anomaly affects its present dynamics. However, the amplitude of the MTZ-converters is higher in the southern than the northern Ordos Block. In contrast, the conversions from MLD and the Lehmann discontinuity are strongest in Northern Ordos, which we interpret as a block with essentially preserved cratonic lithospheric mantle. We speculate that smaller amplitudes of the MLD and Lehmann converters in Southern than Northern Ordos may be related to either rheological weakening of cratonic lithosphere during the Mesozoic convergence between the North and South (Yangtze) China Cratons, or northeast extrusion of Tibetan lower crust and upper mantle in the Cenozoic caused by the India-Asia collision.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-02-07
    Description: Highlights: • Generation of transcriptomes from three new Pirsoniales species for the first time. • Generation of transcriptomes from four new Developea species, enriching the clade. • Phylogenomic recovery of a monophyletic Bigyromonadea: Pirsoniales and Developea. • Bigyormonads’ ability to aggregate and form pseudopod resembles oomycete zoospores. • Report of the first case of eukaryovory in the flagellated stages of Pirsoniales. Stramenopiles are a diverse but relatively well-studied eukaryotic supergroup with considerable genomic information available (Sibbald and Archibald, 2017). Nevertheless, the relationships between major stramenopile subgroups remain unresolved, in part due to a lack of data from small nanoflagellates that make up a lot of the genetic diversity of the group. This is most obvious in Bigyromonadea, which is one of four major stramenopile subgroups but represented by a single transcriptome. To examine the diversity of Bigyromonadea and how the lack of data affects the tree, we generated transcriptomes from seven novel bigyromonada species described in this study: Develocauda condao n. gen. n. sp., Develocanicus komovi n. gen. n. sp., Develocanicus vyazemskyi n. sp., Cubaremonas variflagellatum n. gen. n. sp., Pirsonia chemainus nom. prov., Feodosia pseudopoda nom. prov., and Koktebelia satura nom. prov. Both maximum likelihood and Bayesian phylogenomic trees based on a 247 genematrix recovered a monophyletic Bigyromonadea that includes two diverse subgroups, Developea and Pirsoniales, that were not previously related based on single gene trees. Maximum likelihood analyses show Bigyromonadea related to oomycetes, whereas Bayesian analyses and topology testing were inconclusive. We observed similarities between the novel bigyromonad species and motile zoospores of oomycetes in morphology and the ability to self-aggregate. Rare formation of pseudopods and fused cells were also observed, traits that are also found in members of labyrinthulomycetes, another osmotrophic stramenopiles. Furthermore, we report the first case of eukaryovory in the flagellated stages of Pirsoniales. These analyses reveal new diversity of Bigyromonadea, and altogether suggest their monophyly with oomycetes, collectively known as Pseudofungi, is the most likely topology of the stramenopile tree.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-02-07
    Description: We present a monthly resolved stable Ba isotope record (δ138Bacoral) of a young fossil coral (Porites) from the eastern side of the Andaman Islands (NE Indian Ocean), which grew prior to the 19th century. This δ138Bacoral record complements 19-years of monthly resolved Ba/Cacoral, Sr/Cacoral, U/Cacoral, δ18Ocoral and δ13Ccoral data from the same colony that can serve as a baseline of environmental variability before the industrialised era. The δ138Bacoral record exhibits small but significant seasonal variability ranging from 0.16 to 0.27 ± 0.03‰ over two continuous annual cycles. The δ138Bacoral signature is generally low during the South Asian summer monsoon (SAM, June-September) and post-SAM seasons (October-January), which are characterised by high Ba/Cacoral and more depleted δ18OSW values. We suggest that Ba desorption from suspended fluvial sediments followed by lateral advection are the main causes of the low δ138Bacoral and elevated Ba/Cacoral values during the SAM and post-SAM. However, this promising Ba proxy behaviour is interrupted by pronounced spikes of low δ138Bacoral and high Ba/Cacoral signatures observed during the pre-SAM season (February-May) throughout the 19-year record. Possible explanations for these spikes observed during dry seasons are (1) Ba enrichment associated with decreased mixed layer depth or (2) Ba release from sediments trapped by local fringing mangroves. Surface seawater from the coral site sampled over an annual cycle exhibits a wide range of dissolved δ138BaSW and [Ba]SW values, with significantly lowered δ138BaSW of 0.29 ± 0.04‰ and high [Ba]SW of 66.03 nmol/kg during the SAM, which is broadly consistent with the coral skeletal signals. Our results establish a clear link between monsoon-driven freshening events and Ba isotope variability of surface waters and assess the utility of coral skeletal Ba isotopes to trace riverine inputs into tropical coastal oceans.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-02-07
    Description: Highlights: • Sediment and water chemistry variables increased downstream in both events. • 110 diatom species across the two study events identified. • Significant differences observed in diatom community across river zones and events. • Boron and copper most important variables in structuring diatoms. Abstract: Mediterranean climate river systems are among the most threatened ecosystems worldwide, due to a long history of anthropogenic impacts and alien invasive species introductions. Many of such rivers naturally exhibit a non-perennial flow regime, with distinct seasonal, inter-annual and spatial heterogeneity. The present study seeks to detect diatom community patterns and to understand the processes that cause these structures in an Austral Mediterranean river system among different months and river sections. In general, most environmental variables showed an increasing trend downstream for both months, with the exception of pH, dissolved oxygen, PO₄3− and substrate embeddedness, which decreased downstream. A total of 110 diatom species between the two study months (October – 106 taxa; January – 78 taxa) were identified, dominated by 30 species with at least 〉2% abundance. Diatom community structure differed significantly across river zones, while no significant differences were observed between the study months. A boosted regression trees model showed that B (43.3%), Cu (20.8%), Fe (3.4%) and water depth (3.2%) were the most significant variables structuring diatoms. Diatom species communities reflected environmental variables (i.e., sediment and water chemistry) in this Mediterranean climate river system, as sediment metals such as B, Cu and Fe were found to be important in structuring diatom communities. Biotic influences from fish communities had little effect on diversity, but shifted diatom community structure. Therefore, the current study highlights how river systems have complex interactions that play an important role in determining diatom species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-02-07
    Description: Highlights • Subaqueous spreading occurs on gently inclined surfaces (〈3°). • Gliding planes could be clays or sandy materials undergoing loss of strength. • It is documented on some of the largest marine landslides. • SubSpread Database includes 32 case studies. • Contourite and glaciogenic deposits represent often the slipping surfaces. Abstract Subaqueous spreading, a type of extensional mass transport that is characterized by a ridge and trough morphology, has been documented globally but is poorly understood. Subaqueous spreading is observed on gently inclined surfaces (typically 〈3°) when sediment bodies experience a sudden reduction of shear strength along their basal plane during clay softening or liquefaction of sands or silty sand sediment. Historically, spreading has been associated with very large landslides, but many unknown aspects of these mass movements have yet to be clarified. Does spreading influences the large catastrophic failure? What are the sedimentological and morphological aspects that contribute in initiating this process? These are some of the research questions that spurred the present work. Here, we introduce a database that incorporates information from thirty-two case studies, and use this to provide key insights into the sedimentary and morphological aspects of subaqueous spreading that will assist in the identification of spreading elsewhere. We find that subaqueous spreading is most common along passive glacial margins, but is also observed along active margins. The occurrence of contourites interlayered with glaciogenic deposits is, in most cases, associated with landslides (or landslide complexes) with spreading morphology. The database shows that seismic loading is commonly suggested to be the dominant trigger mechanism, although more geotechnical observations and modelling analysis would be needed to support this conclusion. We compare subaqueous spreading with terrestrial spreading, in particular to earthquake-related lateral spreading and clay landslides. We find that subaqueous spreading shares the same driving processes and potentially also some of the trigger mechanisms that are associated with the terrestrial spreading cases. Future work will be required to address the association between spreading and its occurrence on some of the largest landslides on Earth, its development mechanism, and its potential hazard implications.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-02-07
    Description: Highlights • Dissolved iron limits primary production in offshore South Pacific surface waters. • Phytoplankton is elevated in high-iron filaments in mesoscale eddies east of New Zealand. • Iron in these eddies is due to entrainment of high-iron coastal water into offshore water. • The resultant eddy-driven flux of iron supports production in the Subtropical Front. Abstract Subtropical and subantarctic waters either side of the southern hemisphere Subtropical Front are considered iron-limited, suggesting production within the front is dependent on a supply of iron from atmospheric deposition, zonal advection of coastal water, or upwelling. We present the results from a one-day biogeochemical survey in Subtropical Water east of the North Island, New Zealand, in a region where mesoscale cyclonic and anticyclonic eddies entrain chlorophyll in filaments around the eddies. There was no significant relationship between upper mixed layer chlorophyll and any physical or macronutrient quantity. However, chlorophyll was significantly positively correlated with dissolved iron. A simple model suggests that while vertical entrainment of iron into the upper mixed layer occurred, most of the dissolved iron in the eddy was due to entrainment of high-iron coastal water into low-iron offshore Subtropical Water, and that this iron supports primary production in otherwise iron-deficient water. We suggest that a significant component of the total primary production within the Subtropical Front may be determined by mesoscale eddy induced lateral advection of iron.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-02-07
    Description: Highlights: • Importance of experts and stakeholders in the process of scenarios-building. • Experts’ key role refining objectives, framing scenarios and developing storylines. • A balanced statements selection reflects the composition of stakeholder categories. • Stakeholders provide relevant and unique contribution for the final outcome. • Geographic isolation of the islands shapes the results of scenarios and storylines. • Participatory scenarios-building results in formulation of policy recommendations. Abstract: The Maritime Spatial Planning process plans towards a desired future (Vision/Goal). Such vision is usually an integration of various aspirations from different stakeholders and sectors that depend on the related policy/governance framework. In this sense, a tool such as scenario-building is of paramount importance to MSP once it helps decision-makers visualize the future that might unfold due to specific the actions/policies needed to make such a future more likely to happen. Along these lines, this work presents the methodology and results of the scenario building process developed and applied in the Macaronesia Maritime Spatial Planning (MarSP) project, for the Autonomous Region of Azores. The methodology is structured in four main steps: (i) setting MSP objectives based on policy review and following stakeholders’ inputs; (ii) identifying key objectives after consultation with regional experts; (iii) developing scenario storylines; and (iv) balancing across scenarios based on feedback from stakeholders’ engagement. Three main pre-established scenarios were developed, balancing the pillars of sustainable development, namely: “Blue Society,” “Blue Growth”, and “Blue Development”. In a consultative and participatory process, the three scenarios were later modified and validated, integrating the preferences of stakeholders, being the most voted (preferred) scenario “Blue Development”. Results highlight the importance of applying a participatory approach to scenario building in MSP to understand the preferences and expectations of different stakeholders. The methodology can be relevant and adjustable to other regions, tailored to specific settings, in support of decision making towards an adaptive MSP process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2024-02-07
    Description: The sedimentary evolution of the Bambuí foreland basin system in the interior of West Gondwana is marked by periods of connection and isolation from the global ocean during the late Neoproterozoic and early Paleozoic. To understand the link between these periods and seawater redox conditions, we present an integrated study of trace-metal geochemistry and stratigraphy of the carbonate-siliciclastic rocks from the two lowermost second order transgressive-regressive sequences of the Bambuí Group, east Brazil. The basal 2nd-order sequence trace-metal pattern shows a progressive decrease of mass fractions of Co, Cr, Ni, Cu, Mo, U, V, Zn, and Cd, concomitant with a progressive decrease of Al and Fe contents and Mo/TOC ratios. Among all these elements, only Cd, Mo and U mass fractions seem to be less or not affected by detrital influence, so they can be used as reliable redox proxies for the paleoenvironmental analysis of the studied Bambuí strata. Moreover, normalization to aluminum shows a progressive increase of trace-metal enrichments for Cd and Mo in the order of 0.1–10 times and for U in the order of 1–100 times, accompanied by a progressive increase of organic carbon content upward section. These changes in sedimentary trace-metal patterns provide evidence for the chemical evolution of basinal deep-waters, whose conditions changed progressively from suboxic-anoxic to anoxic-euxinic at the basal transgressive-regressive sequence. We suggest that the paleomarine system represented by the basal Bambuí Group has probably evolved as an intracontinental silled basin recording changes in seawater chemistry associated with redox variations and restricted hydrographic conditions. Sedimentary trace-metal patterns indicate that Bambuí epeiric sea was initially in communication with open ocean followed by the marine restriction during the transgressive and regressive cycles, respectively. This resulted in a long deepwater residence time and chemical evolution of deep watermass as a response to tectonic pulses and consequent sea-level variations during the restricted stage. Under anoxic-euxinic conditions of seawater, trace metals scarcity and micronutrient fixation limitation would have impacted nitrate bioavailability, preventing the evolution of early benthic metazoans in the Bambuí paleomarine system during the late Ediacaran and early Cambrian.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-02-07
    Description: Highlights • Response of saline hydrothermal systems to diking events at fast spreading ridges. • 2-D thermohaline multiphase simulations of fluid circulation near a cooling dike. • Models allow relating vent fluid salinity changes to sub-surface processes. Abstract Hydrothermal fluids expelled at mid-ocean ridge vent sites show a large spatial and temporal variability in exit temperatures and chlorinities. At the East Pacific Rise (EPR), 9°50.3'N, time series data for a 25+ year period reveal a correlation between these variations and magmatic diking events. Heat input from dikes appears to cause phase separation within the rising fluids splitting them into low-salinity vapor and high-salinity brine phases. The intrusion of a new dike is therefore likely to result in a characteristic salinity signal, with early post-eruptive fluids showing vapor-influenced low salinity and later brine-influenced fluids showing high salinity values. We here use a 2-D multiphase hydrothermal flow model to relate these observations to processes and properties within the sub-seafloor such as permeability, porosity, background flow rates, and phase separation as well as segregation phenomena. We have grouped the time evolution of vent fluid salinity into four temporal stages and have identified how multiphase flow phenomena control vertical salt mass fluxes within each stage. Rock porosity and permeability as well as background temperature of the undisturbed hydrothermal system control the duration of the four stages and maximum venting salinity. Based on our results, we are able to reproduce the characteristics of time-series data from the EPR at 9°50.3'N and infer the likely ranges of rock properties and the hydrothermal conditions within the oceanic crust beneath.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-02-07
    Description: Highlights • Multilevel Composition is an innovative method involving color composition and co-rendering of multilevel attribute maps. • It is useful for characterizing multi-depth geological features based on their spatiotemporal distribution within three-dimensional seismic data. • The technique produces a single image map, in which inter-window/layer depth information is coded in colors for reliable representation of the actual geology. • In the eastern Nile fan, it was applied to visualize and resolve the complexities of buried clastic deep-water depositional elements. • On the Omakere Ridge, it successfully illuminated seafloor seeps and reveals their link to deeper fluid-bearing intervals. Abstract Advanced seismic data and multi-attribute visualization techniques, such as color blending of attributes, have considerably enhanced the capability of interpreters to characterize geological features in three-dimensional (3D) seismic reflection datasets. However, high resolution investigation of complex, vertically linked geological features such as channel systems and fluid conduits, remains challenging. These features may appear in the dataset as pronounced attribute anomalies, such as high-amplitude or spectrally or structurally enhanced seismic reflectivity bands, at several depth levels. Vertical linkages between these features, however, may not be readily established. We have developed an innovative method, Multilevel Composition, for an intuitive display of vertically connected features. Our method involves the composition of attribute maps from three different depth/time windows or slices onto a single map, in which inter-window/layer depth information is coded in colors. Multilevel Composition starts with the identification of suitable seismic attributes, such as high amplitudes in the examples displayed here, to map features of geological interest. At least one reference horizon is then identified and mapped in the vicinity of the target window of interest. Three sub-windows are then defined with respect to the reference horizon(s) based on the vertical and spatial distribution of the geological features. Relevant seismic attributes are computed for each of the sub-windows, and the resulting maps, one from each sub-window, are assigned basic color channels and are co-rendered to reveal multilevel linkages between these features. We demonstrate the efficacy of this method by applying it to two 3D seismic datasets, one illuminating deep-water depositional elements in the eastern Nile fan, eastern Mediterranean and the other targeting seafloor seeps and underlying gas migration systems beneath the Omakere Ridge, offshore New Zealand. The new method is simple and should be easy to implement to enhance seismic interpretation workflows.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2024-02-07
    Description: Highlights: • Food fall scavenger experiments were conducted in the Fram Strait. • At 2500 m depth, carcasses of squid were consumed 7.6 times faster than those of jellyfish. • Amphipods dominated squid food falls but were virtually absent on jellyfish foodfalls • Invertebrate food falls in the Arctic attracted a total of 15 taxa. • Food fall scavenger community composition and consumption rates are depth-dependent. Abstract: Deep-sea benthic communities depend on food that reaches the seafloor from the overlying water column as well as from in-situ autotrophic production. Sinking carcasses (food falls) from jellyfish and squid contribute to this nutrient flux, but natural medium-sized food falls are rarely observed. Consequently, little is known about scavenging communities associated with invertebrate food falls. The Arctic Ocean is known for rapid environmental change and strong benthic-pelagic coupling. To investigate if scavenging responses in the Arctic deep sea differ between medium-sized food fall species we performed experiments in the Fram Strait at ∼2500 m depth. Baited free fall landers were equipped with a time-lapse camera (n = 5) and traps (n = 4) to document and capture scavengers. Squid (Loligo vulgaris) and jellyfish (Periphylla periphylla) were used as bait. Image analysis showed that the amphipod Eurythenes gryllus arrived within minutes and was the main scavenger on squid (MaxN = 166 individuals) while it was almost absent (MaxN = 3 individuals) on jellyfish. Nine additional scavenger taxa were identified in total, including Scopelocheirus and stegocephalid amphipods, various crustaceans and the gastropod Mohnia. The jellyfish bait was consumed 7.6 times slower than squid (jellyfish: 171 g d−1, squid: 1,294 g d−1), and almost three times slower than during similar experiments in the North Atlantic. Squid experiments incited higher consumption rates and scavenger diversity, but lower maximum abundances than similar experiments in the North Atlantic. Despite a small sample size of our experiments, differences in consumption rates, scavenger diversity and successional stages between food falls were apparent supporting that scavenging response depends on carcass species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-02-07
    Description: The stable (δ18O and δ13C) and clumped (Δ47) isotope compositions of coral carbonate are valuable archives for paleoclimate reconstructions. However, the Δ47-temperature relationships of warm and cold-water corals deviate from that of inorganic carbonate precipitated at equilibrium. Dual clumped isotope thermometry of carbonates (i.e., simultaneous Δ47 and Δ48 measurements on a single carbonate) has the potential to achieve more accurate paleotemperature reconstruction, identifying and correcting for kinetically driven isotopic disequilibrium. Here we present the first extensive dual clumped isotope dataset of coral carbonate, spanning a broad range of cold and warm-water coral species. We confirm that corals are enriched in Δ47 and depleted in Δ48 relative to equilibrium, a pattern corresponding to the mixing of an equilibrium DIC pool with kinetically derived HCO3– produced by hydration and hydroxylation of CO2. Dual clumped isotope measurements of cold-water corals fall on the initial linear portion of model (IsoDIC) predicted departure from equilibrium. The dual clumped isotope composition of cold-water corals, corrected by the model-predicted Δ47/Δ48 offset slope (−0.78), yield accurate reconstruction of coral growth temperature with a precision of 〈3 °C at the 68% confidence level. In contrast, disequilibrium offsets in the Δ47 and Δ48 of warm-water corals correspond to precipitation from a more equilibrated DIC pool, which we attribute to the action of carbonic anhydrase in the calcifying fluid. It may be possible to correct warm-water coral growth temperatures, using an empirically derived correction (Δ47/ Δ48 offset slope of −0.4). Dual clumped isotope thermometry of coral carbonate opens new possibilities to reconstruct both sea surface temperatures and ocean dynamics of intermediate to deep water masses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2024-02-07
    Description: Highlights • High-resolution deep-water record for Pliocene western tropical Pacific. • Changes in NADW production at ∼4.6 Ma and ∼2.7 Ma influenced Pacific • These changes controlled a seesaw fluctuation between deep Pacific and Atlantic oceans. • Antarctic ice-sheet/sea-ice expansions influenced deep Pacific • These ice-mass changes resulted in long-term decline during late Pliocene. Abstract Quantifying changes in seawater carbonate chemistry is crucial to deciphering of patterns and drivers of the oceanic carbon cycle and climate change. Here, we present a new deep-water carbonate ion saturation state record for the Pliocene western tropical Pacific, reconstructed from the size-normalized weight of the planktonic foraminifer Trilobatus sacculifer of IODP Site U1490. A steep decline in deep-water occurred at ∼4.6 Ma synchronous to the enhanced production of North Atlantic Deep Water (NADW) related to the closure of the Panamanian Gateway. Subsequently, at the onset of the Northern Hemisphere glaciation at ∼2.7 Ma the weakening of NADW formation resulted in a deep-water peak. The changes in NADW production rate likely controlled a seesaw-like fluctuation in deep-water between the Pacific and Atlantic oceans. During the late Pliocene (∼3.8–2.8 Ma), Antarctic ice-sheet/sea-ice expansions sequestered CO2 in the deep Pacific through ventilation of the deep watermass, leading to a long-term decrease in deep Pacific . We infer that fluctuating NADW production rates at ∼4.6 Ma and ∼2.7 Ma influenced inter-basinal fractionation of deep-ocean carbon between the Atlantic and Pacific, and that deep Pacific carbon storage linked to expansions of Antarctic ice sheet/sea ice contributed to the lowering of atmospheric pCO2 and global cooling during the late Pliocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2024-02-07
    Description: Highlights • A set of slow slip events occurred at Mt. Etna volcano is analyzed. • Two distinct families of slow slip events have been detected. • Most of the deformation affecting the eastern flank occurs aseismically. • Different sources temporally modulate the seaward motion of the unstable flank. We analyzed a set of 11 slow slip events occurred during the 2006–2016 period and affecting the GNSS (Global Navigation Satellite System) stations of the unstable flank of Mt. Etna volcano. Observed surface deformation for most of the detected slow slip events, concentrates on the south-eastern edge of the unstable flank while the slow slip events involving the north-eastern edge are less frequent. Such a pattern highlights the existence of two distinct families of events, involving two contiguous sectors of the unstable flank, which occasionally slip together in large slow slip events. The modelled slips also highlight that both contiguous sectors extend ~10–12 km offshore, on areas where active tectonic lineaments such as the ESE (northward of Catania Canyon) and the N102° (along the southern slope of the Riposto Ridge) ones have been recently discovered. Equivalent seismic moments of slow slip events occurred in the last ten years (corresponding to magnitudes in the range 5.4–5.9) are larger than those associated to seismic events observed in the last 200 years, suggesting that most of the deformation affecting the eastern flank occurs aseismically.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2024-02-07
    Description: Iron (Fe) is an essential micronutrient for primary production, and Fe isotopic composition (δ56Fe) has become a widely used oceanographic tool for determining sources and evaluating the biogeochemical cycling of dissolved Fe (dFe) in the oceans. Here, we present dFe concentrations and δ56Fe from three unique oceanographic settings (a river dominated margin, a highly productive coastal upwelling margin, and a meridional open ocean transect) collected during the South Atlantic GEOTRACES cruise GA08 along the Namibian-Congo margin. In the North, the offshore Congo River plume dominates the surface ocean, resulting in elevated surface dFe concentrations up to 1000 km from the river mouth, corresponding to increasing δ56Fe values (+0.33 to +0.95‰) with distance from the river outlet. We attribute this unusual and extensive offshore delivery of heavy Fe to dFe preservation by complexation with organic ligands, coupled with rapid off-shelf advection. In the South, the highly productive Benguela Upwelling System produces oxygen depleted to seasonally anoxic bottom waters on the continental shelf, resulting in extremely high subsurface dFe concentrations (up to 42 nmol kg-1) and remarkably light δ56Fe values (as low as -3.31‰), characteristic of dFe(II) production and mobilization via reductive dissolution of Fe oxyhydroxides in sediments. Away from the continental margins, surface waters carry predictably low dFe concentrations (∼0.1 nmol kg-1), associated with isotopically heavy Fe linked to dust deposition and biological uptake. In subsurface waters, and away from Fe sources, we find a remarkably coherent relationship between water masses and dissolved δ56Fe signatures along the GA08 section. Using δ56Fe data from GA08 and water mass analysis, we assign endmember signatures of -0.12 ± 0.02‰ for AAIW, +0.71 ± 0.09‰ for NADW, and +0.35 ± 0.12‰ for AABW. Overall, we find that the distribution of δ56Fe in the South Atlantic can largely be explained by water mass mixing, with some overprinting by local processes and sources, suggesting that dissolved δ56Fe signatures can be used as tracers of deep ocean Fe transport.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2024-02-07
    Description: Highlights • European legislation resulted in significant reduction in shell-bound lead. • Intertidal muricid represents a suitable archive for lead pollution. • Shell-bound copper and zinc not related to environmental concentrations. Heavy metals in coastal waters are a great environmental concern in the North Sea since the middle of the 20th century. Regulatory efforts have led to a significant reduction in atmospheric and water-transported heavy metals. Still, high concentrations of these in sediments remain a risk for ecosystems, requiring close monitoring. Here, we investigated the applicability of Nucella lapillus museum collections as a tool for targeted tracking of chronic anthropogenic heavy metal pollution. We analysed the concentration ratios of the common heavy metals Cu, Cd, Pb, and Zn in relation to Ca in N. lapillus shells collected from the Dutch and Belgian intertidal zone over the last 130 years. We found that shell Cu/Ca and Zn/Ca concentration ratios remained remarkably constant, whereas Pb/Ca concentration trends were closely aligned with emissions of leaded petrol in Europe. Our results suggest that N. lapillus provides a suitable Pb pollution archive of the intertidal zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2024-02-07
    Description: Presently, two Chlorella sorokiniana strains sampled during summer (CS-S) and winter (CS-W) from a maturation pond and isolated by dominance were studied on their behavior on temperature and light extremes in batch experiments. Although both strains showed no differences in their tolerance of temperatures up to 45 °C, the growth rates, pigment contents and fatty acid compositions in response to PAR at 700 and 1,500 µmol m−2 sec-1 differed. CS-W was less affected by photoinhibition and maintained constantly high growth rates. High radiation resulted in both strains in an equivalent decrease of chlorophyll a and accessory pigments indicating that the latter did not function as a light filter. PUFAS (18:3 and 16:3) increased in CS-W at high radiation by 〉 60% and decreased in CS-S by 8 %. Results indicate that CS-W is highly favorable for mass cultivation particularly in outdoors, in which diurnal variations of solar radiation occur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2024-02-07
    Description: Highlights • Silicoflagellates include ten Cenozoic genera, starting with Corbisema. • Rotated apical structures begin with Dictyocha byronalis in early Eocene. • Neogene rotation of Dictyocha apical bridge is an independent evolution. • Multi-windowed Stephanopsis are common from early Oligocene. • Paramesocena develops from Stephanopsis and is a possible ancestor of Octactis. Cenozoic silicoflagellate evolution led to ten known genera derived from two groups classified together in Corbisema that may have survived the end-Cretaceous extinction. These underwent rapid diversification and gave rise to at least five genera before the end of the Paleocene, including Dictyocha and Naviculopsis. Important silicoflagellate evolutionary events include the emergence of corner-aligned double skeleton configuration by the early Paleocene and the sinistral rotation of the Dictyocha byronalis apical bridge in early to middle Eocene that evolved into the apically-ringed silicoflagellate genera (e.g., Distephanopsis and Stephanocha). We interpret Paramesocena and Octactis as descended from Stephanocha, although their precise evolutionary paths remain uncertain. The earliest Octactis has thicker apical ring elements than modern O. pulchra, and is here described as the new species O. kosciuszkoi. New combinations are provided for Stephanocha antarctica and Dityocha octangulata. Overall, Cenozoic silicoflagellates show a trend towards more complicated apical geometries and smaller portals. These features enable silicoflagellate double skeletons to form near-spherical skeletal structures that support the external cell boundaries during mitosis. Silicoflagellates employ various strategies to hold double skeletons together and support the cell boundaries across the portal and window openings. Variability is an important feature of the silicoflagellate skeleton and occurs in two broadly different contexts. The first occurs for all silicoflagellate species, with occasional variant skeletal designs distinct from the predominant morphology. The second variability is associated with a single taxon, where multiple unusual skeletal shapes occur in a silicoflagellate plexus over a geologically narrow time interval and limited geographic extent.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-02-07
    Description: Highlights: • Camera observations document regional deposition of cephalopod remains on the abyssal plain. • More than 300 Argonauta egg cases were observed at 3970–4551 m in the central east Pacific between 2010 and 2020. • Shells were in various states of disintegration owing to damage, scavenging and dissolution. • Sinking epipelagic Argonauta egg cases to abyssal depths is a pathway in the carbon pump. • In situ observations show that shell decomposition takes about 90 days in this region. Calcifying plankton in the upper ocean produce calcium carbonate (CaCO3) shells that sink to the seafloor after death resulting in the vertical transport of inorganic carbon in shells and organic carbon in carcasses. In situ observations of pelagic detritus on the abyssal plain are very scarce. Carcasses are rapidly scavenged and shells may dissolve owing to undersaturation of deep waters with respect to CaCO3. We observed more than 300 egg cases of the epipelagic cephalopod Argonauta sp. in 9 large seafloor image surveys investigated across the Clarion Clipperton Zone in the Pacific between 2010 and 2020. Females of this octopus produce calcite egg cases that are used for buoyancy and as substrate on which to attach their eggs in the water column. These cases sink to the seafloor, presumably upon death of the octopus. In one area, between 3970 and 4551 m water depth surveyed in 2019, we documented more than 200 complete and fragments of egg cases (5.84 ± 1.8 cm in size) on the seafloor, complete and broken and in various states of dissolution. Here, we present observations of egg case dissolution in situ and of 99 white deposits that were likely largely dissolved egg cases. Our observations reveal a previously undocumented pathway of epipelagic inorganic carbon to the abyssal plain. Preliminary estimations indicate that the local contribution of Argonauta egg cases to the vertical transport of carbonates is likely small compared to other planktonic calcifiers, but the geographic extent of the deposition in the eastern Pacific is apparently large. This study highlights the need for in situ observations to discover and document carbon fluxes in the deep sea, and for consideration of life history traits in unraveling elusive pathways within the biological pump
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-02-07
    Description: Highlights • Sr isotope composition in different minerals is an excellent proxy, that can be used to reconstruct the environmental conditions of their precipitation. In order to study Strontium (Sr) isotope fractionation during the precipitation of strontianite (SrCO3) as a function of the specific precipitation rate (R*) and temperature (T), strontianite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions. The specific precipitation rate R* (mol/cm2.h) for every sample was determined by applying the initial rate method. The mean isotope difference between bulk solution and precipitate (∆88/86Srstrontianite-solution) was found to be −0.279 ± 0.005‰ (2σmean) independent of both rate and temperature. Hence, Sr isotope fractionation in strontianite is completely different from that in calcite and aragonite, where a strong dependency from both rate and temperature can be observed. The latter is interpreted to reflect the competition between Sr2+ and Ca2+ ions for incorporation into the calcium carbonate crystal lattice, which is absent during the precipitation of pure strontianite. The isotope difference between strontianite and bulk solution then simply reflects the intermolecular forces in the aqueous solutions as well as the kinetic effect. The difference in the (∆88/86Srstrontianite-solution between experiments then reflects the dehydration energy of Sr ions in the adsorption layer of SrCO3.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-02-07
    Description: Highlights • Sedimentation-driven gas hydrate recycling is cyclic in nature with time scales set by reactive multi-phase transport. • Each cycle can be divided into three distinct phases: 1) gas accumulation phase, 2) gas breakthrough phase and 3) uninhibited hydrate build-up phase. • In the presence of sufficient accumulated gas, convex deposition of hydrate acts like a mechanical nozzle for the ascending gas flow. Gas hydrate recycling is an important process in natural hydrate systems worldwide and frequently leads to the high gas hydrate saturations found close to the base of the gas hydrate stability zone (GHSZ). However, to date it remains enigmatic how, and under which conditions, free gas invades back into the GHSZ. Here we use a 1D compositional multi-phase flow model that accounts for sedimentation to investigate the dominant mechanisms that control free gas flow into the GHSZ using a wide-range of parameters i.e. hydrate formation kinetics, sediment permeability, and capillary pressure. In the first part of this study, we investigate free gas invasion into the GHSZ without any sedimentation, and analyse the dynamics of hydrate formation in the vicinity of the base of GHSZ. This helps establish plausible initial conditions for the main part of the study, namely, hydrate recycling due to rapid and continuous sedimentation. For the case study, we apply our numerical model to the Green Canyon Site 955 in the Gulf of Mexico, where the reported high hydrate saturations are likely a result of hydrate recycling driven by rapid sedimentation. In the model, an initial hydrate layer forms due to the invasion of a specified volume of rising free gas. This hydrate layer is consistent with the local pressure, temperature and salinity state. This hydrate layer is then thermally de-stabilised by sedimentation resulting in free gas formation and hydrate recycling. A key finding of our study is that gas hydrate recycling is a cyclic process which can be divided into three phases of 1) gas hydrate melting and free gas nozzling through the hydrate layer, 2) formation of a new gas hydrate layer as the old layer vanishes, and 3) fast uninhibited grow of a new hydrate layer. High hydrate saturations of about 80% can be attained purely through physical, burial-driven recycling of gas hydrates, without any additional gas input from other sources. Hydrate recycling is, therefore, highly dynamic with its own inherent cyclicity rather than a gradual process paced by the rate of sediment deposition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-02-07
    Description: Oceanic non-CO2 greenhouse gases (GHGs: N2O, CH4, and CO) require more attention in a new and wider context that is relevant for ocean and climate sciences. In order to gain a better understanding of their cycling and emissions, it is essential to establish a global ocean observing network.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-02-07
    Description: Highlights • OSL signals of coarse (˃ 63 μm) quartz from loess in New Zealand are not amenable for dating. • Fine quartz (4–11 μm) signals allowed the application of OSL dating for last glacial loess. • Differences between the two grain sizes could not be unravelled by ESR characterisation. • Ages obtained on polymineral fine grains using pIRIR overestimate the fine quartz chronology. The applicability of optically stimulated luminescence (OSL) dating on quartz from South Island, New Zealand is hampered by the poor behaviour of the targeted signals. However, most OSL dating studies have been focused on using coarse quartz fractions. Since a previous study conducted from a nearby site demonstrated that coarse quartz (63–90, 90–125, 125–180 and 180–250 μm) is not suitable for OSL dating, we attempt using fine quartz here. Therefore, the standard SAR protocol was applied on 4–11 μm quartz extracted from a loess/paleosol section. Unlike the coarser fractions, the OSL signal of fine quartz displayed satisfactory characteristics which allowed estimating ages ranging from 0.3 ± 0.04 ka to 16 ± 1 ka. In order to understand the differences between the two quartz fractions, we characterise fine (4–11 μm) as well as the usually used coarser grain sizes (˃ 63 μm) of quartz by electron spin resonance (ESR). No significant differences are reported in qualitative terms between the grain sizes investigated and calibration quartz. We report a higher abundance of intrinsic defects in the fine grain fraction; however, this is typical for quartz from other regions as well, that was amenable for OSL dating. As such, the differences between the fine quartz fraction and the coarse fraction is not yet understood. In addition, two elevated temperature post-infrared infrared protocols (pIRIR225 and pIRIR290) were applied and polymineral grains extracted from the same samples. Despite residual dose corrections being performed using a modern analogue, pIRIR ages overestimate quartz ages by 19–122% in the case of the application of the pIRIR225 protocol and by 25–217% in the case of the application of the pIRIR290 protocol. The effect could not be circumvented by the application of a test dose with a magnitude of 50% of the equivalent dose in the pIRIR290 protocol. In the case of the application of pIRIR290 protocol, dose recovery tests ratios vary from 1.07 ± 0.06 to 1.23 ± 0.05. While not ideal, these results cannot fully explain the differences reported between the ages obtained by fine quartz OSL and the polymineral fine grains pIRIR methods.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-02-07
    Description: Highlights • Potassium isotopes of modern hydrothermal fluids are reported for the first time. • Potassium isotope fractionation in hydrothermal systems is resolved and quantified. • Hydrothermal systems cannot explain the heavy K isotope signature of seawater. • Authigenic clay formation likely has a significant role in the global K cycle. Recent discoveries of significant variations in stable K isotope ratios (41K/39K or K) among various terrestrial samples indicate that K isotopes can be a novel tracer for the global K cycle, but a key observation that seawater K is ‰ higher than the bulk silicate Earth remains unexplained. An unconstrained component critical to this puzzle is hydrothermal systems that represent both a major K source and sink in the ocean. Here we report K results on mid-ocean ridge (MOR) hydrothermal fluids from the Gorda Ridge and ∼9°N East Pacific Rise (EPR), including time-series samples that recorded major perturbations in fluid chemistry induced by a local volcanic eruption. Fluid K values range from -0.46‰ to -0.15‰, falling between those of fresh basalts and seawater. K values of “time-zero” fluids collected shortly after the volcanic eruption are shifted towards the seawater value, followed by a return to pre-eruption values within ∼2 years. Fluid K variations are largely influenced by water–rock interactions, but they cannot be solely explained by simple mixing of seawater and K leached from basalts at high temperatures. Instead, these data imply small but significant isotope fractionation that enriches heavy K isotopes in basalts, likely caused by low-temperature alteration during the recharge stage of hydrothermal circulation. Our results preclude MOR hydrothermal systems as the cause for the heavy K value of seawater. Using fluid K data and K isotope fractionation constrained here for hydrothermal systems, a K mass-balance model implies a critical role for a marine sedimentary sink, possibly authigenic clay formation, in the global K cycle. Also, applying the K isotope fractionation constrained here to the published K data from ophiolites shows the possibility for significantly lower seawater K during the Ordovician, which can be explained by enhanced reverse weathering in response to distinct climate and tectonics at that time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2024-02-07
    Description: Highlights: • Multi-centennial oscillation with 100–200 years periods is evident in proxy data and model simulations during the Holocene. • Multi-centennial oscillation is a global signal and is more significant in the Northern Hemisphere high latitudes. • None of the external forcings is found to be the sole driver of the multi-centennial variability. • It indicates the multi-centennial oscillation may be due to potential internal drivers and essential feedbacks. Abstract: Variability on centennial to multi-centennial timescales is mentioned as a feature in reconstructions of the Holocene climate. As more long transient model simulations with complex climate models become available and efforts have been made to compile large proxy databases, there is now a unique opportunity to study multi-centennial variability with greater detail and a large amount of data than earlier. This paper presents a spectral analysis of transient Holocene simulations from 9 models and 120 proxy records to find the common signals related to oscillation periods and geographic dependencies and discuss the implications for the potential driving mechanisms. Multi-centennial variability is significant in most proxy records, with the dominant oscillation periods around 120–130 years and an average of 240 years. Spectra of model-based global mean temperature (GMT) agree well with proxy evidence with significant multi-centennial variability in all simulations with the dominant oscillation periods around 120–150 years. It indicates a comparatively good agreement between model and proxy data. A lack of latitudinal dependencies in terms of oscillation period is found in both the model and proxy data. However, all model simulations have the highest spectral density distributed over the Northern hemisphere high latitudes, which could indicate a particular variability sensitivity or potential driving mechanisms in this region. Five models also have differentiated forcings simulations with various combinations of forcing agents. Significant multi-centennial variability with oscillation periods between 100 and 200 years is found in all forcing scenarios, including those with only orbital forcing. The different forcings induce some variability in the system. Yet, none appear to be the predominant driver based on the spectral analysis. Solar irradiance has long been hypothesized to be a primary driver of multi-centennial variability. However, all the simulations without this forcing have shown significant multi-centennial variability. The results then indicate that internal mechanisms operate on multi-centennial timescales, and the North Atlantic-Arctic is a region of interest for this aspect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-02-07
    Description: Highlights • Stress in cratons is limited by tectonic force from distant plate boundaries. • Average stress in cratonic lithosphere decreases as competent thickness increases. • Craton lithosphere undergoes mostly elastic deformation. • Brittle yielding and seismicity are restricted to very shallow crustal levels. • Effective elastic thickness is large even though average differential stress is low. Whether lithospheric stress can reach the maximum level predicted by the Christmas-tree strength envelope is a fundamental question but with controversial answers. There is little controversy that a deforming lithosphere in high heat flow regions is likely critically stressed, i.e., at full yield at all depths, as described by the envelope. But different conceptual frameworks offer opposite views for very cold lithosphere, either at full yield or far below yield. Here, we use simple numerical models to investigate stresses in end-member cold cratonic lithosphere (e.g., Canadian Craton) in comparison with end-member warm plate-boundary lithosphere (e.g., Canadian Cordillera). The two key elements of our modelling are (1) that lithospheric stress builds up elastically with horizontal tectonic loading not only in the elastic–frictional brittle regime but also in the viscoelastic ductile regime, and (2) that the stress level is limited by the available tectonic force. In a cratonic lithosphere, the limiting tectonic force is sustained by competent rock material over a large depth range, represented by the competent thickness Tc that exceeds 90 km. The lithosphere undergoes mostly elastic deformation at a stress level of a few tens of MPa. While weakly stressed strong lithosphere can still produce limited earthquakes at shallow depths due to structural and stress heterogeneity, the lithospheric stress under horizontal tectonic loading is theoretically predicted to be orders of magnitude lower than predicted by the Christmas-tree envelope. Stresses in a real lithosphere may substantially deviate from this theoretical level because of spatiotemporal variations in rheology and structure. For example, the stress memory of past loading history in cold lithosphere may or may not be erased by more recent tectonic stresses. Because much of previous scientific debates on lithospheric stress levels and comparison with seismicity were focused on topographically induced flexural stress, we also investigate the effect of vertical loading. We show that the effective elastic thickness Te derived from the flexural response is a reasonable proxy for Tc derived from horizontal tectonic loading; a very large Te such as 〉 80 km is generally associated with very low tectonic stress far below yield. However, the flexure-induced bending stress is not directly comparable with seismicity because it may either enhance or suppress seismogenic stress in the crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2024-02-07
    Description: Highlights • Two tsunami deposits identified on the coasts of Ios Island, Aegean Sea, Greece. • First tsunami deposit is linked to the Minoan eruption of Santorini volcano. • 2nd tsunami post-dates the 22 ka Cape Riva eruption and its deposits are at altitudes up to 13 m, but its origin is unknown. • On-land evidence of Cape Riva deposits outside Santorini, questioning previous estimates on the magnitude of this eruption. In this work, we document two distinct tsunami deposits on the coasts of Ios Island, Aegean Sea, Greece. The younger tsunami deposit, dated 1831–1368 cal. BCE, includes both marine sediments and pumices from the ∼1600 BCE Minoan eruption of Santorini volcano. This is the first evidence of the Minoan tsunami in the Cycladic Islands North of Santorini. Tsunami waves inundated the Manganari coastal plain, southern coast of Ios, over a distance 〉200 m (〉2 m a.s.l.). The second tsunami deposit reworks pumice from the 22 ka Cape Riva eruption mixed with marine sediment. We assume a Neolithic age for this major tsunami, with a wave runup 〉13 m a.s.l. on the southern and eastern coasts of Ios. The source of this tsunami - volcanic eruption, landslide, or earthquake - remains unknown. Additionally, we provide the first on-land evidence of Cape Riva deposits outside Santorini, thus questioning previous estimates on the magnitude of this eruption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-02-07
    Description: A closed-system batch reaction experiment was conducted for 270 days to evaluate the effects of interaction between Gulf of Mexico (GOM) seawater and Mississippi River sediments on the system’s dissolved rare earth elements (REE) concentrations and neodymium isotopic compositions (εNd). This study specifically focuses on geochemical reactions involving silicic sediments derived from weathering of the North American continent as they affect the REEs and εNd of seawater along continental margins, in contrast to previous studies that investigated the influence of basaltic rocks and sediments on REEs and εNd in the ocean. Our results show that the dissolution of labile phases of lithogenic Mississippi River sediments leads to an approximately 100-fold increase in dissolved REE concentrations within the first 33 days of the experiment. Secondary mineral precipitation appears to lower the REE concentrations between days 33 and 270 of the experiment, although seawater REE concentrations remain elevated compared to initial values. The two-way elemental transfer involving dissolution and precipitation results in a net increase by a factor of 24 ± 12 (mean ± 1σ) in the dissolved REE concentrations by the end of the experiment (i.e., day 270). The dissolved REE concentration maxima observed after 33 days of the experiment represent the mobilization of approximately 0.37 % of the REE content of the operationally defined “exchangeable” fraction of the riverine sediments. The εNd values of the reactive lithogenic components were −9.77 and −9.95, which are similar to the GOM value of −9.81 ± 0.36. Because of the similarity between εNd values, changes in the seawater Nd isotope value throughout the experiment were subtle (mean ± std, reacted seawater εNd of −9.87 ± 0.17). The highest REE concentrations coincided with the most radiogenic εNd (-9.65 ± 0.23; day 33), which suggests that REE concentrations and εNd compositions of the GOM may be buffered by fluxes from sediments in the system. Our results are comparable to previous studies involving basaltic rocks and/or sediments of basaltic composition in that they demonstrate that silicic, river sediments are highly reactive in marine environments with regard to REE mobilization. The experimental results further suggest that “boundary exchange” plays an important role in influencing the εNd of seawater along continental margins dominated by large river systems, although the impacts of boundary exchange will be most profound where ambient seawater and river sediments have distinct Nd isotopic compositions (e.g., basaltic, or Precambrian shield material). Finally, our results indicate that the εNd value of GOM seawater is largely controlled by the lithogenic sediment delivered to the basin by the Mississippi River.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-02-07
    Description: The current climate crisis is associated with rising sea levels, which raises the concerning prospect of losing coastal ecosystems, such as salt marshes. Where inland migration is impossible, salt marshes will only persist if their vertical accretion exceeds the rate of sea-level rise. Positive vertical accretion is mainly driven by sedimentation, whereas negative vertical accretion is driven by erosion and soil compaction, among others. These processes can be influenced by abiotic and biotic factors. The biotic factors, best described by plant functional traits of the salt-marsh vegetation, are, however, not well understood. We assembled a large dataset of 336 plots with vertical accretion time series and plant abundances and coupled it with trait data from salt marsh species of the German Wadden Sea, covering natural unmanaged, anthropogenic unmanaged, and grazed marshes. By using multiple logistic regression analyses, we studied the effects of plant functional traits and distance to the marsh edge on vertical accretion. Mean vertical accretion was in the range of recent sea level rise, except for plots on elevated grazed marshes. There were, however, pronounced local differences in vertical accretion. Positive accretion increased with distance to marsh edge and increasing leaf and stem roughness, described by specific stem length, canopy height, stem mass, leaf mass and leaf area. Except on grazed marshes, leaf traits contributed more strongly to the explanation of positive accretion than stem traits. Negative accretion by e.g., erosion was facilitated by low specific root length and low root and rhizome mass, i.e., lower anchoring capacity. To better assess coastal resilience to sea level rise, our findings suggest (i) to include these effect traits in models and experimental analyses of salt marsh vertical accretion and (ii) to consider effects of vegetation roughness on accretion in salt marsh management schemes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2024-02-07
    Description: Highlights • Investigation on PFAS in seafood was conducted for the first time in North Africa. • Long-chain PFAS were predominant in seafood from the study area. • Among seafood, crustaceans exhibited the highest concentrations of PFAS. • PFOS was the predominant PFAS compound in most marine species. • Human health risks for PFAS exposure via seafood consumption was minimal. Abstract Despite the ubiquity of per- and polyfluorinated alkyl substances (PFAS) in all environmental compartments, little is known about the pollution they cause on the African continent, neither on levels, nor effects. Here we examined the occurrence and levels of 21 legacy and emerging PFAS in 9 marine species (3 fish, 2 crustaceans and 4 mollusks) collected from Bizerte lagoon, Northern Tunisia. Furthermore, assessment of potential human health risks through consumption of contaminated seafood was examined. This is the first study assessing PFAS in Mediterranean coastal areas of North Africa. Twelve out of the 21 targeted PFAS were detected, evidencing the occurrence of PFAS in seafood from North Africa, albeit at low levels. The Ʃ21PFAS concentrations in all seafood samples ranged from 0.202 ng g−1 dry weight (dw) to 2.89 ng g−1 dw, with a mean value of 1.10 ± 0.89 ng g−1 dw. The profiles of PFAS varied significantly among different species, which might be related to their different trophic level, protein content, feeding behaviour and metabolism. Generally, current exposure to PFAS through seafood consumption indicates that it should not be of concern to the local consumers, at least for those PFAS for which information is available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-02-07
    Description: Highlights: • Tarebia granifera and Physa acuta densities ranged between 161 and 517 and 15–619 individuals m−2, respectively. • P. acuta moved significantly slower and covered a significantly shorter net distance. • Movement traits associated with exploratory behaviour were similar among species. • Variation in straightness index trait was 1.6-fold greater for P. acuta (CV = 79.9). • Study provides baseline information on alien snail in the Austral subtropical regions. Abstract: Invasive alien species are a growing global problem, and aquatic ecosystems have been regarded as particularly vulnerable. Biological invasions can alter ecosystem functioning, threaten native biodiversity and burden the global economy. Understanding alien species ability to disperse via locomotion following arrival to new environments is critical for prediction of spread rates. Here, we quantified in-field densities and compared movement traits between two widespread invasive alien snails, Tarebia granifera and Physa acuta. We measured the: (i) net distance and velocity to determine dispersal potential; and (ii) turning angles (both absolute and relative) and straightness index as proxies for exploratory behaviour. Tarebia granifera exhibited a significantly greater velocity and covered a significantly larger net distance (i.e., greater spread rate) than Physa acuta. In-field densities were marked for both species (T. granifera: mean 351 individuals m−2; P. acuta: mean 235 individuals m−2), but differed spatially. The exploratory behavior (i.e., mean or absolute turning angles and straightness index) did not differ significantly between the two alien species; both species showed a slight tendency to turn counterclockwise. The present study suggests a more rapid capacity to self-disperse in T. granifera than P. acuta, which could facilitate rapid spread within and between aquatic systems. Thus, this current study highlights the often-overlooked role of animal behaviour in promoting invasion; this autecological information can help inform predictive models for the spread of alien snails within freshwater ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-02-07
    Description: Highlights • Novel conceptional model for the tsunamigenesis of coastal mass-wasting events. • Unlocking the debate on the tsunamigenic potential of small-scale coastal collapses. • Benchmarking a cliff-failure tsunami numerical model with historical data. • First detailed investigation of the 1930 Cabo Girão tsunami in Madeira, NE Atlantic. Mass-wasting events are a key process in the evolution of volcanic ocean islands. They occur at various dimensional scales and present a major source of hazard. When the collapsed material plunges into the sea, destructive tsunamis can be generated. Yet, the hazard potential of collapse-induced tsunamis is still poorly understood with different opinions on what consequences to expect from this type of events, particularly those related to massive volcanic island flank collapses. In this paper, however, we explore the hazard extent of tsunamis triggered by the smaller – but more frequent – coastal cliff-failures, in order to isolate critical factors in the generation, propagation and impact of these tsunamis. To achieve this, we use the prime example of Madeira, a volcanic island in the Atlantic Ocean highly vulnerable to cliff-failure. Particularly, we explore the March 4th, 1930 Cabo Girão event that triggered a deadly tsunami. The coastal impact of the 1930 “Deadly Wave”, as the island's inhabitants referred to the generated tsunami, resulted in 19 fatalities. We use historical description, morphological analysis, and numerical modelling to better understand the tsunamigenesis of tall island cliffs failing into the sea. Interestingly, we find that a relatively small-scale mass-wasting event (∼0.003 km3 volume) was the cause of the reported tsunami that inundated the nearest coasts. Our numerical results, fairly agreeing with the available collapse and subsequent tsunami descriptions, suggest that the tsunami impact was mainly localized on the southern coast of Madeira Island. Furthermore, our study allows proposing a novel morphology-based conceptional model for the tsunamigenesis and hazard extent induced by mass-wasting events on oceanic volcanic islands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-02-07
    Description: Antarctica is losing ice mass by basal melting associated with processes in deep Earth and reflected in geothermal heat flux. The latter is poorly known and existing models based on disputed assumptions are controversial. Here I present a new geophysical model for lithospheric thickness and mantle heat flux for the entire Antarctica and demonstrate that significant parts of the East Antarctica craton have lost the cratonic lithosphere signature and the entire West Antarctica has a highly extended lithosphere, consistent with its origin as a system of back-arc basins. I conclude that the rate of Antarctica ice basal melting is significantly underestimated: (i) the area with high heat flux is double in size and (ii) the amplitude of the high heat flux anomalies is 20–30% higher than in previous results. Extremely high heat flux (〉100 mW/m2) in almost all of West Antarctica, continuing to the South Pole region, and beneath the Lake Vostok region in East Antarctica requires a thin (〈70 km) lithosphere and shallow mantle melting, caused by recent geodynamic activity. This high heat flux may promote sliding lubrication and result in dramatic reduction of ice mass, such as in Heinrich events. The results form basis for re-evaluation of the Antarctica ice-sheet dynamics models with consequences for global environmental changes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-02-07
    Description: Highlights • The Digital Earth Viewer is an open-source (EUPL-licensed) hybrid application (desktop and server use) for the realtime visualisation and exploration of 4D geoscientific data. • Splitting the viewer into a natively compiled server-component optimized for maximum throughput and a web-technology-based client component geared towards maximum compatibility allows to harness the strengths of both platforms. • Desktop builds are release for Windows, Linux, and MacOS. • The Digital Earth Viewer has been used productively on expedition cruises to plan underwater exploration missions as all as a presentation and data validation tool by the GLODA-project. Abstract A comprehensive study of the Earth System and its different environments requires understanding of multi-dimensional data acquired with a multitude of different sensors or produced by various models. Here we present a component-wise scalable web-based framework for simultaneous visualisation of multiple data sources. It helps contextualise mixed observation and simulation data in time and space. This work is an extended version of the conference paper (Buck et al., 2021).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-02-07
    Description: The neodymium isotopic composition (εNd) of seawater is one of the most important geochemical tracers to investigate water mass provenance, which can also serve as a proxy to reconstruct past variations in ocean circulation. Nd isotopes have recently also been used to reconstruct past circulation changes in the Mediterranean Sea on different time scales. However, the modern seawater εNd dataset for the Mediterranean Sea, which these reconstructions are based on, is limited and up to now only 160 isotopic measurements are available for the entire basin. The lack of present-day data also limits our understanding of the processes controlling the Nd cycle and Nd isotopic distribution in this semi-enclosed basin. Here we present new εNd data from 24 depth profiles covering all Mediterranean sub-basins, which significantly increases the available dataset in the Mediterranean Sea. The main goal of our study is to better characterize the relationship between the dissolved Nd isotope distributions and major water masses in the Mediterranean Sea and to investigate the impact and relative importance of local non-conservative modifications, which include input of riverine particles and waters, aeolian-derived material and exchange with the sediments at continental margins. This comprehensive εNd dataset reveals a clear εNd – salinity correlation and a zonal and depth gradient with εNd systematically increasing from the western to the eastern Mediterranean basin (average εNd = −8.8 ± 0.8 and −6.7 ± 1 for the entire water column, respectively), reflecting the large-scale basin circulation. We have evaluated the conservative εNd behaviour in the Mediterranean Sea and quantified the non-conservative components of the εNd signatures by applying an Optimum Multiparameter (OMP) analysis and results from the Parametric Optimum Multiparameter (POMP) analysis of Jullion et al. (2017). The results of the present study combined with previously published Nd isotope values indicate that dissolved εNd behaves overall conservatively in the open Mediterranean Sea and show that its water masses are clearly distinguishable by their Nd isotope signature. However, misfits between measured and OMP- and POMP-derived εNd values exist in almost all sub-basins, especially in the eastern Levantine Basin and Alboran Sea at intermediate-deep depths, which can be explained by the influence of detrital lithogenic εNd signatures through interaction with highly radiogenic Nile sourced volcanic fractions and unradiogenic sediments, respectively. The radiogenic signature acquired in the eastern Levantine Basin is carried by the Levantine Intermediate Water and transferred conservatively to the entire Mediterranean at intermediate depths. Our measured εNd values and OMP- and POMP-derived results indicate that non-conservative contributions originating from sediment sources are then propagated by water mass circulation (with distinct preformed εNd) along the Mediterranean Sea through advection and conservative mixing. Mediterranean εNd effectively traces the mixing between the different water masses in this semi-enclosed basin and is a suitable water mass tracer.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-02-07
    Description: Highlights: • Invasive terrestrial invertebrates cost the global economy US$ 712.44 billion up to 2020. • These costs are rising and were mostly due to invasive insects (88%). • The highest costs were reported from North America (73% of the global costs). • These costs mainly resulted from direct resource damages and losses (75%). • Knowledge gaps imply that these costs are severely underestimated. Abstract: Invasive alien species (IAS) are a major driver of global biodiversity loss, hampering conservation efforts and disrupting ecosystem functions and services. While accumulating evidence documented ecological impacts of IAS across major geographic regions, habitat types and taxonomic groups, appraisals for economic costs remained relatively sparse. This has hindered effective cost-benefit analyses that inform expenditure on management interventions to prevent, control, and eradicate IAS. Terrestrial invertebrates are a particularly pervasive and damaging group of invaders, with many species compromising primary economic sectors such as forestry, agriculture and health. The present study provides synthesised quantifications of economic costs caused by invasive terrestrial invertebrates on the global scale and across a range of descriptors, using the InvaCost database. Invasive terrestrial invertebrates cost the global economy US$ 712.44 billion over the investigated period (up to 2020), considering only high reliability source reports. Overall, costs were not equally distributed geographically, with North America (73%) reporting the greatest costs, with far lower costs reported in Europe (7%), Oceania (6%), Africa (5%), Asia (3%), and South America (〈 1%). These costs were mostly due to invasive insects (88%) and mostly resulted from direct resource damages and losses (75%), particularly in agriculture and forestry; relatively little (8%) was invested in management. A minority of monetary costs was directly observed (17%). Economic costs displayed an increasing trend with time, with an average annual cost of US$ 11.40 billion since 1960, but as much as US$ 165.01 billion in 2020, but reporting lags reduced costs in recent years. The massive global economic costs of invasive terrestrial invertebrates require urgent consideration and investment by policymakers and managers, in order to prevent and remediate the economic and ecological impacts of these and other IAS groups.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-02-07
    Description: Highlights • Zircon Hf is predictable based on tectonic context. • Global Hf records are geographically and temporally biased. • All major Hf excursions can be linked to regional orogenic events. • Zircon Hf is modulated by the amalgamation, tenure, and breakup of supercontinents. The assembly and dispersion of continental crust are first-order controls on paleogeography and geochemical cycles. The associated reworking of Earth's crust can be tracked with zircon initial hafnium (εHfT) through space and time. Here we apply a new method of quantitative analysis using εHfT density estimates based on a compilation of 155,329 εHfT values. Investigation of the global database reveals significant geographic and temporal bias in the εHfT record associated with sampling and regional tectonic events. Recent research has attempted to address global εHfT bias using resampling methods to augment gaps of low εHfT data density, which in turn obfuscates tectonic signals and artificially weights outliers. Instead, we evaluate εHfT density patterns for both igneous and detrital zircon on eight continental zones demarcated by Paleozoic sutures: Africa, Antarctica, Asia, Australia, Baltica, North America, Peri-Gondwana, and South America. Pairwise two-dimensional quantitative comparison highlights similarity in timing and εHfT values between zones, all of which can be linked to documented shared regional tectonism. Integration of all pairwise comparisons reveals that peak similarity corresponds to the timing of supercontinent amalgamation, and that the associated εHfT differs depending on the style of supercontinent amalgamation, particularly internal versus external orogenesis. The three most recent supercontinents produced distinctive εHfT signals, shared by the constituent continental zones. The supercontinents Rodinia and Pangea were constructed through collisions of marginal arc terranes, peripheral to ancient crust, and did not produce highly enriched εHfT values. In contrast, Ediacaran to Cambrian formation of the Gondwana supercontinent was largely the product of internal Pan-African orogens that formed directly after Neoproterozoic Rodinia rifting and arc accretion forming the Arabian Shield. The final assembly of Gondwana was dominated by continent-continent collisions of old radiogenic crust without establishment and accretion of extensive intervening depleted arc terranes, resulting in a more enriched distribution of εHfT values compared to prior and subsequent supercontinent formation. The secular εHfT record is the product of spatiotemporally biased sampling and preservation of specific orogenic belts with predictable εHfT data arrays, modulated by the amalgamation, tenure, and breakup of supercontinents through time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-02-07
    Description: Highlights: • A chiral HPLC method was validated to determine usnic acid (UA) enantiomer ratios. • Molecular dynamics simulation revealed chiral chromatographic mechanisms. • MS imaging was used for spatial distribution of UA in lichen cross sections. • Fluorescence microscopy was used for spatial imaging of UA in lichen cross sections. Abstract: Usnic acid is an antibiotic metabolite produced by a wide variety of lichenized fungal lineages. The enantiomers of usnic acid have been shown to display contrasting bioactivities, and hence it is important to determine their spatial distribution, amounts and enantiomeric ratios in lichens to understand their roles in nature and grasp their pharmaceutical potential. The overall aim of the study was to characterise the spatial distribution of the predominant usnic acid enantiomer in lichens by combining spatial imaging and chiral chromatography. Specifically, separation and quantification of usnic acid enantiomers in four common lichens in Iceland was performed using a validated chiral chromatographic method. Molecular dynamics simulation was carried out to rationalize the chiral separation mechanism. Spatial distribution of usnic acid in the lichen thallus cross-sections were analysed using Desorption Electrospray Ionization-Imaging Mass Spectrometry (DESI-IMS) and fluorescence microscopy. DESI-IMS confirmed usnic acid as a cortical compound, and revealed that usnic acid can be more concentrated around the algal vicinity. Fluorescence microscopy complemented DESI-IMS by providing more detailed distribution information. By combining results from spatial imaging and chiral separation, we were able to visualize the distribution of the predominant usnic acid enantiomer in lichen cross-sections: (+)-usnic acid in Cladonia arbuscula and Ramalina siliquosa, and (−)-usnic acid in Alectoria ochroleuca and Flavocetraria nivalis. This study provides an analytical foundation for future environmental and functional studies of usnic acid enantiomers in lichens.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-02-07
    Description: Although subaqueous slopes on active continental margins are subject to a variety of failure styles, their movement mechanisms during earthquakes remain poorly constrained. A primary explanation is that few submarine landslides have been directly sampled for detailed investigation. We have conducted a series of dynamic shear experiments on samples recovered from the base of the Tuaheni Landslide Complex, located off the east coast of the North Island of New Zealand, to explore its behaviour during earthquakes. Our experiments suggest that whilst the basal landslide sediments can be prone to liquefaction in certain conditions, this is not a likely failure mechanism at the stress states operating in the low angled shear zone at the base of this landslide system. Instead, episodic landslide movement can occur through basal sliding when pore water pressures increase sufficiently to lower the shear zone effective stress to the material failure envelope. These low effective stress conditions are most likely to be reached during earthquakes that produce large amplitude, long duration ground shaking. The observed behaviour provides a credible mechanism through which subaqueous landslides moving on low angled shear zones in similar materials may be subject to episodic movement during earthquakes without undergoing catastrophic failure.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-02-07
    Description: Highlights • Investigation of seasonal Fe-S-C cycling in Arctic fjord sediments and water column. • Results show benthic respiration and increased benthic Fe2+ flux over winter. • Findings suggest that fjord sediments respond rapidly to water column changes. • With glacial retreat, fjords may produce less benthic Fe and sequester less carbon. Glaciated fjords are dynamic systems dominated by seasonal events such as spring phytoplankton blooms and pulses of glacial sediment-bearing meltwater delivery. These fjords are also characterized by strong spatial gradients in environmental factors such as sedimentation rate and primary productivity from the glacier-influenced head to the marine-influenced mouth. Such seasonal variations and spatial gradients, combined with the ongoing influence of climate change, generate non-steady state conditions, which have a strong impact on the mineralization of organic carbon in the fjord sediments and the flux of nutrients from the seabed. In order to investigate the role of fjord seasonal events and variability on diagenetic cycling of iron (Fe) and sulfur (S), we sampled Kongsfjorden (Svalbard, 79°N) in the spring, mid-summer, and late summer. We investigated sediment structure and biogeochemistry, conducted laboratory experiments to determine reaction rates, and compared these findings to water column productivity and turbidity. We found that rapid sedimentation near the glacial input buried algal matter-rich layers that fueled sub-surface peaks in mineralization rates over multi-year timescales. Sulfate reduction rates were limited by organic carbon availability and competition with Fe-reducers, while Fe reduction was controlled by the availability of reactive Fe(III) oxides. Pore water Fe2+ concentrations were influenced by sulfur cycling pathways and abiotic reactions such as carbonate precipitation and potentially reverse weathering. Seasonal changes in sedimentation and organic carbon supply caused lower sulfate reduction and sulfide production rates in spring, driving generally higher spring fluxes of Fe2+ from the sediment. The results of this study reveal the potential for an increased benthic source of nutrients such as Fe with continued benthic remineralization over winter in Kongsfjorden. Interannual changes in primary productivity, which are likely to intensify with global warming, and shifts in glacial sediment delivery have immediate impacts on the benthic cycling of Fe and S in this tightly coupled system, with a long term trend likely toward decreased benthic Fe fluxes. With the glacial retreat and changes in productivity predicted due to climate change, glaciated fjords such as Kongsfjorden may become a less efficient carbon sink by burying less terrestrial and marine-sourced organic matter in the deep sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-02-07
    Description: Highlights: • Adriatic coastal area: simultaneous atmospheric and seawater field measurements • Nutrient variability in aerosols, rainwater and atmospheric deposition (AD) fluxes • Local open-fire biomass burning (BB) affected chemistry of atmospheric samples. • AD impacted nutrient levels and N:P ratios in the sea surface microlayer (SML). • The SML plankton development and organic matter enrichments followed BB episodes. Abstract: Atmospheric deposition (AD) of nutrients and its impact on the sea surface requires consideration of interfacial processes within the sea surface microlayer (SML), the ocean-atmosphere boundary layer of major importance for many global biogeochemical and climate-related processes. This study comprised a comprehensive dataset, including dissolved NO3−, NH4+ and PO43− in ambient aerosol particles, wet deposition and sea surface samples collected from February to July 2019 at a central Adriatic coastal site. The aerosol mean concentration of dissolved nitrogen (DIN = NO3− + NH4+) and PO43− were 48.8 ± 82.8 μmol m−3 and 0.8 ± 0.6 μmol m−3, respectively, while their total fluxes (dry + wet) ranged from 24.2 to 212.3 μmol m−2 d−1 (mean 123.2 ± 53.2 μmol m−2 d−1) and from 1.2 to 2.1 μmol m−2 d−1 (mean 1.5 ± 0.3 μmol m−2 d−1), respectively. Intensive local episodes of open biomass burning (BB) significantly increased aerosol DIN concentrations as well as DIN deposition fluxes, particularly altering the molar DIN/PO43− ratio of atmospheric samples. The DIN temporal patterns showed high variability in the SML (range 0.2–24.6 μmol L−1, mean 5.0 ± 7.1 μmol L−1) in contrast to the underlying water samples (range 0.5–4.2 μmol L−1, mean 1.9 ± 1.2 μmol L−1), with significant increases during BB periods. Variability in abundance of heterotrophic bacteria and autotrophs in the SML along with concentrations of bulk dissolved and particulate organic carbon as well as dissolved and particulate lipids and carbohydrates, gel particles and surfactants followed DIN enhancements with a two-week delay. This study showed that AD can affect the short-term scale enrichments of organic matter in the SML, especially when accompanied by BB emissions typical of the overall Mediterranean coastal environment. This could have strong implications for global air-sea exchange processes, including those of climate relevant gases, mediated by the SML.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2024-02-07
    Description: Highlights • CH4 excess is detected in water masses interacting with sea ice. • CH4 excess in surface waters is sea ice-sourced. • The meltwater layer restricts the sea-to-air flux via increased stratification. • CH4 excess is redistributed in the marine environment. • In water masses transported to the shelf, CH4 oxidation acts as biological CH4 sink. Global warming has led to a sharp decrease in Arctic summer sea ice extent and a dramatic ice mass loss of the Greenland Ice Sheet over the past three decades. The Northeast Greenland continental shelf is a site of intense water mass transformation involving both sea ice processes and glacier dynamics. The Arctic shelf waters are considered to be a net source of atmospheric methane (CH4); however, the effect of glacier and sea ice melt on oceanic CH4 concentrations still needs to be investigated. To better understand the effect of meltwater on the CH4 budget of the ocean, our study constrains the CH4 pathways by following changes in water mass properties and infers potential CH4 sources and sinks. Based on measurements of concentration and carbon isotope delta (δ13C) of CH4, the water mass tracer δ18O(H2O) and physical properties of the water masses, we detected CH4 excess in surface waters, which we attribute to brine release during sea ice formation. We show that this CH4 excess is sustained throughout the melt season, due to a freshwater lid formed at the ocean surface. The meltwater hardly alters the CH4 excess, but enhances water stratification, which, in turn, restricts the sea-to-air flux. The CH4 excess is subject to mixing with surrounding shelf waters influenced by basal glacial meltwater discharge. We suggest that the CH4 excess of Northeast Greenland continental shelf waters is redistributed in the marine environment, while CH4 emission to the atmosphere is limited to regions not covered by sea ice.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-02-07
    Description: Highlights: • Flow network indices signal directional changes during ecosystem development. • They showed linear trends in the evolution of a mountain lake. • The lake evolved to increase stability at the expense of efficiency in energy transfer. • Trends of the indices challenge current hypotheses about the directionality of ecosystem development. • Flow network indices from long term field data can help assessing ecosystem health. Empirical evidence of the theoretically expected trends of ecosystem development is scarce so far. In this research, we used long-term empirical data about the plankton community of a small mountain lake (Lake Santo, northern Apennines, Italy) to reconstruct its developmental trajectory during a period comprised between early 1970 s and 2010 s. We exploited these data to build yearly ecological networks and from their configuration of energy flows we computed network information indices. The trends of these indices enlighten about the developmental trajectory of this ecosystem during the period covered by the data set. In particular, they indicate that Lake Santo evolved in the direction of increasing stability at the expense of efficiency in energy transfer. We compared these results with current hypotheses about the directionality of ecosystem development, which are rooted in ecosystem theory, and discussed the possibility that, counter to some theoretical models of ecosystem development, Lake Santo followed an unimpeded direction of development rather than a trajectory typical of an ecosystem under stress. Finally, the long-term trends of flow network indices provided insights about the health status of the ecosystem.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-02-07
    Description: Dysregulated calcium homeostasis is common in chronic kidney disease and causally associated with disorders of bone mineralization. However, radiological measures and biomarkers do not allow accurate evaluation of bone calcium balance. Non-radioactive calcium isotopes, 42Ca and 44Ca, are present in our diet and sequestered into body compartments following principles of kinetic isotope fractionation. Isotopically light 42Ca is preferentially incorporated into bone, while heavier 44Ca is excreted. The ratio (44/42Caserum) increases when bone formation exceeds resorption and vice versa, reflecting bone calcium balance. We measured these calcium isotopes by inductively coupled plasma mass-spectrometry in blood, urine and feces of 42 children with chronic kidney disease and 92 receiving dialysis therapy. We compared the isotope ratios with bone biomarkers and determined total bone mineral content by dual-energy x-ray absorptiometry and peripheral quantitative CT expressed as age-adjusted z-scores. The 44/42Caserum ratio positively correlated with serum calcium, 25-hydroxyvitamin D and alkaline phosphatases and inversely with serum parathyroid hormone and other bone resorption markers. The 44/42Caserum ratio positively correlated with age-adjusted z-scores of tibial trabecular bone mineral density and total bone mineral content measured by peripheral quantitative CT, and hip bone mineral density measured by dual-energy X-ray absorptiometry. Significant and independent predictors of total bone mineral content, measured by, were the 44/42Caserum ratio and parathyroid hormone. The 44/42Caserum ratio, repeated after four weeks, highly correlated with baseline values. When adjusted for calcium-containing medications and kidney impairment, the 44/42Caserum ratio in patients receiving dialysis was 157% lower than that of age-matched children and 29% lower than levels in elderly women with osteoporosis, implying significantly lower bone mineral content. Thus, calcium isotope ratios may provide a novel, sensitive and non-invasive method of assessing bone calcium balance in chronic kidney disease.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-02-07
    Description: Highlights: • Predators regulate mosquitoes differentially in cattle dung-polluted waters. • Anisops sardea had higher interaction strength compared to Lovenula falcifera. • Interaction strength of heterospecifics was highest in highly polluted habitats. • Non-trophic interactions were predominantly antagonistic between conspecific pairs. Abstract: Anthropogenic land use changes influence ecosystem functioning and may alter trophic interactions. Intensification of free–range pastoral farming could promote degradation of aquatic habitats, with nutrient inputs adversely affecting water quality and resident communities. Reductions in natural enemies (and potentially efficacy thereof) and dampening of their interaction strength could promote the proliferation of vector mosquitoes, with consequences for disease transmission and nuisance biting. This study examined implications of a cattle dung eutrophication gradient (T0–T4: 0 g L−1, 1 g L−1, 2 g L−1, 4 g L−1 and 8 g L−1) on aquatic habitats for trophic and non–trophic interactions by two larval mosquito (Culex pipiens) natural enemies (notonectid: Anisops sardea; copepod: Lovenula falcifera) using comparative functional responses. Copepods generally exhibited lower interaction strength compared to notonectids, both as individuals and conspecific pairs. Effects of dung pollutants differed among predator groups, with high concentrations dampening interaction strengths being observed for single/paired copepods and paired notonectids, but not single notonectids or heterospecific pairs. Individual predators exhibited Type II functional responses, with feeding rates largely similar across dung concentrations within species. Non–trophic interactions were predominantly negative (i.e., antagonistic) between conspecific pairs and scaled unimodally with prey density. Dung pollution intensified negative non–trophic interactions in notonectid pairs, whereas heterospecific pairs exhibited positive (i.e., synergistic) non–trophic interactions at the highest dung concentration. Physico–chemical properties indicated that turbidity and pH increased with dung treatment concentrations, whereas conductivity and total dissolved solids both peaked at 1 g L−1 and 2 g L−1. These results improve understanding of mosquito regulation in degraded habitats, indicting effects of agricultural pollutants dampen trophic interaction strengths, depending on the taxon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-02-07
    Description: Highlights: • Long-term (63–68 days) particle exposure had only minor negative effects on Semimytilus algosus. • Negative effects of microplastics were observed only at higher and less environmentally realistic concentrations. • Procedural controls with natural microparticles are essential for the interpretation of microplastic exposure studies. Laboratory exposure studies allow to investigate the impact of microplastics on marine biota, but commonly lack a procedural control, i.e. assessing the effects of natural microparticles. In two experiments with the mussel Semimytilus algosus, we compared the effects of clay vs. polyvinyl chloride (PVC) and celite vs. polymethylmethacrylate (PMMA), respectively, at concentrations of 1.5, 15 and 150 mg l(-1) After more than 60 days, no effects on respiration and clearance rates, mortality and byssus strength were observed. However, in mussels exposed to PVC the Body Condition Index was 34% lower at 150 mg l(-1) than at 1.5 mg l(-1). Furthermore, at 15 mg l(-1), mussels exposed to microplastics produced over 40% less byssus than those exposed to natural micro particles. This suggests that mussels react differently to natural microparticles and to microplastics, but only at high particle loads that exceed current environmental microplastic concentrations by orders of magnitude.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-02-07
    Description: Highlights • Rise in Middle Ordovician global sea level suggests increased seafloor production. • Hydrothermal weathering drives inflection in marine strontium isotopes (87Sr/86Sr). • Oxygen isotope (O) data demonstrate cooling concurrent with 87Sr/86Sr inflection. • Continental silicate weathering can drive cooling. • Cooling from weathering can counteract volcanic carbon dioxide (CO2) degassing. The global climate of the Ordovician Period (486.9 to 443.1 Ma) is characterized by cooling that culminated in the Hirnantian glaciation. Chemical weathering of Ca- and Mg-bearing silicate minerals and the subsequent trapping of carbon in marine carbonates act as a sink for atmospheric CO2 on multi-million-year time scales, with basaltic rocks consuming CO2 at a greater rate than rocks of granitic composition. The oceanic Sr isotope ratio (87Sr/86Sr) can act as a geochemical proxy for the relative proportion of basaltic versus granitic weathering. Oxygen isotopes (O) act as a proxy for paleotemperature and ice volume, providing a useful complement to 87Sr/86Sr in studies of ancient climate. Previous studies have reported stepwise cooling (increasing O) during the Middle to Late Ordovician. Combined with Sr and C cycle models, this has led to the hypothesis that continental silicate weathering of mafic material drove Ordovician cooling (e.g., the Taconic Orogeny). However, Sr and C cycle models have not accounted for an apparent rise in sea level and seafloor production in the Middle Ordovician (Darriwilian), which would increase the hydrothermal Sr flux as well as degassing along continental volcanic arcs. Furthermore, some Ordovician studies contain temporal uncertainty between 87Sr/86Sr and O curves if they are not based on paired analyses, which can obscure the relationship between silicate weathering and cooling. Here, we present new paired 87Sr/86Sr and O data from conodont apatite and integrate this with both a deterministic (forward) and stochastic (reverse) modeling approach to argue that increased hydrothermal weathering played a role in driving marine 87Sr/86Sr, specifically an inflection occurring in the Pygoda serra conodont zone of the mid-Darriwilian Stage (∼ 460.9 Ma ± 1 My). This 87Sr/86Sr inflection is accompanied by an increase in O, consistent with climate cooling. Clarifying the role of seafloor production for marine 87Sr/86Sr and the implications for Ordovician cooling allows for a more nuanced understanding of the factors that drive multi-million-year shifts in climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-02-07
    Description: Highlights • A Methanoperedenceae-dominated methanotrophic consortium was able to respirate to electrodes. • PHB was identified as energy source for the extracellular respiration of the consortium. • Acetate was a likely intermediate from degradation of PHB and EPSs in the consortium. • Methanoperedenceae interacted with Geobacter in the consortia via the diffusion of acetate. Anaerobic oxidation of methane (AOM) is an important microbial process mitigating methane (CH4) emission from natural sediments. Anaerobic methanotrophic archaea (ANME) have been shown to mediate AOM coupled to the reduction of several compounds, either directly (i.e. nitrate, metal oxides) or in consortia with syntrophic bacterial partners (i.e. sulfate). However, the mechanisms underlying extracellular electron transfer (EET) between ANME and their bacterial partners or external electron acceptors are poorly understood. In this study, we investigated electron and carbon flow for an anaerobic methanotrophic consortium dominated by ‘Candidatus Methanoperedens nitroreducens’ in a CH4-fed microbial electrolysis cell (MEC). Acetate was identified as a likely intermediate for the methanotrophic consortium, which stimulated the growth of the known electroactive genus Geobacter. Electrochemical characterization, stoichiometric calculations of the system, along with stable isotope-based assays, revealed that acetate was not produced from CH4 directly. In the absence of CH4, current was still generated and the microbial community remained largely unchanged. A substantial portion of the generated current in the absence of CH4 was linked to the oxidation of the intracellular polyhydroxybutyrate (PHB) and the breakdown of extracellular polymeric substances (EPSs). The ability of ‘Ca. M. nitroreducens’ to use stored PHB as a carbon and energy source, and its ability to donate acetate as a diffusible electron carrier expands the known metabolic diversity of this lineage that likely underpins its success in natural systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-02-07
    Description: Highlights • δ98Mo data of 0.85Ga microbial carbonate, lime mudstone and black shale fill temporal gap in Proterozoic Mo isotope record. • Carbonates and black shales are compared as suitable seawater δ98Mo archives. • Significant δ98Mo variation in carbonate samples likely related to porewater redox conditions. • 0.4‰ discrepancy between heaviest δ98Mo value of carbonate and shale indicates shale is unsuitable as seawater estimate. • Possible archive-dependent bias in δ98Mo interpretation may lead to underestimation of extent of Proterozoic oxic Mo sink. This study addresses marine palaeoredox conditions of the mid-Neoproterozoic by analysing the Mo isotope, trace element, and U-Th-Pb isotope compositions of shallow water microbial carbonate, deep water pelagic carbonate, and shale from the Stone Knife Formation (SKF) in NW Canada. The U-Th-Pb isotope SKF systematics of reef microbialite carbonates, and the moderately expressed negative Ce anomalies are consistent with the presence of dissolved O-2 in the surface waters. Thirteen of 14 analysed samples yield a depositional Pb-206/U-238 regression age of 0.850 & PLUSMN; 0.028 Ga. The Mo isotope data (delta Mo-98) are distinct for the microbial and pelagic carbonates and the deeper water shales, with the isotopically heaviest black shales 0.4 parts per thousand lighter than the heaviest carbonate. The bulk digestion carbonate delta Mo-98 data scatter widely, ranging up to 1.64 parts per thousand, and are not reproducible between repeat digestions. The spread in shallow-water carbonate delta Mo-98 cannot be attributed to a single origin (e.g., admixture of silicate-hosted Mo) and probably reflects a combination of factors, including the complex pathway of Mo into microbial carbonates. Regardless, we propose a minimum delta Mo-98 of 1.64 parts per thousand for the 0.85 Ga ocean, similar to other Neo- and Mesoproterozoic estimates from studies of proxies other than black shale. Our new black shale delta Mo-98 data agree with most previous results from 1.8 to 0.7 Ga shales. If interpreted as reflecting seawater, this would mean a minimum oceanic delta Mo-98 composition of only 1.29 parts per thousand, implying a limited oxic reservoir compared to the modern Mo budget in agreement with previous studies. This study's results suggest that the discrepancy could also be explained by a systematic offset between delta Mo-98 compositions of black shales and the overlying water columns, regardless of depositional environment, akin to the relative depth distribution of delta Mo-98 in modern euxinic water columns such as the Black Sea. If valid, an implied heavier seawater delta Mo-98 throughout the Proterozoic would indicate that the magnitude of the Mo oxic sink remained relatively stable throughout the Proterozoic, shifting the apparent expansion of oxygen towards the younger boundary of the interpreted onset of the NOE (ca. 1.0-0.54 Ga).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2024-02-07
    Description: We present noble gas concentrations and helium isotope ratios measured in the pore fluids of two deep-sea sediment cores taken at the Azores Plateau. Nesingle bondXe concentrations were used to estimate the atmospheric noble gas component within the pore fluids and to then determine the terrigenic helium component. The concentrations of terrigenic 3He indicate the presence of hydrothermal fluids and a mantle He component within the sediment pore space. At both sampling locations, the concentration of terrigenic helium increases with sediment depth. The observed concentration gradients suggest a diffusive transport of He through the sediments. The helium isotope ratio of the source of the terrigenic helium is characterized by a typical mid-ocean ridge basalt (MORB). These results support previous studies suggesting that the pelagic sediments surrounding the Azores host active hydrothermal systems. Our data indicate that the transport of terrigenic helium takes place diffusively over larger areas of the ocean floor, and that the concentration of terrigenic helium in the pelagic sediments increases towards the Mid-Atlantic Ridge and Terceira Rift. The data further suggests that in the Azores region the terrigenic noble gas component is only detectable in the sediment pore fluids and cannot be observed in the overlying bottom water. This highlights the potential of measuring noble gas concentrations and isotope ratios in the sediment column to identify hydrothermal activity in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-02-07
    Description: Highlights: • Invasive Corbicula clam shells significantly influenced predation by fish. • Invader-driven benthic habitat complexity can stabilise fish feeding rates. • Invasive goby, N. melanostomus, better tolerated shell-driven habitat complexity. • Higher shell densities exacerbated the invader impact relative to native C. gobio. • Invader-driven abiotic factors can underpin facilitative interactions. Interactions between multiple invasive alien species (IAS) might increase their ecological impacts, yet relatively few studies have attempted to quantify the effects of facilitative interactions on the success and impact of aquatic IAS. Further, the effect of abiotic factors, such as habitat structure, have lacked consideration in ecological impact prediction for many high-profile IAS, with most data acquired through simplified assessments that do not account for real environmental complexities. In the present study, we assessed a potential facilitative interaction between a predatory invasive fish, the PontoCaspian round goby (Neogobius melanostomus), and an invasive bivalve, the Asian clam (Corbicula fluminea). We compared N. melanostomus functional responses (feeding-rates under different prey densities) to a co-occurring endangered European native analogue fish, the bullhead (Cottus gobio), in the presence of increased levels of habitat complexity driven by the accumulation of dead C. fluminea biomass that persists within the environment (i.e. 0, 10, 20 empty bivalve shells). Habitat complexity significantly influenced predation, with consumption in the absence of shells being greater than where 10 or 20 shells were present. However, at the highest shell density, invasive N. melanostomus maximum feeding-rates and functional response ratios were substantially higher than those of native C. gobio. Further, the Relative Impact Potential metric, by combining per capita effects and population abundances, indicated that higher shell densities exacerbate the relative impact of the invader. It therefore appears that N. melanostomus can better tolerate higher IAS shell abundances when foraging at high prey densities, suggesting the occurrence of an important facilitative interaction. Our data are thus fully congruent with field data that link establishment success of N. melanostomus with the presence of C. fluminea. Overall, we show that invader-driven benthic habitat complexity can alter the feeding-rates and thus impacts of predatory fishes, and highlight the importance of inclusion of abiotic factors in impact prediction assessments for IAS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2024-02-07
    Description: As the archetype of mountain building in subduction zones, the Central Andes has constituted an excellent example for investigating mountain-building processes for decades, but the mechanism by which orogenic growth occurs remains debated. In this study we investigate the Southern Central Andes, between 22° and 35°S, by examining the along-strike variations in Cenozoic uplift history (〈45 Ma) and the amount of tectonic shortening-thickening, allowing us to construct seven continental-scale cross-sections that are constrained by a new thermomechanical model. Our goal is to reconcile the kinematic model explaining crustal shortening-thickening and deformation with the geological constraints of this subduction-related orogen. To achieve this goal a representation of the thermomechanical structure of the orogen is constructed, and the results are applied to constrain the main decollement active for the last 15 Myr. Afterwards, the structural evolution of each transect is kinematically reconstructed through forward modeling, and the proposed deformation evolution is analyzed from a geodynamic perspective through the development of a numerical 2D geodynamic model of upper-plate lithospheric shortening. In this model, low-strength zones at upper-mid crustal levels are proposed to act both as large decollements that are sequentially activated toward the foreland and as regions that concentrate most of the orogenic deformation. As the orogen evolves, crustal thickening and heating lead to the vanishing of the sharp contrast between low- and high-strength layers. Therefore, a new decollement develops towards the foreland, concentrating crustal shortening, uplift and exhumation and, in most cases, focusing shallow crustal seismicity. The north-south decrease in shortening, from 325 km at 22°S to 46 km at 35°S, and the cumulated orogenic crustal thicknesses and width are both explained by transitional stages of crustal thickening: from pre-wedge, to wedge, to paired-wedge and, finally, to plateau stages.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-02-07
    Description: The impact of submarine groundwater discharge (SGD) on coastal sea biogeochemistry has been demonstrated in many recent studies. However, only a few studies have integrated biogeochemical and microbiological analyses, especially at sites with pockmarks of different degrees of groundwater influence. This study investigated biogeochemical processes and microbial community structure in sediment cores from three pockmarks in Hanko, Finland, in the northern Baltic Sea. Pockmark data were supplemented by groundwater and seawater measurements. Two active pockmarks showed SGD rates of 0.02 cm d−1 and 0.31 cm d−1, respectively, based on porewater Cl− profiles, while a third pockmark had no SGD influence. Reactive transport modelling (RTM) established that the porewater systems of these active pockmarks are dominated by advection, resulting in the focusing of biogeochemical reactions and the microbial community into a thin zone at the sediment surface. The advection further reduces the accumulation of organic matter in the surface sediments, resulting in the absence of a sulfate-methane transition zone (SMTZ) at these pockmarks. Furthermore, the RTM estimated low rates of consumption of SO42−, and low rates of production of CH4, NH4+, DIC at the active pockmarks. Archaeal communities in the active pockmarks were dominated by ammonia-oxidizing archaea of predominantly groundwater origin. In contrast, at the inactive pockmark, the lack of SGD has permitted rapid deposition of organic-rich mud. The porewater system in the inactive pockmark is dominated by diffusion, leading to orders of magnitude higher metabolite concentrations at depth compared to the active pockmarks. The biogeochemical environment in the inactive pockmark resembles typical organic-rich mud seafloor in the area, with sulphate reduction and methanogenesis dominating organic matter remineralization. Accordingly, methanogens dominate the archaeal community, whereas sulfate reducers dominate the bacterial community. RTM results suggest that sulfate-mediated anaerobic oxidation of methane (S-AOM) also occurs at this site. Although depth-integrated fluxes of SO42−, CH4, NH4, DIC at the inactive pockmark are orders of magnitude higher compared to the active pockmarks, processes at the inactive pockmark represent internal recycling in the coastal sea. Fluxes observed at the active pockmarks, although comparatively small in magnitude, are partly influenced by external inputs to the sea through SGD. Hence, effluxes across the sediment–water interface at these sites partly represent direct external fluxes to the marine environment, in addition to diagenetic recycling at the benthic interface. The study highlights that SGD can result in significant spatial heterogeneity of biogeochemical processes and microbial community structure in the coastal zone, and that the overall effects of SGD and associated solute fluxes at an SGD site are a function of the number of pockmarks, the rate of SGD, and the ratio of active to inactive pockmarks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-02-07
    Description: Global increases in mean temperatures and changes in precipitation patterns due to climate change, coupled with anthropogenic pathways, have intensified biological invasions of pest insects. Continuous exposure to bouts of acute and chronic heat and fasting stresses (during e.g., droughts) might improve performance under recurring stresses, therefore enhancing/reducing fitness within- or across- life stages (i.e., ‘carry-over’ effects). Here, we examined developmental acclimation effects in the invasive fall army worm Spodoptera frugiperda — a highly invasive economic insect pest of cereal crops, particularly maize — using standardized heat tolerance metrics. Specifically, we assessed the effects of acute (3h) and chronic (3 days) heat treatments (at 32°C, 35°C, 38°C), as well as fasting (48h), on 3rd instar larvae, and tested fitness traits (critical thermal maxima [CTmax] and heat knockdown time [HKDT]) at a later life stage (4th/5th larval instar). Acclimation to heat stress and fasting had significant fitness costs (lower CTmax) across majority of treatments. However, both heat and fasting acclimation improved HKDT (except for 35 and 38°C [acute acclimation] and 35°C [chronic acclimation]). Our results suggest context-specific developmental acclimation costs and benefits in S. frugiperda. In particular, heat and fasting acclimation potentially have fitness costs and benefits for subsequent developmental stages facing high temperature stress. These results are important for estimating the effects of prior stressful events on future survival of invasive insect species and may be significant in predicting pest population dynamics under changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-02-07
    Description: Ultratrace concentrations of Ti were determined by catalytic differential pulse adsorptive stripping voltammetry (cDPAdSV) in samples collected in the Pará and Amazon estuaries and plume into the Atlantic Ocean. Different end members including rivers Tocantins, Amazon and Pará and Atlantic seawater were sampled as well as the salinity gradients in the mixing zone between the river outflows and waters from the North Brazil Current during several transects. The Mangrove Belt southeast of the Pará river mouth with its extensive groundwater discharge was also sampled. Most samples were taking during cruise M147 (GEOTRACES process study GApr11) during the high discharge period in April and May 2018. In addition to high resolution determination of dissolved Ti distributions in this region, size fractionation was investigated by using several filtration steps with pore sizes (0.2 μm, and 0.015 μm) and ultrafiltration (10 kDa and 1 kDa) at four selected stations. Dissolved Ti varied significantly between different river end members and showed a non-conservative behavior along the mixing gradients with strong removal at low salinities and some enrichments at higher salinity ranges. The results suggest that there was both adsorption and desorption of Ti from suspended particles from both riverine and marine sources or flocculation and aggregation of colloids and particulate matter from end member rivers as well as resuspension at particular salinity ranges. The 0.015 μm filtered and 10 kDa and 1 kDa ultrafiltered aliquots showed variable distributions of Ti in the different size fractions, depending on the sampling zone. This very complex behavior of Ti along the mixing gradient and the dynamic system of the Amazon estuary, which comprises a fifth of the global freshwater flux into the ocean, is the key to controlling the fluxes of Ti into the Atlantic.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-02-07
    Description: Formation of new oceans by continental break-up is understood as a continuous evolution from rifting to ocean spreading. The Red Sea is one of few locations on Earth where a new plate boundary presently forms. Its evolution provides key information on how the plate tectonics operates and how the plate boundaries form and evolve in time. While the new plate boundary has already been formed in the southern Red Sea where ocean spreading is active, the north-central segment still experiences continental rifting. The region also has west-east asymmetry: in the north-central Red Sea the rift-related magmatism is not located beneath the rift axis, as conventional models predict, but instead is offset by ca 300 km into Arabia. We propose a new geodynamic model which explains the enigmatic asymmetry of the Red Sea region and is fully consistent with various types of geological and geophysical observations. We demonstrate that the north-central rift is a transient feature that will not develop into coincident ocean spreading. Instead, the new plate boundary forms across Arabia. Our numerical experiments, supported by geological, seismic and gravity observations, predict that in 1–5 Myr the north-central extensional axis will jump ~300 km eastward into Arabia. The Ad Damm strike-slip fault, normal to the central Red Sea rift axis, will evolve into a transform fault between the on-going ocean spreading in the southern Red Sea and the future spreading in north-central Arabia. We demonstrate that crustal-scale weakness zones control lithosphere extension and lead to long-distance jumps of extensional axes in continental lithosphere not affected by hotspots. Therefore, our model also provides theoretical basis for understanding dynamics and mechanisms of the transition from rifting to continental break-up at passive continental margins not affected by hotspots.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-02-07
    Description: Highlights • Mercury fulminate dissolves rapidly when it comes in contact with seawater • Dissolution rates are highly temperature dependent • Dissolution rates are salinity dependent only at lower temperatures • Historical munitions with mercury fulminate could be a mercury pollution source • Warming environments will aid mercury fulminate release from relic munitions Abstract Mercury fulminate (HgFu) was used as an initial detonator for World War I and II munitions. Its presence in previously discarded and dumped munitions could potentially supply mercury pollution into coastal ecosystems where bygone weaponries reside. There is evidence that historical munitions have already contributed mercury pollution in coastal environments, and millions remain embedded in sediments and subjected to further weakening via corrosion under environmental conditions. Experiments were undertaken assessing HgFu dissolution under varying temperature and salinity conditions to constrain controls on mercury release into marine environments. Our results show that HgFu discharge is strongly temperature dependent, with dissolution rate constants increasing from ∼0.4 mg cm−2 d−1 at 5 °C to ∼2.7 mg cm−2 d−1 at 30 °C. No significant differences were observed between freshwater and seawaters up to 36 psu, except at 5 °C. These experiments provide a basis for modeling HgFu release from underwater munitions and its dynamics in coastal environments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2024-02-07
    Description: The bottom-simulating reflector (BSR) recognized in seismic sections represents the division between free gas and gas hydrate. This reflector has been identified in the permafrost and several petroliferous marine basins worldwide, including the Colombia offshore basins. Using high quality three-dimensional (3D) seismic data from the Sinú offshore basin (southern Caribbean), the BSR was exceptionally well-imaged within two geomorphological settings, including the Southern Caribbean Deformed Belt and the Colombia Basin, indicating possible gas hydrate presence in the study area. The BSR occurrence was mapped and categorized following existing nomenclature developed off Taiwan into three (3) categories: Basin-type, Ridge-type and Submarine Canyon-type. The BSR occurrence was dominated by the Ridge type category that was mainly found in the accretionary prism within modern and ancient anticlinal structures, followed by the Basin-type BSR found mainly at the Colombia Basin margin and a few intraslope sub-basins. The Submarine Canyon-type was found on small segments of the main drainage routes that cut through anticlinal structures. BSR distribution and characterization was also correlated with a seabed geomorphologic map, including thrusts with bathymetric expression, revealing that the BSR typology map closely resembled the N–S trend of subsurface structures in the south, as well as their NE-SW trend in the central portion of the accretionary prism. We suggest the dimensions (width and depth) of the seafloor features does influence BSR occurrence, tending to parallel major anticlines, and wider/deeper portions of intraslope sub-basins and submarine canyons, while omitting small-scale features.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2024-02-07
    Description: This study represents the first assessment of beach litter on an island of the west African archipelagic state of Cape Verde. On five beaches of São Vicente, litter was collected along transects and classified according to the OSPAR protocol, with the Matrix Scoring Technique used to allocate it to four sources. Beach litter on São Vicente is highly variable in both amount and composition, while land- and sea-based sources contribute to litter loads to different extents depending on the use and geographic orientation of the beach. Four of the five surveyed beaches exhibited litter loads that were similar to pollution levels previously described for other oceanic islands, while a north-eastern-facing beach featured exceptionally high loads. This was presumably because it receives litter from distant sources due to its exposure to a major ocean surface current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-02-07
    Description: The Gleibat Lafhouda dolomite carbonatites of the Moroccan Sahara occur as three separate cone-shaped plugs intruding an autochthonous succession of Archean supracrustal basement rocks. Geochemically, the Gleibat Lafhouda dolomite carbonatites are characterized by a compositional range of 11.3–27.1 wt% MgO, 3.1–29.7 wt% CaO, 3.5–38.0 wt% FeOtot and 〈 0.1–7.5 wt% SiO2, and enrichment in large-ion lithophile elements (LILE), particularly Sr (2173–11,310 ppm), Ba (174–4537 ppm), U (0.1–296 ppm) and light REEs (LREEs) (131–1295 ppm), but not in the heavy REE (HREEs) and high-field strength elements (HFSE) such as Ti, Zr, and Hf. Nb and Ta show, however, much higher concentrations ranging from 0.5 ppm to 1.0 wt%, and 〈 0.0 to 199 ppm, respectively, which set them apart from naturally occurring carbonatites and the experimentally derived carbonated melts. The combined stable (δ13CV-PDB = −2.5 to −6.6‰, δ18OV-SMOW = 6.0 to 20.7‰) and radiogenic 87Sr/86Srin (0.7032–0.7046), 143Nd/144Ndin (0.5105–0.5106) or εNd(t) (+ 3 to +6), and 206Pb/204Pb (19.06–49.05), 207Pb/204Pb (15.90–18.87), and 208Pb/204Pb (37.87–38.50) isotope compositions are consistent with low degree partial melting, at convecting upper mantle conditions, of a predominantly depleted mantle source in a rift-related environment. Based on these geochemical features, it is suggested that the Gleibat Lafhouda dolomite carbonatites represent the earliest manifestation of rifting processes related to the fragmentation of the Columbia supercontinent at 1.85 Ga. Accordingly, we propose that these carbonatitic rocks represent the initial Mg-rich melt in the mantle plume head that derived from decompressional adiabatic melting of a depleted mantle source.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2024-02-07
    Description: Highlights • This study examined MP concentrations and PAE distribution in a semi-enclosed Sharm Obhur leading to the Red Sea. • DEP, DBP and DEHP are the predominant PAEs. • A positive relationship was found between PAE concentration and PDs abundance. • The ecological risk of PAEs and PDs was found from low to moderate. The abundance of plastic debris (PDs) and its correlation with phthalic acid esters (PAEs), a class of pollutants associated with plastics, is not well understood, although PDs have been reported in relation to the release and distribution of aquatic pollutants such as PAEs. Few studies have linked the distribution of these pollutants in seawater. The current study examined the abundance and relationship of PDs and PAEs in seawater from Sharm Obhur and the Red Sea. Estimates were also made of their ecological impacts. Sharm Obhur is a semi-enclosed bay on the eastern shore of the Red Sea, near Jeddah, Saudi Arabia, and is heavily impacted by human activities. Contaminants from Sharm Obhur may be transported into the deep waters of the Red Sea by the subsurface outflow. The PAEs concentrations in the study area ranged from 0.8 to 1224 ng/L. Among the six PAEs studied, diethyl phthalate (DEP) (22–1124 ng/L), di-n-butyl phthalate (DBP) (9–346 ng/L) and di (2-ethylhexyl) phthalate (DEHP) (62–640 ng/L) were the predominant additives detected across all the sampling sits. Whereas the other PAEs, dimethyl phthalate (DMP) (5–76 ng/L), benzyl butyl phthalate (BBP) (4–25 ng/L) and di-n-octyl phthalate DnOp (0.5–80 ng/L) were generally lower in most samples. The sum of the six analyzed PAEs (∑6 PAEs) was lower at Sharm Obhur (587 ± 82 ng/L) and in the Red Sea shelf (677 ± 182 ng/L) compared to the Red Sea shelf break (1266 ± 354 ng/L). This suggests that degradation and adsorption of PAEs were higher in Sharm Obhur and on the shelf than on the shelf break. In contrast, there was no difference in the abundance of PDs between Sharm Obhur (0.04 ± 0.02 PDs/m3), Red Sea shelf (0.05 ± 0.02 PDs/m3) and in the Red Sea shelf break (0.03 ± 0.1 PDs/m3). Polyethylene (32%) and polypropylene (8%) were dominant, mostly smaller than 5 mm2 (78%), with the majority consisting of white (52%) and black (24%) fragments (39%), fibers (35%) and films (24%). A positive correlation between PAE concentration and abundance of PDs, suggests either a common source or a causal link through leaching. The ecological risk of ∑4PAEs (DMP, DEP, DBP and DEHP) ranged from (0.20–0.78), indicating a low to moderate risk for the Red Sea. The pollution index of PDs ranged from (0.14–0.36), showing that the Sharm Obhur and both sites of Red Sea suffered relatively low pollution.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2024-02-07
    Description: Santorini Volcano, located in the central sector of the South Aegean volcanic arc, is one of the most active and potentially dangerous volcanoes in Europe. It has hosted Plinian eruptions over the last 350 ka of which at least four eruptions were accompanied by caldera collapses. Even though Santorini Volcano is considered a major threat, the main focus of research, thus far, has been on the comparatively young and subaerial deposits, whereas older stages of volcanism have been poorly studied. Our study focusses on samples from the submarine inner caldera walls and gives new insights into the early evolutionary stages of Santorini Volcano, contributing to a better understanding of its eruptive history and thus potential risks. The submarine lava successions were sampled along the inner caldera wall by a remotely operated vehicle (ROV) during R/V POSEIDON cruise 511 in 2017. The recovered lavas comprise two magmatic series, a low-K basaltic series overlain by a medium- to high-K series, which includes basaltic andesites, andesites and occasional dacites to trachytes. Major and trace element compositions and mineral zonation patterns suggest that fractional crystallisation and periodic magma replenishment were the dominant processes controlling magma evolution of both magmatic series. In addition, repeated magma mixing events played an important role, as indicated by zonation patterns in plagioclase and clinopyroxene ante- and phenocrysts. The thickness of the submarine lava successions (≥100 m) and the occurrence of similarly zoned plagioclase throughout, indicate long-lived magma plumbing systems characterised by repeated processes. Furthermore, the incompatible element and radiogenic isotope ratios indicate a heterogeneous mantle source for Santorini magmas, which reflects the relative contribution of subduction (sedimentary) input and mantle wedge influx. A lava sample from the northern submarine caldera wall probably represents a deep level of the original Peristeria volcano. 40Ar/39Ar dating of andesite lavas from the southern submarine caldera produced ages of ~255 ka, whereas one basalt lava produced an age of 309 ± 30 ka. Interestingly, the new ages of both groups fall within an age gap in the volcanic history of Santorini Volcano. Even though it was not possible to unequivocally correlate the sampled submarine lava series to known subaerial units, the major and trace element compositions, and Sr-Nd-Pb isotopic compositions of our intermediate lavas show a strong similarity to subaerial lavas of Peristeria volcano, the second oldest major stage of Santorini volcanism. Nevertheless, it seems more likely that we have sampled so far unknown stages of volcanism at Santorini Volcano.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-02-07
    Description: Highlights • Funda Volcanic System produced at least 3 eruptions over a period of 〈200 years. • Volcanism was longer and more recurrent than previously reported. • Eruptive styles range from Strombolian (mild and violent) to phreatomagmatic. • Magma/groundwater interactions may have led to rapid changes in eruptive style. • Future hazard assessment need to effectively consider magma/groundwater interactions. Monogenetic volcanoes occur in many different geotectonic settings and are usually small and short-lived. They can experience a variety of eruptive styles, even during the same eruption. In monogenetic volcanic fields, volcanism usually migrates to different locations over time, making volcanic hazard assessment very challenging. The eruptive history of a volcanic region, including the size, style, and location of previous eruptions, provides valuable information to help predict the behaviour of future volcanic events and their associated hazards. Here, we reconstruct for the first time the eruptive history of the Funda Volcanic System (FVS), one of the most recent (∼3 ka) monogenetic eruptive centres of Flores Island (Azores), based on a detailed tephrostratigraphic work coupled with geochemical analysis of glass shards and radiocarbon dating. We identified at least three volcanic events at FVS spaced by time intervals of ∼100 yr. The first event (3430 cal yr BP) was a small Strombolian eruption, the second event (3330 cal yr BP) started as a violent Strombolian eruption and may have ended as phreatomagmatic, and the third event (3250 cal yr BP) was exclusively phreatomagmatic. Our results demonstrate that volcanism at the FVS was more prolonged and recurrent than previously reported. Moreover, we show that the FVS experienced different eruptive styles in a short timeframe, ranging from small basaltic eruptions to violent explosive phreatomagmatic events. Such diversity of eruptive styles results in different volcanic products, which have different hazard implications. Our new results contribute to the knowledge of the recent volcanic activity of Flores Island, and we anticipate them to be of paramount importance for future volcanic hazard assessment studies.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-02-07
    Description: Marine sedimentary ikaite is the parent mineral to glendonite, stellate pseudomorphs found throughout the geological record which are most usually composed of calcite. Ikaite is known to be metastable at earth surface temperatures and pressures, readily breaking down to more stable carbonate polymorphs when exposed to warm (ambient) conditions. Yet the process of transformation of ikaite to calcite is not well understood, and there is an ongoing debate as to the palaeoclimatic significance of glendonites in the geological record. This study uses a combination of techniques to examine the breakdown of ikaite to calcite, outside of the ikaite growth medium, and to assess the palaeoclimatic and palaeoenvironmental significance of stable and clumped isotope compositions of ikaite-derived calcite. Powder X-ray diffraction shows that ikaite undergoes a quasi- solid-state transformation to calcite during heating of samples in air, yet when ikaite transforms under a high temperature differential, minor dissolution-recrystallisation may also occur with the ikaite structural waters. No significant isotopic equilibration to transformation temperature is observed in the resulting calcite. Therefore, in cases of transformation of ikaite in air, clumped and stable isotope thermometry can be used to reconstruct ikaite growth temperatures. In the case of ancient glendonites, where transformation of the ikaite occurred in contact with the interstitial waters of the host sediments over unknown timescales, it is uncertain whether the reconstructed clumped isotope temperatures reflect ikaite crystallisation or its transformation temperatures. Yet clumped and stable isotope thermometry may still be used conservatively to estimate an upper limit for bottom water temperatures. Furthermore, stable isotope along with element/Ca ratios shed light on the chemical environment of ikaite growth. Our data indicate that a range of (bio)geochemical processes may act to promote ikaite formation at different marine sedimentary sites, including bacterial sulphate reduction and anaerobic oxidation of methane. The colours of the ikaites, from light brown to dark brown, indicate a high organic matter content, favouring high rates of bacterial sulphate reduction as the main driver of ikaite precipitation. Highest Mg/Ca ratios are found in the most unstable ikaites, indicating that Mg acts to destabilise ikaite structure.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-02-07
    Description: Highlights • We present LGC record of the Pb isotope composition Labrador Sea seawater. • These data can be used to track Laurentide Ice Sheet extent over Hudson Bay. • LIS retreat during the PGM was relatively fast compared to the LGM • The LIS first advanced significantly over Hudson Bay during MIS 4. • Our record does not support significant LIS retreat during MIS 3. Understanding the history of continental ice-sheet growth on North America, and in particular that of the Laurentide Ice Sheet (LIS), is important for palaeoclimate and sea-level reconstructions. Information on ice-sheet extent pre-dating the Last Glacial Maximum (LGM) is heavily reliant, though, on the outputs of numerical models underpinned by scant geological data. Important aspects of LIS history that remain unresolved include the timing of its collapse during Termination 2, the first time that it expanded significantly during the Last Glacial Cycle, and whether its volume was significantly reduced during marine isotope stage (MIS) 3. To address these issues and more, we present authigenic iron-manganese (Fe–Mn) oxyhydroxide-derived high-resolution records of Pb isotope data and associated rare earth element profiles for samples spanning the past ∼130 kyr from northwest North Atlantic Labrador Sea, IODP Site U1302/3. We use these new data to track chemical weathering intensity and solute flux to the Labrador Sea associated with LIS extent on the adjacent highly radiogenic (high Pb isotope composition) North American Superior Province (SP) craton since the Penultimate Glacial Maximum (PGM). Our new records show that relatively high (radiogenic) values characterise warm marine isotope stages (MIS) 5, 3 and 1 and the lowest (most unradiogenic) values occurred during cold stages MIS 6, 4 and 2. The radiogenic Pb isotope excursion associated with Termination 2 is short-lived relative to the one documented for Termination 1, suggesting that LIS retreat during the PGM was relatively fast compared to the LGM and that its collapse during the last interglacial occurred ∼125 ka. Highly radiogenic inputs to the Labrador Sea during MIS 5d-a, ∼116–71 ka, most likely reflect a spin-up in Labrador Current vigour, incipient glaciation and renewed glacial erosion of high grounds of the eastern SP craton by localised wet-based ice-caps. A large decrease in Pb isotope values towards unradiogenic LGM-like compositions between ∼75–65 ka across the MIS 5/4 transition likely reflects a slow-down in Labrador Current vigour, an increase in subaerial deposition of aeolian dust and a significant advance of the LIS across Hudson Bay caused a strong reduction or even abandonment of Pb sourcing from the SP. The relatively radiogenic Pb isotope composition of bottom-waters bathing our study site during MIS 3, 57–29 ka, is unlikely to support a recently proposed major reduction in LIS extent for this time. Instead, we argue these values are better explained by southern Greenland Ice Sheet retreat, increased chemical weathering of the Ketelidian Mobile Belt and subsequent Pb runoff from Greenland.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-02-07
    Description: Highlights: • Ecological impact changes with environmental context for both consumer and resource. • We adapt previous impact metrics to include resource abundance dynamics. • Metric utility is demonstrated with invasive and native species. • Results predict and quantify environmental impact in a more complex manner. • The metric can be used broadly for rapid impact assessments. Abstract: Predicting future changes in interspecific interactions continues to be a challenge for environmental managers. This uncertainty is exacerbated by increasing biological invasions and the likelihood that the strength of trophic interactions among native species will change. Abiotic variables influence predator resource utilisation and abundance as well as resource population dynamics. Currently no practical metric or impact prediction methodology can adequately account for all of these factors. Functional Response (FR) methods successfully incorporate resource utilisation rates with regards to resource density to quantify consumer-resource interactions under varying abiotic contexts. This approach has been extended to create the Relative Impact Potential (RIP) metric to compare invader vs native impact. However, this does not incorporate resource abundance dynamics, which clearly can also change with abiotic context. We propose a Resource Reproduction Qualifier (RRQ) be incorporated into the RIP metric, whereby RRQ is the reciprocal of the fraction or proportion to which reproduction (e.g. of prey species) changes under an environmental context. This modifies the RIP score to give a more informative RIPq value, which may be contextually increased or decreased. We empirically demonstrate the utility and benefits of including RRQ into impact potential predictions with an invasive species (the lionfish Pterois volitans) and two European native species (shanny fish Lipophyris pholis and lesser spotted dogfish Scyliorhinus canicula) under different abiotic contexts. Despite high FR and abundance, lionfish impacts were reduced by increasing prey recruitment at higher temperatures, however, remained high impact overall. Shanny predatory impact increased with increasing temperature and was exacerbated by decreasing prey fecundity. Two population increase scenarios (50% and 80%) were assessed for lesser spotted dogfish under predicted temperature increases, preying upon E. marinus. Both scenarios indicated heightened predatory impact with increasing predator FR and decreasing prey fecundity. Our new metric demonstrates that accounting for resource reproductive responses to abiotic drivers, in tandem with the consumer per capita and abundance responses, better estimate the magnitudes of predicted inter-species interactions and ecological impacts. This can be used in stock assessments and predictions, as well as invasive species risk assessments in a comprehensive yet user-friendly manner..
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-02-07
    Description: Highlights: • Microplastics were found both at the surface and at depth within the Baltic Sea. • Microplastic ingestion occurred within both G. morhua and S. sprattus. • Major inflows of water into the Baltic Sea altered G. morhua feeding patterns. • Increase in pelagic feeding in G. morhua increased ingestion of microplastics. This study documents how the abundance of microplastics (〈5 mm) in the Atlantic cod, Gadus morhua, relates to the changes of the fish diet during years with contrasting levels of anoxia for example following years of low or high major Baltic inflows (MBI). A MultiNet Maxi trawl and CTD were deployed annually to collect microplastic samples alongside oxygen, temperature, and salinity conditions. Microplastics were homogenously distributed both within the water column and across years. Gadus morhua diet shifted from dominantly benthic invertebrates (61 %) under oxygenated conditions to dominantly Sprattus sprattus (81 %) under anoxic conditions. The proportion of G. morhua with microplastics in their digestive tract increased when they fed on pelagic fish (38 %) versus on benthic invertebrates (15 %). The proportion of S. sprattus which ingested microplastics (~18 %) did not vary. As anoxia at depth is expected to increase due to climate change, microplastic ingestion by G. morhua will potentially increase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2024-02-07
    Description: Although seagrass restorations have been conducted in many regions globally, restorations in high-energy wave environments are less explored. With accelerating losses of seagrass meadows globally, we also lose valuable ecosystem-based adaptations and ecosystem services, where the Western Indian Ocean is not an exception. The coast of Tanzania has only a few island shelters, creating an open exposed coast with a long wind fetch, generating strong wave exposure on the coastline. Still, seagrass meadows are present but have similar to global trends declined due to e.g. warmer ocean temperatures, coastal developments and destructive fishing methods. In view of the above challenges, there is a strong need for restoring seagrass meadows along the coast of Tanzania and the Western Indian Ocean (WIO) at large. However, restoration studies in the WIO are scarce and generally lacking in Tanzania. Studies elsewhere have shown that the success of a seagrass restoration varies significantly among trials and is to a large extent subject to the choice of a planting technique. Thus, in order to initiate the best practice for seagrass restoration in the Western Indian Ocean Region, for high-energy wave intertidal environments, we contrasted two restoration techniques, the plug and the sprig methods. We further explored different anchoring techniques and how various physical environmental factors influenced the growth and survival rates of seagrass shoots and rhizomes. We found that Syringodium isoetifolium transplants survived poorly in the sprig method (median = 0%), while the plug method demonstrated a much higher survival (median = 33.3%) for the 7 cm plug, and 66.7% for the 10 cm plug. The study also revealed a strong effect of water depth, where survival and growth parameters decreased with increased water depth. Finally, the study found a number of significant correlations, both positive and negative, between growth parameters and the measured environmental factors – and revealed that most of the measured environmental parameters were influenced by the local weather conditions and the monsoon seasonal cycling. The study illustrates that the restoration technique is strongly related to restoration success, providing clear guidance for future seagrass restorations in high-energy coasts in the Western Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2024-02-20
    Description: Highlights • We identify the largest active fault systems of the Alboran Basin. • Characterization of faults is key for accurate tsunamigenic potential estimations. • Alboran largest fault systems may generate Mw 〉 7 earthquakes. • These earthquakes have the potential to generate significant tsunami waves approaching the coast. Abstract The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2024-02-14
    Description: Highlights: • The global economic costs of invasive aquatic crustaceans totalled US$ 271 million. • Invasive crayfish and crabs had the highest costs, US$ 120.5 and US$ 150.2 million, respectively. • The signal crayfish was the costliest species (US$ 103.9 million), as seen in Europe. • Among crabs, the European green crab and the Chinese mitten crab had the highest costs. • Taxonomic, geographical, and temporal gaps mean that these costs are severely underestimated. Abstract: Despite voluminous literature identifying the impacts of invasive species, summaries of monetary costs for some taxonomic groups remain limited. Invasive alien crustaceans often have profound impacts on recipient ecosystems, but there may be great unknowns related to their economic costs. Using the InvaCost database, we quantify and analyse reported costs associated with invasive crustaceans globally across taxonomic, spatial, and temporal descriptors. Specifically, we quantify the costs of prominent aquatic crustaceans — crayfish, crabs, amphipods, and lobsters. Between 2000 and 2020, crayfish caused US$ 120.5 million in reported costs; the vast majority (99%) being attributed to representatives of Astacidae and Cambaridae. Crayfish-related costs were unevenly distributed across countries, with a strong bias towards European economies (US$ 116.4 million; mainly due to the signal crayfish in Sweden), followed by costs reported from North America and Asia. The costs were also largely predicted or extrapolated, and thus not based on empirical observations. Despite these limitations, the costs of invasive crayfish have increased considerably over the past two decades, averaging US$ 5.7 million per year. Invasive crabs have caused costs of US$ 150.2 million since 1960 and the ratios were again uneven (57% in North America and 42% in Europe). Damage-related costs dominated for both crayfish (80%) and crabs (99%), with management costs lacking or even more under-reported. Reported costs for invasive amphipods (US$ 178.8 thousand) and lobsters (US$ 44.6 thousand) were considerably lower, suggesting a lack of effort in reporting costs for these groups or effects that are largely non-monetised. Despite the well-known damage caused by invasive crustaceans, we identify data limitations that prevent a full accounting of the economic costs of these invasive groups, while highlighting the increasing costs at several scales based on the available literature. Further cost reports are needed to better assess the true magnitude of monetary costs caused by invasive aquatic crustaceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2024-02-14
    Description: Highlights • Collision-related, Oligocene magmatic rocks are abundant in the SE segment of the Urumieh-Dokhtar magmatic belt of Iran. • Zircon U-Pb data show ages of 34-25 Ma for plutonic rocks and 34-27 Ma for volcanic rocks from SE UDMB. • Isotope modelling suggests mixing between the mantle and Cadomian crust for the formation of these rocks. Abstract Despite diverse geochronological-geochemical studies on Cenozoic igneous rocks from the SE segment of the Urumieh-Dokhtar Magmatic Belt (UDMB) of Iran, the nature of the Oligocene magmatic rocks from the farthermost end of the SE segment- where it is linked to the Makran magmatic belt- has been ignored due to the difficulty of access. In this study, we focus on syn-collisional mafic to felsic igneous rocks of calc-alkaline and high-K calc-alkaline affinities from the SE segment of the Urumieh-Dokhtar Magmatic Belt (UDMB) near Nagisun, south of Bam. The Nagisun rocks have low Sr/Y and La(n)/Yb(n), similar to igneous rocks from typical arcs. Zircon Usingle bondPb ages show comparable ages for plutonic (~ 34–25 Ma) and volcanic (~34–27 Ma) rocks. The εHf(t) values for zircons from plutonic rocks range from −0.3 to +12.8, whereas the εHf(t) values for the volcanic rocks vary from −2.6 to +13. Modelling of trace elements compositions using Nagisan basaltic samples indicate that an 87:2:11 mixture of the depleted MORB mantle, subducting (trench)-sediments and altered oceanic crust with 5% aggregated fractional melting closely matches the trace-element abundances of the Nagisun basaltic rocks. Indeed, the modelling of Sr and Nd isotopic data emphasizes that the Nagisun magmatic rocks could be products of bulk mixing between a depleted MORB mantle and/or a mixed, fertilized mantle with the Cadomian lower and upper continental crust. Furthermore, our compiled data display that the magmatism in the SE segment of the UDMB changed through time from normal calc-alkaline magmatism to adakitic magmatism at ~20 Ma, after the collision with Arabia began ca 27 Ma.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2024-02-15
    Description: Highlights • A new numerical model for permafrost in alpine regions. • Importance of lateral fluxes in mountain permafrost modeling. • Influence of unsaturated conditions on freezing processes. • Development of mountain permafrost during warming scenario. Abstract Alpine permafrost environments are highly vulnerable and sensitive to changes in regional and global climate trends. Thawing and degradation of permafrost has numerous adverse environmental, economic, and societal impacts. Mathematical modeling and numerical simulations provide powerful tools for predicting the degree of degradation and evolution of subsurface permafrost as a result of global warming. A particularly significant characteristic of alpine environments is the high variability in their surface geometry which drives large lateral thermal and fluid fluxes along topographic gradients. The combination of these topography-driven fluxes and unsaturated ground makes alpine systems markedly different from Arctic permafrost environments and general geotechnical ground freezing applications, and therefore, alpine permafrost demands its own specialized modeling approaches. In this work, we present a multi-physics permafrost model tailored to subsurface processes of alpine regions. In particular, we resolve the ice–water phase transitions, unsaturated conditions, and capillary actions, and account for the impact of the evolving pore space through freezing and thawing processes. Moreover, the approach is multi-dimensional, and therefore, inherently resolves the topography-driven horizontal fluxes. Through numerical case studies based on the elevation profiles of the Zugspitze (DE) and the Matterhorn (CH), we show the strong influence of lateral fluxes in 2D on active layer dynamics and the distribution of permafrost.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...