ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (778)
  • Latest Papers from Table of Contents or Articles in Press  (778)
  • Protein Structure, Tertiary  (778)
  • 2005-2009  (396)
  • 2000-2004  (382)
  • 1980-1984
  • 1955-1959
Collection
  • Articles  (778)
Source
  • Latest Papers from Table of Contents or Articles in Press  (778)
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-23
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907122/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3907122/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Falke, Joseph J -- R01 GM040731/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 22;295(5559):1480-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biophysics Program and the Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA. falke@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11859184" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Binding Sites ; Catalysis ; Cyclophilin A/*chemistry/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Nitrogen/chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, John H -- Elledge, Stephen J -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1822-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; BRCA2 Protein/*chemistry/*metabolism ; Binding Sites ; Breast Neoplasms/genetics ; Crystallography, X-Ray ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Predisposition to Disease ; Humans ; Mice ; Ovarian Neoplasms/genetics ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rad51 Recombinase ; Rats ; Recombination, Genetic ; Replication Protein A
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-06-22
    Description: Positive-strand RNA viruses such as poliovirus replicate their genomes on intracellular membranes of their eukaryotic hosts. Electron microscopy has revealed that purified poliovirus RNA-dependent RNA polymerase forms planar and tubular oligomeric arrays. The structural integrity of these arrays correlates with cooperative RNA binding and RNA elongation and is sensitive to mutations that disrupt intermolecular contacts predicted by the polymerase structure. Membranous vesicles isolated from poliovirus-infected cells contain structures consistent with the presence of two-dimensional polymerase arrays on their surfaces during infection. Therefore, host cytoplasmic membranes may function as physical foundations for two-dimensional polymerase arrays, conferring the advantages of surface catalysis to viral RNA replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyle, John M -- Bullitt, Esther -- Bienz, Kurt -- Kirkegaard, Karla -- AI-42119/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2218-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077417" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; HeLa Cells ; Humans ; Hydrogen-Ion Concentration ; Inclusion Bodies, Viral/metabolism/ultrastructure ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Poliovirus/*enzymology/physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA Replicase/*chemistry/isolation & purification/*metabolism/ultrastructure ; RNA, Viral/biosynthesis/*metabolism ; Viral Core Proteins/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-02-09
    Description: Double-stranded RNA-mediated gene interference (RNAi) in Caenorhabditis elegans systemically inhibits gene expression throughout the organism. To investigate how gene-specific silencing information is transmitted between cells, we constructed a strain that permits visualization of systemic RNAi. We used this strain to identify systemic RNA interference-deficient (sid) loci required to spread gene-silencing information between tissues but not to initiate or maintain an RNAi response. One of these loci, sid-1, encodes a conserved protein with predicted transmembrane domains. SID-1 is expressed in cells sensitive to RNAi, is localized to the cell periphery, and is required cell-autonomously for systemic RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winston, William M -- Molodowitch, Christina -- Hunter, Craig P -- New York, N.Y. -- Science. 2002 Mar 29;295(5564):2456-9. Epub 2002 Feb 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834782" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/embryology/*genetics/metabolism ; Caenorhabditis elegans Proteins/chemistry/*genetics/*physiology ; Calmodulin-Binding Proteins/genetics ; Cytoplasm/metabolism ; Embryo, Nonmammalian/physiology ; *Gene Silencing ; Genes, Helminth ; Germ Cells/metabolism ; Green Fluorescent Proteins ; Intestines/metabolism ; Luminescent Proteins/genetics ; Membrane Proteins/chemistry/*genetics/*physiology ; Molecular Sequence Data ; Mosaicism ; Muscle Proteins/genetics ; Muscles/metabolism ; Mutation ; Protein Structure, Tertiary ; RNA, Double-Stranded/*genetics/metabolism ; RNA, Helminth/*genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-07-12
    Description: Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dumas, John J -- Kumar, Ravindra -- Seehra, Jasbir -- Somers, William S -- Mosyak, Lidia -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):222-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Screening Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855811" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Platelets/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Platelet Adhesiveness ; *Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, Lars -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):671-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Organism Biology, Lund University, SE-22362 Lund, Sweden. lars.hederstedt@cob.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560540" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/*metabolism ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/*metabolism ; Succinic Acid/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-07
    Description: Rice is the world's most important food crop and a model for cereal research. At 430 megabases in size, its genome is the most compact of the cereals. We report the sequence of chromosome 10, the smallest of the 12 rice chromosomes (22.4 megabases), which contains 3471 genes. Chromosome 10 contains considerable heterochromatin with an enrichment of repetitive elements on 10S and an enrichment of expressed genes on 10L. Multiple insertions from organellar genomes were detected. Collinearity was apparent between rice chromosome 10 and sorghum and maize. Comparison between the draft and finished sequence demonstrates the importance of finished sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Chromosome 10 Sequencing Consortium -- R01-LM06845/LM/NLM NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1566-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791992" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Plant/*genetics ; Computational Biology ; DNA Transposable Elements ; DNA, Chloroplast/genetics ; DNA, Mitochondrial/genetics ; DNA, Plant/genetics ; Edible Grain/genetics ; *Evolution, Molecular ; Expressed Sequence Tags ; Genes, Plant ; *Genome, Plant ; Heterochromatin ; Oryza/*genetics/physiology ; Plant Diseases/genetics ; Plant Proteins/chemistry/*genetics/physiology ; Protein Structure, Tertiary ; Proteome ; Repetitive Sequences, Nucleic Acid ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-06-14
    Description: In eukaryotes, the combinatorial association of sequence-specific DNA binding proteins is essential for transcription. We have used protein arrays to test 492 pairings of a nearly complete set of coiled-coil strands from human basic-region leucine zipper (bZIP) transcription factors. We find considerable partnering selectivity despite the bZIPs' homologous sequences. The interaction data are of high quality, as assessed by their reproducibility, reciprocity, and agreement with previous observations. Biophysical studies in solution support the relative binding strengths observed with the arrays. New associations provide insights into the circadian clock and the unfolded protein response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, John R S -- Keating, Amy E -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2097-101. Epub 2003 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Basic-Leucine Zipper Transcription Factors ; Chromatography, High Pressure Liquid ; Circadian Rhythm ; Circular Dichroism ; Cyclic AMP Response Element-Binding Protein/chemistry/metabolism ; DNA-Binding Proteins/chemistry/isolation & purification/*metabolism ; Dimerization ; G-Box Binding Factors ; Humans ; *Leucine Zippers ; Peptides/chemistry/isolation & purification/metabolism ; *Protein Array Analysis ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Signal Transduction ; Temperature ; Thermodynamics ; Transcription Factors/*chemistry/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-05-10
    Description: Multidrug efflux pumps cause serious problems in cancer chemotherapy and treatment of bacterial infections. Yet high-resolution structures of ligand transporter complexes have previously been unavailable. We obtained x-ray crystallographic structures of the trimeric AcrB pump from Escherichia coli with four structurally diverse ligands. The structures show that three molecules of ligands bind simultaneously to the extremely large central cavity of 5000 cubic angstroms, primarily by hydrophobic, aromatic stacking and van der Waals interactions. Each ligand uses a slightly different subset of AcrB residues for binding. The bound ligand molecules often interact with each other, stabilizing the binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Edward W -- McDermott, Gerry -- Zgurskaya, Helen I -- Nikaido, Hiroshi -- Koshland, Daniel E Jr -- AI 09644/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):976-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738864" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Infective Agents/chemistry/metabolism ; Anti-Infective Agents, Local/chemistry/metabolism ; Binding Sites ; Carrier Proteins/*chemistry/isolation & purification/*metabolism ; Cell Membrane/chemistry ; Chemistry, Physical ; Ciprofloxacin/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dequalinium/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/isolation & purification/*metabolism ; Ethidium/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Proteins/*chemistry/isolation & purification/*metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-07-19
    Description: We collected and completely sequenced 28,469 full-length complementary DNA clones from Oryza sativa L. ssp. japonica cv. Nipponbare. Through homology searches of publicly available sequence data, we assigned tentative protein functions to 21,596 clones (75.86%). Mapping of the cDNA clones to genomic DNA revealed that there are 19,000 to 20,500 transcription units in the rice genome. Protein informatics analysis against the InterPro database revealed the existence of proteins presented in rice but not in Arabidopsis. Sixty-four percent of our cDNAs are homologous to Arabidopsis proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Full-Length cDNA Consortium -- National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team -- Kikuchi, Shoshi -- Satoh, Kouji -- Nagata, Toshifumi -- Kawagashira, Nobuyuki -- Doi, Koji -- Kishimoto, Naoki -- Yazaki, Junshi -- Ishikawa, Masahiro -- Yamada, Hitomi -- Ooka, Hisako -- Hotta, Isamu -- Kojima, Keiichi -- Namiki, Takahiro -- Ohneda, Eisuke -- Yahagi, Wataru -- Suzuki, Kohji -- Li, Chao Jie -- Ohtsuki, Kenji -- Shishiki, Toru -- Foundation of Advancement of International Science Genome Sequencing & Analysis Group -- Otomo, Yasuhiro -- Murakami, Kazuo -- Iida, Yoshiharu -- Sugano, Sumio -- Fujimura, Tatsuto -- Suzuki, Yutaka -- Tsunoda, Yuki -- Kurosaki, Takashi -- Kodama, Takeko -- Masuda, Hiromi -- Kobayashi, Michie -- Xie, Quihong -- Lu, Min -- Narikawa, Ryuya -- Sugiyama, Akio -- Mizuno, Kouichi -- Yokomizo, Satoko -- Niikura, Junko -- Ikeda, Rieko -- Ishibiki, Junya -- Kawamata, Midori -- Yoshimura, Akemi -- Miura, Junichirou -- Kusumegi, Takahiro -- Oka, Mitsuru -- Ryu, Risa -- Ueda, Mariko -- Matsubara, Kenichi -- RIKEN -- Kawai, Jun -- Carninci, Piero -- Adachi, Jun -- Aizawa, Katsunori -- Arakawa, Takahiro -- Fukuda, Shiro -- Hara, Ayako -- Hashizume, Wataru -- Hayatsu, Norihito -- Imotani, Koichi -- Ishii, Yoshiyuki -- Itoh, Masayoshi -- Kagawa, Ikuko -- Kondo, Shinji -- Konno, Hideaki -- Miyazaki, Ai -- Osato, Naoki -- Ota, Yoshimi -- Saito, Rintaro -- Sasaki, Daisuke -- Sato, Kenjiro -- Shibata, Kazuhiro -- Shinagawa, Akira -- Shiraki, Toshiyuki -- Yoshino, Masayasu -- Hayashizaki, Yoshihide -- Yasunishi, Ayako -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):376-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan. skikuchi@nias.affrc.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869764" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; DNA, Complementary ; Databases, Nucleic Acid ; Databases, Protein ; Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Open Reading Frames ; Oryza/*genetics ; Plant Proteins/chemistry/genetics/physiology ; Protein Structure, Tertiary ; RNA, Antisense/genetics ; *Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; Transcription Factors/chemistry/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2003-09-23
    Description: Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Minsoo -- Carman, Christopher V -- Springer, Timothy A -- CA31798/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1720-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500982" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD11a/*chemistry ; Antigens, CD18/*chemistry ; Bacterial Proteins ; Cell Adhesion ; Cell Membrane/*metabolism ; Chemokine CXCL12 ; Chemokines, CXC/metabolism ; Cytoplasm/*chemistry ; Dimerization ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Humans ; Intercellular Adhesion Molecule-1/metabolism ; Ligands ; Luminescent Proteins ; Lymphocyte Function-Associated Antigen-1/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CXCR4/metabolism ; Recombinant Fusion Proteins/chemistry ; *Signal Transduction ; Talin/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2000-08-01
    Description: The path of the nucleic acids through a transcription elongation complex was tracked by mapping cross-links between bacterial RNA polymerase (RNAP) and transcript RNA or template DNA onto the x-ray crystal structure. In the resulting model, the downstream duplex DNA is nestled in a trough formed by the beta' subunit and enclosed on top by the beta subunit. In the RNAP channel, the RNA/DNA hybrid extends from the enzyme active site, along a region of the beta subunit harboring rifampicin resistance mutations, to the beta' subunit "rudder." The single-stranded RNA is then extruded through another channel formed by the beta-subunit flap domain. The model provides insight into the functional properties of the transcription complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korzheva, N -- Mustaev, A -- Kozlov, M -- Malhotra, A -- Nikiforov, V -- Goldfarb, A -- Darst, S A -- GM30717/GM/NIGMS NIH HHS/ -- GM49242/GM/NIGMS NIH HHS/ -- GM53759/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 28;289(5479):619-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Public Health Research Institute, 455 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10915625" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cross-Linking Reagents ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; DNA Primers ; DNA-Directed RNA Polymerases/*chemistry/genetics/metabolism ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry/metabolism ; Oligoribonucleotides/chemistry/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Messenger/chemistry/genetics/*metabolism ; Templates, Genetic ; Thermus/enzymology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2000-09-01
    Description: Activation of the transcription factor nuclear factor (NF)-kappaB by proinflammatory stimuli leads to increased expression of genes involved in inflammation. Activation of NF-kappaB requires the activity of an inhibitor of kappaB (IkappaB)-kinase (IKK) complex containing two kinases (IKKalpha and IKKbeta) and the regulatory protein NEMO (NF-kappaB essential modifier). An amino-terminal alpha-helical region of NEMO associated with a carboxyl-terminal segment of IKKalpha and IKKbeta that we term the NEMO-binding domain (NBD). A cell-permeable NBD peptide blocked association of NEMO with the IKK complex and inhibited cytokine-induced NF-kappaB activation and NF-kappaB-dependent gene expression. The peptide also ameliorated inflammatory responses in two experimental mouse models of acute inflammation. The NBD provides a target for the development of drugs that would block proinflammatory activation of the IKK complex without inhibiting basal NF-kappaB activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉May, M J -- D'Acquisto, F -- Madge, L A -- Glockner, J -- Pober, J S -- Ghosh, S -- AI 33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 1;289(5484):1550-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10968790" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemistry/pharmacology ; COS Cells ; Cells, Cultured ; E-Selectin/biosynthesis/genetics ; Endothelium, Vascular/metabolism ; Gene Expression Regulation ; HeLa Cells ; Humans ; I-kappa B Kinase ; Inflammation/drug therapy ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; NF-kappa B/*metabolism ; Peptides/chemistry/*pharmacology ; Point Mutation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2000-01-15
    Description: Murine T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. The crystal structure of T22b at 3.1 angstroms reveals similarities to MHC class I molecules, but one side of the normal peptide-binding groove is severely truncated, which allows direct access to the beta-sheet floor. Potential gammadelta TCR-binding sites can be inferred from functional mapping of T10 and T22 point mutants and allelic variants. Thus, T22 represents an unusual variant of the MHC-like fold and indicates that gammadelta and alphabeta TCRs interact differently with their respective MHC ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wingren, C -- Crowley, M P -- Degano, M -- Chien, Y -- Wilson, I A -- AI33431/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):310-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634787" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Binding Sites ; Crystallography, X-Ray ; Glycosylation ; Histocompatibility Antigens Class I/*chemistry ; Hydrogen Bonding ; Ligands ; Mice ; Models, Molecular ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/immunology/metabolism ; Receptors, Antigen, T-Cell, gamma-delta/immunology/*metabolism ; Surface Properties ; beta 2-Microglobulin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2000-12-16
    Description: The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riechmann, J L -- Heard, J -- Martin, G -- Reuber, L -- Jiang, C -- Keddie, J -- Adam, L -- Pineda, O -- Ratcliffe, O J -- Samaha, R R -- Creelman, R -- Pilgrim, M -- Broun, P -- Zhang, J Z -- Ghandehari, D -- Sherman, B K -- Yu, G -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2105-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA. jriechmann@mendelbio.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118137" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Arabidopsis/chemistry/*genetics ; Caenorhabditis elegans/chemistry/*genetics ; DNA/metabolism ; Drosophila melanogaster/chemistry/*genetics ; Eukaryotic Cells ; Evolution, Molecular ; Gene Duplication ; *Genome ; Genome, Plant ; Protein Binding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/chemistry/*genetics ; Transcription Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2000-07-06
    Description: A conserved domain in the extracellular region of the 60- and 80-kilodalton tumor necrosis factor receptors (TNFRs) was identified that mediates specific ligand-independent assembly of receptor trimers. This pre-ligand-binding assembly domain (PLAD) is physically distinct from the domain that forms the major contacts with ligand, but is necessary and sufficient for the assembly of TNFR complexes that bind TNF-alpha and mediate signaling. Other members of the TNFR superfamily, including TRAIL receptor 1 and CD40, show similar homotypic association. Thus, TNFRs and related receptors appear to function as preformed complexes rather than as individual receptor subunits that oligomerize after ligand binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, F K -- Chun, H J -- Zheng, L -- Siegel, R M -- Bui, K L -- Lenardo, M J -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2351-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875917" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antigens, CD/chemistry/metabolism ; Apoptosis ; Binding Sites ; Cross-Linking Reagents ; Dimerization ; Energy Transfer ; Fluorescence ; Humans ; Ligands ; Macromolecular Substances ; Mutation ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Tumor Necrosis Factor/*chemistry/*metabolism ; Receptors, Tumor Necrosis Factor, Type I ; Receptors, Tumor Necrosis Factor, Type II ; Recombinant Fusion Proteins/chemistry/metabolism ; *Signal Transduction ; Succinimides ; Tumor Cells, Cultured ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2000-08-19
    Description: In thioredoxin reductase (TrxR) from Escherichia coli, cycles of reduction and reoxidation of the flavin adenine dinucleotide (FAD) cofactor depend on rate-limiting rearrangements of the FAD and NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) domains. We describe the structure of the flavin-reducing conformation of E. coli TrxR at a resolution of 3.0 angstroms. The orientation of the two domains permits reduction of FAD by NADPH and oxidation of the enzyme dithiol by the protein substrate, thioredoxin. The alternate conformation, described by Kuriyan and co-workers, permits internal transfer of reducing equivalents from reduced FAD to the active-site disulfide. Comparison of these structures demonstrates that switching between the two conformations involves a "ball-and-socket" motion in which the pyridine nucleotide-binding domain rotates by 67 degrees.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lennon, B W -- Williams, C H Jr -- Ludwig, M L -- GM16429/GM/NIGMS NIH HHS/ -- GM18723/GM/NIGMS NIH HHS/ -- GM21444/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1190-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Research Division, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947986" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Crystallography, X-Ray ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Hydrogen Bonding ; Models, Molecular ; NADP/metabolism ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Tertiary ; Thioredoxin-Disulfide Reductase/*chemistry/*metabolism ; Thioredoxins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: Human herpesviruses are large and structurally complex viruses that cause a variety of diseases. The three-dimensional structure of the herpesvirus capsid has been determined at 8.5 angstrom resolution by electron cryomicroscopy. More than 30 putative alpha helices were identified in the four proteins that make up the 0.2 billion-dalton shell. Some of these helices are located at domains that undergo conformational changes during capsid assembly and DNA packaging. The unique spatial arrangement of the heterotrimer at the local threefold positions accounts for the asymmetric interactions with adjacent capsid components and the unusual co-dependent folding of its subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Z H -- Dougherty, M -- Jakana, J -- He, J -- Rixon, F J -- Chiu, W -- New York, N.Y. -- Science. 2000 May 5;288(5467):877-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of Texas-Houston Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797014" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/*chemistry/*ultrastructure ; Capsid Proteins ; Cryoelectron Microscopy ; Herpesvirus 1, Human/chemistry/*ultrastructure ; Image Processing, Computer-Assisted ; Models, Molecular ; Molecular Weight ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: RNA editing is a fascinating phenomenon that is found in both animal and plant cells. By converting an adenosine base to an inosine (which behaves like guanosine) in RNA that has already been transcribed, certain RNA sequences (and hence the amino acids they encode) are altered. In a Perspective, Keegan, Gallo and O'Connell explore new results showing that activity of the editing enzyme ADAR1 is crucial for normal development of red blood cells in mouse embryos.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keegan, L P -- Gallo, A -- O'Connell, M A -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1707-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Western General Hospital, Edinburgh EH4 2XU, UK. liam.keegan@hgu.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11186391" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Adenosine Deaminase/chemistry/*genetics/*metabolism ; Animals ; Base Pairing ; Central Nervous System/metabolism ; Chimera ; Drosophila/genetics/metabolism ; Embryo, Mammalian/cytology ; Embryo, Nonmammalian ; *Erythropoiesis ; Gene Dosage ; Hematopoietic Stem Cells/cytology/enzymology ; Inosine/metabolism ; Liver/metabolism ; Mice ; Mutation ; Phenotype ; Protein Structure, Tertiary ; *RNA Editing ; RNA Precursors/metabolism ; RNA, Double-Stranded/metabolism ; RNA-Binding Proteins ; Receptors, AMPA/genetics ; Stem Cells/cytology/enzymology ; Teratoma/genetics/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-31
    Description: All cellular organisms use specialized RNA polymerases called "primases" to synthesize RNA primers for the initiation of DNA replication. The high-resolution crystal structure of a primase, comprising the catalytic core of the Escherichia coli DnaG protein, was determined. The core structure contains an active-site architecture that is unrelated to other DNA or RNA polymerase palm folds, but is instead related to the "toprim" fold. On the basis of the structure, it is likely that DnaG binds nucleic acid in a groove clustered with invariant residues and that DnaG is positioned within the replisome to accept single-stranded DNA directly from the replicative helicase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, J L -- Roche, D D -- Lynch, A S -- Berger, J M -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2482-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, 229 Stanley Hall, no. 3206, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10741967" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; DNA Helicases/chemistry/metabolism ; DNA Primase/*chemistry/*metabolism ; DNA Replication ; DNA, Bacterial/metabolism ; DNA, Single-Stranded/*metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Escherichia coli/*enzymology/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/biosynthesis ; Recombinant Proteins/chemistry/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2000-08-26
    Description: Polyadenylate [poly(A)] polymerase (PAP) catalyzes the addition of a polyadenosine tail to almost all eukaryotic messenger RNAs (mRNAs). The crystal structure of the PAP from Saccharomyces cerevisiae (Pap1) has been solved to 2.6 angstroms, both alone and in complex with 3'-deoxyadenosine triphosphate (3'-dATP). Like other nucleic acid polymerases, Pap1 is composed of three domains that encircle the active site. The arrangement of these domains, however, is quite different from that seen in polymerases that use a template to select and position their incoming nucleotides. The first two domains are functionally analogous to polymerase palm and fingers domains. The third domain is attached to the fingers domain and is known to interact with the single-stranded RNA primer. In the nucleotide complex, two molecules of 3'-dATP are bound to Pap1. One occupies the position of the incoming base, prior to its addition to the mRNA chain. The other is believed to occupy the position of the 3' end of the mRNA primer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bard, J -- Zhelkovsky, A M -- Helmling, S -- Earnest, T N -- Moore, C L -- Bohm, A -- R01 GM57218-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Aug 25;289(5483):1346-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10958780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyadenine Nucleotides/*chemistry/*metabolism ; Hydrogen Bonding ; Manganese/metabolism ; Models, Molecular ; Mutation ; Polynucleotide Adenylyltransferase/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/metabolism ; RNA, Messenger/metabolism ; Ribosomal Protein S6 ; Ribosomal Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-09-23
    Description: Nascent polypeptides emerging from the ribosome and not yet folded may at least transiently present degradation signals similar to those recognized by the ubiquitin system in misfolded proteins. The ubiquitin sandwich technique was used to detect and measure cotranslational protein degradation in living cells. More than 50 percent of nascent protein molecules bearing an amino-terminal degradation signal can be degraded cotranslationally, never reaching their mature size before their destruction by processive proteolysis. Thus, the folding of nascent proteins, including abnormal ones, may be in kinetic competition with pathways that target these proteins for degradation cotranslationally.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, G C -- Varshavsky, A -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2117-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000112" target="_blank"〉PubMed〈/a〉
    Keywords: Cysteine Endopeptidases/metabolism ; DNA-Directed RNA Polymerases/metabolism ; Endopeptidases/metabolism ; Fungal Proteins/metabolism ; *Ligases ; Multienzyme Complexes/metabolism ; Peptides/*metabolism ; Proteasome Endopeptidase Complex ; *Protein Biosynthesis ; Protein Folding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/metabolism ; *Saccharomyces cerevisiae Proteins ; Tetrahydrofolate Dehydrogenase/metabolism ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; beta-Galactosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2000-11-10
    Description: Reciprocal gene activation and restriction during cell type differentiation from a common lineage is a hallmark of mammalian organogenesis. A key question, then, is whether a critical transcriptional activator of cell type-specific gene targets can also restrict expression of the same genes in other cell types. Here, we show that whereas the pituitary-specific POU domain factor Pit-1 activates growth hormone gene expression in one cell type, the somatotrope, it restricts its expression from a second cell type, the lactotrope. This distinction depends on a two-base pair spacing in accommodation of the bipartite POU domains on a conserved growth hormone promoter site. The allosteric effect on Pit-1, in combination with other DNA binding factors, results in the recruitment of a corepressor complex, including nuclear receptor corepressor N-CoR, which, unexpectedly, is required for active long-term repression of the growth hormone gene in lactotropes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scully, K M -- Jacobson, E M -- Jepsen, K -- Lunyak, V -- Viadiu, H -- Carriere, C -- Rose, D W -- Hooshmand, F -- Aggarwal, A K -- Rosenfeld, M G -- R01 DK18477/DK/NIDDK NIH HHS/ -- R01 DK54802/DK/NIDDK NIH HHS/ -- R01 GM49327/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Nov 10;290(5494):1127-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Endocrinology and Metabolism, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11073444" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Base Sequence ; Binding Sites ; Cell Line ; Conserved Sequence ; Crystallization ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Female ; *Gene Expression Regulation ; Genes, Reporter ; Growth Hormone/*genetics ; Male ; Mice ; Mice, Transgenic ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/genetics/metabolism ; Nuclear Receptor Co-Repressor 1 ; Pituitary Gland/cytology/*metabolism ; Prolactin/*genetics ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Rats ; Repressor Proteins/chemistry/genetics/*metabolism ; Transcription Factor Pit-1 ; Transcription Factors/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2000-02-26
    Description: The signal recognition particle (SRP), a protein-RNA complex conserved in all three kingdoms of life, recognizes and transports specific proteins to cellular membranes for insertion or secretion. We describe here the 1.8 angstrom crystal structure of the universal core of the SRP, revealing protein recognition of a distorted RNA minor groove. Nucleotide analog interference mapping demonstrates the biological importance of observed interactions, and genetic results show that this core is functional in vivo. The structure explains why the conserved residues in the protein and RNA are required for SRP assembly and defines a signal sequence recognition surface composed of both protein and RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Batey, R T -- Rambo, R P -- Lucast, L -- Rha, B -- Doudna, J A -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1232-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678824" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Base Pairing ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Escherichia coli/chemistry/genetics/metabolism ; *Escherichia coli Proteins ; Guanosine Triphosphate/metabolism ; Hydrogen Bonding ; Magnesium/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Potassium/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA, Bacterial/*chemistry/genetics/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Transformation, Bacterial ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gillooly, D J -- Stenmark, H -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):993-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11232585" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Binding Sites ; Carrier Proteins/chemistry/*metabolism ; Cell Membrane/metabolism ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; *Endocytosis ; Models, Biological ; Nerve Tissue Proteins/chemistry/*metabolism ; Neuropeptides/chemistry/*metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphoproteins/chemistry/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2001-04-21
    Description: Structures of a 10-subunit yeast RNA polymerase II have been derived from two crystal forms at 2.8 and 3.1 angstrom resolution. Comparison of the structures reveals a division of the polymerase into four mobile modules, including a clamp, shown previously to swing over the active center. In the 2.8 angstrom structure, the clamp is in an open state, allowing entry of straight promoter DNA for the initiation of transcription. Three loops extending from the clamp may play roles in RNA unwinding and DNA rewinding during transcription. A 2.8 angstrom difference Fourier map reveals two metal ions at the active site, one persistently bound and the other possibly exchangeable during RNA synthesis. The results also provide evidence for RNA exit in the vicinity of the carboxyl-terminal repeat domain, coupling synthesis to RNA processing by enzymes bound to this domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cramer, P -- Bushnell, D A -- Kornberg, R D -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1863-76. Epub 2001 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313498" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Conserved Sequence ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Fourier Analysis ; Hydrogen Bonding ; Magnesium/metabolism ; Metals/metabolism ; Models, Molecular ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-11
    Description: Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a "histone code" that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenuwein, T -- Allis, C D -- GM53512/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 10;293(5532):1074-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP) at the Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria. jenuwein@nt.imp.univie.ac.at〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11498575" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Chromatin/chemistry/metabolism/ultrastructure ; *Gene Expression Regulation ; *Gene Silencing ; Genomic Imprinting ; Histones/chemistry/genetics/*metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2001-11-10
    Description: We describe a molecular switch based on the controlled methylation of nucleosome and the transcriptional cofactors, the CREB-binding proteins (CBP)/p300. The CBP/p300 methylation site is localized to an arginine residue that is essential for stabilizing the structure of the KIX domain, which mediates CREB recruitment. Methylation of KIX by coactivator-associated arginine methyltransferase 1 (CARM1) blocks CREB activation by disabling the interaction between KIX and the kinase inducible domain (KID) of CREB. Thus, CARM1 functions as a corepressor in cyclic adenosine monophosphate signaling pathway via its methyltransferase activity while acting as a coactivator for nuclear hormones. These results provide strong in vivo and in vitro evidence that histone methylation plays a key role in hormone-induced gene activation and define cofactor methylation as a new regulatory mechanism in hormone signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, W -- Chen, H -- Du, K -- Asahara, H -- Tini, M -- Emerson, B M -- Montminy, M -- Evans, R M -- 9R01DK57978/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2507-11. Epub 2001 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Department of Biological Chemistry, University of California Davis Cancer Center/Basic Science, Sacramento, CA 95817, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701890" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; Amino Acid Sequence ; Animals ; Apoptosis ; Cell Line ; Cyclic AMP Response Element-Binding Protein/metabolism ; Dimerization ; E1A-Associated p300 Protein ; *Gene Expression Regulation ; Genes, Reporter ; Histone Acetyltransferases ; Histones/metabolism ; Methylation ; Molecular Sequence Data ; Nerve Growth Factor/pharmacology ; Nuclear Proteins/chemistry/*metabolism ; PC12 Cells ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/*metabolism ; Rats ; Receptors, Retinoic Acid/*metabolism ; Recombinant Fusion Proteins/metabolism ; Retinoid X Receptors ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Somatostatin/genetics ; Trans-Activators/chemistry/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic ; Transcriptional Activation ; Transfection ; Tretinoin/metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2001-03-17
    Description: Chloroplasts relocate their positions in a cell in response to the intensity of incident light, moving to the side wall of the cell to avoid strong light, but gathering at the front face under weak light to maximize light interception. Here, Arabidopsis thaliana mutants defective in the avoidance response were isolated, and the mutated gene was identified as NPL1 (NPH-like 1), a homolog of NPH1 (nonphototropic hypocotyl 1), a blue light receptor used in phototropism. Hence, NPL1 is likely a blue light receptor regulating the avoidance response under strong light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kagawa, T -- Sakai, T -- Suetsugu, N -- Oikawa, K -- Ishiguro, S -- Kato, T -- Tabata, S -- Okada, K -- Wada, M -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉"Unit Process and Combined Circuit," PRESTO, Japan Science and Technology Corporation, 1-8, Honcho 4-chome, Kawaguchi-city, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251116" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*physiology/ultrastructure ; *Arabidopsis Proteins ; Cell Membrane/metabolism ; Chloroplasts/*physiology ; Genes, Plant ; *Light ; Movement ; Mutation ; Phosphoproteins/chemistry/physiology ; Phototropism ; Plant Leaves/metabolism ; Plant Proteins/chemistry/*genetics/*physiology ; Plant Structures/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2001-06-26
    Description: Clinical studies with the Abl tyrosine kinase inhibitor STI-571 in chronic myeloid leukemia demonstrate that many patients with advanced stage disease respond initially but then relapse. Through biochemical and molecular analysis of clinical material, we find that drug resistance is associated with the reactivation of BCR-ABL signal transduction in all cases examined. In six of nine patients, resistance was associated with a single amino acid substitution in a threonine residue of the Abl kinase domain known to form a critical hydrogen bond with the drug. This substitution of threonine with isoleucine was sufficient to confer STI-571 resistance in a reconstitution experiment. In three patients, resistance was associated with progressive BCR-ABL gene amplification. These studies provide evidence that genetically complex cancers retain dependence on an initial oncogenic event and suggest a strategy for identifying inhibitors of STI-571 resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gorre, M E -- Mohammed, M -- Ellwood, K -- Hsu, N -- Paquette, R -- Rao, P N -- Sawyers, C L -- GM07185/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):876-80. Epub 2001 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423618" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/metabolism/pharmacology/therapeutic use ; Base Sequence ; Benzamides ; Blast Crisis/genetics ; Cell Line ; Drug Resistance, Neoplasm/genetics ; Fusion Proteins, bcr-abl/*metabolism ; Gene Amplification ; *Genes, abl ; Humans ; Hydrogen Bonding ; Imatinib Mesylate ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/*drug therapy/*genetics ; Molecular Sequence Data ; Philadelphia Chromosome ; Phosphorylation ; Piperazines/metabolism/*pharmacology/therapeutic use ; Point Mutation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-abl/antagonists & ; inhibitors/chemistry/*genetics/metabolism ; Proto-Oncogene Proteins c-crk ; Pyrimidines/metabolism/*pharmacology/therapeutic use ; Recurrence ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, A C -- West, A G -- Felsenfeld, G -- New York, N.Y. -- Science. 2001 Jan 19;291(5503):447-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11228144" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/chemistry/*genetics ; Drosophila/genetics ; Enhancer Elements, Genetic ; *Gene Expression Regulation ; Gene Silencing ; *Genome ; Genomic Imprinting ; Humans ; Models, Genetic ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; *Regulatory Sequences, Nucleic Acid ; Saccharomyces cerevisiae/genetics ; Vertebrates/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2001-06-09
    Description: The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Y -- Xiong, Y -- CA65572/CA/NCI NIH HHS/ -- K01 CA087580/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1910-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397945" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Fusion ; Cell Line ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; *DNA Damage ; Mice ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p14ARF ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2001-12-01
    Description: Heterotrimeric GTP-binding proteins (G proteins) control cellular functions by transducing signals from the outside to the inside of cells. Regulator of G protein signaling (RGS) proteins are key modulators of the amplitude and duration of G protein-mediated signaling through their ability to serve as guanosine triphosphatase-activating proteins (GAPs). We have identified RGS-PX1, a Galpha(s)-specific GAP. The RGS domain of RGS-PX1 specifically interacted with Galpha(s), accelerated its GTP hydrolysis, and attenuated Galpha(s)-mediated signaling. RGS-PX1 also contains a Phox (PX) domain that resembles those in sorting nexin (SNX) proteins. Expression of RGS-PX1 delayed lysosomal degradation of the EGF receptor. Because of its bifunctional role as both a GAP and a SNX, RGS-PX1 may link heterotrimeric G protein signaling and vesicular trafficking.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, B -- Ma, Y C -- Ostrom, R S -- Lavoie, C -- Gill, G N -- Insel, P A -- Huang, X Y -- Farquhar, M G -- AG14563/AG/NIA NIH HHS/ -- CA58689/CA/NCI NIH HHS/ -- DK17780/DK/NIDDK NIH HHS/ -- GM56904/GM/NIGMS NIH HHS/ -- HL53773/HL/NHLBI NIH HHS/ -- HL63885/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1939-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0651, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729322" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Amino Acid Sequence ; Animals ; COS Cells ; Carrier Proteins/chemistry/*metabolism ; Cattle ; Cell Line ; Cyclic AMP/metabolism ; Endosomes/chemistry/metabolism ; GTP-Binding Protein alpha Subunits, Gs/antagonists & inhibitors/*metabolism ; GTPase-Activating Proteins/chemistry/*metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mitogen-Activated Protein Kinases/metabolism ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Protein Transport ; RGS Proteins/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Receptors, Adrenergic, beta-2/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Sorting Nexins ; Substrate Specificity ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-07-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De La Cruz, E M -- Pollard, T D -- New York, N.Y. -- Science. 2001 Jul 27;293(5530):616-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11474090" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Depolymerizing Factors ; Actins/*chemistry/*metabolism ; Adenosine Diphosphate/chemistry/*metabolism ; Adenosine Triphosphate/chemistry/metabolism ; Biopolymers/chemistry/metabolism ; *Contractile Proteins ; Crystallography, X-Ray ; Hydrolysis ; Microfilament Proteins/metabolism ; Phosphates/metabolism ; Profilins ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Rhodamines/metabolism ; Thymosin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2001-06-02
    Description: The GGAs are a multidomain protein family implicated in protein trafficking between the Golgi and endosomes. Here, the VHS domain of GGA2 was shown to bind to the acidic cluster-dileucine motif in the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CI-MPR). Receptors with mutations in this motif were defective in lysosomal enzyme sorting. The hinge domain of GGA2 bound clathrin, suggesting that GGA2 could be a link between cargo molecules and clathrin-coated vesicle assembly. Thus, GGA2 binding to the CI-MPR is important for lysosomal enzyme targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Y -- Doray, B -- Poussu, A -- Lehto, V P -- Kornfeld, S -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1716-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387476" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Carrier Proteins ; Cations ; Clathrin/metabolism ; Dipeptides/chemistry/metabolism ; L Cells (Cell Line) ; Lysosomes/*enzymology ; Mice ; Molecular Sequence Data ; Mutation ; Protein Sorting Signals ; Protein Structure, Tertiary ; *Protein Transport ; Proteins/chemistry/genetics/*metabolism ; Rats ; Receptor, IGF Type 2/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Solubility ; Transcription Factor AP-1/metabolism ; Transport Vesicles/metabolism ; Two-Hybrid System Techniques ; trans-Golgi Network/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thornton, J M -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2095-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University College Department of Biochemistry and Molecular Biology, London WC1E 6BT, UK. thornton@biochem.ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408660" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Computational Biology ; Computer Simulation ; Databases, Factual ; Evolution, Molecular ; Genome ; *Models, Molecular ; Peptide Library ; *Protein Conformation ; Protein Structure, Tertiary ; Proteins/*chemistry/*physiology ; Proteome ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2001-06-30
    Description: The pollen extracellular matrix contains proteins mediating species specificity and components needed for efficient pollination. We identified all proteins 〉10 kilodaltons in the Arabidopsis pollen coating and showed that most of the corresponding genes reside in two genomic clusters. One cluster encodes six lipases, whereas the other contains six lipid-binding oleosin genes, including GRP17, a gene that promotes efficient pollination. Individual oleosins exhibit extensive divergence between ecotypes, but the entire cluster remains intact. Analysis of the syntenic region in Brassica oleracea revealed even greater divergence, but a similar clustering of the genes. Such allelic flexibility may promote speciation in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayfield, J A -- Fiebig, A -- Johnstone, S E -- Preuss, D -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2482-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431566" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/chemistry/*genetics ; *Arabidopsis Proteins ; Brassica/chemistry/genetics ; Expressed Sequence Tags ; Genes, Plant ; Genetic Variation ; Genome, Plant ; Lipase/*chemistry/genetics ; Molecular Sequence Data ; *Multigene Family ; Phosphotransferases/chemistry/genetics ; Plant Proteins/*chemistry/genetics ; Pollen/*chemistry ; Protein Structure, Tertiary ; *Proteome ; Reverse Transcriptase Polymerase Chain Reaction ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2001-09-08
    Description: Bcl-2 family members bearing only the BH3 domain are essential inducers of apoptosis. We identified a BH3-only protein, Bmf, and show that its BH3 domain is required both for binding to prosurvival Bcl-2 proteins and for triggering apoptosis. In healthy cells, Bmf is sequestered to myosin V motors by association with dynein light chain 2. Certain damage signals, such as loss of cell attachment (anoikis), unleash Bmf, allowing it to translocate and bind prosurvival Bcl-2 proteins. Thus, at least two mammalian BH3-only proteins, Bmf and Bim, function to sense intracellular damage by their localization to distinct cytoskeletal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puthalakath, H -- Villunger, A -- O'Reilly, L A -- Beaumont, J G -- Coultas, L -- Cheney, R E -- Huang, D C -- Strasser, A -- CA 80188/CA/NCI NIH HHS/ -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, P.O. Royal Melbourne Hospital, 3050 VIC, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546872" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Anoikis ; Apoptosis Regulatory Proteins ; Calmodulin-Binding Proteins/*metabolism ; Carrier Proteins/*chemistry/genetics/*metabolism ; Cell Line ; Cytoskeleton/metabolism ; *Drosophila Proteins ; Dyneins ; Gene Expression Profiling ; Humans ; *Membrane Proteins ; Mice ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; *Myosin Type V ; Neoplasm Proteins/genetics/metabolism ; Nerve Tissue Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2001-05-12
    Description: Epigenetic silenced alleles of the Arabidopsis SUPERMAN locus (the clark kent alleles) are associated with dense hypermethylation at noncanonical cytosines (CpXpG and asymmetric sites, where X = A, T, C, or G). A genetic screen for suppressors of a hypermethylated clark kent mutant identified nine loss-of-function alleles of CHROMOMETHYLASE3 (CMT3), a novel cytosine methyltransferase homolog. These cmt3 mutants display a wild-type morphology but exhibit decreased CpXpG methylation of the SUP gene and of other sequences throughout the genome. They also show reactivated expression of endogenous retrotransposon sequences. These results show that a non-CpG DNA methyltransferase is responsible for maintaining epigenetic gene silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindroth, A M -- Cao, X -- Jackson, J P -- Zilberman, D -- McCallum, C M -- Henikoff, S -- Jacobsen, S E -- GM07104/GM/NIGMS NIH HHS/ -- GM07185/GM/NIGMS NIH HHS/ -- GM29009/GM/NIGMS NIH HHS/ -- GM60398/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2077-80. Epub 2001 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11349138" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*genetics/metabolism ; *Arabidopsis Proteins ; Base Sequence ; Chromosome Mapping ; Cloning, Molecular ; CpG Islands ; Crosses, Genetic ; Cytosine/metabolism ; *DNA Methylation ; DNA-Cytosine Methylases/chemistry/*genetics/*metabolism ; Dinucleoside Phosphates/metabolism ; Gene Expression Regulation, Plant ; *Gene Silencing ; Genes, Plant ; Molecular Sequence Data ; Mutagenesis ; Oligonucleotides/*metabolism ; Phenotype ; Protein Structure, Tertiary ; Retroelements ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-01
    Description: There seem to be numerous pathways for exporting mRNAs from the nucleus to the cytoplasm. But working out which set of export adaptors and receptors transport individual mRNAs has been very difficult. In a Perspective, Moore and Rosbash discuss a new strategy using cell-penetrating peptide inhibitors for unraveling the routes of mRNA export in living cells (Gallouzi and Steitz).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moore, M J -- Rosbash, M -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1841-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA. mmoore@brandeis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antennapedia Homeodomain Protein ; *Antigens, Surface ; Biological Transport/drug effects ; Cell Membrane Permeability ; Cell Nucleus/drug effects/*metabolism ; Cytoplasm/drug effects/*metabolism ; ELAV Proteins ; ELAV-Like Protein 1 ; Fatty Acids, Unsaturated/metabolism/pharmacology ; Gene Products, rev/chemistry/metabolism ; HIV/genetics ; Homeodomain Proteins/chemistry/metabolism ; Humans ; Karyopherins/*metabolism ; Neuropeptides/metabolism ; Nuclear Proteins/metabolism ; *Nucleocytoplasmic Transport Proteins ; Peptide Fragments/chemistry/metabolism/pharmacology ; Protein Binding/drug effects ; Protein Structure, Tertiary ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/antagonists & inhibitors/chemistry/*metabolism ; *Receptors, Cytoplasmic and Nuclear ; Saccharomyces cerevisiae Proteins/metabolism ; *Transcription Factors ; rev Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Higgins, C F -- Linton, K J -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1782-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, DuCane Road, London W12 0NN, UK. christopher.higgins@csc.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546861" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Bacterial Proteins/*chemistry/metabolism ; Cell Membrane/metabolism ; Crystallization ; Crystallography, X-Ray/methods ; Dimerization ; Escherichia coli/*chemistry ; Membrane Proteins/*chemistry/metabolism ; Models, Biological ; P-Glycoprotein/chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2001-03-27
    Description: Protein actions are usually discussed in terms of static structures, but function requires motion. We find a strong correlation between phosphorylation-driven activation of the signaling protein NtrC and microsecond time-scale backbone dynamics. Using nuclear magnetic resonance relaxation, we characterized the motions of NtrC in three functional states: unphosphorylated (inactive), phosphorylated (active), and a partially active mutant. These dynamics are indicative of exchange between inactive and active conformations. Both states are populated in unphosphorylated NtrC, and phosphorylation shifts the equilibrium toward the active species. These results support a dynamic population shift between two preexisting conformations as the underlying mechanism of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, B F -- Lipson, D -- Wemmer, D E -- Kern, D -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2429-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264542" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Binding Sites ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Time ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-01
    Description: Understanding how biochemical pathways are connected in the cell is one of the big challenges facing cell biologists. In a Perspective, von Zastrow and Mostov describe new work that identifies a protein called RGS-PX1 as the linchpin that connects signal transduction activated by G protein-coupled receptors with membrane trafficking events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Zastrow, M -- Mostov, K -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1845-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Psychiatry, University of California, San Francisco, CA 94143, USA. zastrow@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729293" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/metabolism ; Carrier Proteins/chemistry/*metabolism ; Databases, Genetic ; GTPase-Activating Proteins/chemistry/*metabolism ; Heterotrimeric GTP-Binding Proteins/chemistry/*metabolism ; Humans ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; RGS Proteins/chemistry/*metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Signal Transduction ; Sorting Nexins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, O -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1298.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701920" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, Bacterial ; *Bacillus anthracis ; Bacterial Toxins/chemistry/*metabolism ; Crystallography, X-Ray ; Endocytosis ; Hydrogen-Ion Concentration ; Macrophages/metabolism/microbiology ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Phagocytosis ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/*metabolism ; Receptors, Peptide/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2001-05-19
    Description: Mannose 6-phosphate receptors (MPRs) deliver lysosomal hydrolases from the Golgi to endosomes and then return to the Golgi complex. TIP47 recognizes the cytoplasmic domains of MPRs and is required for endosome-to-Golgi transport. Here we show that TIP47 also bound directly to the Rab9 guanosine triphosphatase (GTPase) in its active, GTP-bound conformation. Moreover, Rab9 increased the affinity of TIP47 for its cargo. A functional Rab9 binding site was required for TIP47 stimulation of MPR transport in vivo. Thus, a cytosolic cargo selection device may be selectively recruited onto a specific organelle, and vesicle budding might be coupled to the presence of an active Rab GTPase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carroll, K S -- Hanna, J -- Simon, I -- Krise, J -- Barbero, P -- Pfeffer, S R -- DK37332/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 May 18;292(5520):1373-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11359012" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution/genetics ; Animals ; Binding Sites ; Cattle ; Cytoplasm/metabolism ; DNA-Binding Proteins/*metabolism ; Endosomes/metabolism ; Golgi Apparatus/metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; *Intracellular Signaling Peptides and Proteins ; *Pregnancy Proteins ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Receptor, IGF Type 2/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Substrate Specificity ; Vesicular Transport Proteins ; rab GTP-Binding Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2001-10-27
    Description: ErbB-4 is a transmembrane receptor tyrosine kinase that regulates cell proliferation and differentiation. After binding of its ligand heregulin (HRG) or activation of protein kinase C (PKC) by 12-O-tetradecanoylphorbol-13-acetate (TPA), the ErbB-4 ectodomain is cleaved by a metalloprotease. We now report a subsequent cleavage by gamma-secretase that releases the ErbB-4 intracellular domain from the membrane and facilitates its translocation to the nucleus. gamma-Secretase cleavage was prevented by chemical inhibitors or a dominant negative presenilin. Inhibition of gamma-secretase also prevented growth inhibition by HRG. gamma-Secretase cleavage of ErbB-4 may represent another mechanism for receptor tyrosine kinase-mediated signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, C Y -- Murphy, M P -- Golde, T E -- Carpenter, G -- CA24071/CA/NCI NIH HHS/ -- CA68485/CA/NCI NIH HHS/ -- DK20593/DK/NIDDK NIH HHS/ -- NS39072/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2179-81. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679632" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Animals ; Aspartic Acid Endopeptidases ; COS Cells ; Carbamates/pharmacology ; Cell Division/drug effects ; Cell Line ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; Dipeptides/pharmacology ; Endopeptidases/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Membrane Proteins/genetics/metabolism ; Metalloendopeptidases/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neuregulin-1/pharmacology ; Presenilin-1 ; Protease Inhibitors/pharmacology ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptor, ErbB-4 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2001-02-27
    Description: Bag (Bcl2-associated athanogene) domains occur in a class of cofactors of the eukaryotic chaperone 70-kilodalton heat shock protein (Hsp70) family. Binding of the Bag domain to the Hsp70 adenosine triphosphatase (ATPase) domain promotes adenosine 5'-triphosphate-dependent release of substrate from Hsp70 in vitro. In a 1.9 angstrom crystal structure of a complex with the ATPase of the 70-kilodalton heat shock cognate protein (Hsc70), the Bag domain forms a three-helix bundle, inducing a conformational switch in the ATPase that is incompatible with nucleotide binding. The same switch is observed in the bacterial Hsp70 homolog DnaK upon binding of the structurally unrelated nucleotide exchange factor GrpE. Thus, functional convergence has allowed proteins with different architectures to trigger a conserved conformational shift in Hsp70 that leads to nucleotide exchange.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sondermann, H -- Scheufler, C -- Schneider, C -- Hohfeld, J -- Hartl, F U -- Moarefi, I -- New York, N.Y. -- Science. 2001 Feb 23;291(5508):1553-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular Biochemistry, Max-Planck-Institut fur Biochemie, D-82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11222862" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphatases/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Bacterial Proteins/chemistry/metabolism ; Carrier Proteins/*chemistry/*metabolism ; Cattle ; Crystallography, X-Ray ; DNA-Binding Proteins ; *Escherichia coli Proteins ; Evolution, Molecular ; HSC70 Heat-Shock Proteins ; HSP70 Heat-Shock Proteins/*chemistry/*metabolism ; Heat-Shock Proteins/chemistry/metabolism ; Humans ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Isoforms ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klug, A -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1844-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397933" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Gene Expression Regulation, Fungal ; Promoter Regions, Genetic ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/*chemistry/*metabolism ; RNA, Fungal/biosynthesis/chemistry/metabolism ; RNA, Messenger/biosynthesis/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Transcription Factors/isolation & purification/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Catterall, W A -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2306-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle, WA 98195, USA. wcatt@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacillus/*chemistry/metabolism ; Bacterial Proteins/antagonists & inhibitors/chemistry/*metabolism ; Calcium Channels/chemistry/metabolism ; Ion Channel Gating ; Ion Transport ; Membrane Potentials ; Potassium Channel Blockers ; Potassium Channels/chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Sodium Channel Blockers ; Sodium Channels/*chemistry/*metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fesik, S W -- Shi, Y -- New York, N.Y. -- Science. 2001 Nov 16;294(5546):1477-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research, Global Pharmaceutical Research & Development, Abbott Laboratories, Abbott Park, IL 60064, USA. stephen.fesik@abbott.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11711663" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; *Apoptosis ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; *Caspase Inhibitors ; Caspases/chemistry/*metabolism ; Crystallography, X-Ray ; Cysteine Proteinase Inhibitors/chemistry/metabolism ; Dimerization ; Humans ; Hydrogen Bonding ; Intracellular Signaling Peptides and Proteins ; Mitochondria/metabolism ; Mitochondrial Proteins/*chemistry/*metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; X-Linked Inhibitor of Apoptosis Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishioka, K -- Reinberg, D -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2497-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752565" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyltransferases/metabolism ; *Gene Expression Regulation ; Histone Acetyltransferases ; Methylation ; Nuclear Proteins/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein-Arginine N-Methyltransferases/*metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; *Saccharomyces cerevisiae Proteins ; Signal Transduction ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2001-08-04
    Description: One of the most dominant influences in the patterning of multicellular embryos is exerted by the Hedgehog (Hh) family of secreted signaling proteins. Here, we identify a segment polarity gene in Drosophila melanogaster, skinny hedgehog (ski), and show that its product is required in Hh-expressing cells for production of appropriate signaling activity in embryos and in the imaginal precursors of adult tissues. The ski gene encodes an apparent acyltransferase, and we provide genetic and biochemical evidence that Hh proteins from ski mutant cells retain carboxyl-terminal cholesterol modification but lack amino-terminal palmitate modification. Our results suggest that ski encodes an enzyme that acts within the secretory pathway to catalyze amino-terminal palmitoylation of Hh, and further demonstrate that this lipid modification is required for the embryonic and larval patterning activities of the Hh signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamoun, Z -- Mann, R K -- Nellen, D -- von Kessler, D P -- Bellotto, M -- Beachy, P A -- Basler, K -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2080-4. Epub 2001 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie and Zoologisches Institut, Universitat Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Acyltransferases/chemistry/*genetics/*metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Body Patterning ; Cholesterol/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/embryology/*genetics/growth & development/metabolism ; Gene Expression ; Genes, Insect ; Hedgehog Proteins ; Insect Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Palmitic Acid/*metabolism ; Protein Structure, Tertiary ; *Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2001-11-27
    Description: We determined a crystal structure of bovine Arp2/3 complex, an assembly of seven proteins that initiates actin polymerization in eukaryotic cells, at 2.0 angstrom resolution. Actin-related protein 2 (Arp2) and Arp3 are folded like actin, with distinctive surface features. Subunits ARPC2 p34 and ARPC4 p20 in the core of the complex associate through long carboxyl-terminal alpha helices and have similarly folded amino-terminal alpha/beta domains. ARPC1 p40 is a seven-blade beta propeller with an insertion that may associate with the side of an actin filament. ARPC3 p21 and ARPC5 p16 are globular alpha-helical subunits. We predict that WASp/Scar proteins activate Arp2/3 complex by bringing Arp2 into proximity with Arp3 for nucleation of a branch on the side of a preexisting actin filament.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robinson, R C -- Turbedsky, K -- Kaiser, D A -- Marchand, J B -- Higgs, H N -- Choe, S -- Pollard, T D -- GM-26132/GM/NIGMS NIH HHS/ -- GM-26338/GM/NIGMS NIH HHS/ -- GM-56653/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 23;294(5547):1679-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11721045" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry/*metabolism ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*chemistry/*metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Cattle ; Crystallography, X-Ray ; *Cytoskeletal Proteins ; Macromolecular Substances ; Models, Biological ; Models, Molecular ; Muscle, Skeletal ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Static Electricity ; Thymus Gland
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2001-08-18
    Description: Arabidopsis seedling photomorphogenesis involves two antagonistically acting components, COP1 and HY5. COP1 specifically targets HY5 for degradation via the 26S proteasome in the dark through their direct physical interaction. Little is known regarding how light signals perceived by photoreceptors are transduced to regulate COP1. Arabidopsis has two related cryptochromes (cry1 and cry2) mediating various blue/ultraviolet-A light responses. Here we show that both photoactivated cryptochromes repress COP1 activity through a direct protein-protein contact and that this direct regulation is primarily responsible for the cryptochrome-mediated blue light regulation of seedling photomorphogenic development and genome expression profile.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Ma, L G -- Li, J M -- Zhao, H Y -- Deng, X W -- GM-47850/GM/NIGMS NIH HHS/ -- GM59507/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):154-8. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509693" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*metabolism ; *Arabidopsis Proteins ; Basic-Leucine Zipper Transcription Factors ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/metabolism ; Crosses, Genetic ; Cryptochromes ; Darkness ; *Drosophila Proteins ; Expressed Sequence Tags ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; *Light ; Morphogenesis ; Mutation ; Nuclear Proteins/metabolism ; Oxidation-Reduction ; Phenotype ; *Photoreceptor Cells, Invertebrate ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2001-09-08
    Description: Multidrug resistance (MDR) is a serious medical problem and presents a major challenge to the treatment of disease and the development of novel therapeutics. ABC transporters that are associated with multidrug resistance (MDR-ABC transporters) translocate hydrophobic drugs and lipids from the inner to the outer leaflet of the cell membrane. To better elucidate the structural basis for the "flip-flop" mechanism of substrate movement across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Escherichia coli by x-ray crystallography to a resolution of 4.5 angstroms. MsbA is organized as a homodimer with each subunit containing six transmembrane alpha-helices and a nucleotide-binding domain. The asymmetric distribution of charged residues lining a central chamber suggests a general mechanism for the translocation of substrate by MsbA and other MDR-ABC transporters. The structure of MsbA can serve as a model for the MDR-ABC transporters that confer multidrug resistance to cancer cells and infectious microorganisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Roth, C B -- GM61905-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1793-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, MB-9, The Scripps Research Institute, La Jolla, CA 92037, USA. gchang@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546864" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/metabolism ; Binding Sites ; Biological Transport ; Crystallography, X-Ray ; Dimerization ; *Drug Resistance, Microbial ; *Drug Resistance, Multiple ; Escherichia coli/*enzymology ; Lipid A/metabolism ; Membrane Proteins/*chemistry/genetics/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sequence Alignment ; Static Electricity ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheney, R E -- Rodriguez, O C -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1263-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. cheneyr@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509712" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Animals ; Biological Transport ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Calmodulin-Binding Proteins/chemistry/*metabolism ; Cell Cycle ; Humans ; Intermediate Filament Proteins/metabolism ; Melanosomes/*metabolism ; Molecular Motor Proteins/*metabolism ; *Myosin Heavy Chains ; *Myosin Type V ; Nerve Tissue Proteins/chemistry/*metabolism ; Organelles/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Xenopus ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2001-09-15
    Description: Infections with Plasmodium falciparum during pregnancy lead to the accumulation of parasitized red blood cells (infected erythrocytes, IEs) in the placenta. IEs of P. falciparum isolates that infect the human placenta were found to bind immunoglobulin G (IgG). A strain of P. falciparum cloned for IgG binding adhered massively to placental syncytiotrophoblasts in a pattern similar to that of natural infections. Adherence was inhibited by IgG-binding proteins, but not by glycosaminoglycans or enzymatic digestion of chondroitin sulfate A or hyaluronic acid. Normal, nonimmune IgG that is bound to a duffy binding-like domain beta of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) might at the IE surface act as a bridge to neonatal Fc receptors of the placenta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flick, K -- Scholander, C -- Chen, Q -- Fernandez, V -- Pouvelle, B -- Gysin, J -- Wahlgren, M -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2098-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Tumor Biology Center (MTC), Karolinska Institutet and Swedish Institute for Infectious Disease Control, Box 280, S-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11557894" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Chondroitin ABC Lyase/metabolism ; Chondroitin Sulfates/metabolism/pharmacology ; Cloning, Molecular ; Erythrocytes/metabolism/*parasitology ; Female ; Humans ; Hyaluronic Acid/pharmacology ; Hyaluronoglucosaminidase/metabolism ; Immunoglobulin G/immunology/*metabolism ; Malaria, Falciparum/immunology/*parasitology ; Placenta/blood supply/immunology/*parasitology ; Placenta Diseases/immunology/parasitology ; Plasmodium falciparum/genetics/immunology/metabolism ; Pregnancy ; Pregnancy Complications, Parasitic/immunology/*parasitology ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/immunology/*metabolism ; Receptors, Fc/*metabolism ; Recombinant Fusion Proteins ; Staphylococcal Protein A/metabolism/pharmacology ; Trophoblasts/immunology/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2002-02-02
    Description: In bacteria, promoter recognition depends on the RNA polymerase sigma subunit, which combines with the catalytically proficient RNA polymerase core to form the holoenzyme. The major class of bacterial promoters is defined by two conserved elements (the -10 and -35 elements, which are 10 and 35 nucleotides upstream of the initiation point, respectively) that are contacted by sigma in the holoenzyme. We show that recognition of promoters of this class depends on the "flexible flap" domain of the RNA polymerase beta subunit. The flap interacts with conserved region 4 of sigma and triggers a conformational change that moves region 4 into the correct position for interaction with the -35 element. Because the flexible flap is evolutionarily conserved, this domain may facilitate promoter recognition by specificity factors in eukaryotes as well.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuznedelov, Konstantin -- Minakhin, Leonid -- Niedziela-Majka, Anita -- Dove, Simon L -- Rogulja, Dragana -- Nickels, Bryce E -- Hochschild, Ann -- Heyduk, Tomasz -- Severinov, Konstantin -- GM44025/GM/NIGMS NIH HHS/ -- GM50514/GM/NIGMS NIH HHS/ -- R01 GM044025/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 1;295(5556):855-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11823642" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/*metabolism ; DNA, Bacterial/genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; Energy Transfer ; Escherichia coli/*enzymology/genetics ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Sigma Factor/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Humphries, M J -- Mould, A P -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):316-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, M13 9PT, UK. martin.humphries@man.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598288" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcium/metabolism ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Drug Design ; Humans ; Ligands ; Metals/metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Vitronectin/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2001-03-17
    Description: The activation of gp130, a shared signal-transducing receptor for a family of cytokines, is initiated by recognition of ligand followed by oligomerization into a higher order signaling complex. Kaposi's sarcoma-associated herpesvirus encodes a functional homolog of human interleukin-6 (IL-6) that activates human gp130. In the 2.4 angstrom crystal structure of the extracellular signaling assembly between viral IL-6 and human gp130, two complexes are cross-linked into a tetramer through direct interactions between the immunoglobulin domain of gp130 and site III of viral IL-6, which is necessary for receptor activation. Unlike human IL-6 (which uses many hydrophilic residues), the viral cytokine largely uses hydrophobic amino acids to contact gp130, which enhances the complementarity of the viral IL-6-gp130 binding interfaces. The cross-reactivity of gp130 is apparently due to a chemical plasticity evident in the amphipathic gp130 cytokine-binding sites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chow , D -- He , X -- Snow, A L -- Rose-John, S -- Garcia, K C -- R01-AI-48540-01/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2150-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251120" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Epitopes ; Humans ; Hydrogen Bonding ; Interleukin-6/*chemistry/immunology/*metabolism ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Mimicry ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Viral Proteins/*chemistry/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2002-09-14
    Description: Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haijuan -- Jeffrey, Philip D -- Miller, Julie -- Kinnucan, Elspeth -- Sun, Yutong -- Thoma, Nicolas H -- Zheng, Ning -- Chen, Phang-Lang -- Lee, Wen-Hwa -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1837-48.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA2 Protein/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/metabolism ; *DNA Repair ; DNA, Single-Stranded/*metabolism ; DNA-Binding Proteins/metabolism ; Genes, BRCA2 ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Mutation ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Rad51 Recombinase ; Rats ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2002-10-05
    Description: Erythrocyte invasion by Plasmodium falciparum involves multiple ligand-receptor interactions and numerous apparent redundancies. The genome sequence of this parasite reveals new gene families encoding proteins that appear to mediate erythrocyte invasion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowman, Alan F -- Crabb, Brendan S -- New York, N.Y. -- Science. 2002 Oct 4;298(5591):126-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, PO Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia. cowman@wehi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12364790" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Erythrocyte Membrane/parasitology/ultrastructure ; Erythrocytes/metabolism/*parasitology ; Evolution, Molecular ; Genes, Protozoan ; *Genome, Protozoan ; Humans ; Ligands ; Malaria Vaccines ; Merozoite Surface Protein 1/chemistry/metabolism ; Multigene Family ; Plasmodium/pathogenicity/physiology ; Plasmodium falciparum/*genetics/*pathogenicity/physiology/ultrastructure ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/*metabolism ; Receptors, Cell Surface/*metabolism ; Tight Junctions/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2002-05-25
    Description: The sulfated peptide phytosulfokine (PSK) is an intercellular signal that plays a key role in cellular dedifferentiation and proliferation in plants. Using ligand-based affinity chromatography, we purified a 120-kilodalton membrane protein, specifically interacting with PSK, from carrot microsomal fractions. The corresponding complementary DNA encodes a 1021-amino acid receptor kinase that contains extracellular leucine-rich repeats, a single transmembrane domain, and a cytoplasmic kinase domain. Overexpression of this receptor kinase in carrot cells caused enhanced callus growth in response to PSK and a substantial increase in the number of tritium-labeled PSK binding sites, suggesting that PSK and this receptor kinase act as a ligand-receptor pair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsubayashi, Yoshikatsu -- Ogawa, Mari -- Morita, Akiko -- Sakagami, Youji -- New York, N.Y. -- Science. 2002 May 24;296(5572):1470-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. matsu@agr.nagoya-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029134" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Cell Line ; Chromatography, Affinity ; DNA, Complementary ; Daucus carota/cytology/*enzymology/genetics/growth & development ; Genes, Plant ; Glycosylation ; Leucine ; Ligands ; Microsomes/enzymology ; Molecular Sequence Data ; Molecular Weight ; Peptide Hormones ; *Plant Growth Regulators ; Plant Proteins/*chemistry/genetics/isolation & purification/*metabolism ; Plants, Genetically Modified ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/isolation & purification/*metabolism ; Repetitive Sequences, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2002-11-26
    Description: The reversible blockage of synthetic pores formed by rigid-rod beta barrels, either by substrates or products, was used to sense a variety of enzymatic reactions in high-throughput format with "naked-eye" fluorescent detection. Improvement of sensor sensitivity beyond three orders of magnitude by straightforward internal mutations underscores the functional plasticity of rigid-rod beta barrels. Such detectors of enzyme activity with the aforementioned characteristics are needed in areas as diverse as proteomics and environmentally benign organic synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Gopal -- Talukdar, Pinaki -- Matile, Stefan -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1600-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446904" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Alkaline Phosphatase/metabolism ; Apyrase/*metabolism ; Catalysis ; Enzymes/*metabolism ; *Fluorescent Dyes ; *Fluorometry ; Fructose-Bisphosphate Aldolase/metabolism ; Galactosyltransferases/metabolism ; Lipid Bilayers ; Peptides/chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Proteome ; Sensitivity and Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Amy L -- New York, N.Y. -- Science. 2002 May 10;296(5570):1038-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. davidson@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004108" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Transport Systems, Basic/chemistry/metabolism ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Carrier Proteins/chemistry/metabolism ; *DNA-Binding Proteins ; Dimerization ; Escherichia coli/*chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fungal Proteins/chemistry/metabolism ; Hydrolysis ; Models, Molecular ; *Periplasmic Binding Proteins ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; *Saccharomyces cerevisiae Proteins ; Vitamin B 12/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2002-03-09
    Description: Time courses of translocation of fluorescently conjugated proteins to the plasma membrane were simultaneously measured in thousands of individual rat basophilic leukemia cells. We found that the C2 domain---a calcium-sensing, lipid-binding protein module that is an essential regulator of protein kinase C and numerous other proteins---targeted proteins to the plasma membrane transiently if calcium was released from internal stores, and persistently in response to entry of extracellular calcium across the plasma membrane. The C2 domain translocation time courses of stimulated cells clustered into only two primary modes. Hence, the reversible recruitment of families of signaling proteins from one cellular compartment to another is a rapid bifurcation mechanism for inducing discrete states of cellular signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teruel, Mary N -- Meyer, Tobias -- CA83229/CA/NCI NIH HHS/ -- GM062144/GM/NIGMS NIH HHS/ -- HG00057/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1910-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Stanford University Medical School, 269 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins ; Calcium/*metabolism ; *Calcium Signaling ; Cell Membrane/*metabolism ; Cytosol/metabolism ; Fluorescence ; Fluorescent Dyes ; Isoenzymes/chemistry/*metabolism ; Kinetics ; Luminescent Proteins ; Platelet Activating Factor/pharmacology ; Protein Binding ; Protein Kinase C/chemistry/*metabolism ; Protein Structure, Tertiary ; *Protein Transport ; Rats ; Receptors, Cell Surface/*metabolism ; Recombinant Fusion Proteins/metabolism ; Software ; Thapsigargin/pharmacology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2002-03-09
    Description: The structure of the membrane protein formate dehydrogenase-N (Fdn-N), a major component of Escherichia coli nitrate respiration, has been determined at 1.6 angstroms. The structure demonstrates 11 redox centers, including molybdopterin-guanine dinucleotides, five [4Fe-4S] clusters, two heme b groups, and a menaquinone analog. These redox centers are aligned in a single chain, which extends almost 90 angstroms through the enzyme. The menaquinone reduction site associated with a possible proton pathway was also characterized. This structure provides critical insights into the proton motive force generation by redox loop, a common mechanism among a wide range of respiratory enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jormakka, Mika -- Tornroth, Susanna -- Byrne, Bernadette -- Iwata, So -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1863-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biomedical Sciences, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884747" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalysis ; Catalytic Domain ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Electron Transport ; Escherichia coli/*enzymology ; Formate Dehydrogenases/*chemistry/metabolism ; Formates/metabolism ; Guanine Nucleotides/chemistry/metabolism ; Hydrogen Bonding ; Iron-Sulfur Proteins/chemistry/metabolism ; Membrane Potentials ; Models, Molecular ; Nitrate Reductases/chemistry/metabolism ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; *Proton-Motive Force ; Protons ; Pterins/chemistry/metabolism ; Vitamin K 2/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meisterernst, Michael -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):984-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Department, National Research Center for Environment and Health-GSF Institute of Molecular Immunology, Marchionini-Strasse 25, D-81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834806" target="_blank"〉PubMed〈/a〉
    Keywords: CCAAT-Enhancer-Binding Proteins/chemistry/metabolism ; Chromatin/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Herpes Simplex Virus Protein Vmw65/chemistry/metabolism ; Macromolecular Substances ; Microscopy, Electron ; Molecular Weight ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits ; RNA Polymerase II/chemistry/metabolism ; Sterol Regulatory Element Binding Protein 1 ; Trans-Activators/*chemistry/isolation & purification/*metabolism ; *Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2002-09-28
    Description: Unc104/KIF1A belongs to a class of monomeric kinesin motors that have been thought to possess an unusual motility mechanism. Unlike the unidirectional motion driven by the coordinated actions of the two heads in conventional kinesins, single-headed KIF1A was reported to undergo biased diffusional motion along microtubules. Here, we show that Unc104/KIF1A can dimerize and move unidirectionally and processively with rapid velocities characteristic of transport in living cells. These results suggest that Unc104/KIF1A operates in vivo by a mechanism similar to conventional kinesin and that regulation of motor dimerization may be used to control transport by this class of kinesins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomishige, Michio -- Klopfenstein, Dieter R -- Vale, Ronald D -- AR42895/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351789" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins/chemistry/physiology ; Diffusion ; Dimerization ; Humans ; Kinesin/*chemistry/physiology ; Liposomes ; Microtubules/*physiology ; Molecular Motor Proteins/*chemistry/*physiology ; Molecular Sequence Data ; Movement ; Mutation ; Nerve Tissue Proteins/*chemistry/*physiology ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2001-12-18
    Description: Peptide recognition modules mediate many protein-protein interactions critical for the assembly of macromolecular complexes. Complete genome sequences have revealed thousands of these domains, requiring improved methods for identifying their physiologically relevant binding partners. We have developed a strategy combining computational prediction of interactions from phage-display ligand consensus sequences with large-scale two-hybrid physical interaction tests. Application to yeast SH3 domains generated a phage-display network containing 394 interactions among 206 proteins and a two-hybrid network containing 233 interactions among 145 proteins. Graph theoretic analysis identified 59 highly likely interactions common to both networks. Las17 (Bee1), a member of the Wiskott-Aldrich Syndrome protein (WASP) family of actin-assembly proteins, showed multiple SH3 interactions, many of which were confirmed in vivo by coimmunoprecipitation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Amy Hin Yan -- Drees, Becky -- Nardelli, Giuliano -- Bader, Gary D -- Brannetti, Barbara -- Castagnoli, Luisa -- Evangelista, Marie -- Ferracuti, Silvia -- Nelson, Bryce -- Paoluzi, Serena -- Quondam, Michele -- Zucconi, Adriana -- Hogue, Christopher W V -- Fields, Stanley -- Boone, Charles -- Cesareni, Gianni -- P41 RR11823/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):321-4. Epub 2001 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1L6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743162" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; *Computational Biology ; Consensus Sequence ; *Cytoskeletal Proteins ; Databases, Genetic ; Databases, Protein ; Fungal Proteins/chemistry/metabolism ; Ligands ; Molecular Sequence Data ; Peptide Library ; Peptides/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proteins/*chemistry/*metabolism ; *Proteome ; Saccharomyces cerevisiae/chemistry/genetics ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism ; Software ; Two-Hybrid System Techniques ; Wiskott-Aldrich Syndrome Protein ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-11-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Chi -- Thompson, Craig B -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1346-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. drt@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434041" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology/therapeutic use ; *Apoptosis ; Asparagine/metabolism ; Aspartic Acid/metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; *DNA Damage ; DNA, Neoplasm/drug effects ; Genes, Retinoblastoma ; Genes, p53 ; Humans ; Models, Biological ; Mutation ; Neoplasms/*drug therapy/metabolism/*pathology ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Retinoblastoma Protein/metabolism ; Tumor Suppressor Protein p53/metabolism ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2002-08-17
    Description: The enediynes exemplify nature's ingenuity. We have cloned and characterized the biosynthetic locus coding for perhaps the most notorious member of the nonchromoprotein enediyne family, calicheamicin. This gene cluster contains an unusual polyketide synthase (PKS) that is demonstrated to be essential for enediyne biosynthesis. Comparison of the calicheamicin locus with the locus encoding the chromoprotein enediyne C-1027 reveals that the enediyne PKS is highly conserved among these distinct enediyne families. Contrary to previous hypotheses, this suggests that the chromoprotein and nonchromoprotein enediynes are generated by similar biosynthetic pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlert, Joachim -- Shepard, Erica -- Lomovskaya, Natalia -- Zazopoulos, Emmanuel -- Staffa, Alfredo -- Bachmann, Brian O -- Huang, Kexue -- Fonstein, Leonid -- Czisny, Anne -- Whitwam, Ross E -- Farnet, Chris M -- Thorson, Jon S -- CA08748/CA/NCI NIH HHS/ -- CA84374/CA/NCI NIH HHS/ -- GM58196/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1173-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183629" target="_blank"〉PubMed〈/a〉
    Keywords: *Aminoglycosides ; Anti-Bacterial Agents/*biosynthesis ; Antibiotics, Antineoplastic/*biosynthesis ; Blotting, Southern ; Chromatography, High Pressure Liquid ; Cloning, Molecular ; Conserved Sequence ; Enediynes ; *Genes, Bacterial ; Micromonospora/enzymology/*genetics/metabolism ; Multienzyme Complexes/*chemistry/*genetics/metabolism ; Multigene Family ; Mutation ; Open Reading Frames ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2002-06-08
    Description: Nucleation of branched actin filaments by the Arp2/3 complex is a conserved process in eukaryotic cells, yet the source of unbranched actin filaments has remained obscure. In yeast, formins stimulate assembly of actin cables independently of Arp2/3. Here, the conserved core of formin homology domains 1 and 2 of Bni1p (Bni1pFH1FH2) was found to nucleate unbranched actin filaments in vitro. Bni1pFH2 provided the minimal region sufficient for nucleation. Unique among actin nucleators, Bni1pFH1FH2 remained associated with the growing barbed ends of filaments. This combination of properties suggests a direct role for formins in regulating nucleation and polarization of unbranched filamentous actin structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pruyne, David -- Evangelista, Marie -- Yang, Changsong -- Bi, Erfei -- Zigmond, Sally -- Bretscher, Anthony -- Boone, Charles -- AI19883/AI/NIAID NIH HHS/ -- GH39066/GH/CGH CDC HHS/ -- GM59216/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):612-5. Epub 2002 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12052901" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism/ultrastructure ; Actins/*metabolism ; Cytochalasin B/pharmacology ; Fungal Proteins/*chemistry/*metabolism ; *Microfilament Proteins ; Microscopy, Electron ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2002-10-12
    Description: Recent observations indicating that promoter identity influences alternative RNA-processing decisions have created interest in the regulatory interactions between RNA polymerase II transcription and precursor messenger RNA (pre-mRNA) processing. We examined the impact of steroid receptor-mediated transcription on RNA processing with reporter genes subject to alternative splicing driven by steroid-sensitive promoters. Steroid hormones affected the processing of pre-mRNA synthesized from steroid-sensitive promoters, but not from steroid-unresponsive promoters, in a steroid receptor-dependent and receptor-selective manner. Several nuclear receptor coregulators showed differential splicing effects, suggesting that steroid hormone receptors may simultaneously control gene transcription activity and exon content of the product mRNA by recruiting coregulators involved in both processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Auboeuf, Didier -- Honig, Arnd -- Berget, Susan M -- O'Malley, Bert W -- GM 38526/GM/NIGMS NIH HHS/ -- HD-08818/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 11;298(5592):416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376702" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Antigens, CD44/genetics ; COS Cells ; Calcitonin/genetics ; Calcitonin Gene-Related Peptide/genetics ; Carrier Proteins/*metabolism ; Dexamethasone/metabolism/pharmacology ; Estradiol/metabolism/pharmacology ; Estrogen Receptor alpha ; Estrogen Receptor beta ; Exons ; Genes, Reporter ; HeLa Cells ; Humans ; *Intracellular Signaling Peptides and Proteins ; Mutation ; Progesterone/metabolism/pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Helicases/*metabolism ; RNA-Binding Protein FUS/*metabolism ; Receptors, Estrogen/genetics/metabolism ; Receptors, Glucocorticoid/metabolism ; Receptors, Progesterone/metabolism ; Response Elements ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2002-08-17
    Description: C-1027 is a potent antitumor agent with a previously undescribed molecular architecture and mode of action. Cloning and characterization of the 85-kilobase C-1027 biosynthesis gene cluster from Streptomyces globisporus revealed (i) an iterative type I polyketide synthase that is distinct from any bacterial polyketide synthases known to date, (ii) a general polyketide pathway for the biosynthesis of both the 9- and 10-membered enediyne antibiotics, and (iii) a convergent biosynthetic strategy for the C-1027 chromophore from four building blocks. Manipulation of genes governing C-1027 biosynthesis allowed us to produce an enediyne compound in a predicted manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Christenson, Steven D -- Standage, Scott -- Shen, Ben -- AI51689/AI/NIAID NIH HHS/ -- CA78747/CA/NCI NIH HHS/ -- T32 GM07377/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1170-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183628" target="_blank"〉PubMed〈/a〉
    Keywords: *Aminoglycosides ; Anti-Bacterial Agents/*biosynthesis ; Antibiotics, Antineoplastic/*biosynthesis ; Chromatography, High Pressure Liquid ; Cloning, Molecular ; Enediynes ; *Genes, Bacterial ; Multienzyme Complexes/chemistry/genetics/metabolism ; Multigene Family ; Mutation ; Open Reading Frames ; Protein Structure, Tertiary ; Streptomyces/enzymology/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2002-02-16
    Description: Animal SGT1 is a component of Skp1-Cullin-F-box protein (SCF) ubiquitin ligases that target regulatory proteins for degradation. Mutations in one (SGT1b) of two highly homologous Arabidopsis SGT1 genes disable early plant defenses conferred by multiple resistance (R) genes. Loss of SGT1b function in resistance is not compensated for by SGT1a. R genes differ in their requirements for SGT1b and a second resistance signaling gene, RAR1, that was previously implicated as an SGT1 interactor. Moreover, SGT1b and RAR1 contribute additively to RPP5-mediated pathogen recognition. These data imply both operationally distinct and cooperative functions of SGT1 and RAR1 in plant disease resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Austin, Mark J -- Muskett, Paul -- Kahn, Katherine -- Feys, Bart J -- Jones, Jonathan D G -- Parker, Jane E -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2077-80. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/*genetics/metabolism/microbiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/*genetics/*metabolism ; Cell Death ; *Genes, Plant ; Immunity, Innate ; Molecular Sequence Data ; Mutation ; Oomycetes/pathogenicity/physiology ; *Plant Diseases ; Plant Leaves/microbiology ; Plant Proteins/*genetics/physiology ; Protein Structure, Tertiary ; Sequence Alignment ; Spores, Fungal/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2002-02-16
    Description: Plant disease resistance (R) genes trigger innate immune responses upon pathogen attack. RAR1 is an early convergence point in a signaling pathway engaged by multiple R genes. Here, we show that RAR1 interacts with plant orthologs of the yeast protein SGT1, an essential regulator in the cell cycle. Silencing the barley gene Sgt1 reveals its role in R gene-triggered, Rar1-dependent disease resistance. SGT1 associates with SKP1 and CUL1, subunits of the SCF (Skp1-Cullin-F-box) ubiquitin ligase complex. Furthermore, the RAR1-SGT1 complex also interacts with two COP9 signalosome components. The interactions among RAR1, SGT1, SCF, and signalosome subunits indicate a link between disease resistance and ubiquitination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Azevedo, Cristina -- Sadanandom, Ari -- Kitagawa, Katsumi -- Freialdenhoven, Andreas -- Shirasu, Ken -- Schulze-Lefert, Paul -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2073-6. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/chemistry/genetics/metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Gene Silencing ; Genes, Fungal ; *Genes, Plant ; Hordeum/chemistry/genetics/metabolism ; Immunity, Innate ; Molecular Sequence Data ; Multiprotein Complexes ; Peptide Hydrolases ; Peptide Synthases/metabolism ; *Plant Diseases ; Plant Proteins/genetics/metabolism ; Protein Structure, Tertiary ; Proteins/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; SKP Cullin F-Box Protein Ligases ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism ; Sequence Alignment ; Signal Transduction ; Two-Hybrid System Techniques ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tonks, N K -- Myers, M P -- New York, N.Y. -- Science. 1999 Dec 10;286(5447):2096-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. tonks@cshl.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10617421" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Crystallography, X-Ray ; *Genes, Tumor Suppressor ; Humans ; Hydrogen Bonding ; Membrane Lipids/metabolism ; Models, Biological ; Mutation ; Neoplasms/*etiology/genetics ; PTEN Phosphohydrolase ; Phosphatidylinositol 3-Kinases/chemistry/metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/*metabolism ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2000-07-06
    Description: An assay was developed to study plant receptor kinase activation and signaling mechanisms. The extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis receptor kinase BRI1, which is implicated in brassinosteroid signaling, were fused to the serine/threonine kinase domain of XA21, the rice disease resistance receptor. The chimeric receptor initiates plant defense responses in rice cells upon treatment with brassinosteroids. These results, which indicate that the extracellular domain of BRI1 perceives brassinosteroids, suggest a general signaling mechanism for the LRR receptor kinases of plants. This system should allow the discovery of ligands for the LRR kinases, the largest group of plant receptor kinases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Z -- Wang, Z Y -- Li, J -- Zhu, Q -- Lamb, C -- Ronald, P -- Chory, J -- New York, N.Y. -- Science. 2000 Jun 30;288(5475):2360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10875920" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis ; *Arabidopsis Proteins ; Brassinosteroids ; Cell Death ; Cell Line ; Chitinase/genetics ; Cholestanols/*metabolism/pharmacology ; Gene Expression Regulation, Plant ; Ligands ; Oryza/cytology/*metabolism/microbiology ; Phenylalanine Ammonia-Lyase/genetics ; Plant Proteins/genetics/metabolism ; Plants, Genetically Modified ; Protein Kinases/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Respiratory Burst ; *Signal Transduction ; Steroids, Heterocyclic/*metabolism/pharmacology ; Xanthomonas/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-06
    Description: All animal cells have a polarity, that is, different proteins are clustered in distinct domains of the plasma membrane and these regions carry out different jobs. As Peifer discusses in a lively Perspective, new work (Bilder et al.) identifies some of the molecular characters that direct proteins to their different cellular destinations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peifer, M -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):67-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA. peifer@unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10928931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; *Cell Division ; Cell Membrane/metabolism ; *Cell Polarity ; Cell Transformation, Neoplastic ; Cytoplasm/metabolism ; Drosophila/cytology/genetics/metabolism ; *Drosophila Proteins ; Epithelial Cells/cytology/metabolism ; Genes, Tumor Suppressor ; Insect Proteins/chemistry/genetics/metabolism ; Intercellular Junctions/metabolism ; Membrane Proteins/chemistry/*metabolism ; Mutation ; Neoplasms/*etiology/metabolism ; Phenotype ; Protein Structure, Tertiary ; *Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2000-06-02
    Description: The mechanism by which a signal recognition particle (SRP) and its receptor mediate protein targeting to the endoplasmic reticulum or to the bacterial plasma membrane is evolutionarily conserved. In Escherichia coli, this reaction is mediated by the Ffh/4.5S RNA ribonucleoprotein complex (Ffh/4.5S RNP; the SRP) and the FtsY protein (the SRP receptor). We have quantified the effects of 4.5S RNA on Ffh-FtsY complex formation by monitoring changes in tryptophan fluorescence. Surprisingly, 4.5S RNA facilitates both assembly and disassembly of the Ffh-FtsY complex to a similar extent. These results provide an example of an RNA molecule facilitating protein-protein interactions in a catalytic fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peluso, P -- Herschlag, D -- Nock, S -- Freymann, D M -- Johnson, A E -- Walter, P -- GM 26494/GM/NIGMS NIH HHS/ -- GM 32384/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jun 2;288(5471):1640-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10834842" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/*metabolism ; Catalysis ; Escherichia coli/metabolism ; *Escherichia coli Proteins ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/metabolism ; Guanylyl Imidodiphosphate/metabolism ; Kinetics ; Models, Chemical ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Bacterial/chemistry/*metabolism ; Receptors, Cytoplasmic and Nuclear/chemistry/*metabolism ; Ribonucleoproteins/chemistry/metabolism ; Signal Recognition Particle/chemistry/*metabolism ; Spectrometry, Fluorescence ; Thermodynamics ; Tryptophan
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2000-09-23
    Description: The crystal structure of the double-stranded DNA bacteriophage HK97 mature empty capsid was determined at 3.6 angstrom resolution. The 660 angstrom diameter icosahedral particle contains 420 subunits with a new fold. The final capsid maturation step is an autocatalytic reaction that creates 420 isopeptide bonds between proteins. Each subunit is joined to two of its neighbors by ligation of the side-chain lysine 169 to asparagine 356. This generates 12 pentameric and 60 hexameric rings of covalently joined subunits that loop through each other, creating protein chainmail: topologically linked protein catenanes arranged with icosahedral symmetry. Catenanes have not been previously observed in proteins and provide a stabilization mechanism for the very thin HK97 capsid.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wikoff, W R -- Liljas, L -- Duda, R L -- Tsuruta, H -- Hendrix, R W -- Johnson, J E -- AI40101/AI/NIAID NIH HHS/ -- GM47795/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2129-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11000116" target="_blank"〉PubMed〈/a〉
    Keywords: Asparagine/chemistry/metabolism ; Capsid/*chemistry/metabolism ; Chemistry, Physical ; Crystallography, X-Ray ; Hydrogen Bonding ; Lysine/chemistry/metabolism ; Models, Molecular ; Physicochemical Phenomena ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Siphoviridae/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2000-10-06
    Description: Memapsin 2 (beta-secretase) is a membrane-associated aspartic protease involved in the production of beta-amyloid peptide in Alzheimer's disease and is a major target for drug design. We determined the crystal structure of the protease domain of human memapsin 2 complexed to an eight-residue inhibitor at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less hydrophobic than that of other human aspartic proteases. The subsite locations from S4 to S2' are well defined. A kink of the inhibitor chain at P2' and the change of chain direction of P3' and P4' may be mimicked to provide inhibitor selectivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hong, L -- Koelsch, G -- Lin, X -- Wu, S -- Terzyan, S -- Ghosh, A K -- Zhang, X C -- Tang, J -- New York, N.Y. -- Science. 2000 Oct 6;290(5489):150-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protein Studies Program and Crystallography Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11021803" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid Precursor Protein Secretases ; Aspartic Acid Endopeptidases/*chemistry/metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Endopeptidases ; Humans ; Hydrogen Bonding ; Models, Molecular ; Oligopeptides/*metabolism ; Protease Inhibitors/chemistry/*metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-04-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, P H -- Jing, D H -- New York, N.Y. -- Science. 2000 Mar 31;287(5462):2435-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Institute, University of Oregon, Eugene, OR 97403, USA. petevh@molbio.uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10766621" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; DNA/*biosynthesis ; DNA Helicases/metabolism ; DNA Primase/*chemistry/*metabolism ; *DNA Replication ; DNA, Bacterial/biosynthesis ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; DNA-Directed DNA Polymerase/metabolism ; Escherichia coli/enzymology/*metabolism ; Models, Biological ; Protein Structure, Tertiary ; RNA/*biosynthesis ; RNA, Bacterial/biosynthesis ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2000-08-19
    Description: Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McQuibban, G A -- Gong, J H -- Tam, E M -- McCulloch, C A -- Clark-Lewis, I -- Overall, C M -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1202-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947989" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Catalytic Domain ; Cell Line ; Chemokine CCL7 ; Chemokines/antagonists & inhibitors/metabolism ; Chemotaxis, Leukocyte ; Collagen/metabolism ; *Cytokines ; Enzyme Activation ; Gene Library ; Hemopexin/chemistry/metabolism ; Humans ; Inflammation/*metabolism/pathology ; Mass Spectrometry ; Matrix Metalloproteinase 2/chemistry/*metabolism ; Mice ; Monocyte Chemoattractant Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Chemokine/antagonists & inhibitors/metabolism ; Recombinant Proteins/metabolism ; Tissue Inhibitor of Metalloproteinase-2/metabolism ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2000-05-29
    Description: TFIID is a large multiprotein complex that initiates assembly of the transcription machinery. It is unclear how TFIID recognizes promoters in vivo when templates are nucleosome-bound. Here, it is shown that TAFII250, the largest subunit of TFIID, contains two tandem bromodomain modules that bind selectively to multiply acetylated histone H4 peptides. The 2.1 angstrom crystal structure of the double bromodomain reveals two side-by-side, four-helix bundles with a highly polarized surface charge distribution. Each bundle contains an Nepsilon-acetyllysine binding pocket at its center, which results in a structure ideally suited for recognition of diacetylated histone H4 tails. Thus, TFIID may be targeted to specific chromatin-bound promoters and may play a role in chromatin recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobson, R H -- Ladurner, A G -- King, D S -- Tjian, R -- New York, N.Y. -- Science. 2000 May 26;288(5470):1422-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10827952" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Histone Acetyltransferases ; Histones/metabolism ; Humans ; Lysine/analogs & derivatives/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Nucleosomes/metabolism ; Promoter Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; *TATA-Binding Protein Associated Factors ; *Transcription Factor TFIID ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walter, P -- Keenan, R -- Schmitz, U -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1212-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco, 94143, USA. walter@cgl.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10712156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry/*metabolism ; Crystallography, X-Ray ; Endoplasmic Reticulum/chemistry/metabolism ; *Escherichia coli Proteins ; Evolution, Molecular ; Methionine/chemistry ; Models, Molecular ; Nucleic Acid Conformation ; Peptides/metabolism ; Protein Conformation ; Protein Folding ; Protein Sorting Signals ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; RNA, Bacterial/chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-10-14
    Description: The ubiquitin pathway in the cell is an elegant system for targeting unwanted proteins for degradation. Three enzymes, E1, E2, and E3, are responsible for attaching the ubiquitin tag to proteins destined to be chopped up. In their Perspective, Joazeiro and Hunter discuss new structural findings that reveal the part played by an E3 called c-Cbl in this ubiquitinating process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joazeiro, C A -- Hunter, T -- New York, N.Y. -- Science. 2000 Sep 22;289(5487):2061-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA. cjoazeiro@aim.salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11032556" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Ligases/chemistry/*metabolism ; Models, Molecular ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*metabolism ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Proto-Oncogene Proteins c-cbl ; Receptor Protein-Tyrosine Kinases/metabolism ; Substrate Specificity ; *Ubiquitin-Conjugating Enzymes ; Ubiquitin-Protein Ligases ; Ubiquitins/*metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2000-05-08
    Description: To determine why proteasome inhibitors prevent thymocyte death, we examined whether proteasomes degrade anti-apoptotic molecules in cells induced to undergo apoptosis. The c-IAP1 and XIAP inhibitors of apoptosis were selectively lost in glucocorticoid- or etoposide-treated thymocytes in a proteasome-dependent manner before death. IAPs catalyzed their own ubiquitination in vitro, an activity requiring the RING domain. Overexpressed wild-type c-IAP1, but not a RING domain mutant, was spontaneously ubiquitinated and degraded, and stably expressed XIAP lacking the RING domain was relatively resistant to apoptosis-induced degradation and, correspondingly, more effective at preventing apoptosis than wild-type XIAP. Autoubiquitination and degradation of IAPs may be a key event in the apoptotic program.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Y -- Fang, S -- Jensen, J P -- Weissman, A M -- Ashwell, J D -- New York, N.Y. -- Science. 2000 May 5;288(5467):874-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immune Cell Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cells, Cultured ; Cysteine Endopeptidases/*metabolism ; Dexamethasone/pharmacology ; Etoposide/pharmacology ; Hybridomas ; Inhibitor of Apoptosis Proteins ; Ligases/*metabolism ; Mice ; Mice, Inbred C57BL ; Multienzyme Complexes/*metabolism ; Proteasome Endopeptidase Complex ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/cytology/drug effects/*metabolism ; Thymus Gland/cytology ; Transfection ; Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; X-Linked Inhibitor of Apoptosis Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2000-12-16
    Description: The growth of the bacterial flagellar filament occurs at its distal end by self-assembly of flagellin transported from the cytoplasm through the narrow central channel. The cap at the growing end is essential for its growth, remaining stably attached while permitting the flagellin insertion. In order to understand the assembly mechanism, we used electron microscopy to study the structures of the cap-filament complex and isolated cap dimer. Five leg-like anchor domains of the pentameric cap flexibly adjusted their conformations to keep just one flagellin binding site open, indicating a cap rotation mechanism to promote the flagellin self-assembly. This represents one of the most dynamic movements in protein structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yonekura, K -- Maki, S -- Morgan, D G -- DeRosier, D J -- Vonderviszt, F -- Imada, K -- Namba, K -- New York, N.Y. -- Science. 2000 Dec 15;290(5499):2148-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Protonic NanoMachine Project, ERATO, JST, 3-4 Hikaridai, Seika, Kyoto 619-0237, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11118149" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/metabolism/*ultrastructure ; Bacterial Proteins/*chemistry/*metabolism ; Cryoelectron Microscopy ; Diffusion ; Dimerization ; Flagella/*metabolism/ultrastructure ; Flagellin/*chemistry/*metabolism ; Image Processing, Computer-Assisted ; Models, Biological ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-10
    Description: Little is known about the molecular mechanisms of taste perception in animals, particularly the initial events of taste signaling. A large and diverse family of seven transmembrane domain proteins was identified from the Drosophila genome database with a computer algorithm that identifies proteins on the basis of structure. Eighteen of 19 genes examined were expressed in the Drosophila labellum, a gustatory organ of the proboscis. Expression was not detected in a variety of other tissues. The genes were not expressed in the labellum of a Drosophila mutant, pox-neuro70, in which taste neurons are eliminated. Tissue specificity of expression of these genes, along with their structural similarity, supports the possibility that the family encodes a large and divergent family of taste receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clyne, P J -- Warr, C G -- Carlson, J R -- DC-02174/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2000 Mar 10;287(5459):1830-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, Post Office Box 208103, New Haven, CT 06520-8103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10710312" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Alternative Splicing ; Amino Acid Sequence ; Animals ; Chemoreceptor Cells/*metabolism ; *Drosophila Proteins ; Drosophila melanogaster/chemistry/*genetics/physiology ; Exons ; Gene Expression ; Genes, Insect ; In Situ Hybridization ; Insect Proteins/chemistry/*genetics/physiology ; Membrane Proteins/chemistry/*genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Neurons, Afferent/*metabolism ; Organ Specificity ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/*genetics/physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Sense Organs/chemistry/physiology ; Sequence Alignment ; Taste/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2000-12-02
    Description: Many apoptotic molecules relocate subcellularly in cells undergoing apoptosis. The pro-apoptotic protein BID underwent posttranslational (rather than classic cotranslational) N-myristoylation when cleavage by caspase 8 caused exposure of a glycine residue. N-myristoylation enabled the targeting of a complex of p7 and myristoylated p15 fragments of BID to artificial membranes bearing the lipid composition of mitochondria, as well as to intact mitochondria. This post-proteolytic N-myristoylation serves as an activating switch, enhancing BID-induced release of cytochrome c and cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zha, J -- Weiler, S -- Oh, K J -- Wei, M C -- Korsmeyer, S J -- CA50239-13/CA/NCI NIH HHS/ -- K01 CA82231/CA/NCI NIH HHS/ -- T32 CA72320-01A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1761-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Departments of Pathology and Medicine, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11099414" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/genetics/metabolism ; Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Carrier Proteins/chemistry/*metabolism ; Caspase 8 ; Caspase 9 ; Caspases/metabolism ; Cytochrome c Group/metabolism ; Humans ; Intracellular Membranes/*metabolism ; Jurkat Cells ; Liposomes/metabolism ; Mice ; Mitochondria/*metabolism ; Myristic Acid/*metabolism ; Peptide Fragments/metabolism ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Protein Transport ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2000-06-24
    Description: In Caenorhabditis elegans, the gonad acquires two U-shaped arms by the directed migration of its distal tip cells (DTCs) along the body wall basement membranes. Correct migration of DTCs requires the mig-17 gene, which encodes a member of the metalloprotease-disintegrin protein family. The MIG-17 protein is secreted from muscle cells of the body wall and localizes in the basement membranes of gonad. This localization is dependent on the disintegrin-like domain of MIG-17 and its catalytic activity. These results suggest that the MIG-17 metalloprotease directs migration of DTCs by remodeling the basement membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishiwaki, K -- Hisamoto, N -- Matsumoto, K -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2205-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PRESTO, Japan Science and Technology Corporation and Fundamental Research Laboratories, NEC Corporation, Miyukigaoka, Tsukuba 305-8501, Japan.nishiwak@frl.cl.nec.co.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10864868" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basement Membrane/enzymology ; Caenorhabditis elegans/cytology/*enzymology/genetics/growth & development ; *Caenorhabditis elegans Proteins ; Cell Movement ; Cloning, Molecular ; Disintegrins/chemistry/genetics/*metabolism ; Extracellular Matrix/*metabolism ; Gene Expression Profiling ; Genes, Helminth ; Glycosylation ; Gonads/cytology/enzymology/growth & development ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Muscles/cytology/enzymology ; Mutation ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Sequence Alignment ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2000-08-19
    Description: The adenomatous polyposis coli gene (APC) is mutated in familial adenomatous polyposis and in sporadic colorectal tumors. Here the APC gene product is shown to bind through its armadillo repeat domain to a Rac-specific guanine nucleotide exchange factor (GEF), termed Asef. Endogenous APC colocalized with Asef in mouse colon epithelial cells and neuronal cells. Furthermore, APC enhanced the GEF activity of Asef and stimulated Asef-mediated cell flattening, membrane ruffling, and lamellipodia formation in MDCK cells. These results suggest that the APC-Asef complex may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawasaki, Y -- Senda, T -- Ishidate, T -- Koyama, R -- Morishita, T -- Iwayama, Y -- Higuchi, O -- Akiyama, T -- New York, N.Y. -- Science. 2000 Aug 18;289(5482):1194-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10947987" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Amino Acid Sequence ; Animals ; Brain/metabolism ; Cell Line ; Cell Membrane/ultrastructure ; Cell Size ; Colon/cytology/metabolism ; Cytoplasm/metabolism ; Cytoskeletal Proteins/*metabolism ; Guanine Nucleotide Exchange Factors/chemistry/genetics/*metabolism ; Guanosine Diphosphate/metabolism ; Humans ; Immunoblotting ; Intestinal Mucosa/cytology/metabolism ; Mice ; Molecular Sequence Data ; Neurons/metabolism ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/metabolism ; Rho Guanine Nucleotide Exchange Factors ; Signal Transduction ; *Trans-Activators ; Transfection ; Two-Hybrid System Techniques ; beta Catenin ; rac GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conaway, J W -- Conaway, R C -- New York, N.Y. -- Science. 2000 Apr 28;288(5466):632-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA. conawayj@omrf.ouhsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10799002" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA, Fungal/chemistry/metabolism ; Models, Molecular ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; RNA Polymerase II/*chemistry/metabolism ; RNA, Fungal/chemistry/metabolism ; RNA, Messenger/chemistry/metabolism ; Saccharomyces cerevisiae/*enzymology ; Templates, Genetic ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2000-07-07
    Description: The structure of the cytoplasmic assembly of voltage-dependent K+ channels was solved by x-ray crystallography at 2.1 angstrom resolution. The assembly includes the cytoplasmic (T1) domain of the integral membrane alpha subunit together with the oxidoreductase beta subunit in a fourfold symmetric T1(4)beta4 complex. An electrophysiological assay showed that this complex is oriented with four T1 domains facing the transmembrane pore and four beta subunits facing the cytoplasm. The transmembrane pore communicates with the cytoplasm through lateral, negatively charged openings above the T1(4)beta4 complex. The inactivation peptides of voltage-dependent K(+) channels reach their site of action by entering these openings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gulbis, J M -- Zhou, M -- Mann, S -- MacKinnon, R -- GM47400/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 7;289(5476):123-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10884227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Cytoplasm/chemistry ; Kv1.1 Potassium Channel ; Kv1.4 Potassium Channel ; Macromolecular Substances ; Models, Molecular ; Mutation ; Oocytes ; Oxidoreductases/chemistry/metabolism ; Patch-Clamp Techniques ; Peptides/metabolism ; Potassium Channels/*chemistry/genetics/*metabolism ; *Potassium Channels, Voltage-Gated ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2000-10-29
    Description: The effective regulation of T cell responses is dependent on opposing signals transmitted through two related cell-surface receptors, CD28 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Dimerization of CTLA-4 is required for the formation of high-avidity complexes with B7 ligands and for transmission of signals that attenuate T cell activation. We determined the crystal structure of the extracellular portion of CTLA-4 to 2.0 angstrom resolution. CTLA-4 belongs to the immunoglobulin superfamily and displays a strand topology similar to Valpha domains, with an unusual mode of dimerization that places the B7 binding sites distal to the dimerization interface. This organization allows each CTLA-4 dimer to bind two bivalent B7 molecules and suggests that a periodic arrangement of these components within the immunological synapse may contribute to the regulation of T cell responsiveness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ostrov, D A -- Shi, W -- Schwartz, J C -- Almo, S C -- Nathenson, S G -- AI07289/AI/NIAID NIH HHS/ -- AI42970/AI/NIAID NIH HHS/ -- CA09173/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):816-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11052947" target="_blank"〉PubMed〈/a〉
    Keywords: Abatacept ; Amino Acid Sequence ; Animals ; Antigen-Presenting Cells/immunology ; Antigens, CD ; Antigens, CD28/immunology/metabolism ; Antigens, CD80/chemistry/metabolism ; Antigens, Differentiation/*chemistry/*immunology/metabolism ; CTLA-4 Antigen ; Crystallography, X-Ray ; Dimerization ; Hydrogen Bonding ; *Immunoconjugates ; Ligands ; Lymphocyte Activation ; Mice ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: Basement membranes can help determine pathways of migrating axons. Although members of the nidogen (entactin) protein family are structural components of basement membranes, we find that nidogen is not required for basement membrane assembly in the nematode Caenorhabditis elegans. Nidogen is localized to body wall basement membranes and is required to direct longitudinal nerves dorsoventrally and to direct axons at the midlines. By examining migration of a single axon in vivo, we show that nidogen is required for the axon to switch from circumferential to longitudinal migration. Specialized basement membranes may thus regulate nerve position.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, S -- Wadsworth, W G -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):150-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Basement Membrane/*physiology ; Body Patterning ; Caenorhabditis elegans/anatomy & histology/embryology/genetics/*growth & ; development ; *Caenorhabditis elegans Proteins ; Cell Adhesion Molecules/genetics/physiology ; Cell Movement ; Cloning, Molecular ; Gene Expression ; Genes, Helminth ; In Situ Hybridization ; Intestines/cytology/metabolism ; Membrane Glycoproteins/analysis/chemistry/genetics/*physiology ; Motor Neurons/physiology/ultrastructure ; Muscles/metabolism ; Nervous System/anatomy & histology/embryology/growth & development/ultrastructure ; Neurons/metabolism ; Phenotype ; Protein Structure, Tertiary ; Receptors, Cell Surface/genetics/physiology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2001-10-20
    Description: The signal recognition particle (SRP) is a universally conserved ribonucleoprotein complex that mediates the cotranslational targeting of secretory and membrane proteins to cellular membranes. A crucial early step in SRP assembly in archaea and eukarya is the binding of protein SRP19 to specific sites on SRP RNA. Here we report the 1.8 angstrom resolution crystal structure of human SRP19 in complex with its primary binding site on helix 6 of SRP RNA, which consists of a stem-loop structure closed by an unusual GGAG tetraloop. Protein-RNA interactions are mediated by the specific recognition of a widened major groove and the tetraloop without any direct protein-base contacts and include a complex network of highly ordered water molecules. A model of the assembly of the SRP core comprising SRP19, SRP54, and SRP RNA based on crystallographic and biochemical data is proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wild, K -- Sinning, I -- Cusack, S -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):598-601.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemie-Zentrum (BZH), University of Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany. klemens.wild@bzh.uni-heidelberg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11641499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Binding Sites ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/*chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2001-04-09
    Description: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ivan, M -- Kondo, K -- Yang, H -- Kim, W -- Valiando, J -- Ohh, M -- Salic, A -- Asara, J M -- Lane, W S -- Kaelin , W G Jr -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):464-8. Epub 2001 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292862" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Cell Hypoxia ; Cell Line ; Cobalt/pharmacology ; Deferoxamine/pharmacology ; Humans ; Hydroxylation ; Hydroxyproline/*metabolism ; *Ligases ; Mass Spectrometry ; Mice ; Molecular Sequence Data ; Oxygen/*physiology ; Protein Structure, Tertiary ; Proteins/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/*metabolism ; Tumor Cells, Cultured ; *Tumor Suppressor Proteins ; *Ubiquitin-Protein Ligases ; Ubiquitins/metabolism ; Von Hippel-Lindau Tumor Suppressor Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...