ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (908)
  • Latest Papers from Table of Contents or Articles in Press  (908)
  • *Biological Evolution  (495)
  • Models, Molecular  (413)
  • 2005-2009  (908)
Collection
  • Articles  (908)
Source
  • Latest Papers from Table of Contents or Articles in Press  (908)
Keywords
Years
Year
  • 1
    Publication Date: 2009-12-18
    Description: Avian brood parasites and their hosts provide model systems for investigating links between recognition, learning, and their fitness consequences. One major evolutionary puzzle has continued to capture the attention of naturalists for centuries: why do hosts of brood parasites generally fail to recognize parasitic offspring after they have hatched from the egg, even when the host and parasitic chicks differ to almost comic degrees? One prominent theory to explain this pattern proposes that the costs of mistakenly learning to recognize the wrong offspring make recognition maladaptive. Here we show that American coots, Fulica americana, can recognize and reject parasitic chicks in their brood by using learned cues, despite the fact that the hosts and the brood parasites are of the same species. A series of chick cross-fostering experiments confirm that coots use first-hatched chicks in a brood as referents to learn to recognize their own chicks and then discriminate against later-hatched parasitic chicks in the same brood. When experimentally provided with the wrong reference chicks, coots can be induced to discriminate against their own offspring, confirming that the learning errors proposed by theory can exist. However, learning based on hatching order is reliable in naturally parasitized coot nests because host eggs hatch predictably ahead of parasite eggs. Conversely, a lack of reliable information may help to explain why the evolution of chick recognition is not more common in hosts of most interspecific brood parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shizuka, Daizaburo -- Lyon, Bruce E -- England -- Nature. 2010 Jan 14;463(7278):223-6. doi: 10.1038/nature08655. Epub 2009 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA. shizuka@biology.ucsc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016486" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birds/*parasitology/*physiology ; British Columbia ; Cues ; Discrimination Learning/*physiology ; Feeding Behavior/physiology ; Genetic Fitness ; Nesting Behavior/*physiology ; Ovum/growth & development ; Pattern Recognition, Visual/physiology ; Survival Rate ; Time Factors ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-22
    Description: Broken chromosomes arising from DNA double-strand breaks result from endogenous events such as the production of reactive oxygen species during cellular metabolism, as well as from exogenous sources such as ionizing radiation. Left unrepaired or incorrectly repaired they can lead to genomic changes that may result in cell death or cancer. DNA-dependent protein kinase (DNA-PK), a holoenzyme that comprises the DNA-PK catalytic subunit (DNA-PKcs) and the heterodimer Ku70/Ku80, has a major role in non-homologous end joining-the main pathway in mammals used to repair double-strand breaks. DNA-PKcs is a serine/threonine protein kinase comprising a single polypeptide chain of 4,128 amino acids and belonging to the phosphatidylinositol-3-OH kinase (PI(3)K)-related protein family. DNA-PKcs is involved in the sensing and transmission of DNA damage signals to proteins such as p53, setting off events that lead to cell cycle arrest. It phosphorylates a wide range of substrates in vitro, including Ku70/Ku80, which is translocated along DNA. Here we present the crystal structure of human DNA-PKcs at 6.6 A resolution, in which the overall fold is clearly visible, to our knowledge, for the first time. The many alpha-helical HEAT repeats (helix-turn-helix motifs) facilitate bending and allow the polypeptide chain to fold into a hollow circular structure. The carboxy-terminal kinase domain is located on top of this structure, and a small HEAT repeat domain that probably binds DNA is inside. The structure provides a flexible cradle to promote DNA double-strand-break repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2811870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sibanda, Bancinyane L -- Chirgadze, Dimitri Y -- Blundell, Tom L -- 079281/Wellcome Trust/United Kingdom -- A3846/Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jan 7;463(7277):118-21. doi: 10.1038/nature08648. Epub 2009 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Old Addenbrooke's site, 80 Tennis Court Road, Cambridge CB2 1GA, UK. lynn@cryst.bioc.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20023628" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Nuclear/chemistry ; Catalytic Domain ; Crystallography, X-Ray ; DNA/metabolism ; DNA Breaks, Double-Stranded ; DNA-Activated Protein Kinase/*chemistry/metabolism ; DNA-Binding Proteins/chemistry ; HeLa Cells ; *Helix-Turn-Helix Motifs ; Humans ; Models, Molecular ; Nuclear Proteins/*chemistry/metabolism ; Protein Folding ; Protein Structure, Secondary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-01-14
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340503/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340503/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly, Bernard T -- McCoy, Airlie J -- Spate, Kira -- Miller, Sharon E -- Evans, Philip R -- Honing, Stefan -- Owen, David J -- 090909/Wellcome Trust/United Kingdom -- MC_U105178845/Medical Research Council/United Kingdom -- England -- Nature. 2008 Dec 18;456(7224):976-79. doi: 10.1038/nature07422.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19140243" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Protein Complex 2/*chemistry/genetics/*metabolism ; Amino Acid Motifs ; Animals ; Antigens, CD4/*chemistry/*metabolism ; Binding Sites ; Conserved Sequence ; *Endocytosis ; Humans ; Leucine/*metabolism ; Mice ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Subunits/chemistry/genetics/metabolism ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayani, Saheeb Ahmed -- England -- Nature. 2009 Dec 24;462(7276):984. doi: 10.1038/462984b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033020" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; History, 20th Century ; History, 21st Century ; Humans ; Pakistan ; *Religion and Science ; Science/history
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-03-06
    Description: Osmoregulated transporters sense intracellular osmotic pressure and respond to hyperosmotic stress by accumulation of osmolytes to restore normal hydration levels. Here we report the determination of the X-ray structure of a member of the family of betaine/choline/carnitine transporters, the Na(+)-coupled symporter BetP from Corynebacterium glutamicum, which is a highly effective osmoregulated uptake system for glycine betaine. Glycine betaine is bound in a tryptophan box occluded from both sides of the membrane with aromatic side chains lining the transport pathway. BetP has the same overall fold as three unrelated Na(+)-coupled symporters. Whereas these are crystallized in either the outward-facing or the inward-facing conformation, the BetP structure reveals a unique intermediate conformation in the Na(+)-coupled transport cycle. The trimeric architecture of BetP and the break in three-fold symmetry by the osmosensing C-terminal helices suggest a regulatory mechanism of Na(+)-coupled osmolyte transport to counteract osmotic stress.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ressl, Susanne -- Terwisscha van Scheltinga, Anke C -- Vonrhein, Clemens -- Ott, Vera -- Ziegler, Christine -- England -- Nature. 2009 Mar 5;458(7234):47-52. doi: 10.1038/nature07819.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Biophysics, Department of Structural Biology, 60438 Frankfurt am Main, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19262666" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics/*metabolism ; Betaine/*metabolism ; Binding Sites ; Carrier Proteins/*chemistry/genetics/*metabolism ; Corynebacterium glutamicum/*chemistry/genetics ; Crystallography, X-Ray ; Ion Transport ; Models, Molecular ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Sodium/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-11-27
    Description: Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally, it is more difficult to design functional proteins. In comparison to recent successes in designing non-metalloproteins, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem Fe(B) centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297211/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297211/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yeung, Natasha -- Lin, Ying-Wu -- Gao, Yi-Gui -- Zhao, Xuan -- Russell, Brandy S -- Lei, Lanyu -- Miner, Kyle D -- Robinson, Howard -- Lu, Yi -- GM062211/GM/NIGMS NIH HHS/ -- R01 GM062211/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1079-82. doi: 10.1038/nature08620. Epub 2009 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940850" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallization ; Iron/metabolism ; Models, Molecular ; Myoglobin/chemistry ; Nitric Oxide/metabolism ; Oxidoreductases/*chemical synthesis/*chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-20
    Description: Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, Glt(Ph), which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt(Ph) in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt(Ph) and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reyes, Nicolas -- Ginter, Christopher -- Boudker, Olga -- R01 NS064357/NS/NINDS NIH HHS/ -- R01 NS064357-01A1/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Dec 17;462(7275):880-5. doi: 10.1038/nature08616. Epub 2009 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, Box 75, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924125" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport System X-AG/*chemistry/genetics/*metabolism ; Binding Sites ; Biological Transport ; Cross-Linking Reagents ; Crystallography, X-Ray ; Cysteine/genetics/metabolism ; Models, Molecular ; Movement ; Mutant Proteins/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Pyrococcus horikoshii/*chemistry ; Sodium/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Mar 19;458(7236):259. doi: 10.1038/458259a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295555" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; European Union/organization & administration ; *Federal Government ; Periodicals as Topic/*legislation & jurisprudence ; Politics ; Publishing/*legislation & jurisprudence ; *Religion and Science ; Turkey
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-02-13
    Description: Evolutionary biologists have long sought to understand the relationship between microevolution (adaptation), which can be observed both in nature and in the laboratory, and macroevolution (speciation and the origin of the divisions of the taxonomic hierarchy above the species level, and the development of complex organs), which cannot be witnessed because it occurs over intervals that far exceed the human lifespan. The connection between these processes is also a major source of conflict between science and religious belief. Biologists often forget that Charles Darwin offered a way of resolving this issue, and his proposal is ripe for re-evaluation in the light of recent research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reznick, David N -- Ricklefs, Robert E -- England -- Nature. 2009 Feb 12;457(7231):837-42. doi: 10.1038/nature07894.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of California, Riverside, California 92521, USA. gupy@ucr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212402" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; Extinction, Biological ; Genetic Speciation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2009-02-06
    Description: The heterotrimeric influenza virus polymerase, containing the PA, PB1 and PB2 proteins, catalyses viral RNA replication and transcription in the nucleus of infected cells. PB1 holds the polymerase active site and reportedly harbours endonuclease activity, whereas PB2 is responsible for cap binding. The PA amino terminus is understood to be the major functional part of the PA protein and has been implicated in several roles, including endonuclease and protease activities as well as viral RNA/complementary RNA promoter binding. Here we report the 2.2 angstrom (A) crystal structure of the N-terminal 197 residues of PA, termed PA(N), from an avian influenza H5N1 virus. The PA(N) structure has an alpha/beta architecture and reveals a bound magnesium ion coordinated by a motif similar to the (P)DX(N)(D/E)XK motif characteristic of many endonucleases. Structural comparisons and mutagenesis analysis of the motif identified in PA(N) provide further evidence that PA(N) holds an endonuclease active site. Furthermore, functional analysis with in vivo ribonucleoprotein reconstitution and direct in vitro endonuclease assays strongly suggest that PA(N) holds the endonuclease active site and has critical roles in endonuclease activity of the influenza virus polymerase, rather than PB1. The high conservation of this endonuclease active site among influenza strains indicates that PA(N) is an important target for the design of new anti-influenza therapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Puwei -- Bartlam, Mark -- Lou, Zhiyong -- Chen, Shoudeng -- Zhou, Jie -- He, Xiaojing -- Lv, Zongyang -- Ge, Ruowen -- Li, Xuemei -- Deng, Tao -- Fodor, Ervin -- Rao, Zihe -- Liu, Yingfang -- G0700848/Medical Research Council/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):909-13. doi: 10.1038/nature07720. Epub 2009 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194458" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; Catalytic Domain ; Crystallography, X-Ray ; Endonucleases/*chemistry/genetics/*metabolism ; Influenza A Virus, H5N1 Subtype/*enzymology ; Influenza in Birds/*virology ; Models, Molecular ; Protein Subunits/chemistry/genetics/metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchenau, Jurgen -- England -- Nature. 2009 Nov 19;462(7271):284-5. doi: 10.1038/462284a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of History at the University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA. jbuchenau@uncc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924194" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Emigration and Immigration ; Europe ; History, 19th Century ; History, 20th Century ; Humans ; Latin America ; Public Policy/history/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2009-05-05
    Description: The proteasome is a protease that controls diverse processes in eukaryotic cells. Its regulatory particle (RP) initiates the degradation of ubiquitin-protein conjugates by unfolding the substrate and translocating it into the proteasome core particle (CP) to be degraded. The RP has 19 subunits, and their pathway of assembly is not understood. Here we show that in the yeast Saccharomyces cerevisiae three proteins are found associated with RP but not with the RP-CP holoenzyme: Nas6, Rpn14 and Hsm3. Mutations in the corresponding genes confer proteasome loss-of-function phenotypes, despite their virtual absence from the holoenzyme. These effects result from deficient RP assembly. Thus, Nas6, Rpn14 and Hsm3 are RP chaperones. The RP contains six ATPases-the Rpt proteins-and each RP chaperone binds to the carboxy-terminal domain of a specific Rpt. We show in an accompanying study that RP assembly is templated through the Rpt C termini, apparently by their insertion into binding pockets in the CP. Thus, RP chaperones may regulate proteasome assembly by directly restricting the accessibility of Rpt C termini to the CP. In addition, competition between the RP chaperones and the CP for Rpt engagement may explain the release of RP chaperones as proteasomes mature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727592/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2727592/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roelofs, Jeroen -- Park, Soyeon -- Haas, Wilhelm -- Tian, Geng -- McAllister, Fiona E -- Huo, Ying -- Lee, Byung-Hoon -- Zhang, Fan -- Shi, Yigong -- Gygi, Steven P -- Finley, Daniel -- 5F32GM75737-2/GM/NIGMS NIH HHS/ -- GM043601/GM/NIGMS NIH HHS/ -- GM67945/GM/NIGMS NIH HHS/ -- R37 GM043601/GM/NIGMS NIH HHS/ -- R37 GM043601-19/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):861-5. doi: 10.1038/nature08063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19412159" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Carrier Proteins/genetics/metabolism ; Conserved Sequence ; Evolution, Molecular ; Holoenzymes/chemistry/metabolism ; Humans ; Models, Molecular ; Molecular Chaperones/genetics/*metabolism ; Mutation ; Phenotype ; Proteasome Endopeptidase Complex/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/genetics/metabolism ; Saccharomyces cerevisiae/*enzymology/genetics ; Saccharomyces cerevisiae Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Waal, Frans B M -- England -- Nature. 2009 Jul 9;460(7252):175. doi: 10.1038/460175a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Living Links Center, Emory University, 954 N. Gatewood Road, Atlanta, Georgia 30322, USA. dewaal@emory.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587747" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/physiology ; *Biological Evolution ; Cognition/*physiology ; Humans ; Laughter ; Phylogeny ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2009-02-13
    Description: Why infer evolution when you can watch it happen in real time? This is the basic premise of using populations of fast-replicating microorganisms in test tubes to study evolution. The approach, known as experimental evolution, has provided a way of testing many of the key hypotheses that arose from the modern evolutionary synthesis. However, details of the unnatural histories of microorganisms in test tubes can be extrapolated only so far. Potential future directions for the approach include studying microbial evolution for its own sake under the most natural conditions possible in the test tube, and testing some qualitative theories of genome evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckling, Angus -- Craig Maclean, R -- Brockhurst, Michael A -- Colegrave, Nick -- England -- Nature. 2009 Feb 12;457(7231):824-9. doi: 10.1038/nature07892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Oxford, Oxford OX1 3PS, UK. angus.buckling@zoo.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212400" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/genetics/growth & development/virology ; Bacterial Physiological Phenomena ; *Biodiversity ; *Biological Evolution ; *Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2009-02-13
    Description: The past two decades have witnessed profound changes in our understanding of the evolution of arthropods. Many of these insights derive from the adoption of molecular methods by systematists and developmental biologists, prompting a radical reordering of the relationships among extant arthropod classes and their closest non-arthropod relatives, and shedding light on the developmental basis for the origins of key characteristics. A complementary source of data is the discovery of fossils from several spectacular Cambrian faunas. These fossils form well-characterized groupings, making the broad pattern of Cambrian arthropod systematics increasingly consensual.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Budd, Graham E -- Telford, Maximilian J -- England -- Nature. 2009 Feb 12;457(7231):812-7. doi: 10.1038/nature07890.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth Sciences, Uppsala University, Villavagen 16, Uppsala SE-752 36, Sweden. graham.budd@pal.uu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212398" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropods/anatomy & histology/*classification/*physiology ; *Biological Evolution ; Fossils ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Feb 12;457(7231):763-4. doi: 10.1038/457763a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212352" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; History, 19th Century ; *Humanism/history ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2009-06-19
    Description: Natural habitats of some microorganisms may fluctuate erratically, whereas others, which are more predictable, offer the opportunity to prepare in advance for the next environmental change. In analogy to classical Pavlovian conditioning, microorganisms may have evolved to anticipate environmental stimuli by adapting to their temporal order of appearance. Here we present evidence for environmental change anticipation in two model microorganisms, Escherichia coli and Saccharomyces cerevisiae. We show that anticipation is an adaptive trait, because pre-exposure to the stimulus that typically appears early in the ecology improves the organism's fitness when encountered with a second stimulus. Additionally, we observe loss of the conditioned response in E. coli strains that were repeatedly exposed in a laboratory evolution experiment only to the first stimulus. Focusing on the molecular level reveals that the natural temporal order of stimuli is embedded in the wiring of the regulatory network-early stimuli pre-induce genes that would be needed for later ones, yet later stimuli only induce genes needed to cope with them. Our work indicates that environmental anticipation is an adaptive trait that was repeatedly selected for during evolution and thus may be ubiquitous in biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, Amir -- Romano, Gal H -- Groisman, Bella -- Yona, Avihu -- Dekel, Erez -- Kupiec, Martin -- Dahan, Orna -- Pilpel, Yitzhak -- England -- Nature. 2009 Jul 9;460(7252):220-4. doi: 10.1038/nature08112. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536156" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Biological Evolution ; Carbohydrate Metabolism ; Carbon/metabolism ; Cell Respiration ; *Environment ; Escherichia coli/genetics/*metabolism ; Fermentation ; Gene Expression Regulation ; Genomics ; Heat-Shock Response/genetics ; Lactose/metabolism ; Maltose/metabolism ; Osmotic Pressure ; Oxidative Stress/genetics ; Saccharomyces cerevisiae/genetics/*metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2009-11-13
    Description: Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2951323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cornejo, Melanie -- Davis, Tina N -- Del Bianco, Cristina -- Aster, Jon C -- Blacklow, Stephen C -- Kung, Andrew L -- Gilliland, D Gary -- Verdine, Gregory L -- Bradner, James E -- 5T32GM007598/GM/NIGMS NIH HHS/ -- N01-CO-12400/CO/NCI NIH HHS/ -- P01 CA119070/CA/NCI NIH HHS/ -- P01 CA119070-049001/CA/NCI NIH HHS/ -- R01 CA092433/CA/NCI NIH HHS/ -- R01 CA092433-06A2/CA/NCI NIH HHS/ -- R56 CA092433/CA/NCI NIH HHS/ -- R56 CA092433-06A1/CA/NCI NIH HHS/ -- T32 GM007598/GM/NIGMS NIH HHS/ -- T32 GM007598-30/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Nov 12;462(7270):182-8. doi: 10.1038/nature08543.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry & Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907488" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding, Competitive ; Cell Line, Tumor ; Cell Membrane Permeability ; Cell Proliferation/drug effects ; DNA-Binding Proteins/chemistry/metabolism ; Disease Models, Animal ; Drosophila Proteins/chemistry ; Gene Expression Regulation, Neoplastic/drug effects ; Genome/drug effects/genetics ; Humans ; Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism ; Mice ; Models, Molecular ; Nuclear Proteins/chemistry ; Peptides/chemical synthesis/chemistry/metabolism/*pharmacology ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics/pathology ; Protein Binding/drug effects ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptor, Notch1/*antagonists & inhibitors/chemistry/metabolism ; Signal Transduction/drug effects ; Substrate Specificity ; Transcription Factors/chemistry/metabolism ; Transcriptional Activation/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2009-10-30
    Description: Enzymes use substrate-binding energy both to promote ground-state association and to stabilize the reaction transition state selectively. The monomeric homing endonuclease I-AniI cleaves with high sequence specificity in the centre of a 20-base-pair (bp) DNA target site, with the amino (N)-terminal domain of the enzyme making extensive binding interactions with the left (-) side of the target site and the similarly structured carboxy (C)-terminal domain interacting with the right (+) side. Here we show that, despite the approximate twofold symmetry of the enzyme-DNA complex, there is almost complete segregation of interactions responsible for substrate binding to the (-) side of the interface and interactions responsible for transition-state stabilization to the (+) side. Although single base-pair substitutions throughout the entire DNA target site reduce catalytic efficiency, mutations in the (-) DNA half-site almost exclusively increase the dissociation constant (K(D)) and the Michaelis constant under single-turnover conditions (K(M)*), and those in the (+) half-site primarily decrease the turnover number (k(cat)*). The reduction of activity produced by mutations on the (-) side, but not mutations on the (+) side, can be suppressed by tethering the substrate to the endonuclease displayed on the surface of yeast. This dramatic asymmetry in the use of enzyme-substrate binding energy for catalysis has direct relevance to the redesign of endonucleases to cleave genomic target sites for gene therapy and other applications. Computationally redesigned enzymes that achieve new specificities on the (-) side do so by modulating K(M)*, whereas redesigns with altered specificities on the (+) side modulate k(cat)*. Our results illustrate how classical enzymology and modern protein design can each inform the other.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771326/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771326/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thyme, Summer B -- Jarjour, Jordan -- Takeuchi, Ryo -- Havranek, James J -- Ashworth, Justin -- Scharenberg, Andrew M -- Stoddard, Barry L -- Baker, David -- GM084433/GM/NIGMS NIH HHS/ -- R00 RR024107/RR/NCRR NIH HHS/ -- R00 RR024107-03/RR/NCRR NIH HHS/ -- R00 RR024107-04/RR/NCRR NIH HHS/ -- RL1 GM084433/GM/NIGMS NIH HHS/ -- RL1 GM084433-03/GM/NIGMS NIH HHS/ -- RL1CA133832/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 29;461(7268):1300-4. doi: 10.1038/nature08508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. sthyme@u.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865174" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; *Biocatalysis ; Computational Biology ; *Computer Simulation ; DNA/chemistry/metabolism ; Endonucleases/chemistry/*metabolism ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; RNA-Directed DNA Polymerase/chemistry/*metabolism ; Saccharomyces cerevisiae/metabolism ; Substrate Specificity ; *Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2009-12-17
    Description: Mistranslation arising from confusion of serine for alanine by alanyl-tRNA synthetases (AlaRSs) has profound functional consequences. Throughout evolution, two editing checkpoints prevent disease-causing mistranslation from confusing glycine or serine for alanine at the active site of AlaRS. In both bacteria and mice, Ser poses a bigger challenge than Gly. One checkpoint is the AlaRS editing centre, and the other is from widely distributed AlaXps-free-standing, genome-encoded editing proteins that clear Ser-tRNA(Ala). The paradox of misincorporating both a smaller (glycine) and a larger (serine) amino acid suggests a deep conflict for nature-designed AlaRS. Here we show the chemical basis for this conflict. Nine crystal structures, together with kinetic and mutational analysis, provided snapshots of adenylate formation for each amino acid. An inherent dilemma is posed by constraints of a structural design that pins down the alpha-amino group of the bound amino acid by using an acidic residue. This design, dating back more than 3 billion years, creates a serendipitous interaction with the serine OH that is difficult to avoid. Apparently because no better architecture for the recognition of alanine could be found, the serine misactivation problem was solved through free-standing AlaXps, which appeared contemporaneously with early AlaRSs. The results reveal unconventional problems and solutions arising from the historical design of the protein synthesis machinery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799227/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799227/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Min -- Chong, Yeeting E -- Shapiro, Ryan -- Beebe, Kirk -- Yang, Xiang-Lei -- Schimmel, Paul -- GM 15539/GM/NIGMS NIH HHS/ -- R01 GM015539/GM/NIGMS NIH HHS/ -- R01 GM015539-43/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):808-12. doi: 10.1038/nature08612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010690" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/*metabolism ; Alanine-tRNA Ligase/chemistry/genetics/*metabolism ; Aspartic Acid/genetics/metabolism ; Catalytic Domain ; Crystallization ; Escherichia coli/*enzymology ; Kinetics ; Models, Molecular ; Mutation ; *Protein Biosynthesis ; Protein Conformation ; RNA, Transfer, Ala/metabolism ; Serine/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2009-03-20
    Description: Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Xiao-Ting -- You, Hai-Lu -- Xu, Xing -- Dong, Zhi-Ming -- England -- Nature. 2009 Mar 19;458(7236):333-6. doi: 10.1038/nature07856.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Shandong Tianyu Museum of Nature, Lianhuashan Road West, Pingyi, Shandong, 273300, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295609" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; China ; Dentition ; Dinosaurs/*anatomy & histology/*classification ; Feathers/anatomy & histology ; Fossils ; History, Ancient ; Integumentary System/*anatomy & histology ; Phylogeny ; Skin/anatomy & histology ; Skull/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2009-04-17
    Description: Biosynthesis of the DNA base thymine depends on activity of the enzyme thymidylate synthase to catalyse the methylation of the uracil moiety of 2'-deoxyuridine-5'-monophosphate. All known thymidylate synthases rely on an active site residue of the enzyme to activate 2'-deoxyuridine-5'-monophosphate. This functionality has been demonstrated for classical thymidylate synthases, including human thymidylate synthase, and is instrumental in mechanism-based inhibition of these enzymes. Here we report an example of thymidylate biosynthesis that occurs without an enzymatic nucleophile. This unusual biosynthetic pathway occurs in organisms containing the thyX gene, which codes for a flavin-dependent thymidylate synthase (FDTS), and is present in several human pathogens. Our findings indicate that the putative active site nucleophile is not required for FDTS catalysis, and no alternative nucleophilic residues capable of serving this function can be identified. Instead, our findings suggest that a hydride equivalent (that is, a proton and two electrons) is transferred from the reduced flavin cofactor directly to the uracil ring, followed by an isomerization of the intermediate to form the product, 2'-deoxythymidine-5'-monophosphate. These observations indicate a very different chemical cascade than that of classical thymidylate synthases or any other known biological methylation. The findings and chemical mechanism proposed here, together with available structural data, suggest that selective inhibition of FDTSs, with little effect on human thymine biosynthesis, should be feasible. Because several human pathogens depend on FDTS for DNA biosynthesis, its unique mechanism makes it an attractive target for antibiotic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759699/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759699/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koehn, Eric M -- Fleischmann, Todd -- Conrad, John A -- Palfey, Bruce A -- Lesley, Scott A -- Mathews, Irimpan I -- Kohen, Amnon -- GM08270/GM/NIGMS NIH HHS/ -- R01 GM065368/GM/NIGMS NIH HHS/ -- R01 GM065368-05/GM/NIGMS NIH HHS/ -- R01 GM61087/GM/NIGMS NIH HHS/ -- U54GM074898/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 16;458(7240):919-23. doi: 10.1038/nature07973.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19370033" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Deoxyuracil Nucleotides/chemistry/metabolism ; Deuterium/metabolism ; Electrons ; Flavin-Adenine Dinucleotide/chemistry/metabolism ; Flavins/chemistry/*metabolism ; Helicobacter pylori/enzymology ; Humans ; Magnetic Resonance Spectroscopy ; Methylation ; Models, Molecular ; Mycobacterium tuberculosis/enzymology ; Protons ; Thermotoga maritima/*enzymology/*metabolism ; Thymidine/analogs & derivatives/metabolism ; Thymidine Monophosphate/*biosynthesis ; Thymidylate Synthase/antagonists & inhibitors/*genetics/*metabolism ; Uracil/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todes, Daniel -- England -- Nature. 2009 Nov 5;462(7269):36-7. doi: 10.1038/462036a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of the History of Medicine at Johns Hopkins University, 1900 East Monument Street, Baltimore, Maryland 21205, USA. dtodes@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890312" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Biological Science Disciplines/*history ; *Competitive Behavior ; Cooperative Behavior ; *Cultural Diversity ; Food Supply ; Great Britain ; History, 19th Century ; History, 20th Century ; Humans ; Literature, Modern/history ; Metaphor ; Models, Biological ; Population Density ; Russia ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2009-02-06
    Description: The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dias, Alexandre -- Bouvier, Denis -- Crepin, Thibaut -- McCarthy, Andrew A -- Hart, Darren J -- Baudin, Florence -- Cusack, Stephen -- Ruigrok, Rob W H -- England -- Nature. 2009 Apr 16;458(7240):914-8. doi: 10.1038/nature07745. Epub 2009 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMR 5233, 6 rue Jules Horowitz, BP181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194459" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Endonucleases/chemistry/*metabolism ; Enzyme Stability ; Histidine/metabolism ; Humans ; Influenza A Virus, H3N2 Subtype/*enzymology ; Influenza A Virus, H5N1 Subtype/enzymology ; Influenzavirus C/enzymology ; Manganese/metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Protein Subunits/*chemistry/*metabolism ; RNA Caps/*metabolism ; RNA Replicase/*chemistry/*metabolism ; Viral Proteins/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2009-12-25
    Description: The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879581/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879581/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Wenjun -- Ercan, Dalia -- Chen, Liang -- Yun, Cai-Hong -- Li, Danan -- Capelletti, Marzia -- Cortot, Alexis B -- Chirieac, Lucian -- Iacob, Roxana E -- Padera, Robert -- Engen, John R -- Wong, Kwok-Kin -- Eck, Michael J -- Gray, Nathanael S -- Janne, Pasi A -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA130876/CA/NCI NIH HHS/ -- R01 CA130876-02/CA/NCI NIH HHS/ -- R01 CA135257/CA/NCI NIH HHS/ -- R01AG2400401/AG/NIA NIH HHS/ -- R01CA080942/CA/NCI NIH HHS/ -- R01CA11446/CA/NCI NIH HHS/ -- R01CA116020/CA/NCI NIH HHS/ -- R01CA130876-02/CA/NCI NIH HHS/ -- R01CA135257/CA/NCI NIH HHS/ -- R01GM070590/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1070-4. doi: 10.1038/nature08622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/chemistry/*pharmacology/toxicity ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Drug Evaluation, Preclinical ; Drug Resistance, Neoplasm/genetics ; Lung/drug effects ; Mice ; Models, Chemical ; Models, Molecular ; Mutation/*genetics ; NIH 3T3 Cells ; Phosphorylation/drug effects ; Protein Kinase Inhibitors/chemistry/*pharmacology/toxicity ; Receptor, Epidermal Growth Factor/*antagonists & inhibitors/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2009 Jan 1;457(7225):40. doi: 10.1038/457040a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122633" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bahamas ; *Biological Evolution ; Fossils ; Geography ; Internet ; Lizards/physiology ; Photography ; *Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2009-10-02
    Description: A key step in many chromatin-related processes is the recognition of histone post-translational modifications by effector modules such as bromodomains and chromo-like domains of the Royal family. Whereas effector-mediated recognition of single post-translational modifications is well characterized, how the cell achieves combinatorial readout of histones bearing multiple modifications is poorly understood. One mechanism involves multivalent binding by linked effector modules. For example, the tandem bromodomains of human TATA-binding protein-associated factor-1 (TAF1) bind better to a diacetylated histone H4 tail than to monoacetylated tails, a cooperative effect attributed to each bromodomain engaging one acetyl-lysine mark. Here we report a distinct mechanism of combinatorial readout for the mouse TAF1 homologue Brdt, a testis-specific member of the BET protein family. Brdt associates with hyperacetylated histone H4 (ref. 7) and is implicated in the marked chromatin remodelling that follows histone hyperacetylation during spermiogenesis, the stage of spermatogenesis in which post-meiotic germ cells mature into fully differentiated sperm. Notably, we find that a single bromodomain (BD1) of Brdt is responsible for selectively recognizing histone H4 tails bearing two or more acetylation marks. The crystal structure of BD1 bound to a diacetylated H4 tail shows how two acetyl-lysine residues cooperate to interact with one binding pocket. Structure-based mutagenesis that reduces the selectivity of BD1 towards diacetylated tails destabilizes the association of Brdt with acetylated chromatin in vivo. Structural analysis suggests that other chromatin-associated proteins may be capable of a similar mode of ligand recognition, including yeast Bdf1, human TAF1 and human CBP/p300 (also known as CREBBP and EP300, respectively). Our findings describe a new mechanism for the combinatorial readout of histone modifications in which a single effector module engages two marks on a histone tail as a composite binding epitope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moriniere, Jeanne -- Rousseaux, Sophie -- Steuerwald, Ulrich -- Soler-Lopez, Montserrat -- Curtet, Sandrine -- Vitte, Anne-Laure -- Govin, Jerome -- Gaucher, Jonathan -- Sadoul, Karin -- Hart, Darren J -- Krijgsveld, Jeroen -- Khochbin, Saadi -- Muller, Christoph W -- Petosa, Carlo -- England -- Nature. 2009 Oct 1;461(7264):664-8. doi: 10.1038/nature08397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, BP 181, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794495" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Allosteric Regulation ; Animals ; Binding Sites ; COS Cells ; Cercopithecus aethiops ; Chromatin/chemistry/metabolism ; Crystallography, X-Ray ; Histones/*chemistry/*metabolism ; Lysine/metabolism ; Mice ; Models, Molecular ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2009-07-22
    Description: Acquired uniparental disomy (aUPD) is a common feature of cancer genomes, leading to loss of heterozygosity. aUPD is associated not only with loss-of-function mutations of tumour suppressor genes, but also with gain-of-function mutations of proto-oncogenes. Here we show unique gain-of-function mutations of the C-CBL (also known as CBL) tumour suppressor that are tightly associated with aUPD of the 11q arm in myeloid neoplasms showing myeloproliferative features. The C-CBL proto-oncogene, a cellular homologue of v-Cbl, encodes an E3 ubiquitin ligase and negatively regulates signal transduction of tyrosine kinases. Homozygous C-CBL mutations were found in most 11q-aUPD-positive myeloid malignancies. Although the C-CBL mutations were oncogenic in NIH3T3 cells, c-Cbl was shown to functionally and genetically act as a tumour suppressor. C-CBL mutants did not have E3 ubiquitin ligase activity, but inhibited that of wild-type C-CBL and CBL-B (also known as CBLB), leading to prolonged activation of tyrosine kinases after cytokine stimulation. c-Cbl(-/-) haematopoietic stem/progenitor cells (HSPCs) showed enhanced sensitivity to a variety of cytokines compared to c-Cbl(+/+) HSPCs, and transduction of C-CBL mutants into c-Cbl(-/-) HSPCs further augmented their sensitivities to a broader spectrum of cytokines, including stem-cell factor (SCF, also known as KITLG), thrombopoietin (TPO, also known as THPO), IL3 and FLT3 ligand (FLT3LG), indicating the presence of a gain-of-function that could not be attributed to a simple loss-of-function. The gain-of-function effects of C-CBL mutants on cytokine sensitivity of HSPCs largely disappeared in a c-Cbl(+/+) background or by co-transduction of wild-type C-CBL, which suggests the pathogenic importance of loss of wild-type C-CBL alleles found in most cases of C-CBL-mutated myeloid neoplasms. Our findings provide a new insight into a role of gain-of-function mutations of a tumour suppressor associated with aUPD in the pathogenesis of some myeloid cancer subsets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Masashi -- Suzuki, Takahiro -- Shih, Lee-Yung -- Otsu, Makoto -- Kato, Motohiro -- Yamazaki, Satoshi -- Tamura, Azusa -- Honda, Hiroaki -- Sakata-Yanagimoto, Mamiko -- Kumano, Keiki -- Oda, Hideaki -- Yamagata, Tetsuya -- Takita, Junko -- Gotoh, Noriko -- Nakazaki, Kumi -- Kawamata, Norihiko -- Onodera, Masafumi -- Nobuyoshi, Masaharu -- Hayashi, Yasuhide -- Harada, Hiroshi -- Kurokawa, Mineo -- Chiba, Shigeru -- Mori, Hiraku -- Ozawa, Keiya -- Omine, Mitsuhiro -- Hirai, Hisamaru -- Nakauchi, Hiromitsu -- Koeffler, H Phillip -- Ogawa, Seishi -- 2R01CA026038-30/CA/NCI NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):904-8. doi: 10.1038/nature08240. Epub 2009 Jul 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genomics Project, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19620960" target="_blank"〉PubMed〈/a〉
    Keywords: Allelic Imbalance ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosomes, Human, Pair 11/genetics ; Female ; *Genes, Tumor Suppressor ; Humans ; Leukemia, Myeloid/*genetics/metabolism/pathology ; Male ; Mice ; Mice, Knockout ; Mice, Nude ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/*metabolism ; Mutation ; NIH 3T3 Cells ; Neoplasm Transplantation ; Oncogenes/genetics ; Phosphorylation ; Protein Conformation ; Proto-Oncogene Proteins c-cbl/antagonists & ; inhibitors/chemistry/deficiency/*genetics/*metabolism ; Ubiquitination ; Uniparental Disomy/genetics ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2009-04-03
    Description: CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Xiuhua -- Biswas, Anindita -- Suel, Katherine E -- Jackson, Laurie K -- Martinez, Rita -- Gu, Hongmei -- Chook, Yuh Min -- 5-T32-GM008297/GM/NIGMS NIH HHS/ -- R01 GM069909/GM/NIGMS NIH HHS/ -- R01GM069909/GM/NIGMS NIH HHS/ -- R01GM069909-03S1/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, Texas 75390-9041, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339969" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Crystallography, X-Ray ; Epitopes ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Karyopherins/*chemistry/*metabolism ; Leucine/*metabolism ; Models, Molecular ; Nuclear Export Signals/*physiology ; Protein Binding/drug effects ; Protein Conformation ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Structure-Activity Relationship ; Substrate Specificity ; snRNP Core Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2009-11-27
    Description: Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784928/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784928/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krepkiy, Dmitriy -- Mihailescu, Mihaela -- Freites, J Alfredo -- Schow, Eric V -- Worcester, David L -- Gawrisch, Klaus -- Tobias, Douglas J -- White, Stephen H -- Swartz, Kenton J -- GM74737/GM/NIGMS NIH HHS/ -- GM86685/GM/NIGMS NIH HHS/ -- P01 GM086685/GM/NIGMS NIH HHS/ -- R01 GM074637/GM/NIGMS NIH HHS/ -- R01 RR014812/RR/NCRR NIH HHS/ -- ZIA NS002945-13/Intramural NIH HHS/ -- England -- Nature. 2009 Nov 26;462(7272):473-9. doi: 10.1038/nature08542.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940918" target="_blank"〉PubMed〈/a〉
    Keywords: Archaeal Proteins/chemistry/metabolism ; Circular Dichroism ; Lipid Bilayers/*chemistry/*metabolism ; Membrane Lipids/analysis/chemistry/metabolism ; *Membrane Potentials ; Models, Molecular ; Molecular Dynamics Simulation ; Neutron Diffraction ; Nuclear Magnetic Resonance, Biomolecular ; Potassium Channels, Voltage-Gated/*chemistry/metabolism ; Protein Structure, Tertiary ; Spectrometry, Fluorescence ; Water/*analysis/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2009-05-22
    Description: Transmembrane sodium-ion gradients provide energy that can be harnessed by 'secondary transporters' to drive the translocation of solute molecules into a cell. Decades of study have shown that such sodium-coupled transporters are involved in many physiological processes, making them targets for the treatment of numerous diseases. Within the past year, crystal structures of several sodium-coupled transporters from different families have been reported, showing a remarkable structural conservation between functionally unrelated transporters. These atomic-resolution structures are revealing the mechanism of the sodium-coupled transport of solutes across cellular membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krishnamurthy, Harini -- Piscitelli, Chayne L -- Gouaux, Eric -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 May 21;459(7245):347-55. doi: 10.1038/nature08143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Oregon 97239, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Humans ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Conformation ; Sodium/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2009-04-03
    Description: In the course of synaptic transmission in the brain and periphery, acetylcholine receptors (AChRs) rapidly transduce a chemical signal into an electrical impulse. The speed of transduction is facilitated by rapid ACh association and dissociation, suggesting a binding site relatively non-selective for small cations. Selective transduction has been thought to originate from the ability of ACh, over that of other organic cations, to trigger the subsequent channel-opening step. However, transitions to and from the open state were shown to be similar for agonists with widely different efficacies. By studying mutant AChRs, we show here that the ultimate closed-to-open transition is agonist-independent and preceded by two primed closed states; the first primed state elicits brief openings, whereas the second elicits long-lived openings. Long-lived openings and the associated primed state are detected in the absence and presence of an agonist, and exhibit the same kinetic signatures under both conditions. By covalently locking the agonist-binding sites in the bound conformation, we find that each site initiates a priming step. Thus, a change in binding-site conformation primes the AChR for channel opening in a process that enables selective activation by ACh while maximizing the speed and efficiency of the biological response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2712348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhtasimova, Nuriya -- Lee, Won Yong -- Wang, Hai-Long -- Sine, Steven M -- NS031744/NS/NINDS NIH HHS/ -- R01 NS031744/NS/NINDS NIH HHS/ -- R01 NS031744-18/NS/NINDS NIH HHS/ -- England -- Nature. 2009 May 21;459(7245):451-4. doi: 10.1038/nature07923. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Disulfides/metabolism ; Electric Conductivity ; Humans ; Kinetics ; Models, Molecular ; *Movement ; Nicotinic Agonists/pharmacology ; Patch-Clamp Techniques ; Protein Structure, Tertiary ; Receptors, Nicotinic/*chemistry/genetics/*metabolism ; Synaptic Transmission/physiology ; Torpedo
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hand, Eric -- England -- Nature. 2009 Jul 9;460(7252):161. doi: 10.1038/460161a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587733" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Carbon/metabolism ; Cell Respiration ; *Earth (Planet) ; *Ecosystem ; Fossils ; History, Ancient ; Oceans and Seas ; Oxygen/analysis/*metabolism ; Photosynthesis ; Plants/*metabolism ; Seawater/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomescu, Alexandru M F -- England -- Nature. 2009 Feb 19;457(7232):956. doi: 10.1038/457956c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Plant Physiological Phenomena ; *Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2009-04-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutschera, U -- England -- Nature. 2009 Apr 23;458(7241):967. doi: 10.1038/458967c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396120" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Competitive Behavior ; Cooperative Behavior ; History, 19th Century ; Models, Biological ; *Selection, Genetic ; *Translating ; *Translations
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2009-02-06
    Description: For a retrovirus such as HIV to be infectious, a properly formed capsid is needed; however, unusually among viruses, retrovirus capsids are highly variable in structure. According to the fullerene conjecture, they are composed of hexamers and pentamers of capsid protein (CA), with the shape of a capsid varying according to how the twelve pentamers are distributed and its size depending on the number of hexamers. Hexamers have been studied in planar and tubular arrays, but the predicted pentamers have not been observed. Here we report cryo-electron microscopic analyses of two in-vitro-assembled capsids of Rous sarcoma virus. Both are icosahedrally symmetric: one is composed of 12 pentamers, and the other of 12 pentamers and 20 hexamers. Fitting of atomic models of the two CA domains into the reconstructions shows three distinct inter-subunit interactions. These observations substantiate the fullerene conjecture, show how pentamers are accommodated at vertices, support the inference that nucleation is a crucial morphologic determinant, and imply that electrostatic interactions govern the differential assembly of pentamers and hexamers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721793/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721793/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardone, Giovanni -- Purdy, John G -- Cheng, Naiqian -- Craven, Rebecca C -- Steven, Alasdair C -- CA100322/CA/NCI NIH HHS/ -- R01 CA100322/CA/NCI NIH HHS/ -- R01 CA100322-05/CA/NCI NIH HHS/ -- Z01 AR027002-29/Intramural NIH HHS/ -- Z99 AR999999/Intramural NIH HHS/ -- England -- Nature. 2009 Feb 5;457(7230):694-8. doi: 10.1038/nature07724.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194444" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/chemistry/*metabolism/*ultrastructure ; Capsid Proteins/chemistry/genetics/metabolism/ultrastructure ; Cryoelectron Microscopy ; HIV/chemistry/genetics/ultrastructure ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Mutation ; Polymorphism, Genetic ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Rous sarcoma virus/*chemistry/genetics/*ultrastructure ; Static Electricity ; *Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2009-10-23
    Description: Maturation of precursor transfer RNA (pre-tRNA) includes excision of the 5' leader and 3' trailer sequences, removal of introns and addition of the CCA terminus. Nucleotide modifications are incorporated at different stages of tRNA processing, after the RNA molecule adopts the proper conformation. In bacteria, tRNA(Ile2) lysidine synthetase (TilS) modifies cytidine into lysidine (L; 2-lysyl-cytidine) at the first anticodon of tRNA(Ile2) (refs 4-9). This modification switches tRNA(Ile2) from a methionine-specific to an isoleucine-specific tRNA. However, the aminoacylation of tRNA(Ile2) by methionyl-tRNA synthetase (MetRS), before the modification by TilS, might lead to the misincorporation of methionine in response to isoleucine codons. The mechanism used by bacteria to avoid this pitfall is unknown. Here we show that the TilS enzyme specifically recognizes and modifies tRNA(Ile2) in its precursor form, thereby avoiding translation errors. We identified the lysidine modification in pre-tRNA(Ile2) isolated from RNase-E-deficient Escherichia coli and did not detect mature tRNA(Ile2) lacking this modification. Our kinetic analyses revealed that TilS can modify both types of RNA molecule with comparable efficiencies. X-ray crystallography and mutational analyses revealed that TilS specifically recognizes the entire L-shape structure in pre-tRNA(Ile2) through extensive interactions coupled with sequential domain movements. Our results demonstrate how TilS prevents the recognition of tRNA(Ile2) by MetRS and achieves high specificity for its substrate. These two key points form the basis for maintaining the fidelity of isoleucine codon translation in bacteria. Our findings also provide a rationale for the necessity of incorporating specific modifications at the precursor level during tRNA biogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Kotaro -- Bonnefond, Luc -- Kimura, Satoshi -- Suzuki, Tsutomu -- Ishitani, Ryuichiro -- Nureki, Osamu -- England -- Nature. 2009 Oct 22;461(7267):1144-8. doi: 10.1038/nature08474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa 225-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847269" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/genetics/*metabolism ; Apoproteins/genetics/metabolism ; Bacillus subtilis ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli ; Geobacillus ; Kinetics ; Lysine/analogs & derivatives/metabolism ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; *Protein Biosynthesis ; Pyrimidine Nucleosides/metabolism ; RNA, Transfer, Ile/genetics/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abbott, Alison -- England -- Nature. 2009 Feb 12;457(7231):772-3. doi: 10.1038/457772b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212369" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Biology/education ; Netherlands ; *Personnel Downsizing ; *Universities/economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abler, William L -- England -- Nature. 2009 Jan 22;457(7228):379. doi: 10.1038/457379d.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bees/physiology ; *Biological Evolution ; History, 20th Century ; Humans
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2009-08-21
    Description: Endosymbioses have dramatically altered eukaryotic life, but are thought to have negligibly affected prokaryotic evolution. Here, by analysing the flows of protein families, I present evidence that the double-membrane, gram-negative prokaryotes were formed as the result of a symbiosis between an ancient actinobacterium and an ancient clostridium. The resulting taxon has been extraordinarily successful, and has profoundly altered the evolution of life by providing endosymbionts necessary for the emergence of eukaryotes and by generating Earth's oxygen atmosphere. Their double-membrane architecture and the observed genome flows into them suggest a common evolutionary mechanism for their origin: an endosymbiosis between a clostridium and actinobacterium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lake, James A -- England -- Nature. 2009 Aug 20;460(7258):967-71. doi: 10.1038/nature08183.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, University of California, Los Angeles, California 90095, USA. lake@mbi.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693078" target="_blank"〉PubMed〈/a〉
    Keywords: Actinobacteria/*cytology ; *Biological Evolution ; Clostridium/*cytology ; *Endocytosis ; Eukaryotic Cells/cytology ; Gene Flow ; *Models, Biological ; Phylogeny ; Prokaryotic Cells/classification/*cytology ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-07-10
    Description: Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities. Many fundamental studies and technological applications of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of tubes into individual single-chirality components-has attracted considerable attention in recent years. Intense efforts so far have focused largely on, and resulted in solutions for, a weaker version of the sorting problem: metal/semiconductor separation. A systematic and general method to purify each and every single-chirality species of the same electronic type from the synthetic mixture of SWNTs is highly desirable, but the task has proven to be insurmountable to date. Here we report such a method, which allows purification of all 12 major single-chirality semiconducting species from a synthetic mixture, with sufficient yield for both fundamental studies and application development. We have designed an effective search of a DNA library of approximately 10(60) in size, and have identified more than 20 short DNA sequences, each of which recognizes and enables chromatographic purification of a particular nanotube species from the synthetic mixture. Recognition sequences exhibit a periodic purine-pyrimidines pattern, which can undergo hydrogen-bonding to form a two-dimensional sheet, and fold selectively on nanotubes into a well-ordered three-dimensional barrel. We propose that the ordered two-dimensional sheet and three-dimensional barrel provide the structural basis for the observed DNA recognition of SWNTs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tu, Xiaomin -- Manohar, Suresh -- Jagota, Anand -- Zheng, Ming -- England -- Nature. 2009 Jul 9;460(7252):250-3. doi: 10.1038/nature08116.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DuPont Central Research and Development, Wilmington, Delaware 19880, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587767" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chemical Fractionation/*methods ; DNA/*chemistry/genetics ; Gene Library ; Models, Molecular ; Nanotubes, Carbon/*chemistry ; Nucleic Acid Conformation ; Sensitivity and Specificity ; Spectrophotometry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2009-06-12
    Description: Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729916/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tubbs, Julie L -- Latypov, Vitaly -- Kanugula, Sreenivas -- Butt, Amna -- Melikishvili, Manana -- Kraehenbuehl, Rolf -- Fleck, Oliver -- Marriott, Andrew -- Watson, Amanda J -- Verbeek, Barbara -- McGown, Gail -- Thorncroft, Mary -- Santibanez-Koref, Mauro F -- Millington, Christopher -- Arvai, Andrew S -- Kroeger, Matthew D -- Peterson, Lisa A -- Williams, David M -- Fried, Michael G -- Margison, Geoffrey P -- Pegg, Anthony E -- Tainer, John A -- CA018137/CA/NCI NIH HHS/ -- CA097209/CA/NCI NIH HHS/ -- CA59887/CA/NCI NIH HHS/ -- GM070662/GM/NIGMS NIH HHS/ -- R01 CA059887/CA/NCI NIH HHS/ -- R01 CA059887-12/CA/NCI NIH HHS/ -- R01 CA059887-13/CA/NCI NIH HHS/ -- R01 GM070662/GM/NIGMS NIH HHS/ -- R01 GM070662-01/GM/NIGMS NIH HHS/ -- R01 GM070662-02/GM/NIGMS NIH HHS/ -- R01 GM070662-03/GM/NIGMS NIH HHS/ -- R01 GM070662-04/GM/NIGMS NIH HHS/ -- R01 GM070662-05/GM/NIGMS NIH HHS/ -- R01 GM070662-06/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Jun 11;459(7248):808-13. doi: 10.1038/nature08076.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516334" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*chemistry/*metabolism ; Alkylation ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Damage ; *DNA Repair ; Guanine/analogs & derivatives/chemistry/metabolism ; Humans ; Models, Molecular ; Protein Binding ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2009-04-03
    Description: Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harmon, Luke J -- Matthews, Blake -- Des Roches, Simone -- Chase, Jonathan M -- Shurin, Jonathan B -- Schluter, Dolph -- England -- Nature. 2009 Apr 30;458(7242):1167-70. doi: 10.1038/nature07974. Epub 2009 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA. lukeh@uidaho.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19339968" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; Biomass ; British Columbia ; *Ecosystem ; Fishes/*classification/*physiology ; Food Chain ; Fresh Water ; Genetic Speciation ; Models, Biological ; Population Density ; Predatory Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2009-07-07
    Description: Development normally occurs similarly in all individuals within an isogenic population, but mutations often affect the fates of individual organisms differently. This phenomenon, known as partial penetrance, has been observed in diverse developmental systems. However, it remains unclear how the underlying genetic network specifies the set of possible alternative fates and how the relative frequencies of these fates evolve. Here we identify a stochastic cell fate determination process that operates in Bacillus subtilis sporulation mutants and show how it allows genetic control of the penetrance of multiple fates. Mutations in an intercompartmental signalling process generate a set of discrete alternative fates not observed in wild-type cells, including rare formation of two viable 'twin' spores, rather than one within a single cell. By genetically modulating chromosome replication and septation, we can systematically tune the penetrance of each mutant fate. Furthermore, signalling and replication perturbations synergize to significantly increase the penetrance of twin sporulation. These results suggest a potential pathway for developmental evolution between monosporulation and twin sporulation through states of intermediate twin penetrance. Furthermore, time-lapse microscopy of twin sporulation in wild-type Clostridium oceanicum shows a strong resemblance to twin sporulation in these B. subtilis mutants. Together the results suggest that noise can facilitate developmental evolution by enabling the initial expression of discrete morphological traits at low penetrance, and allowing their stabilization by gradual adjustment of genetic parameters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716064/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2716064/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eldar, Avigdor -- Chary, Vasant K -- Xenopoulos, Panagiotis -- Fontes, Michelle E -- Loson, Oliver C -- Dworkin, Jonathan -- Piggot, Patrick J -- Elowitz, Michael B -- GM43577/GM/NIGMS NIH HHS/ -- P50 GM068763/GM/NIGMS NIH HHS/ -- P50 GM068763-060006/GM/NIGMS NIH HHS/ -- R01 GM043577/GM/NIGMS NIH HHS/ -- R01 GM043577-21A2/GM/NIGMS NIH HHS/ -- R01 GM079771/GM/NIGMS NIH HHS/ -- R01 GM079771-03/GM/NIGMS NIH HHS/ -- R01GM079771/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Jul 23;460(7254):510-4. doi: 10.1038/nature08150. Epub 2009 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19578359" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/genetics/*physiology ; *Biological Evolution ; DNA Replication ; *Gene Expression Regulation, Bacterial ; Spores, Bacterial/growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elshakry, Marwa -- England -- Nature. 2009 Oct 29;461(7268):1200-1. doi: 10.1038/4611200a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Columbia University, 611 Fayerweather Hall, New York, New York 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865145" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; History, 19th Century ; Internationality/*history ; Philosophy/*history ; Religion and Science
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2009-11-20
    Description: Allosteric regulation is used as a very efficient mechanism to control protein activity in most biological processes, including signal transduction, metabolism, catalysis and gene regulation. Allosteric proteins can exist in several conformational states with distinct binding or enzymatic activity. Effectors are considered to function in a purely structural manner by selectively stabilizing a specific conformational state, thereby regulating protein activity. Here we show that allosteric proteins can be regulated predominantly by changes in their structural dynamics. We have used NMR spectroscopy and isothermal titration calorimetry to characterize cyclic AMP (cAMP) binding to the catabolite activator protein (CAP), a transcriptional activator that has been a prototype for understanding effector-mediated allosteric control of protein activity. cAMP switches CAP from the 'off' state (inactive), which binds DNA weakly and non-specifically, to the 'on' state (active), which binds DNA strongly and specifically. In contrast, cAMP binding to a single CAP mutant, CAP-S62F, fails to elicit the active conformation; yet, cAMP binding to CAP-S62F strongly activates the protein for DNA binding. NMR and thermodynamic analyses show that despite the fact that CAP-S62F-cAMP(2) adopts the inactive conformation, its strong binding to DNA is driven by a large conformational entropy originating in enhanced protein motions induced by DNA binding. The results provide strong evidence that changes in protein motions may activate allosteric proteins that are otherwise structurally inactive.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tzeng, Shiou-Ru -- Kalodimos, Charalampos G -- England -- Nature. 2009 Nov 19;462(7271):368-72. doi: 10.1038/nature08560.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924217" target="_blank"〉PubMed〈/a〉
    Keywords: Cyclic AMP/chemistry/metabolism ; Cyclic AMP Receptor Protein/chemistry/*metabolism ; DNA/metabolism ; *Energy Metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2009-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agrawal, Aneil F -- England -- Nature. 2009 Nov 19;462(7271):294-5. doi: 10.1038/462294a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924202" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Outbred Strains ; *Biological Evolution ; Caenorhabditis elegans/genetics/physiology ; Inbreeding ; Mutation ; Reproduction/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2009-02-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlberg, Per E -- England -- Nature. 2009 Feb 26;457(7233):1094-5. doi: 10.1038/4571094a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242466" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Fertilization/*physiology ; Fishes/anatomy & histology/classification/*embryology/*physiology ; *Fossils ; Viviparity, Nonmammalian/*physiology ; Western Australia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicholls, Henry -- England -- Nature. 2009 Sep 10;461(7261):164-6. doi: 10.1038/461164a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Developmental Biology ; Fossils ; Hagfishes/*anatomy & histology/*classification/embryology/genetics ; Head/anatomy & histology ; Humans ; Lampreys/*anatomy & histology/*classification/embryology/genetics ; MicroRNAs/genetics/metabolism ; Models, Biological ; Phylogeny ; Sharks/anatomy & histology/classification/embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-07-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hauser, Marc D -- England -- Nature. 2009 Jul 9;460(7252):190-6. doi: 10.1038/460190a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychology, Harvard University, Cambridge, Massachusetts 02138, USA. mdh102559@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587759" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Creativity ; *Culture ; *Developmental Biology ; Finches/anatomy & histology/physiology ; Humans ; Language ; Linguistics ; *Models, Biological ; Music/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erwin, Douglas -- England -- Nature. 2009 Nov 19;462(7271):282-3. doi: 10.1038/462282a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Paleobiology, National Museum of Natural History, Washington DC, USA. erwind@si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; Fossils ; *Models, Biological ; Paleontology/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2009-09-01
    Description: The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762480/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alvarado, Diego -- Klein, Daryl E -- Lemmon, Mark A -- R01 CA079992/CA/NCI NIH HHS/ -- R01 CA079992-09/CA/NCI NIH HHS/ -- R01 CA079992-10/CA/NCI NIH HHS/ -- R01 CA125432/CA/NCI NIH HHS/ -- R01 CA125432-01A1/CA/NCI NIH HHS/ -- R01 CA125432-02/CA/NCI NIH HHS/ -- R01 CA125432-03/CA/NCI NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):287-91. doi: 10.1038/nature08297. Epub 2009 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19718021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Crystallography, X-Ray ; Drosophila Proteins/*antagonists & inhibitors/chemistry/genetics/*metabolism ; Drosophila melanogaster/chemistry/*metabolism ; Enzyme Activation ; Humans ; Ligands ; Models, Molecular ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Receptor, ErbB-2/antagonists & inhibitors/*chemistry/*metabolism ; Receptors, Invertebrate Peptide/*antagonists & ; inhibitors/chemistry/genetics/*metabolism ; Scattering, Small Angle ; Solubility ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2009-11-13
    Description: Tracing the transient atomic motions that lie at the heart of chemical reactions requires high-resolution multidimensional structural information on the timescale of molecular vibrations, which commonly range from 10 fs to 1 ps. For simple chemical systems, it has been possible to map out in considerable detail the reactive potential-energy surfaces describing atomic motions and resultant reaction dynamics, but such studies remain challenging for complex chemical and biological transformations. A case in point is the green fluorescent protein (GFP) from the jellyfish Aequorea victoria, which is a widely used gene expression marker owing to its efficient bioluminescence. This feature is known to arise from excited-state proton transfer (ESPT), yet the atomistic details of the process are still not fully understood. Here we show that femtosecond stimulated Raman spectroscopy provides sufficiently detailed and time-resolved vibrational spectra of the electronically excited chromophore of GFP to reveal skeletal motions involved in the proton transfer that produces the fluorescent form of the protein. In particular, we observe that the frequencies and intensities of two marker bands, the C-O and C = N stretching modes at opposite ends of the conjugated chromophore, oscillate out of phase with a period of 280 fs; we attribute these oscillations to impulsively excited low-frequency phenoxyl-ring motions, which optimize the geometry of the chromophore for ESPT. Our findings illustrate that femtosecond simulated Raman spectroscopy is a powerful approach to revealing the real-time nuclear dynamics that make up a multidimensional polyatomic reaction coordinate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Chong -- Frontiera, Renee R -- Tran, Rosalie -- Mathies, Richard A -- England -- Nature. 2009 Nov 12;462(7270):200-4. doi: 10.1038/nature08527.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19907490" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Evolution, Molecular ; Green Fluorescent Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Movement ; Protons ; Spectrum Analysis, Raman ; Time Factors ; *Vibration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2009-07-07
    Description: To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from the gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic beta-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 A resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Yiling -- Jayaram, Hariharan -- Shane, Tania -- Kolmakova-Partensky, Ludmila -- Wu, Fang -- Williams, Carole -- Xiong, Yong -- Miller, Christopher -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM031768/GM/NIGMS NIH HHS/ -- R01 GM031768-26/GM/NIGMS NIH HHS/ -- R01 GM089688/GM/NIGMS NIH HHS/ -- T32 NS 07292/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19578361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Bacterial Proteins/*chemistry ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multigene Family ; Protein Conformation ; Salmonella typhi/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2009-11-06
    Description: Recent earth science studies have pointed out that massive acceleration of the global nitrogen cycle by anthropogenic addition of bio-available nitrogen has led to a host of environmental problems. Nitrous oxide (N(2)O) is a greenhouse gas that is an intermediate during the biological process known as denitrification. Copper-containing nitrite reductase (CuNIR) is a key enzyme in the process; it produces a precursor for N(2)O by catalysing the one-electron reduction of nitrite (NO2-) to nitric oxide (NO). The reduction step is performed by an efficient electron-transfer reaction with a redox-partner protein. However, details of the mechanism during the electron-transfer reaction are still unknown. Here we show the high-resolution crystal structure of the electron-transfer complex for CuNIR with its cognate cytochrome c as the electron donor. The hydrophobic electron-transfer path is formed at the docking interface by desolvation owing to close contact between the two proteins. Structural analysis of the interface highlights an essential role for the loop region with a hydrophobic patch for protein-protein recognition; it also shows how interface construction allows the variation in atomic components to achieve diverse biological electron transfers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nojiri, Masaki -- Koteishi, Hiroyasu -- Nakagami, Takuya -- Kobayashi, Kazuo -- Inoue, Tsuyoshi -- Yamaguchi, Kazuya -- Suzuki, Shinnichiro -- England -- Nature. 2009 Nov 5;462(7269):117-20. doi: 10.1038/nature08507.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. nojiri@ch.wani.osaka-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890332" target="_blank"〉PubMed〈/a〉
    Keywords: Achromobacter denitrificans/*enzymology ; Crystallography, X-Ray ; Cytochromes c/chemistry/metabolism ; Electron Transport ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Nitric Oxide/metabolism ; Nitrite Reductases/*chemistry/*metabolism ; Nitrites/metabolism ; Nitrous Oxide/metabolism ; Protein Conformation ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Check Hayden, Erika -- England -- Nature. 2009 Feb 12;457(7231):776-9. doi: 10.1038/457776a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212378" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Culture ; Genes/genetics ; Genome, Human ; Humans ; Mutation ; *Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2009-02-03
    Description: Membrane proteins that transport hydrophobic compounds have important roles in multi-drug resistance and can cause a number of diseases, underscoring the importance of protein-mediated transport of hydrophobic compounds. Hydrophobic compounds readily partition into regular membrane lipid bilayers, and their transport through an aqueous protein channel is energetically unfavourable. Alternative transport models involving acquisition from the lipid bilayer by lateral diffusion have been proposed for hydrophobic substrates. So far, all transport proteins for which a lateral diffusion mechanism has been proposed function as efflux pumps. Here we present the first example of a lateral diffusion mechanism for the uptake of hydrophobic substrates by the Escherichia coli outer membrane long-chain fatty acid transporter FadL. A FadL mutant in which a lateral opening in the barrel wall is constricted, but which is otherwise structurally identical to wild-type FadL, does not transport substrates. A crystal structure of FadL from Pseudomonas aeruginosa shows that the opening in the wall of the beta-barrel is conserved and delineates a long, hydrophobic tunnel that could mediate substrate passage from the extracellular environment, through the polar lipopolysaccharide layer and, by means of the lateral opening in the barrel wall, into the lipid bilayer from where the substrate can diffuse into the periplasm. Because FadL homologues are found in pathogenic and biodegrading bacteria, our results have implications for combating bacterial infections and bioremediating xenobiotics in the environment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658730/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658730/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hearn, Elizabeth M -- Patel, Dimki R -- Lepore, Bryan W -- Indic, Mridhu -- van den Berg, Bert -- 1R01GM074824/GM/NIGMS NIH HHS/ -- F32 GM079820-01/GM/NIGMS NIH HHS/ -- F32 GM079820-02/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM074824/GM/NIGMS NIH HHS/ -- R01 GM074824-01/GM/NIGMS NIH HHS/ -- R01 GM074824-02/GM/NIGMS NIH HHS/ -- R01 GM074824-03/GM/NIGMS NIH HHS/ -- R01 GM074824-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Mar 19;458(7236):367-70. doi: 10.1038/nature07678. Epub 2009 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182779" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/*chemistry/genetics/*metabolism ; Cloning, Molecular ; Crystallography, X-Ray ; Diffusion ; Escherichia coli/*chemistry/genetics ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Fatty Acid Transport Proteins/*chemistry/genetics/*metabolism ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/metabolism ; Models, Molecular ; Pseudomonas aeruginosa/*chemistry/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2009-08-04
    Description: Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nolen, B J -- Tomasevic, N -- Russell, A -- Pierce, D W -- Jia, Z -- McCormick, C D -- Hartman, J -- Sakowicz, R -- Pollard, T D -- F32 GM074374-02/GM/NIGMS NIH HHS/ -- GM-066311/GM/NIGMS NIH HHS/ -- GM074374-02/GM/NIGMS NIH HHS/ -- P01 GM066311/GM/NIGMS NIH HHS/ -- P01 GM066311-01A1/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1031-4. doi: 10.1038/nature08231. Epub 2009 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19648907" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/metabolism ; Actin-Related Protein 2/antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 2-3 Complex/*antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 3/antagonists & inhibitors/chemistry/metabolism ; Actins/chemistry/metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cattle ; Cell Line ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Indoles/classification/metabolism/pharmacology ; Listeria/physiology ; Models, Molecular ; Monocytes/immunology ; Protein Conformation/drug effects ; Schizosaccharomyces ; Thiazoles/chemistry/classification/metabolism/pharmacology ; Thiophenes/classification/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-11-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Anthony G -- England -- Nature. 2009 Nov 26;462(7272):420-1. doi: 10.1038/462420a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19940907" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers/*chemistry/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Neutron Diffraction ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2009-09-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vasquez, Valeria -- Perozo, Eduardo -- England -- Nature. 2009 Sep 3;461(7260):47-9. doi: 10.1038/461047a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727188" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; Ion Channel Gating/*physiology ; Ion Channels/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Mycobacterium tuberculosis/chemistry ; Pressure ; Protein Structure, Quaternary ; Staphylococcus aureus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2009-01-02
    Description: Pyrrolysine (Pyl), the 22nd natural amino acid, is genetically encoded by UAG and inserted into proteins by the unique suppressor tRNA(Pyl) (ref. 1). The Methanosarcinaceae produce Pyl and express Pyl-containing methyltransferases that allow growth on methylamines. Homologous methyltransferases and the Pyl biosynthetic and coding machinery are also found in two bacterial species. Pyl coding is maintained by pyrrolysyl-tRNA synthetase (PylRS), which catalyses the formation of Pyl-tRNA(Pyl) (refs 4, 5). Pyl is not a recent addition to the genetic code. PylRS was already present in the last universal common ancestor; it then persisted in organisms that utilize methylamines as energy sources. Recent protein engineering efforts added non-canonical amino acids to the genetic code. This technology relies on the directed evolution of an 'orthogonal' tRNA synthetase-tRNA pair in which an engineered aminoacyl-tRNA synthetase (aaRS) specifically and exclusively acylates the orthogonal tRNA with a non-canonical amino acid. For Pyl the natural evolutionary process developed such a system some 3 billion years ago. When transformed into Escherichia coli, Methanosarcina barkeri PylRS and tRNA(Pyl) function as an orthogonal pair in vivo. Here we show that Desulfitobacterium hafniense PylRS-tRNA(Pyl) is an orthogonal pair in vitro and in vivo, and present the crystal structure of this orthogonal pair. The ancient emergence of PylRS-tRNA(Pyl) allowed the evolution of unique structural features in both the protein and the tRNA. These structural elements manifest an intricate, specialized aaRS-tRNA interaction surface that is highly distinct from those observed in any other known aaRS-tRNA complex; it is this general property that underlies the molecular basis of orthogonality.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nozawa, Kayo -- O'Donoghue, Patrick -- Gundllapalli, Sarath -- Araiso, Yuhei -- Ishitani, Ryuichiro -- Umehara, Takuya -- Soll, Dieter -- Nureki, Osamu -- R01 GM022854/GM/NIGMS NIH HHS/ -- R01 GM022854-33/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B34 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19118381" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/genetics/*metabolism ; Aminoacylation ; Crystallography, X-Ray ; Desulfitobacterium/*enzymology/genetics ; Escherichia coli/genetics ; Lysine/*analogs & derivatives/biosynthesis/genetics/metabolism ; Methanosarcina barkeri/enzymology/genetics ; Models, Molecular ; RNA, Transfer, Amino Acid-Specific/genetics/metabolism ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2009-02-20
    Description: The complement system is an essential component of the innate and acquired immune system, and consists of a series of proteolytic cascades that are initiated by the presence of microorganisms. In health, activation of complement is precisely controlled through membrane-bound and soluble plasma-regulatory proteins including complement factor H (fH; ref. 2), a 155 kDa protein composed of 20 domains (termed complement control protein repeats). Many pathogens have evolved the ability to avoid immune-killing by recruiting host complement regulators and several pathogens have adapted to avoid complement-mediated killing by sequestering fH to their surface. Here we present the structure of a complement regulator in complex with its pathogen surface-protein ligand. This reveals how the important human pathogen Neisseria meningitidis subverts immune responses by mimicking the host, using protein instead of charged-carbohydrate chemistry to recruit the host complement regulator, fH. The structure also indicates the molecular basis of the host-specificity of the interaction between fH and the meningococcus, and informs attempts to develop novel therapeutics and vaccines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2670278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, Muriel C -- Prosser, Beverly E -- Caesar, Joseph J E -- Kugelberg, Elisabeth -- Li, Su -- Zhang, Qian -- Quoraishi, Sadik -- Lovett, Janet E -- Deane, Janet E -- Sim, Robert B -- Roversi, Pietro -- Johnson, Steven -- Tang, Christoph M -- Lea, Susan M -- 083599/Wellcome Trust/United Kingdom -- G0400775/Medical Research Council/United Kingdom -- G0400775(71657)/Medical Research Council/United Kingdom -- G0500367/Medical Research Council/United Kingdom -- G0601195/Medical Research Council/United Kingdom -- G0601195(79743)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Apr 16;458(7240):890-3. doi: 10.1038/nature07769. Epub 2009 Feb 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225461" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Bacterial/*chemistry/*metabolism ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Carbohydrates/*chemistry ; Complement Factor H/*chemistry/immunology/*metabolism ; Crystallography, X-Ray ; Ligands ; Models, Molecular ; *Molecular Mimicry ; Neisseria meningitidis/chemistry/immunology/*metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2009-01-23
    Description: Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oda, Toshiro -- Iwasa, Mitsusada -- Aihara, Tomoki -- Maeda, Yuichiro -- Narita, Akihiro -- England -- Nature. 2009 Jan 22;457(7228):441-5. doi: 10.1038/nature07685.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉X-ray Structural Analysis Research Team, RIKEN SPring-8 Center, RIKEN Harima Institute, 1-1-1, Kouto, Sayo, Hyogo 679-5148, Japan. toda@spring8.or.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158791" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/*metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cell Movement ; Glutamine/metabolism ; Hydrolysis ; Magnetics ; Models, Molecular ; Muscle Contraction ; Muscle, Skeletal/chemistry ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Rabbits ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hendry, Andrew P -- England -- Nature. 2009 Mar 12;458(7235):162-4. doi: 10.1038/458162a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19279629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; *Genetic Speciation ; Humans ; Hybridization, Genetic ; Species Specificity ; Terminology as Topic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2009-12-25
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873764/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873764/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Christie, Peter J -- R01 GM048746/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):992-4. doi: 10.1038/462992b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033031" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry/*metabolism ; Conjugation, Genetic/*physiology ; DNA, Bacterial/*metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Models, Molecular ; Protein Structure, Quaternary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2009-12-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flannery, David -- England -- Nature. 2009 Dec 24;462(7276):984. doi: 10.1038/462984c.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033018" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; China ; *Terminology as Topic ; *Translating
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2009-06-12
    Description: Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874955/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cicchillo, Robert M -- Zhang, Houjin -- Blodgett, Joshua A V -- Whitteck, John T -- Li, Gongyong -- Nair, Satish K -- van der Donk, Wilfred A -- Metcalf, William W -- P01 GM077596/GM/NIGMS NIH HHS/ -- P01 GM077596-03/GM/NIGMS NIH HHS/ -- R01 GM059334/GM/NIGMS NIH HHS/ -- R01 GM059334-09/GM/NIGMS NIH HHS/ -- R01 GM59334/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):871-4. doi: 10.1038/nature07972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516340" target="_blank"〉PubMed〈/a〉
    Keywords: Aminobutyrates/*chemistry/*metabolism ; Biocatalysis ; Crystallography, X-Ray ; Dioxygenases/chemistry/genetics/*metabolism ; Escherichia coli ; Formates/metabolism ; Magnetic Resonance Spectroscopy ; Mass Spectrometry ; Models, Biological ; Models, Molecular ; Molecular Conformation ; Organophosphonates/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2009-02-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Attenborough, David -- England -- Nature. 2009 Feb 19;457(7232):967. doi: 10.1038/457967a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19225509" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Biology/history ; Greenhouse Effect ; History, 19th Century ; History, 20th Century ; Human Activities ; *Television
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2009-10-30
    Description: Urea is highly concentrated in the mammalian kidney to produce the osmotic gradient necessary for water re-absorption. Free diffusion of urea across cell membranes is slow owing to its high polarity, and specialized urea transporters have evolved to achieve rapid and selective urea permeation. Here we present the 2.3 A structure of a functional urea transporter from the bacterium Desulfovibrio vulgaris. The transporter is a homotrimer, and each subunit contains a continuous membrane-spanning pore formed by the two homologous halves of the protein. The pore contains a constricted selectivity filter that can accommodate several dehydrated urea molecules in single file. Backbone and side-chain oxygen atoms provide continuous coordination of urea as it progresses through the filter, and well-placed alpha-helix dipoles provide further compensation for dehydration energy. These results establish that the urea transporter operates by a channel-like mechanism and reveal the physical and chemical basis of urea selectivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871279/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871279/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levin, Elena J -- Quick, Matthias -- Zhou, Ming -- GM075026/GM/NIGMS NIH HHS/ -- HL086392/HL/NHLBI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 DK088057/DK/NIDDK NIH HHS/ -- R01 HL086392/HL/NHLBI NIH HHS/ -- R01 HL086392-04/HL/NHLBI NIH HHS/ -- R01 HL086392-04S1/HL/NHLBI NIH HHS/ -- R01 HL086392-05/HL/NHLBI NIH HHS/ -- T32 HL087745/HL/NHLBI NIH HHS/ -- T32 HL087745-03/HL/NHLBI NIH HHS/ -- T32HL087745/HL/NHLBI NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM075026-040007/GM/NIGMS NIH HHS/ -- U54 GM075026-050007/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):757-61. doi: 10.1038/nature08558. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology & Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865084" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Crystallography, X-Ray ; Desulfovibrio vulgaris/*chemistry ; Humans ; Kidney/*chemistry ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Oocytes/metabolism ; Protein Folding ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Structure-Activity Relationship ; Urea/metabolism ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2009-05-22
    Description: Acetoacetate decarboxylase (AADase) has long been cited as the prototypical example of the marked shifts in the pK(a) values of ionizable groups that can occur in an enzyme active site. In 1966, it was hypothesized that in AADase the origin of the large pK(a) perturbation (-4.5 log units) observed in the nucleophilic Lys 115 results from the proximity of Lys 116, marking the first proposal of microenvironment effects in enzymology. The electrostatic perturbation hypothesis has been demonstrated in a number of enzymes, but never for the enzyme that inspired its conception, owing to the lack of a three-dimensional structure. Here we present the X-ray crystal structures of AADase and of the enamine adduct with the substrate analogue 2,4-pentanedione. Surprisingly, the shift of the pK(a) of Lys 115 is not due to the proximity of Lys 116, the side chain of which is oriented away from the active site. Instead, Lys 116 participates in the structural anchoring of Lys 115 in a long, hydrophobic funnel provided by the novel fold of the enzyme. Thus, AADase perturbs the pK(a) of the nucleophile by means of a desolvation effect by placement of the side chain into the protein core while enforcing the proximity of polar residues, which facilitate decarboxylation through electrostatic and steric effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ho, Meng-Chiao -- Menetret, Jean-Francois -- Tsuruta, Hiro -- Allen, Karen N -- England -- Nature. 2009 May 21;459(7245):393-7. doi: 10.1038/nature07938.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19458715" target="_blank"〉PubMed〈/a〉
    Keywords: Biocatalysis ; Carboxy-Lyases/*chemistry ; Catalytic Domain ; Chromobacterium/*enzymology ; Clostridium acetobutylicum/*enzymology ; Crystallography, X-Ray ; Decarboxylation ; Hydrophobic and Hydrophilic Interactions ; Lysine/chemistry/metabolism ; Models, Molecular ; Pentanones/metabolism ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2009-01-02
    Description: The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661029/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661029/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Fiona L -- Stec, Boguslaw -- Pop, Cristina -- Dobaczewska, Malgorzata K -- Lee, JeongEun J -- Monosov, Edward -- Robinson, Howard -- Salvesen, Guy S -- Schwarzenbacher, Robert -- Riedl, Stefan J -- P01 CA069381/CA/NCI NIH HHS/ -- P01 CA069381-130009/CA/NCI NIH HHS/ -- P01CA69381/CA/NCI NIH HHS/ -- P30 CA030199/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01AA017238/AA/NIAAA NIH HHS/ -- England -- Nature. 2009 Feb 19;457(7232):1019-22. doi: 10.1038/nature07606. Epub 2008 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19118384" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD95/*chemistry/*metabolism ; Crystallography, X-Ray ; Death Domain Receptor Signaling Adaptor Proteins/chemistry/metabolism ; Fas-Associated Death Domain Protein/*chemistry/*metabolism ; Humans ; Models, Molecular ; Multiprotein Complexes/chemistry/metabolism ; *Receptor Aggregation ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-03-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoag, Hannah -- England -- Nature. 2009 Mar 26;458(7237):393. doi: 10.1038/458393a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325594" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Canada ; History, 21st Century ; Religion and Science ; Science/*organization & administration
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2009-09-18
    Description: Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth. Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land, extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Organ, Chris L -- Janes, Daniel E -- Meade, Andrew -- Pagel, Mark -- 1 F32 GM075490-01/GM/NIGMS NIH HHS/ -- 5 F32 GM072494/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Sep 17;461(7262):389-92. doi: 10.1038/nature08350.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA. corgan@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759619" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/physiology ; Algorithms ; Animals ; Bayes Theorem ; *Biological Evolution ; *Extinction, Biological ; Female ; Fossils ; Genotype ; History, Ancient ; Male ; Marine Biology ; Markov Chains ; Monte Carlo Method ; Oviposition/genetics/physiology ; Phylogeny ; Reptiles/classification/*genetics/*physiology ; Sex Chromosomes/*genetics ; *Sex Determination Processes ; Sex Ratio ; Temperature ; Viviparity, Nonmammalian/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2009-01-06
    Description: A subset of essential cellular proteins requires the assistance of chaperonins (in Escherichia coli, GroEL and GroES), double-ring complexes in which the two rings act alternately to bind, encapsulate and fold a wide range of nascent or stress-denatured proteins. This process starts by the trapping of a substrate protein on hydrophobic surfaces in the central cavity of a GroEL ring. Then, binding of ATP and co-chaperonin GroES to that ring ejects the non-native protein from its binding sites, through forced unfolding or other major conformational changes, and encloses it in a hydrophilic chamber for folding. ATP hydrolysis and subsequent ATP binding to the opposite ring trigger dissociation of the chamber and release of the substrate protein. The bacteriophage T4 requires its own version of GroES, gp31, which forms a taller folding chamber, to fold the major viral capsid protein gp23 (refs 16-20). Polypeptides are known to fold inside the chaperonin complex, but the conformation of an encapsulated protein has not previously been visualized. Here we present structures of gp23-chaperonin complexes, showing both the initial captured state and the final, close-to-native state with gp23 encapsulated in the folding chamber. Although the chamber is expanded, it is still barely large enough to contain the elongated gp23 monomer, explaining why the GroEL-GroES complex is not able to fold gp23 and showing how the chaperonin structure distorts to enclose a large, physiological substrate protein.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2728927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clare, D K -- Bakkes, P J -- van Heerikhuizen, H -- van der Vies, S M -- Saibil, H R -- 070776/Wellcome Trust/United Kingdom -- 079605/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Jan 1;457(7225):107-10. doi: 10.1038/nature07479.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Crystallography and Institute for Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19122642" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid Proteins/*chemistry/*metabolism ; Chaperonin 10/chemistry/metabolism ; Chaperonin 60/chemistry/*metabolism ; Models, Molecular ; Multiprotein Complexes/*chemistry/*metabolism ; *Protein Folding ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2009-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, Daniel E -- England -- Nature. 2009 May 7;459(7243):41-2. doi: 10.1038/459041a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthropology ; *Biological Evolution ; *Fossils ; Geography ; Hominidae/*anatomy & histology/*classification ; Humans ; Indonesia ; Paleontology ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seehausen, Ole -- England -- Nature. 2009 Apr 30;458(7242):1122-3. doi: 10.1038/4581122a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19407790" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biodiversity ; *Biological Evolution ; British Columbia ; *Ecosystem ; Fishes/*classification/*physiology ; Food Chain ; Fresh Water ; Genetic Speciation ; Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2009-10-23
    Description: Adapiform or 'adapoid' primates first appear in the fossil record in the earliest Eocene epoch ( approximately 55 million years (Myr) ago), and were common components of Palaeogene primate communities in Europe, Asia and North America. Adapiforms are commonly referred to as the 'lemur-like' primates of the Eocene epoch, and recent phylogenetic analyses have placed adapiforms as stem members of Strepsirrhini, a primate suborder whose crown clade includes lemurs, lorises and galagos. An alternative view is that adapiforms are stem anthropoids. This debate has recently been rekindled by the description of a largely complete skeleton of the adapiform Darwinius, from the middle Eocene of Europe, which has been widely publicised as an important 'link' in the early evolution of Anthropoidea. Here we describe the complete dentition and jaw of a large-bodied adapiform (Afradapis gen. nov.) from the earliest late Eocene of Egypt ( approximately 37 Myr ago) that exhibits a striking series of derived dental and gnathic features that also occur in younger anthropoid primates-notably the earliest catarrhine ancestors of Old World monkeys and apes. Phylogenetic analysis of 360 morphological features scored across 117 living and extinct primates (including all candidate stem anthropoids) does not place adapiforms as haplorhines (that is, members of a Tarsius-Anthropoidea clade) or as stem anthropoids, but rather as sister taxa of crown Strepsirrhini; Afradapis and Darwinius are placed in a geographically widespread clade of caenopithecine adapiforms that left no known descendants. The specialized morphological features that these adapiforms share with anthropoids are therefore most parsimoniously interpreted as evolutionary convergences. As the largest non-anthropoid primate ever documented in Afro-Arabia, Afradapis nevertheless provides surprising new evidence for prosimian diversity in the Eocene of Africa, and raises the possibility that ecological competition between adapiforms and higher primates might have played an important role during the early evolution of stem and crown Anthropoidea in Afro-Arabia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seiffert, Erik R -- Perry, Jonathan M G -- Simons, Elwyn L -- Boyer, Doug M -- England -- Nature. 2009 Oct 22;461(7267):1118-21. doi: 10.1038/nature08429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 11794-8081, USA. erik.seiffert@stonybrook.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847263" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; *Biological Evolution ; Dentition ; Egypt ; Mandible/anatomy & histology ; Phylogeny ; Primates/*anatomy & histology/*classification ; Tooth/anatomy & histology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holmes, Kenneth C -- England -- Nature. 2009 Jan 22;457(7228):389-90. doi: 10.1038/457389a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19158779" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*chemistry/*metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cell Movement ; Glutamine/metabolism ; Hydrolysis ; Magnetics ; Models, Molecular ; Muscle Contraction ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2009-06-19
    Description: The ability to respond to light is crucial for most organisms. BLUF is a recently identified photoreceptor protein domain that senses blue light using a FAD chromophore. BLUF domains are present in various proteins from the Bacteria, Euglenozoa and Fungi. Although structures of single-domain BLUF proteins have been determined, none are available for a BLUF protein containing a functional output domain; the mechanism of light activation in this new class of photoreceptors has thus remained poorly understood. Here we report the biochemical, structural and mechanistic characterization of a full-length, active photoreceptor, BlrP1 (also known as KPN_01598), from Klebsiella pneumoniae. BlrP1 consists of a BLUF sensor domain and a phosphodiesterase EAL output domain which hydrolyses cyclic dimeric GMP (c-di-GMP). This ubiquitous second messenger controls motility, biofilm formation, virulence and antibiotic resistance in the Bacteria. Crystal structures of BlrP1 complexed with its substrate and metal ions involved in catalysis or in enzyme inhibition provide a detailed understanding of the mechanism of the EAL-domain c-di-GMP phosphodiesterases. These structures also sketch out a path of light activation of the phosphodiesterase output activity. Photon absorption by the BLUF domain of one subunit of the antiparallel BlrP1 homodimer activates the EAL domain of the second subunit through allosteric communication transmitted through conserved domain-domain interfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barends, Thomas R M -- Hartmann, Elisabeth -- Griese, Julia J -- Beitlich, Thorsten -- Kirienko, Natalia V -- Ryjenkov, Dmitri A -- Reinstein, Jochen -- Shoeman, Robert L -- Gomelsky, Mark -- Schlichting, Ilme -- England -- Nature. 2009 Jun 18;459(7249):1015-8. doi: 10.1038/nature07966.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Jahnstrasse 29, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536266" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-GMP Phosphodiesterases/*chemistry/metabolism/*radiation effects ; Allosteric Regulation/radiation effects ; Biocatalysis/radiation effects ; Catalytic Domain ; Crystallography, X-Ray ; Cyclic GMP/analogs & derivatives/metabolism ; Klebsiella pneumoniae/*enzymology ; *Light ; Metals/metabolism ; Models, Molecular ; Phosphorus/metabolism ; Photons ; Photoreceptors, Microbial/*chemistry/metabolism/*radiation effects ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2009-09-18
    Description: Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M. tuberculosis and act as selective suicide-substrate inhibitors of the M. tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172082/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3172082/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Gang -- Li, Dongyang -- de Carvalho, Luiz Pedro Sorio -- Deng, Haiteng -- Tao, Hui -- Vogt, Guillaume -- Wu, Kangyun -- Schneider, Jean -- Chidawanyika, Tamutenda -- Warren, J David -- Li, Huilin -- Nathan, Carl -- P01 AI056293/AI/NIAID NIH HHS/ -- P01 AI056293-05/AI/NIAID NIH HHS/ -- P01-AI056293/AI/NIAID NIH HHS/ -- R01 AI055549/AI/NIAID NIH HHS/ -- R01 AI055549-01/AI/NIAID NIH HHS/ -- R01AI070285/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Oct 1;461(7264):621-6. doi: 10.1038/nature08357. Epub 2009 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA. gal2005@med.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759536" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain/drug effects ; Humans ; Hydrogen Bonding ; Kinetics ; Models, Molecular ; Mycobacterium tuberculosis/*drug effects/*enzymology/growth & development ; Oxazolidinones/metabolism/pharmacology ; Protease Inhibitors/chemistry/*pharmacology ; Proteasome Endopeptidase Complex/chemistry/metabolism ; *Proteasome Inhibitors ; Protein Carbonylation/drug effects ; Protein Conformation/drug effects ; Protein Subunits ; Substrate Specificity ; Thiazoles/pharmacology ; Threonine/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2009-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cocroft, Rex -- England -- Nature. 2009 Jul 23;460(7254):439. doi: 10.1038/460439e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Missouri, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19626069" target="_blank"〉PubMed〈/a〉
    Keywords: Animal Communication ; Animals ; *Biological Evolution ; *Ecosystem ; *Learning ; Predatory Behavior
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2009-01-27
    Description: The biosynthesis of several protein cofactors is subject to feedback regulation by riboswitches. Flavin mononucleotide (FMN)-specific riboswitches, also known as RFN elements, direct expression of bacterial genes involved in the biosynthesis and transport of riboflavin (vitamin B(2)) and related compounds. Here we present the crystal structures of the Fusobacterium nucleatum riboswitch bound to FMN, riboflavin and antibiotic roseoflavin. The FMN riboswitch structure, centred on an FMN-bound six-stem junction, does not fold by collinear stacking of adjacent helices, typical for folding of large RNAs. Rather, it adopts a butterfly-like scaffold, stapled together by opposingly directed but nearly identically folded peripheral domains. FMN is positioned asymmetrically within the junctional site and is specifically bound to RNA through interactions with the isoalloxazine ring chromophore and direct and Mg(2+)-mediated contacts with the phosphate moiety. Our structural data, complemented by binding and footprinting experiments, imply a largely pre-folded tertiary RNA architecture and FMN recognition mediated by conformational transitions within the junctional binding pocket. The inherent plasticity of the FMN-binding pocket and the availability of large openings make the riboswitch an attractive target for structure-based design of FMN-like antimicrobial compounds. Our studies also explain the effects of spontaneous and antibiotic-induced deregulatory mutations and provided molecular insights into FMN-based control of gene expression in normal and riboflavin-overproducing bacterial strains.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726715/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726715/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Serganov, Alexander -- Huang, Lili -- Patel, Dinshaw J -- R01 GM073618/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Mar 12;458(7235):233-7. doi: 10.1038/nature07642. Epub 2009 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA. serganoa@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19169240" target="_blank"〉PubMed〈/a〉
    Keywords: Coenzymes/*metabolism ; Flavin Mononucleotide/*metabolism ; Fusobacterium nucleatum/*chemistry/genetics/*metabolism ; *Gene Expression Regulation, Bacterial ; Models, Molecular ; Nucleic Acid Conformation ; RNA, Bacterial/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2009-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedman, William E -- England -- Nature. 2009 Sep 10;461(7261):167. doi: 10.1038/461167b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19741683" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anniversaries and Special Events ; *Biological Evolution ; Biological Science Disciplines/*history ; History, 18th Century ; History, 19th Century ; Selection, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2009-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Friedman, Matt -- England -- Nature. 2009 Nov 19;462(7271):255. doi: 10.1038/462255e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Oxford, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19924171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biodiversity ; *Biological Evolution ; Models, Statistical ; Paleontology/methods ; Vertebrates/*classification
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2009-06-12
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689211/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689211/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Litman, Gary W -- Cannon, John P -- R01 AI023338/AI/NIAID NIH HHS/ -- R01 AI023338-24/AI/NIAID NIH HHS/ -- R01 AI057559/AI/NIAID NIH HHS/ -- R01 AI057559-05/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):784-6. doi: 10.1038/459784a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516328" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology ; *Biological Evolution ; Humans ; Lampreys/*immunology/metabolism ; Lymphocytes/cytology/*immunology/metabolism ; Receptors, Immunologic/*immunology ; T-Lymphocytes/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2009-03-03
    Description: The lipopolysaccharide (LPS) of Gram negative bacteria is a well-known inducer of the innate immune response. Toll-like receptor (TLR) 4 and myeloid differentiation factor 2 (MD-2) form a heterodimer that recognizes a common 'pattern' in structurally diverse LPS molecules. To understand the ligand specificity and receptor activation mechanism of the TLR4-MD-2-LPS complex we determined its crystal structure. LPS binding induced the formation of an m-shaped receptor multimer composed of two copies of the TLR4-MD-2-LPS complex arranged symmetrically. LPS interacts with a large hydrophobic pocket in MD-2 and directly bridges the two components of the multimer. Five of the six lipid chains of LPS are buried deep inside the pocket and the remaining chain is exposed to the surface of MD-2, forming a hydrophobic interaction with the conserved phenylalanines of TLR4. The F126 loop of MD-2 undergoes localized structural change and supports this core hydrophobic interface by making hydrophilic interactions with TLR4. Comparison with the structures of tetra-acylated antagonists bound to MD-2 indicates that two other lipid chains in LPS displace the phosphorylated glucosamine backbone by approximately 5 A towards the solvent area. This structural shift allows phosphate groups of LPS to contribute to receptor multimerization by forming ionic interactions with a cluster of positively charged residues in TLR4 and MD-2. The TLR4-MD-2-LPS structure illustrates the remarkable versatility of the ligand recognition mechanisms employed by the TLR family, which is essential for defence against diverse microbial infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Beom Seok -- Song, Dong Hyun -- Kim, Ho Min -- Choi, Byong-Seok -- Lee, Hayyoung -- Lee, Jie-Oh -- England -- Nature. 2009 Apr 30;458(7242):1191-5. doi: 10.1038/nature07830. Epub 2009 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, KAIST, Daejeon, 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19252480" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Escherichia coli/chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Lipopolysaccharides/*chemistry/*immunology ; Lymphocyte Antigen 96/*chemistry/*immunology ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Structure-Activity Relationship ; Toll-Like Receptor 4/*chemistry/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2009-06-19
    Description: Macrophages are aptly positioned to function as the primary line of defence against invading pathogens in many organs, including the lung and peritoneum. Their ability to phagocytose and clear microorganisms has been well documented. Macrophages possess several substances with which they can kill bacteria, including reactive oxygen species, nitric oxide, and antimicrobial proteins. We proposed that macrophage-derived proteinases may contribute to the antimicrobial properties of macrophages. Macrophage elastase (also known as matrix metalloproteinase 12 or MMP12) is an enzyme predominantly expressed in mature tissue macrophages and is implicated in several disease processes, including emphysema. Physiological functions for MMP12 have not been described. Here we show that Mmp12(-/-) mice exhibit impaired bacterial clearance and increased mortality when challenged with both gram-negative and gram-positive bacteria at macrophage-rich portals of entry, such as the peritoneum and lung. Intracellular stores of MMP12 are mobilized to macrophage phagolysosomes after the ingestion of bacterial pathogens. Once inside phagolysosomes, MMP12 adheres to bacterial cell walls where it disrupts cellular membranes resulting in bacterial death. The antimicrobial properties of MMP12 do not reside within its catalytic domain, but rather within the carboxy-terminal domain. This domain contains a unique four amino acid sequence on an exposed beta loop of the protein that is required for the observed antimicrobial activity. The present study represents, to our knowledge, the first report of direct antimicrobial activity by a matrix metallopeptidase, and describes a new antimicrobial peptide that is sequentially and structurally unique in nature.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885871/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885871/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Houghton, A McGarry -- Hartzell, William O -- Robbins, Clinton S -- Gomis-Ruth, F Xavier -- Shapiro, Steven D -- R01 HL082541/HL/NHLBI NIH HHS/ -- R01 HL082541-01/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Jul 30;460(7255):637-41. doi: 10.1038/nature08181. Epub 2009 Jun 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA. houghtonm@dom.pitt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19536155" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Bacterial Agents/pharmacology ; Bacterial Infections/*enzymology ; *Bacterial Physiological Phenomena ; Humans ; Kaplan-Meier Estimate ; Klebsiella pneumoniae/drug effects ; Macrophages/*enzymology/*microbiology ; Matrix Metalloproteinase 12/chemistry/genetics/*metabolism/pharmacology ; Mice ; Mice, Knockout ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Staphylococcus aureus/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2009-08-25
    Description: The ability of cells to sense and respond to mechanical force underlies diverse processes such as touch and hearing in animals, gravitropism in plants, and bacterial osmoregulation. In bacteria, mechanosensation is mediated by the mechanosensitive channels of large (MscL), small (MscS), potassium-dependent (MscK) and mini (MscM) conductances. These channels act as 'emergency relief valves' protecting bacteria from lysis upon acute osmotic down-shock. Among them, MscL has been intensively studied since the original identification and characterization 15 years ago. MscL is reversibly and directly gated by changes in membrane tension. In the open state, MscL forms a non-selective 3 nS conductance channel which gates at tensions close to the lytic limit of the bacterial membrane. An earlier crystal structure at 3.5 A resolution of a pentameric MscL from Mycobacterium tuberculosis represents a closed-state or non-conducting conformation. MscL has a complex gating behaviour; it exhibits several intermediates between the closed and open states, including one putative non-conductive expanded state and at least three sub-conducting states. Although our understanding of the closed and open states of MscL has been increasing, little is known about the structures of the intermediate states despite their importance in elucidating the complete gating process of MscL. Here we present the crystal structure of a carboxy-terminal truncation mutant (Delta95-120) of MscL from Staphylococcus aureus (SaMscL(CDelta26)) at 3.8 A resolution. Notably, SaMscL(CDelta26) forms a tetrameric channel with both transmembrane helices tilted away from the membrane normal at angles close to that inferred for the open state, probably corresponding to a non-conductive but partially expanded intermediate state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737600/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737600/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Zhenfeng -- Gandhi, Chris S -- Rees, Douglas C -- GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211/GM/NIGMS NIH HHS/ -- R01 GM084211-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Sep 3;461(7260):120-4. doi: 10.1038/nature08277. Epub 2009 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19701184" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/chemistry/metabolism ; Pressure ; Protein Structure, Quaternary ; Staphylococcus aureus/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2009-11-06
    Description: Bet hedging-stochastic switching between phenotypic states-is a canonical example of an evolutionary adaptation that facilitates persistence in the face of fluctuating environmental conditions. Although bet hedging is found in organisms ranging from bacteria to humans, direct evidence for an adaptive origin of this behaviour is lacking. Here we report the de novo evolution of bet hedging in experimental bacterial populations. Bacteria were subjected to an environment that continually favoured new phenotypic states. Initially, our regime drove the successive evolution of novel phenotypes by mutation and selection; however, in two (of 12) replicates this trend was broken by the evolution of bet-hedging genotypes that persisted because of rapid stochastic phenotype switching. Genome re-sequencing of one of these switching types revealed nine mutations that distinguished it from the ancestor. The final mutation was both necessary and sufficient for rapid phenotype switching; nonetheless, the evolution of bet hedging was contingent upon earlier mutations that altered the relative fitness effect of the final mutation. These findings capture the adaptive evolution of bet hedging in the simplest of organisms, and suggest that risk-spreading strategies may have been among the earliest evolutionary solutions to life in fluctuating environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beaumont, Hubertus J E -- Gallie, Jenna -- Kost, Christian -- Ferguson, Gayle C -- Rainey, Paul B -- England -- Nature. 2009 Nov 5;462(7269):90-3. doi: 10.1038/nature08504.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology & Evolution, Massey University, Private Bag 102904, North Shore Mail Centre, North Shore City 0745, Auckland, New Zealand. h.j.e.beaumont@biology.leidenuniv.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890329" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/genetics/*physiology ; *Biological Evolution ; Cell Shape ; Colony Count, Microbial ; *Environment ; Genes, Bacterial/genetics ; Genetic Fitness ; Genotype ; Models, Biological ; Phenotype ; Pseudomonas fluorescens/cytology/*genetics/growth & development/*physiology ; Selection, Genetic ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2009-10-02
    Description: The early evolution of the major groups of derived non-avialan theropods is still not well understood, mainly because of their poor fossil record in the Jurassic. A well-known result of this problem is the 'temporal paradox' argument that is sometimes made against the theropod hypothesis of avian origins. Here we report on an exceptionally well-preserved small theropod specimen collected from the earliest Late Jurassic Tiaojishan Formation of western Liaoning, China. The specimen is referable to the Troodontidae, which are among the theropods most closely related to birds. This new find refutes the 'temporal paradox'1 and provides significant information on the temporal framework of theropod divergence. Furthermore, the extensive feathering of this specimen, particularly the attachment of long pennaceous feathers to the pes, sheds new light on the early evolution of feathers and demonstrates the complex distribution of skeletal and integumentary features close to the dinosaur-bird transition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Dongyu -- Hou, Lianhai -- Zhang, Lijun -- Xu, Xing -- England -- Nature. 2009 Oct 1;461(7264):640-3. doi: 10.1038/nature08322.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Paleontological Institute, Shenyang Normal University, 253 North Huanghe Street, Shenyang 110034, China. hudongyu@synu.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Birds/anatomy & histology/classification ; Calibration ; China ; Dinosaurs/*anatomy & histology/*classification ; Feathers/*anatomy & histology ; Flight, Animal ; Foot/anatomy & histology ; *Fossils ; Metatarsus/*anatomy & histology ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2009-08-28
    Description: Cyanobacteria of the Synechococcus and Prochlorococcus genera are important contributors to photosynthetic productivity in the open oceans. Recently, core photosystem II (PSII) genes were identified in cyanophages and proposed to function in photosynthesis and in increasing viral fitness by supplementing the host production of these proteins. Here we show evidence for the presence of photosystem I (PSI) genes in the genomes of viruses that infect these marine cyanobacteria, using pre-existing metagenomic data from the global ocean sampling expedition as well as from viral biomes. The seven cyanobacterial core PSI genes identified in this study, psaA, B, C, D, E, K and a unique J and F fusion, form a cluster in cyanophage genomes, suggestive of selection for a distinct function in the virus life cycle. The existence of this PSI cluster was confirmed with overlapping and long polymerase chain reaction on environmental DNA from the Northern Line Islands. Potentially, the seven proteins encoded by the viral genes are sufficient to form an intact monomeric PSI complex. Projection of viral predicted peptides on the cyanobacterial PSI crystal structure suggested that the viral-PSI components might provide a unique way of funnelling reducing power from respiratory and other electron transfer chains to the PSI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605144/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605144/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharon, Itai -- Alperovitch, Ariella -- Rohwer, Forest -- Haynes, Matthew -- Glaser, Fabian -- Atamna-Ismaeel, Nof -- Pinter, Ron Y -- Partensky, Frederic -- Koonin, Eugene V -- Wolf, Yuri I -- Nelson, Nathan -- Beja, Oded -- Z99 LM999999/Intramural NIH HHS/ -- England -- Nature. 2009 Sep 10;461(7261):258-62. doi: 10.1038/nature08284. Epub 2009 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19710652" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/chemistry/genetics ; Amino Acid Sequence ; Bacteriophages/*genetics/metabolism ; Biodiversity ; Genes, Bacterial/genetics ; Genes, Viral/*genetics ; Genome, Bacterial/genetics ; Genome, Viral/*genetics ; Geography ; Lipoproteins/chemistry/genetics ; Models, Molecular ; Molecular Sequence Data ; Oceans and Seas ; Open Reading Frames/genetics ; Oxidation-Reduction ; Photosynthesis/genetics ; Photosystem I Protein Complex/chemistry/*genetics ; Phylogeny ; Polymerase Chain Reaction ; Prochlorococcus/*virology ; Protein Conformation ; Seawater/*microbiology ; Synechococcus/*virology ; Viral Proteins/chemistry/genetics/metabolism ; Water Microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2009-02-27
    Description: Evidence of reproductive biology is extremely rare in the fossil record. Recently the first known embryos were discovered within the Placodermi, an extinct class of armoured fish, indicating a viviparous mode of reproduction in a vertebrate group outside the crown-group Gnathostomata (Chondrichthyes and Osteichthyes). These embryos were found in ptyctodontids, a small group of placoderms phylogenetically basal to the largest group, the Arthrodira. Here we report the discovery of embryos in the Arthrodira inside specimens of Incisoscutum ritchiei from the Upper Devonian Gogo Formation of Western Australia (approximately 380 million years ago), providing the first evidence, to our knowledge, for reproduction using internal fertilization in this diverse group. We show that Incisoscutum and some phyllolepid arthrodires possessed pelvic girdles with long basipterygia that articulated distally with an additional cartilaginous element or series, as in chondrichthyans, indicating that the pelvic fin was used in copulation. As homology between similar pelvic girdle skeletal structures in ptyctodontids, arthrodires and chondrichthyans is difficult to reconcile in the light of current phylogenies of lower gnathostomes, we explain these similarities as being most likely due to convergence (homoplasy). These new finds confirm that reproduction by internal fertilization and viviparity was much more widespread in the earliest gnathostomes than had been previously appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, John A -- Trinajstic, Kate -- Johanson, Zerina -- England -- Nature. 2009 Feb 26;457(7233):1124-7. doi: 10.1038/nature07732.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum Victoria, PO Box 666, Melbourne 3001, Victoria, Australia. jlong@museum.vic.gov.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242474" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Fertilization/*physiology ; Fishes/anatomy & histology/classification/*embryology/*physiology ; *Fossils ; Pelvis/anatomy & histology ; Phylogeny ; Sharks/anatomy & histology/classification/embryology ; Viviparity, Nonmammalian/physiology ; Western Australia
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2009-10-09
    Description: RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of approximately 20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-l-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 A crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-l-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg(2+)-dependent 2'-O-methylation mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Ying -- Ji, Lijuan -- Huang, Qichen -- Vassylyev, Dmitry G -- Chen, Xuemei -- Ma, Jin-Biao -- GM074252/GM/NIGMS NIH HHS/ -- R01 GM074840/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):823-7. doi: 10.1038/nature08433.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812675" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Magnesium/metabolism ; Methylation ; Methyltransferases/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Protein Structure, Tertiary ; RNA/genetics/*metabolism ; RNA-Binding Proteins/chemistry/metabolism ; S-Adenosylhomocysteine/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2009-08-15
    Description: Transfer RNAs are among the most ubiquitous molecules in cells, central to decoding information from messenger RNAs on translating ribosomes. In eukaryotic cells, tRNAs are actively transported from their site of synthesis in the nucleus to their site of function in the cytosol. This is mediated by a dedicated nucleo-cytoplasmic transport factor of the karyopherin-beta family (Xpot, also known as Los1 in Saccharomyces cerevisiae). Here we report the 3.2 A resolution structure of Schizosaccharomyces pombe Xpot in complex with tRNA and RanGTP, and the 3.1 A structure of unbound Xpot, revealing both nuclear and cytosolic snapshots of this transport factor. Xpot undergoes a large conformational change on binding cargo, wrapping around the tRNA and, in particular, binding to the tRNA 5' and 3' ends. The binding mode explains how Xpot can recognize all mature tRNAs in the cell and yet distinguish them from those that have not been properly processed, thus coupling tRNA export to quality control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, Atlanta G -- Fukuhara, Noemi -- Jinek, Martin -- Conti, Elena -- England -- Nature. 2009 Sep 3;461(7260):60-5. doi: 10.1038/nature08394.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Cell Biology, MPI for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19680239" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Nucleus/*metabolism ; Crystallography, X-Ray ; Cytosol/*metabolism ; GTPase-Activating Proteins/chemistry/metabolism ; Models, Molecular ; Nuclear Pore Complex Proteins/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; *RNA Transport ; RNA, Fungal/chemistry/genetics/metabolism ; RNA, Transfer/chemistry/genetics/*metabolism ; RNA, Transfer, Phe/chemistry/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; Schizosaccharomyces pombe Proteins/*chemistry/*metabolism ; Substrate Specificity ; ran GTP-Binding Protein/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2009-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patel, Smita S -- England -- Nature. 2009 Dec 3;462(7273):581-3. doi: 10.1038/462581a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956250" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacteria/enzymology ; Models, Molecular ; Molecular Motor Proteins/chemistry/*metabolism ; RNA/metabolism ; rho-Associated Kinases/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2009-05-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shettleworth, Sara J -- England -- Nature. 2009 May 28;459(7246):506. doi: 10.1038/459506b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19478765" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cognition/*physiology ; Human Characteristics ; Humans ; *Models, Biological
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2009-05-12
    Description: Histone H3 lysine 4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities1. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697266/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2697266/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Gang G -- Song, Jikui -- Wang, Zhanxin -- Dormann, Holger L -- Casadio, Fabio -- Li, Haitao -- Luo, Jun-Li -- Patel, Dinshaw J -- Allis, C David -- K99 CA151683/CA/NCI NIH HHS/ -- R37 GM053512/GM/NIGMS NIH HHS/ -- R37 GM053512-30/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Jun 11;459(7248):847-51. doi: 10.1038/nature08036.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19430464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs/genetics/physiology ; Animals ; Cell Transformation, Neoplastic ; Cells, Cultured ; Chromatin/*metabolism ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Genes, Homeobox/genetics ; Hematologic Neoplasms/genetics/*metabolism/*pathology ; Hematopoiesis/genetics ; Hematopoietic Stem Cells/metabolism/pathology ; Histones/chemistry/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics/*metabolism ; Lysine/metabolism ; Magnetic Resonance Spectroscopy ; Methylation ; Mice ; Models, Molecular ; Nuclear Pore Complex Proteins/chemistry/genetics/metabolism ; Oncogene Proteins, Fusion/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Retinoblastoma-Binding Protein 2 ; Transcription, Genetic ; Tumor Suppressor Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-02-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Matthew -- England -- Nature. 2009 Feb 5;457(7230):669-71. doi: 10.1038/457669a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Body Size ; Body Temperature Regulation ; Boidae/*anatomy & histology/metabolism ; Colombia ; *Fossils ; Greenhouse Effect ; History, Ancient ; *Temperature ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louys, Julien -- Bishop, Laura C -- Wilkinson, David M -- England -- Nature. 2009 Dec 17;462(7275):847. doi: 10.1038/462847b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016575" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Ecology/*trends ; *Ecosystem ; Fossils ; Paleontology/*trends ; Research/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...