ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-28
    Description: Large-scale conformational changes transform viral precursors into infectious virions. The structure of bacteriophage HK97 capsid, Head-II, was recently solved by crystallography, revealing a catenated cross-linked topology. We have visualized its precursor, Prohead-II, by cryoelectron microscopy and modeled the conformational change by appropriately adapting Head-II. Rigid-body rotations ( approximately 40 degrees) cause switching to an entirely different set of interactions; in addition, two motifs undergo refolding. These changes stabilize the capsid by increasing the surface area buried at interfaces and bringing the cross-link-forming residues, initially approximately 40 angstroms apart, close together. The inner surface of Prohead-II is negatively charged, suggesting that the transition is triggered electrostatically by DNA packaging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conway, J F -- Wikoff, W R -- Cheng, N -- Duda, R L -- Hendrix, R W -- Johnson, J E -- Steven, A C -- AI40101/AI/NIAID NIH HHS/ -- R01 GM47795/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 27;292(5517):744-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11326105" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Capsid/*chemistry/*metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA, Viral/metabolism ; Image Processing, Computer-Assisted ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Precursors/*chemistry/*metabolism ; Protein Structure, Tertiary ; Protein Subunits ; Siphoviridae/chemistry/*physiology/ultrastructure ; Surface Properties ; *Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-02-26
    Description: The [URE3] non-Mendelian genetic element of Saccharomyces cerevisiae is an infectious protein (prion) form of Ure2p, a regulator of nitrogen catabolism. Here, synthetic Ure2p1-65 were shown to polymerize to form filaments 40 to 45 angstroms in diameter with more than 60 percent beta sheet. Ure2p1-65 specifically induced full-length native Ure2p to copolymerize under conditions where native Ure2p alone did not polymerize. Like Ure2p in extracts of [URE3] strains, these 180- to 220-angstrom-diameter filaments were protease resistant. The Ure2p1-65-Ure2p cofilaments could seed polymerization of native Ure2p to form thicker, less regular filaments. All filaments stained with Congo Red to produce the green birefringence typical of amyloid. This self-propagating amyloid formation can explain the properties of [URE3].〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, K L -- Cheng, N -- Williams, R W -- Steven, A C -- Wickner, R B -- New York, N.Y. -- Science. 1999 Feb 26;283(5406):1339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10037606" target="_blank"〉PubMed〈/a〉
    Keywords: Amyloid/*chemistry/metabolism/ultrastructure ; Biopolymers/chemistry ; Chemical Precipitation ; Coloring Agents/metabolism ; Congo Red/metabolism ; Dimerization ; Endopeptidases/metabolism ; Fungal Proteins/*chemistry/metabolism/ultrastructure ; Glutathione Peroxidase ; Hot Temperature ; Microscopy, Electron ; Peptide Fragments/chemistry ; Prions/*chemistry/metabolism/ultrastructure ; Protein Denaturation ; Protein Structure, Secondary ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-02-06
    Description: For a retrovirus such as HIV to be infectious, a properly formed capsid is needed; however, unusually among viruses, retrovirus capsids are highly variable in structure. According to the fullerene conjecture, they are composed of hexamers and pentamers of capsid protein (CA), with the shape of a capsid varying according to how the twelve pentamers are distributed and its size depending on the number of hexamers. Hexamers have been studied in planar and tubular arrays, but the predicted pentamers have not been observed. Here we report cryo-electron microscopic analyses of two in-vitro-assembled capsids of Rous sarcoma virus. Both are icosahedrally symmetric: one is composed of 12 pentamers, and the other of 12 pentamers and 20 hexamers. Fitting of atomic models of the two CA domains into the reconstructions shows three distinct inter-subunit interactions. These observations substantiate the fullerene conjecture, show how pentamers are accommodated at vertices, support the inference that nucleation is a crucial morphologic determinant, and imply that electrostatic interactions govern the differential assembly of pentamers and hexamers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721793/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721793/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cardone, Giovanni -- Purdy, John G -- Cheng, Naiqian -- Craven, Rebecca C -- Steven, Alasdair C -- CA100322/CA/NCI NIH HHS/ -- R01 CA100322/CA/NCI NIH HHS/ -- R01 CA100322-05/CA/NCI NIH HHS/ -- Z01 AR027002-29/Intramural NIH HHS/ -- Z99 AR999999/Intramural NIH HHS/ -- England -- Nature. 2009 Feb 5;457(7230):694-8. doi: 10.1038/nature07724.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute for Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19194444" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/chemistry/*metabolism/*ultrastructure ; Capsid Proteins/chemistry/genetics/metabolism/ultrastructure ; Cryoelectron Microscopy ; HIV/chemistry/genetics/ultrastructure ; Models, Molecular ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Mutation ; Polymorphism, Genetic ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/metabolism ; Rous sarcoma virus/*chemistry/genetics/*ultrastructure ; Static Electricity ; *Virus Assembly
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-01-17
    Description: Dense packing of macromolecules in cellular compartments and higher-order assemblies makes it difficult to pick out even quite large components in electron micrographs, despite nominally high resolution. Immunogold labeling and histochemical procedures offer ways to map certain components but are limited in their applicability. Here, we present a differential mapping procedure, based on the physical principle of protein's greater sensitivity to radiation damage compared with that of nucleic acid.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462320/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462320/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Weimin -- Thomas, Julie A -- Cheng, Naiqian -- Black, Lindsay W -- Steven, Alasdair C -- AI11676/AI/NIAID NIH HHS/ -- R01 AI011676/AI/NIAID NIH HHS/ -- Z01 AR027015-13/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):182. doi: 10.1126/science.1214120.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246767" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/*ultrastructure ; Cryoelectron Microscopy ; DNA, Viral ; Image Processing, Computer-Assisted ; Nucleocapsid/ultrastructure ; Pseudomonas Phages/*chemistry/radiation effects/*ultrastructure ; Viral Proteins/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2003-11-25
    Description: Herpes simplex virus, a DNA virus of high complexity, consists of a nucleocapsid surrounded by the tegument-a protein compartment-and the envelope. The latter components, essential for infectivity, are pleiomorphic. Visualized in cryo-electron tomograms of isolated virions, the tegument was seen to form an asymmetric cap: On one side, the capsid closely approached the envelope; on the other side, they were separated by approximately 35 nanometers of tegument. The tegument substructure was particulate, with some short actin-like filaments. The envelope contained 600 to 750 glycoprotein spikes that varied in length, spacing, and in the angles at which they emerge from the membrane. Their distribution was nonrandom, suggesting functional clustering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grunewald, Kay -- Desai, Prashant -- Winkler, Dennis C -- Heymann, J Bernard -- Belnap, David M -- Baumeister, Wolfgang -- Steven, Alasdair C -- AI33077/AI/NIAID NIH HHS/ -- R01 AI033077/AI/NIAID NIH HHS/ -- R01 AI033077-10/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1396-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631040" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/chemistry/ultrastructure ; Cercopithecus aethiops ; Cryoelectron Microscopy ; Herpesvirus 1, Human/*chemistry/physiology/*ultrastructure ; Humans ; Image Processing, Computer-Assisted ; Lipid Bilayers ; Nucleocapsid/ultrastructure ; Tomography ; Vero Cells ; Viral Envelope Proteins/analysis/ultrastructure ; Virion/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-14
    Description: Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noinaj, Nicholas -- Easley, Nicole C -- Oke, Muse -- Mizuno, Naoko -- Gumbart, James -- Boura, Evzen -- Steere, Ashley N -- Zak, Olga -- Aisen, Philip -- Tajkhorshid, Emad -- Evans, Robert W -- Gorringe, Andrew R -- Mason, Anne B -- Steven, Alasdair C -- Buchanan, Susan K -- P41 RR005969/RR/NCRR NIH HHS/ -- P41-RR05969/RR/NCRR NIH HHS/ -- R01 GM086749/GM/NIGMS NIH HHS/ -- R01-DK21739/DK/NIDDK NIH HHS/ -- R01-GM086749/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- ZIA DK036143-04/Intramural NIH HHS/ -- England -- Nature. 2012 Feb 12;483(7387):53-8. doi: 10.1038/nature10823.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22327295" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoproteins/chemistry/metabolism ; Bacterial Proteins/*chemistry/metabolism/ultrastructure ; Binding Sites ; Biological Transport ; Cattle ; Crystallography, X-Ray ; Humans ; Iron/*metabolism ; Mice ; Models, Molecular ; Molecular Dynamics Simulation ; Neisseria/*metabolism/pathogenicity ; Protein Conformation ; Scattering, Small Angle ; Species Specificity ; Structure-Activity Relationship ; Transferrin/chemistry/metabolism/ultrastructure ; Transferrin-Binding Protein A/*chemistry/*metabolism/ultrastructure ; Transferrin-Binding Protein B/*chemistry/*metabolism/ultrastructure ; X-Ray Diffraction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-07-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steven, Alasdair C -- Spear, Patricia G -- New York, N.Y. -- Science. 2006 Jul 14;313(5784):177-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 50 South Drive, Bethesda, MD 20892, USA. stevena@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16840685" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/chemistry/genetics ; Capsid Proteins/chemistry ; Crystallography, X-Ray ; *Evolution, Molecular ; Genome, Viral ; Herpesvirus 1, Human/*chemistry/genetics ; Hydrogen-Ion Concentration ; Membrane Glycoproteins/*chemistry/genetics ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Vesicular stomatitis Indiana virus/*chemistry/genetics ; Viral Envelope Proteins/*chemistry/genetics ; Viral Fusion Proteins/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 9 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We have examined the surface topography and channel connectivity of a naturally crystalline porin that is known to be functional, and whose structure has not been perturbed by detergent extraction, A three-dimensional density map, calculated from two independent tilt series of negatively stained cell envelopes, reveals three separate channels per trimer on one side (the ‘smooth’ side), and a single common opening at the other (‘rough’) side. This arrangement is consistent with the molecular structures recently determined at high resolution by X-ray crystallography for three other porins after detergent solubilization, and implies that the Bordetella pertussis porin may have the same kind of folding. Surface relief maps calculated from electron micrographs of cell envelopes contrasted by unidirectional shadowing clearly show that the side with single opening (i.e. the rough side) represents the external surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The core antigen (HBcAg) assembles into capsids of twoo sizes, with icosahedral triangulation numbers of T = 3 (280 Å diameter, 90 dimers), and T = 4 (310 A, 120 dimers), respectively3'4. The most detailed structural information to date has emerged from cryo-electron microscopy at ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 5 (1976), S. 475-495 
    ISSN: 0091-7419
    Keywords: T4 giant phage ; morphogenesis ; optical/computer image processing ; protein composition ; phage capsid structure ; phage head length determination ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A study has been made of the structure of the capsids of T4D giant phage produced from mutants in gene 23 and temperature-sensitive mutants in gene 24, and T4D and T2L giant phage formed by the addition of L-canavanine followed by an L-arginine chase in the growth medium.All the giant phage capsids have been shown to be built according to the same geometrical architecture. This consists of a near-hexsagonal surface net, lattice constant 129.5 Å, folded into a left-hand T = 13 prolate icosahedron elongated along one of its fivefold symmetry axes. Their only apparent difference from wild-type T-even phage capsids is their abnormally elongated tubular part.A comparison of the capsomere morphologies and protein compositions of the giant phage capsids showed that all T4D giants are indentical but differ from T2L: The T4D capsomere has a complex (6+6+1)-type morphology, whereas the T2L has a simple 6-type. T2L phage, however, lack two capsid proteins, “soc” and “hoc”, present in T4D. The difference in capsomere morphology can therefore be related to the difference in the protein compositions of these two phage.Possible differences between the initiation and means of length regulation of giant phage heads and the aberrant polyheads are discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...