ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, Daniel E -- England -- Nature. 2012 Mar 28;483(7391):550-1. doi: 10.1038/483550a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460898" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*physiology ; Animals ; Foot/*anatomy & histology/*physiology ; Gait/*physiology ; Hominidae/*anatomy & histology/*physiology ; Humans ; Walking/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-10
    Description: The origins of the genus Homo are murky, but by H. erectus, bigger brains and bodies had evolved that, along with larger foraging ranges, would have increased the daily energetic requirements of hominins. Yet H. erectus differs from earlier hominins in having relatively smaller teeth, reduced chewing muscles, weaker maximum bite force capabilities, and a relatively smaller gut. This paradoxical combination of increased energy demands along with decreased masticatory and digestive capacities is hypothesized to have been made possible by adding meat to the diet, by mechanically processing food using stone tools, or by cooking. Cooking, however, was apparently uncommon until 500,000 years ago, and the effects of carnivory and Palaeolithic processing techniques on mastication are unknown. Here we report experiments that tested how Lower Palaeolithic processing technologies affect chewing force production and efficacy in humans consuming meat and underground storage organs (USOs). We find that if meat comprised one-third of the diet, the number of chewing cycles per year would have declined by nearly 2 million (a 13% reduction) and total masticatory force required would have declined by 15%. Furthermore, by simply slicing meat and pounding USOs, hominins would have improved their ability to chew meat into smaller particles by 41%, reduced the number of chews per year by another 5%, and decreased masticatory force requirements by an additional 12%. Although cooking has important benefits, it appears that selection for smaller masticatory features in Homo would have been initially made possible by the combination of using stone tools and eating meat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zink, Katherine D -- Lieberman, Daniel E -- England -- Nature. 2016 Mar 24;531(7595):500-3. doi: 10.1038/nature16990. Epub 2016 Mar 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26958832" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Bite Force ; Carnivory ; Diet/*history ; Female ; Food Handling/*history ; Goats ; History, Ancient ; Hominidae ; Humans ; Male ; Mastication/*physiology ; Meat/*history ; Particle Size ; Plants ; Tool Use Behavior ; Tooth/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, Daniel E -- England -- Nature. 2009 May 7;459(7243):41-2. doi: 10.1038/459041a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19424142" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthropology ; *Biological Evolution ; *Fossils ; Geography ; Hominidae/*anatomy & histology/*classification ; Humans ; Indonesia ; Paleontology ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, Daniel E -- McBratney, Brandeis -- Krovitz, Gail E -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):249.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/anatomy & histology ; *Fossils ; Hominidae/*anatomy & histology ; Humans ; Indonesia ; Skull/*anatomy & histology ; Skull Base
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-30
    Description: Humans have engaged in endurance running for millions of years, but the modern running shoe was not invented until the 1970s. For most of human evolutionary history, runners were either barefoot or wore minimal footwear such as sandals or moccasins with smaller heels and little cushioning relative to modern running shoes. We wondered how runners coped with the impact caused by the foot colliding with the ground before the invention of the modern shoe. Here we show that habitually barefoot endurance runners often land on the fore-foot (fore-foot strike) before bringing down the heel, but they sometimes land with a flat foot (mid-foot strike) or, less often, on the heel (rear-foot strike). In contrast, habitually shod runners mostly rear-foot strike, facilitated by the elevated and cushioned heel of the modern running shoe. Kinematic and kinetic analyses show that even on hard surfaces, barefoot runners who fore-foot strike generate smaller collision forces than shod rear-foot strikers. This difference results primarily from a more plantarflexed foot at landing and more ankle compliance during impact, decreasing the effective mass of the body that collides with the ground. Fore-foot- and mid-foot-strike gaits were probably more common when humans ran barefoot or in minimal shoes, and may protect the feet and lower limbs from some of the impact-related injuries now experienced by a high percentage of runners.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, Daniel E -- Venkadesan, Madhusudhan -- Werbel, William A -- Daoud, Adam I -- D'Andrea, Susan -- Davis, Irene S -- Mang'eni, Robert Ojiambo -- Pitsiladis, Yannis -- England -- Nature. 2010 Jan 28;463(7280):531-5. doi: 10.1038/nature08723.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Evolutionary Biology, 11 Divinity Avenue, Harvard University, Cambridge, Massachusetts 02138, USA. danlieb@fas.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20111000" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Biomechanical Phenomena ; Child ; Female ; Foot/*physiology ; Forefoot, Human/physiology ; Gait/physiology ; Humans ; Kenya ; Male ; Running/*physiology ; *Shoes/standards ; *Stress, Mechanical ; United States ; Weight-Bearing/physiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-28
    Description: Some primates, including chimpanzees, throw objects occasionally, but only humans regularly throw projectiles with high speed and accuracy. Darwin noted that the unique throwing abilities of humans, which were made possible when bipedalism emancipated the arms, enabled foragers to hunt effectively using projectiles. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence of when, how and why hominins evolved the ability to generate high-speed throws. Here we use experimental studies of humans throwing projectiles to show that our throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately 2 million years ago in the species Homo erectus. Taking into consideration archaeological evidence suggesting that hunting activity intensified around this time, we conclude that selection for throwing as a means to hunt probably had an important role in the evolution of the genus Homo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785139/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785139/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roach, Neil T -- Venkadesan, Madhusudhan -- Rainbow, Michael J -- Lieberman, Daniel E -- 500158/Z/09/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Jun 27;498(7455):483-6. doi: 10.1038/nature12267.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ntroach@email.gwu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803849" target="_blank"〉PubMed〈/a〉
    Keywords: Acceleration ; Animals ; *Biological Evolution ; Biomechanical Phenomena ; *Elasticity ; Fossils ; Hominidae/*anatomy & histology/*physiology ; Humans ; Kinetics ; Rotation ; Shoulder/*anatomy & histology/*physiology ; Torque
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1993-08-27
    Description: The age and season of death of mammals, as well as other aspects of their life history, can be estimated from seasonal bands in dental cementum that result from variations in microstructure. Scanning electron micrographs of goats fed controlled diets demonstrate that cementum bands preserve variations in the relative orientation of collagen fibers that reflect changes in the magnitude and frequency of occlusal forces from chewing different quality diets. Changes in the rate of tissue growth are also reflected in cementum bands as variations in the degree of mineralization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lieberman, D E -- New York, N.Y. -- Science. 1993 Aug 27;261(5125):1162-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anthropology, Harvard University, Cambridge, MA 02138.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8356448" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Collagen/*analysis ; Dental Cementum/chemistry/*ultrastructure ; *Diet ; Goats/*physiology ; Microscopy, Electron, Scanning ; Seasons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-12
    Description: Among the unique features of humans, one of the most salient is the ability to effectively cool the body during extreme prolonged activity through the evapotranspiration of water on the skin’s surface. The evolution of this novel physiological ability required a dramatic increase in the density and distribution of eccrine...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-01
    Description: There is currently ambiguity in what controls polar mesospheric cloud (PMC) periodicities near 83 km altitude. This is primarily because satellite and ground-based datasets cannot resolve global mesospheric temperature variability over the diurnal cycle. To address this limitation, we employ a global meteorological analysis and forecast system that assimilates mesospheric satellite data with two significant advances. The first is that we use output at a more rapid one hourly cadence, allowing for a quantitative description of diurnal (24 h), semi-diurnal (12 h), and terdiurnal oscillations. The second is that the output drives a simple PMC parameterization which depends only on the local temperature, pressure and water vapor concentrations. Our study focuses on results from July 2009 in the northern hemisphere and January 2008 in the southern hemisphere. We find that the 24 h migrating temperature tide as well as the 12 h and 24 h nonmigrating tides dominate northern PMC oscillations whereas the 12 h and 24 h nonmigrating tides dominate southern oscillations. Monthly averaged amplitudes for each of these components are generally 2-6 K with the larger amplitudes at lower PMC latitudes (50°). The 2 day and 5 day planetary waves also contribute in both hemispheres, with monthly averaged amplitudes from 1-3 K although these amplitudes can be as high as 4-6 K on some days. Over length scales of ~1000 km and time scales of ~1 week, we find that local temperature oscillations adequately describe mid-latitude PMC observations.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-14
    Description: Despite substantial recent interest in walking barefoot and in minimal footwear, little is known about potential differences in walking biomechanics when unshod versus minimally shod. To test the hypothesis that heel impact forces are similar during barefoot and minimally shod walking, we analysed ground reaction forces recorded in both conditions with a pedography platform among indigenous subsistence farmers, the Tarahumara of Mexico, who habitually wear minimal sandals, as well as among urban Americans wearing commercially available minimal sandals. Among both the Tarahumara ( n = 35) and Americans ( n = 30), impact peaks generated in sandals had significantly ( p 〈 0.05) higher force magnitudes, slower loading rates and larger vertical impulses than during barefoot walking. These kinetic differences were partly due to individuals' significantly greater effective mass when walking in sandals. Our results indicate that, in general, people tread more lightly when walking barefoot than in minimal footwear. Further research is needed to test if the variations in impact peaks generated by walking barefoot or in minimal shoes have consequences for musculoskeletal health.
    Keywords: biomechanics
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...