ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (732)
  • Latest Papers from Table of Contents or Articles in Press  (732)
  • Signal Transduction  (419)
  • Protein Conformation  (332)
  • 2000-2004  (692)
  • 1980-1984  (40)
  • 1935-1939
  • Science. 207(4437): 1315-22.  (1)
  • Science. 208(4444): 599-601.  (1)
  • Science. 208(4451): 1454-6.  (1)
  • Science. 209(4453): 223-35.  (1)
  • Science. 210(4467): 334-6.  (1)
  • Science. 210(4468): 441-3.  (1)
  • Science. 210(4470): 656-8.  (1)
  • Science. 210(4472): 861-8.  (1)
  • Science. 210(4474): 1152-3.  (1)
  • Science. 211(4479): 265-7.  (1)
  • Science. 211(4479): 287-9.  (1)
  • Science. 211(4483): 661-6.  (1)
  • Science. 212(4494): 560-2.  (1)
  • Science. 213(4507): 551-3.  (1)
  • Science. 213(4508): 657-9.  (1)
  • Science. 213(4509): 724-31.  (1)
  • Science. 216(4544): 407-8.  (1)
  • Science. 216(4547): 696-703.  (1)
  • Science. 216(4549): 1016-8.  (1)
  • Science. 217(4563): 934-6.  (1)
  • 25
  • Medicine  (732)
Collection
  • Articles  (732)
Source
  • Latest Papers from Table of Contents or Articles in Press  (732)
Keywords
Years
Year
Journal
  • 101
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-04-10
    Description: Viruses replicate within living cells and use the cellular machinery for the synthesis of their genome and other components. To gain access, they have evolved a variety of elegant mechanisms to deliver their genes and accessory proteins into the host cell. Many animal viruses take advantage of endocytic pathways and rely on the cell to guide them through a complex entry and uncoating program. In the dialogue between the cell and the intruder, the cell provides critical cues that allow the virus to undergo molecular transformations that lead to successful internalization, intra-cellular transport, and uncoating.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Alicia E -- Helenius, Ari -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):237-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, Swiss Federal Institute of Technology-Zurich, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15073366" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Carbohydrate Metabolism ; Cell Nucleus/virology ; Cell Physiological Phenomena ; Cells/*virology ; Cytosol/virology ; Endocytosis ; Genome, Viral ; Membrane Fusion ; Membrane Microdomains/physiology ; Receptors, Virus/metabolism ; Signal Transduction ; Viral Proteins/metabolism ; Virion/*physiology ; *Virus Physiological Phenomena
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2004-10-16
    Description: We have analyzed the local structure and dynamics of the prokaryotic voltage-dependent K+ channel (KvAP) at 0 millivolts, using site-directed spin labeling and electron paramagnetic resonance spectroscopy. We show that the S4 segment is located at the protein/lipid interface, with most of its charges protected from the lipid environment. Structurally, S4 is highly dynamic and is separated into two short helices by a flexible linker. Accessibility and dynamics data indicate that the S1 segment is surrounded by other parts of the protein. We propose that S1 is at the contact interface between the voltage-sensing and pore domains. These results establish the general principles of voltage-dependent channel structure in a biological membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Cortes, D Marien -- Perozo, Eduardo -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22906, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486302" target="_blank"〉PubMed〈/a〉
    Keywords: Electron Spin Resonance Spectroscopy ; Hydrophobic and Hydrophilic Interactions ; *Lipid Bilayers ; Models, Molecular ; Oxygen ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2004-07-31
    Description: Argonaute proteins and small interfering RNAs (siRNAs) are the known signature components of the RNA interference effector complex RNA-induced silencing complex (RISC). However, the identity of "Slicer," the enzyme that cleaves the messenger RNA (mRNA) as directed by the siRNA, has not been resolved. Here, we report the crystal structure of the Argonaute protein from Pyrococcus furiosus at 2.25 angstrom resolution. The structure reveals a crescent-shaped base made up of the amino-terminal, middle, and PIWI domains. The Piwi Argonaute Zwille (PAZ) domain is held above the base by a "stalk"-like region. The PIWI domain (named for the protein piwi) is similar to ribonuclease H, with a conserved active site aspartate-aspartate-glutamate motif, strongly implicating Argonaute as "Slicer." The architecture of the molecule and the placement of the PAZ and PIWI domains define a groove for substrate binding and suggest a mechanism for siRNA-guided mRNA cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Ji-Joon -- Smith, Stephanie K -- Hannon, Gregory J -- Joshua-Tor, Leemor -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1434-7. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrococcus furiosus/*chemistry ; *RNA Interference ; RNA, Messenger/*metabolism ; RNA, Small Interfering/*metabolism ; RNA-Induced Silencing Complex/*metabolism ; Ribonuclease H/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2004-04-10
    Description: The idea that new memories undergo a time-dependent consolidation process after acquisition has received considerable experimental support. More controversial has been the demonstration that established memories, once recalled, become labile and sensitive to disruption, requiring "reconsolidation" to become permanent. By infusing antisense oligodeoxynucleotides into the hippocampus of rats, we show that consolidation and reconsolidation are doubly dissociable component processes of memory. Consolidation involves brain-derived neurotrophic factor (BDNF) but not the transcription factor Zif268, whereas reconsolidation recruits Zif268 but not BDNF. These findings confirm a requirement for BDNF specifically in memory consolidation and also resolve the role of Zif268 in brain plasticity, learning, and memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jonathan L C -- Everitt, Barry J -- Thomas, Kerrie L -- G9537855/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2004 May 7;304(5672):839-43. Epub 2004 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15073322" target="_blank"〉PubMed〈/a〉
    Keywords: Amnesia/physiopathology ; Animals ; Brain-Derived Neurotrophic Factor/administration & ; dosage/genetics/metabolism/pharmacology/*physiology ; Conditioning (Psychology) ; Cytoskeletal Proteins ; Dentate Gyrus/metabolism/physiology ; *Fear ; Hippocampus/metabolism/*physiology ; Immediate-Early Proteins/metabolism ; Memory/*physiology ; Mental Recall/physiology ; *Nerve Tissue Proteins ; Neuronal Plasticity ; Oligonucleotides, Antisense/administration & dosage/pharmacology ; Rats ; Recombinant Proteins/administration & dosage/pharmacology ; Signal Transduction ; Time Factors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2004-08-21
    Description: Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stanfield, Robyn L -- Dooley, Helen -- Flajnik, Martin F -- Wilson, Ian A -- GM38273/GM/NIGMS NIH HHS/ -- RR06603/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 17;305(5691):1770-3. Epub 2004 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15319492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Complementarity Determining Regions/chemistry ; Crystallography, X-Ray ; Dimerization ; Drug Combinations ; Evolution, Molecular ; Genes, Immunoglobulin ; Immunoglobulin Heavy Chains/*chemistry/genetics/metabolism ; Immunoglobulin Variable Region/*chemistry/genetics/immunology/metabolism ; Immunoglobulins/*chemistry/genetics/immunology/metabolism ; Meglumine ; Models, Molecular ; Muramidase/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Receptors, Antigen/*chemistry/genetics/immunology/metabolism ; Sharks/*immunology ; Tetrahydropapaveroline/*analogs & derivatives
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-02-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bronner-Fraser, Marianne -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):966-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Pasadena, CA 91125, USA. mbronner@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963317" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cell Movement ; Cell Nucleus/metabolism ; Central Nervous System/embryology ; Cytoskeletal Proteins/*metabolism ; Mice ; Models, Neurological ; Multipotent Stem Cells/*physiology ; Neural Crest/*cytology/embryology/physiology ; Neurons, Afferent/*cytology/physiology ; Proto-Oncogene Proteins/*metabolism ; Signal Transduction ; Time Factors ; Trans-Activators/*metabolism ; Transcription Factors/metabolism ; Wnt Proteins ; *Zebrafish Proteins ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-02-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉deHaseth, Pieter L -- Nilsen, Timothy W -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1307-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RNA Center and Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA. pld2@po.cwru.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14988541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Conserved Sequence ; DNA, Bacterial/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*enzymology/*genetics ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Sigma Factor/chemistry/*metabolism ; Templates, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2004-07-17
    Description: Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can switch roles from a purely electrostatic interaction with the DNA backbone in the nonspecific complex to a highly specific binding mode with the base pairs of the cognate operator sequence. The protein-DNA interface of the nonspecific complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalodimos, Charalampos G -- Biris, Nikolaos -- Bonvin, Alexandre M J J -- Levandoski, Marc M -- Guennuegues, Marc -- Boelens, Rolf -- Kaptein, Robert -- GM 23467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):386-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256668" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Base Pairing ; Binding Sites ; DNA, Bacterial/*chemistry/*metabolism ; Diffusion ; Dimerization ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Hydrogen Bonding ; Lac Repressors ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Static Electricity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2004-07-17
    Description: Cytochromes P450 (P450s) metabolize a wide range of endogenous compounds and xenobiotics, such as pollutants, environmental compounds, and drug molecules. The microsomal, membrane-associated, P450 isoforms CYP3A4, CYP2D6, CYP2C9, CYP2C19, CYP2E1, and CYP1A2 are responsible for the oxidative metabolism of more than 90% of marketed drugs. Cytochrome P450 3A4 (CYP3A4) metabolizes more drug molecules than all other isoforms combined. Here we report three crystal structures of CYP3A4: unliganded, bound to the inhibitor metyrapone, and bound to the substrate progesterone. The structures revealed a surprisingly small active site, with little conformational change associated with the binding of either compound. An unexpected peripheral binding site is identified, located above a phenylalanine cluster, which may be involved in the initial recognition of substrates or allosteric effectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Pamela A -- Cosme, Jose -- Vinkovic, Dijana Matak -- Ward, Alison -- Angove, Hayley C -- Day, Philip J -- Vonrhein, Clemens -- Tickle, Ian J -- Jhoti, Harren -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):683-6. Epub 2004 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astex Technology, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256616" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme System/*chemistry/*metabolism ; Heme/chemistry ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metyrapone/*metabolism ; Models, Molecular ; Phenylalanine/chemistry/metabolism ; Progesterone/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2004-08-28
    Description: Lipid phosphates can act as signaling molecules to influence cell division, apoptosis, and migration. wunen and wunen2 encode Drosophila lipid phosphate phosphohydrolases, integral membrane enzymes that dephosphorylate extracellular lipid phosphates. wun and wun2 act redundantly in somatic tissues to repel migrating germ cells, although the mechanism by which germ cells respond is unclear. Here, we report that wun2 also functions in germ cells, enabling them to perceive the wun/wun2-related signal from the soma. Upon Wun2 expression, cultured insect cells dephosphorylate and internalize exogenously supplied lipid phosphate. We propose that Drosophila germ cell migration and survival are controlled by competition for hydrolysis of a lipid phosphate between germ cells and soma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renault, A D -- Sigal, Y J -- Morris, A J -- Lehmann, R -- GM54388/GM/NIGMS NIH HHS/ -- HD421900 RO1/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 24;305(5692):1963-6. Epub 2004 Aug 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Developmental Genetics Program, Skirball Institute and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15331773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Movement/physiology ; Cell Survival/physiology ; Drosophila/*cytology ; Drosophila Proteins/genetics/*physiology ; Female ; Germ Cells/*physiology ; Humans ; Hydrolysis ; Lipid Metabolism ; Membrane Proteins/genetics/*physiology ; Phosphates/metabolism ; Phosphatidate Phosphatase/genetics/*physiology ; Phospholipids/*metabolism ; Phosphorylation ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2004-08-07
    Description: The structure of epothilone A, bound to alpha,beta-tubulin in zinc-stabilized sheets, was determined by a combination of electron crystallography at 2.89 angstrom resolution and nuclear magnetic resonance-based conformational analysis. The complex explains both the broad-based epothilone structure-activity relationship and the known mutational resistance profile. Comparison with Taxol shows that the longstanding expectation of a common pharmacophore is not met, because each ligand exploits the tubulin-binding pocket in a unique and independent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nettles, James H -- Li, Huilin -- Cornett, Ben -- Krahn, Joseph M -- Snyder, James P -- Downing, Kenneth H -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):866-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297674" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography ; Crystallography, X-Ray ; Epothilones/chemistry/*metabolism/pharmacology ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Conformation ; Molecular Structure ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Paclitaxel/metabolism ; Protein Conformation ; Stereoisomerism ; Structure-Activity Relationship ; Tubulin/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2004-09-09
    Description: Darwin's finches are a classic example of species diversification by natural selection. Their impressive variation in beak morphology is associated with the exploitation of a variety of ecological niches, but its developmental basis is unknown. We performed a comparative analysis of expression patterns of various growth factors in species comprising the genus Geospiza. We found that expression of Bmp4 in the mesenchyme of the upper beaks strongly correlated with deep and broad beak morphology. When misexpressed in chicken embryos, Bmp4 caused morphological transformations paralleling the beak morphology of the large ground finch G. magnirostris.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abzhanov, Arhat -- Protas, Meredith -- Grant, B Rosemary -- Grant, Peter R -- Tabin, Clifford J -- P01 DK56246/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1462-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353802" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Beak/anatomy & histology/*embryology/metabolism ; Biological Evolution ; Bone Morphogenetic Protein 4 ; Bone Morphogenetic Proteins/genetics/*metabolism ; Chick Embryo ; Chickens/anatomy & histology ; Ectoderm/metabolism ; Epithelium/metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Transfer Techniques ; Genetic Variation ; Genetic Vectors ; Growth Substances/genetics/metabolism ; Mesoderm/metabolism ; Morphogenesis ; Signal Transduction ; Songbirds/anatomy & histology/*embryology/genetics/metabolism ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2004-03-20
    Description: Protein kinases are targets for treatment of a number of diseases. This review focuses on kinase inhibitors that are in the clinic or in clinical trials and for which structural information is available. Structures have informed drug design and have illuminated the mechanism of inhibition. We review progress with the receptor tyrosine kinases (growth factor receptors EGFR, VEGFR, and FGFR) and nonreceptor tyrosine kinases (Bcr-Abl), where advances have been made with cancer therapeutic agents such as Herceptin and Gleevec. Among the serine-threonine kinases, p38, Rho-kinase, cyclin-dependent kinases, and Chk1 have been targeted with productive results for inflammation and cancer. Structures have provided insights into targeting the inactive or active form of the kinase, for targeting the global constellation of residues at the ATP site or less conserved additional pockets or single residues, and into targeting noncatalytic domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noble, Martin E M -- Endicott, Jane A -- Johnson, Louise N -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1800-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, Oxford 3X2 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031492" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Antineoplastic Agents/chemistry/pharmacology/therapeutic use ; Binding Sites ; Catalytic Domain ; Clinical Trials as Topic ; *Drug Design ; Enzyme Inhibitors/*chemistry/metabolism/pharmacology/therapeutic use ; Humans ; Models, Molecular ; Molecular Structure ; Protein Conformation ; *Protein Kinase Inhibitors ; Protein Kinases/*chemistry/metabolism ; Protein Structure, Tertiary ; Signal Transduction/drug effects ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2004-05-08
    Description: Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Xiao-Lin -- Garcia, K Christopher -- New York, N.Y. -- Science. 2004 May 7;304(5672):870-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Microbiology and Immunology, and Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131306" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Animals ; Binding Sites ; Calorimetry ; Chromatography, Gel ; Crystallography, X-Ray ; Cysteine/chemistry ; Dimerization ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lasers ; Ligands ; Molecular Sequence Data ; Molecular Weight ; Nerve Growth Factor/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Rats ; Receptor, Nerve Growth Factor ; Receptor, trkA/chemistry/metabolism ; Receptors, Nerve Growth Factor/*chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Scattering, Radiation ; Signal Transduction ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2004-07-03
    Description: During axon guidance, the ventral guidance of the Caenorhabditis elegans anterior ventral microtubule axon is controlled by two cues, the UNC-6/netrin attractant recognized by the UNC-40/DCC receptor and the SLT-1/slit repellent recognized by the SAX-3/robo receptor. We show here that loss-of-function mutations in clr-1 enhance netrin-dependent attraction, suppressing ventral guidance defects in slt-1 mutants. clr-1 encodes a transmembrane receptor protein tyrosine phosphatase (RPTP) that functions in AVM to inhibit signaling through the DCC family receptor UNC-40 and its effector, UNC-34/enabled. The known effects of other RPTPs in axon guidance could result from modulation of guidance receptors like UNC-40/DCC.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Chieh -- Yu, Timothy W -- Bargmann, Cornelia I -- Tessier-Lavigne, Marc -- New York, N.Y. -- Science. 2004 Jul 2;305(5680):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15232111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Axons/*physiology ; Caenorhabditis elegans/genetics/*physiology ; Caenorhabditis elegans Proteins/chemistry/*genetics/*metabolism ; Cell Adhesion Molecules/genetics/metabolism ; Cell Movement ; Cues ; Genes, Helminth ; Microtubules/physiology/ultrastructure ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Open Reading Frames ; Phenotype ; Protein Tyrosine Phosphatases/chemistry/*genetics/*metabolism ; Receptor-Like Protein Tyrosine Phosphatases ; Receptors, Immunologic/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2004-12-25
    Description: Binding of Sonic Hedgehog (Shh) to Patched (Ptc) relieves the latter's tonic inhibition of Smoothened (Smo), a receptor that spans the cell membrane seven times. This initiates signaling which, by unknown mechanisms, regulates vertebrate developmental processes. We find that two molecules interact with mammalian Smo in an activation-dependent manner: G protein-coupled receptor kinase 2 (GRK2) leads to phosphorylation of Smo, and beta-arrestin 2 fused to green fluorescent protein interacts with Smo. These two processes promote endocytosis of Smo in clathrin-coated pits. Ptc inhibits association of beta-arrestin 2 with Smo, and this inhibition is relieved in cells treated with Shh. A Smo agonist stimulated and a Smo antagonist (cyclopamine) inhibited both phosphorylation of Smo by GRK2 and interaction of beta-arrestin 2 with Smo. beta-Arrestin 2 and GRK2 are thus potential mediators of signaling by activated Smo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- Ren, Xiu-Rong -- Nelson, Christopher D -- Barak, Larry S -- Chen, James K -- Beachy, Philip A -- de Sauvage, Frederic -- Lefkowitz, Robert J -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2257-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. w.chen@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618519" target="_blank"〉PubMed〈/a〉
    Keywords: Arrestins/*metabolism ; Cell Line ; Cell Membrane/*metabolism ; Clathrin/metabolism ; Coated Pits, Cell-Membrane/metabolism ; Cyclic AMP-Dependent Protein Kinases/*metabolism ; Cyclohexylamines/pharmacology ; Cytosol/metabolism ; Dynamins/metabolism ; Endocytosis ; Hedgehog Proteins ; Humans ; Membrane Proteins/metabolism ; Phosphorylation ; Receptors, Cell Surface ; Receptors, G-Protein-Coupled/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Thiophenes/pharmacology ; Trans-Activators/metabolism ; Transfection ; Veratrum Alkaloids/pharmacology ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-04-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elmquist, Joel K -- Flier, Jeffrey S -- New York, N.Y. -- Science. 2004 Apr 2;304(5667):63-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15064411" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arcuate Nucleus of Hypothalamus/growth & development/*physiology ; Axons/*physiology ; Body Weight ; Eating ; Excitatory Postsynaptic Potentials ; Feeding Behavior ; Ghrelin ; Homeostasis ; Hypothalamus/growth & development/*physiology ; Leptin/*physiology ; Mice ; Mice, Obese ; Neurites/physiology ; Neuronal Plasticity/*physiology ; Neurons/*physiology ; Neuropeptide Y/physiology ; Neurotransmitter Agents/metabolism ; Paraventricular Hypothalamic Nucleus/cytology/growth & development/physiology ; Peptide Hormones/physiology ; Pro-Opiomelanocortin/physiology ; Receptors, Cell Surface/metabolism ; Receptors, Leptin ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2004-03-06
    Description: Toll-like receptors (TLRs) recognize molecular patterns displayed by microorganisms, and their subsequent activation leads to the transcription of appropriate host-defense genes. Here we report the cloning and characterization of a member of the mammalian TLR family, TLR11, that displays a distinct pattern of expression in macrophages and liver, kidney, and bladder epithelial cells. Cells expressing TLR11 fail to respond to known TLR ligands but instead respond specifically to uropathogenic bacteria. Mice lacking TLR11 are highly susceptible to infection of the kidneys by uropathogenic bacteria, indicating a potentially important role for TLR11 in preventing infection of internal organs of the urogenital system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Dekai -- Zhang, Guolong -- Hayden, Matthew S -- Greenblatt, Matthew B -- Bussey, Crystal -- Flavell, Richard A -- Ghosh, Sankar -- GM07205/GM/NIGMS NIH HHS/ -- R01-AI59440/AI/NIAID NIH HHS/ -- R37-AI33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1522-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001781" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cloning, Molecular ; Codon, Terminator ; Colony Count, Microbial ; Disease Susceptibility ; Epithelial Cells/metabolism ; Escherichia coli/growth & development/immunology/*pathogenicity ; Escherichia coli Infections/*immunology/microbiology ; Gene Expression Profiling ; Humans ; Immunity, Innate ; Kidney/immunology/*metabolism/microbiology ; Ligands ; Liver/metabolism ; Macrophages/metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; NF-kappa B/metabolism ; Polymorphism, Genetic ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Toll-Like Receptors ; Transfection ; Tumor Necrosis Factor-alpha/metabolism ; Urinary Bladder/immunology/*metabolism/microbiology ; Urinary Tract Infections/*immunology/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2004-02-14
    Description: Legumes form symbiotic associations with both mycorrhizal fungi and nitrogen-fixing soil bacteria called rhizobia. Several of the plant genes required for transduction of rhizobial signals, the Nod factors, are also necessary for mycorrhizal symbiosis. Here, we describe the cloning and characterization of one such gene from the legume Medicago truncatula. The DMI1 (does not make infections) gene encodes a novel protein with low global similarity to a ligand-gated cation channel domain of archaea. The protein is highly conserved in angiosperms and ancestral to land plants. We suggest that DMI1 represents an ancient plant-specific innovation, potentially enabling mycorrhizal associations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ane, Jean-Michel -- Kiss, Gyorgy B -- Riely, Brendan K -- Penmetsa, R Varma -- Oldroyd, Giles E D -- Ayax, Celine -- Levy, Julien -- Debelle, Frederic -- Baek, Jong-Min -- Kalo, Peter -- Rosenberg, Charles -- Roe, Bruce A -- Long, Sharon R -- Denarie, Jean -- Cook, Douglas R -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1364-7. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; Fabaceae/genetics/metabolism/microbiology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Lipopolysaccharides/metabolism ; Medicago/*genetics/metabolism/*microbiology ; Molecular Sequence Data ; Mycorrhizae/*physiology ; Nitrogen Fixation ; Phylogeny ; Plant Proteins/chemistry/genetics/*physiology ; Plant Roots/metabolism ; Protein Structure, Tertiary ; Recombination, Genetic ; Rhizobiaceae/*physiology ; Sequence Homology, Amino Acid ; Signal Transduction ; *Symbiosis ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zampieri, Niccolo -- Chao, Moses V -- New York, N.Y. -- Science. 2004 May 7;304(5672):833-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131296" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Dimerization ; Ligands ; Nerve Growth Factor/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Receptor, Nerve Growth Factor ; Receptor, trkA/chemistry/metabolism ; Receptors, Nerve Growth Factor/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2004-12-25
    Description: P-type ATPases extract energy by hydrolysis of adenosine triphosphate (ATP) in two steps, formation and breakdown of a covalent phosphoenzyme intermediate. This process drives active transport and countertransport of the cation pumps. We have determined the crystal structure of rabbit sarcoplasmic reticulum Ca2+ adenosine triphosphatase in complex with aluminum fluoride, which mimics the transition state of hydrolysis of the counterion-bound (protonated) phosphoenzyme. On the basis of structural analysis and biochemical data, we find this form to represent an occluded state of the proton counterions. Hydrolysis is catalyzed by the conserved Thr-Gly-Glu-Ser motif, and it exploits an associative nucleophilic reaction mechanism of the same type as phosphoryl transfer from ATP. On this basis, we propose a general mechanism of occluded transition states of Ca2+ transport and H+ countertransport coupled to phosphorylation and dephosphorylation, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olesen, Claus -- Sorensen, Thomas Lykke-Moller -- Nielsen, Rikke Christina -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618517" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Aluminum Compounds/chemistry ; Amino Acid Motifs ; Animals ; Binding Sites ; Biological Transport, Active ; Calcium/metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Fluorides/chemistry ; Hydrolysis ; Ion Transport ; Models, Chemical ; Models, Molecular ; Phosphorylation ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; *Protons ; Rabbits ; Sarcoplasmic Reticulum/enzymology ; Thapsigargin ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, Luke A J -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1481-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Trinity College, Dublin, Ireland. laoneill@tcd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001768" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendritic Cells/immunology ; HIV-1/genetics/immunology ; Humans ; *Immunity, Innate ; Inflammation ; Interferon-alpha/metabolism ; Kidney/immunology/metabolism ; Ligands ; Membrane Glycoproteins/*metabolism ; Mice ; Orthomyxoviridae/genetics/immunology ; RNA, Viral/metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction ; Toll-Like Receptor 7 ; Toll-Like Receptors ; Urinary Bladder/immunology/metabolism ; Urinary Tract Infections/immunology/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangwon V -- Flavell, Richard A -- New York, N.Y. -- Science. 2004 Apr 23;304(5670):529-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105485" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD8/*immunology/metabolism ; Arenaviridae Infections/immunology ; CD8-Positive T-Lymphocytes/*immunology ; Cell Differentiation ; Cell Survival ; *Immunologic Memory ; Interleukin-7/metabolism ; *Lymphocyte Activation ; Lymphocytic choriomeningitis virus/immunology ; Membrane Glycoproteins/immunology/metabolism ; Mice ; Mice, Knockout ; Models, Immunological ; Receptors, Interleukin-2/metabolism ; Receptors, Interleukin-7/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2004-02-07
    Description: Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). We report the structure of PSII of the cyanobacterium Thermosynechococcus elongatus at 3.5 angstrom resolution. We have assigned most of the amino acid residues of this 650-kilodalton dimeric multisubunit complex and refined the structure to reveal its molecular architecture. Consequently, we are able to describe details of the binding sites for cofactors and propose a structure of the oxygen-evolving center (OEC). The data strongly suggest that the OEC contains a cubane-like Mn3CaO4 cluster linked to a fourth Mn by a mono-micro-oxo bridge. The details of the surrounding coordination sphere of the metal cluster and the implications for a possible oxygen-evolving mechanism are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferreira, Kristina N -- Iverson, Tina M -- Maghlaoui, Karim -- Barber, James -- Iwata, So -- F32 GM068304/GM/NIGMS NIH HHS/ -- F32 GM068304-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1831-8. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764885" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcium/analysis/chemistry/metabolism ; Carotenoids/chemistry/metabolism ; Chlorophyll/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Cyanobacteria/*enzymology ; Dimerization ; Electron Transport ; Free Radicals ; Histidine/chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Manganese/analysis/chemistry/metabolism ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Oxygen/*metabolism ; Photosynthetic Reaction Center Complex Proteins/chemistry/metabolism ; Photosystem II Protein Complex/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Tyrosine/*analogs & derivatives/chemistry/metabolism ; Water/*metabolism ; beta Carotene/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoshi, Toshinori -- Lahiri, Sukhamay -- New York, N.Y. -- Science. 2004 Dec 17;306(5704):2050-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. hoshi@hoshi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604396" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Monoxide/*metabolism ; Carotid Body/*cytology/*physiology ; Cell Hypoxia ; Cell Membrane/physiology ; Cells, Cultured ; Heme/metabolism/pharmacology ; Heme Oxygenase (Decyclizing)/genetics/*metabolism ; Hemeproteins/metabolism ; Large-Conductance Calcium-Activated Potassium Channels ; Membrane Potentials ; Mitochondria/metabolism ; NADP/pharmacology ; NADPH Oxidase/metabolism ; Oxidation-Reduction ; Oxygen/*physiology ; Potassium Channels, Calcium-Activated ; Proteomics ; RNA, Small Interfering/pharmacology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2004-01-17
    Description: Before ovulation in mammals, a cascade of events resembling an inflammatory and/or tissue remodeling process is triggered by luteinizing hormone (LH) in the ovarian follicle. Many LH effects, however, are thought to be indirect because of the restricted expression of its receptor. Here, we demonstrate that LH stimulation induces the transient and sequential expression of the epidermal growth factor (EGF) family members amphiregulin, epiregulin, and beta-cellulin. Incubation of follicles with these growth factors recapitulates the morphological and biochemical events triggered by LH, including cumulus expansion and oocyte maturation. Thus, these EGF-related growth factors are paracrine mediators that propagate the LH signal throughout the follicle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jy-Young -- Su, You-Qiang -- Ariga, Miyako -- Law, Evelyn -- Jin, S-L Catherine -- Conti, Marco -- HD20788/HD/NICHD NIH HHS/ -- HD31398/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):682-4. Epub 2004 Jan 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Reproductive Biology and Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726596" target="_blank"〉PubMed〈/a〉
    Keywords: Amphiregulin ; Animals ; Betacellulin ; Chorionic Gonadotropin/pharmacology ; EGF Family of Proteins ; Epidermal Growth Factor/genetics/*metabolism ; Epiregulin ; Female ; Gene Expression Regulation ; Glycoproteins/genetics/*metabolism ; Granulosa Cells/metabolism ; Intercellular Signaling Peptides and Proteins/genetics/*metabolism ; Luteinizing Hormone/pharmacology/*physiology ; Meiosis ; Mice ; Mice, Inbred C57BL ; Oocytes/physiology ; Organ Culture Techniques ; Ovarian Follicle/*physiology ; Ovulation/*physiology ; Paracrine Communication ; RNA, Messenger/genetics/metabolism ; Receptor, Epidermal Growth Factor/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2004-12-14
    Description: The thymus gives rise to two T cell lineages, alphabeta and gammadelta, that are thought to develop independently of one another. Hence, double positive (DP) thymocytes expressing CD4 and CD8 coreceptors are usually viewed simply as progenitors of CD4+ and CD8+ alphabeta T cells. Instead we report that DP cells regulate the differentiation of early thymocyte progenitors and gammadelta cells, by a mechanism dependent on the transcription factor RORgt, and the lymphotoxin (LT) beta receptor (LTbetaR). This finding provokes a revised view of the thymus, in which lymphoid tissue induction-type processes coordinate the developmental and functional integration of the two T cell lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Silva-Santos, Bruno -- Pennington, Daniel J -- Hayday, Adrian C -- 071534/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):925-8. Epub 2004 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Peter Gorer Department of Immunobiology, Guy's King's St. Thomas' Medical School, King's College, Guy's Hospital, London SE1 9RT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591166" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Gene Expression ; Genes, T-Cell Receptor ; Ligands ; Lymphocyte Activation ; Lymphotoxin beta Receptor ; Lymphotoxin-alpha/biosynthesis/genetics/*physiology ; Membrane Proteins/genetics ; Mice ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; Phenotype ; Receptors, Antigen, T-Cell, alpha-beta/biosynthesis ; Receptors, Antigen, T-Cell, gamma-delta/biosynthesis ; Receptors, Retinoic Acid/genetics/*physiology ; Receptors, Thyroid Hormone/genetics/*physiology ; Receptors, Tumor Necrosis Factor/genetics/*physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; T-Lymphocyte Subsets/cytology/*immunology/*physiology ; Thymus Gland/cytology/*immunology ; Transcription Factors/biosynthesis/genetics ; Tumor Necrosis Factor Ligand Superfamily Member 14 ; Tumor Necrosis Factor-alpha/genetics ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2004-12-18
    Description: Fat tissue produces a variety of secreted proteins (adipocytokines) with important roles in metabolism. We isolated a newly identified adipocytokine, visfatin, that is highly enriched in the visceral fat of both humans and mice and whose expression level in plasma increases during the development of obesity. Visfatin corresponds to a protein identified previously as pre-B cell colony-enhancing factor (PBEF), a 52-kilodalton cytokine expressed in lymphocytes. Visfatin exerted insulin-mimetic effects in cultured cells and lowered plasma glucose levels in mice. Mice heterozygous for a targeted mutation in the visfatin gene had modestly higher levels of plasma glucose relative to wild-type littermates. Surprisingly, visfatin binds to and activates the insulin receptor. Further study of visfatin's physiological role may lead to new insights into glucose homeostasis and/or new therapies for metabolic disorders such as diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukuhara, Atsunori -- Matsuda, Morihiro -- Nishizawa, Masako -- Segawa, Katsumori -- Tanaka, Masaki -- Kishimoto, Kae -- Matsuki, Yasushi -- Murakami, Mirei -- Ichisaka, Tomoko -- Murakami, Hiroko -- Watanabe, Eijiro -- Takagi, Toshiyuki -- Akiyoshi, Megumi -- Ohtsubo, Tsuguteru -- Kihara, Shinji -- Yamashita, Shizuya -- Makishima, Makoto -- Funahashi, Tohru -- Yamanaka, Shinya -- Hiramatsu, Ryuji -- Matsuzawa, Yuji -- Shimomura, Iichiro -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):426-30. Epub 2004 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine and Pathophysiology, Graduate School of Medicine, and Department of Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15604363" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/drug effects/metabolism ; Adipose Tissue/*metabolism ; Animals ; Binding Sites ; Blood Glucose/analysis ; Cell Line ; Cells, Cultured ; Cytokines/blood/genetics/*metabolism/pharmacology ; Diabetes Mellitus, Type 2/metabolism ; Dose-Response Relationship, Drug ; Female ; Gene Expression Profiling ; Gene Expression Regulation/drug effects ; Gene Targeting ; Humans ; Insulin/blood/*metabolism ; Insulin Resistance ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Molecular Mimicry ; Muscle Cells/metabolism ; Nicotinamide Phosphoribosyltransferase ; Phosphorylation ; Receptor, Insulin/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Subcutaneous Tissue ; Viscera
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brivanlou, Ali H -- Gage, Fred H -- Jaenisch, Rudolf -- Jessell, Thomas -- Melton, Douglas -- Rossant, Janet -- New York, N.Y. -- Science. 2003 May 9;300(5621):913-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021, USA. brvnlou@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738841" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Specimen Banks ; Cell Culture Techniques/methods ; Cell Differentiation ; Cell Division ; *Cell Line ; Culture Media ; Culture Media, Conditioned ; Databases, Factual ; *Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; Quality Control ; Registries ; Research/standards ; Signal Transduction ; Stem Cell Transplantation ; *Stem Cells/cytology/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2003-04-26
    Description: Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's beta-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reches, Meital -- Gazit, Ehud -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):625-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Amyloid beta-Peptides/chemistry ; Biosensing Techniques ; Birefringence ; Dipeptides/*chemistry ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; *Nanotechnology ; Oxidation-Reduction ; Protein Conformation ; Silver ; Solubility ; Spectroscopy, Fourier Transform Infrared
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2003-04-19
    Description: Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayed, Rakez -- Head, Elizabeth -- Thompson, Jennifer L -- McIntire, Theresa M -- Milton, Saskia C -- Cotman, Carl W -- Glabe, Charles G -- AG00538/AG/NIA NIH HHS/ -- AG16573/AG/NIA NIH HHS/ -- NS31230/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 18;300(5618):486-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12702875" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/pathology ; Amyloid/chemistry/toxicity ; Amyloid beta-Peptides/analysis/*chemistry/immunology/toxicity ; Animals ; Antibodies/immunology ; Antibody Specificity ; Biopolymers/analysis/chemistry/toxicity ; Brain/pathology ; Brain Chemistry ; Cell Survival ; Humans ; Microscopy, Confocal ; Microscopy, Electron ; Molecular Mimicry ; Neurofibrillary Tangles/chemistry ; Peptide Fragments/chemistry/immunology ; Protein Conformation ; Rabbits ; Solubility ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2003-07-12
    Description: Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dumas, John J -- Kumar, Ravindra -- Seehra, Jasbir -- Somers, William S -- Mosyak, Lidia -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):222-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Screening Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855811" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Platelets/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Platelet Adhesiveness ; *Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calladine, C R -- Pratap, V -- Chandran, V -- Mizuguchi, K -- Luisi, B F -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):661-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12561825" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Escherichia coli Proteins/*chemistry ; Glycine/chemistry ; Ion Channels/*chemistry ; *Models, Molecular ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2003-05-06
    Description: We have used adenosine diphosphate analogs containing electron paramagnetic resonance (EPR) spin moieties and EPR spectroscopy to show that the nucleotide-binding site of kinesin-family motors closes when the motor.diphosphate complex binds to microtubules. Structural analyses demonstrate that a domain movement in the switch 1 region at the nucleotide site, homologous to domain movements in the switch 1 region in the G proteins [heterotrimeric guanine nucleotide-binding proteins], explains the EPR data. The switch movement primes the motor both for the free energy-yielding nucleotide hydrolysis reaction and for subsequent conformational changes that are crucial for the generation of force and directed motion along the microtubule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naber, Nariman -- Minehardt, Todd J -- Rice, Sarah -- Chen, Xiaoru -- Grammer, Jean -- Matuska, Marija -- Vale, Ronald D -- Kollman, Peter A -- Car, Roberto -- Yount, Ralph G -- Cooke, Roger -- Pate, Edward -- AR39643/AR/NIAMS NIH HHS/ -- AR42895/AR/NIAMS NIH HHS/ -- DK05915/DK/NIDDK NIH HHS/ -- GM29072/GM/NIGMS NIH HHS/ -- RR1081/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2003 May 2;300(5620):798-801.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California, San Francisco, CA 94143, USA. naber@itsa.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730601" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine Nucleotides/*metabolism ; Adenosine Diphosphate/analogs & derivatives/metabolism ; Adenosine Triphosphate/analogs & derivatives/metabolism ; Animals ; Binding Sites ; Computer Simulation ; Crystallography, X-Ray ; *Drosophila Proteins ; Drosophila melanogaster ; Electron Spin Resonance Spectroscopy ; Humans ; Hydrogen Bonding ; Hydrolysis ; Kinesin/*chemistry/*metabolism ; Microtubules/*metabolism ; Models, Molecular ; Molecular Motor Proteins/*chemistry/*metabolism ; Molecular Probes/metabolism ; Protein Conformation ; Spin Labels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, Lars -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):671-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Organism Biology, Lund University, SE-22362 Lund, Sweden. lars.hederstedt@cob.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560540" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/*metabolism ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/*metabolism ; Succinic Acid/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-07-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintz, Nathaniel -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):59-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Rockefeller University, New York, NY 10021, USA. heintz@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843383" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Substitution ; Animals ; Ataxin-1 ; Ataxins ; Cell Nucleus/metabolism ; Disease Progression ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Nuclear Proteins/*chemistry/genetics/*metabolism ; Peptides ; Phosphorylation ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; Purkinje Cells/metabolism/ultrastructure ; Signal Transduction ; Spinocerebellar Ataxias/etiology/genetics/pathology/*physiopathology ; *Trinucleotide Repeat Expansion ; Tyrosine 3-Monooxygenase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2003-06-14
    Description: In eukaryotes, the combinatorial association of sequence-specific DNA binding proteins is essential for transcription. We have used protein arrays to test 492 pairings of a nearly complete set of coiled-coil strands from human basic-region leucine zipper (bZIP) transcription factors. We find considerable partnering selectivity despite the bZIPs' homologous sequences. The interaction data are of high quality, as assessed by their reproducibility, reciprocity, and agreement with previous observations. Biophysical studies in solution support the relative binding strengths observed with the arrays. New associations provide insights into the circadian clock and the unfolded protein response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, John R S -- Keating, Amy E -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2097-101. Epub 2003 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Basic-Leucine Zipper Transcription Factors ; Chromatography, High Pressure Liquid ; Circadian Rhythm ; Circular Dichroism ; Cyclic AMP Response Element-Binding Protein/chemistry/metabolism ; DNA-Binding Proteins/chemistry/isolation & purification/*metabolism ; Dimerization ; G-Box Binding Factors ; Humans ; *Leucine Zippers ; Peptides/chemistry/isolation & purification/metabolism ; *Protein Array Analysis ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Signal Transduction ; Temperature ; Thermodynamics ; Transcription Factors/*chemistry/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bray, Dennis -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1189-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. d.bray@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595679" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antibody Diversity ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Evolution, Molecular ; Genetic Variation ; Genomics ; Histones/chemistry/genetics/metabolism ; Humans ; Methylation ; Phenotype ; Potassium Channels/chemistry/genetics/metabolism ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Processing, Post-Translational ; Proteins/*chemistry/genetics/*metabolism ; Proteomics ; RNA Splicing ; Receptors, Cell Surface/chemistry/genetics/metabolism ; Selection, Genetic ; Troponin T/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2003-08-16
    Description: Plants attacked by pathogens rapidly deposit callose, a beta-1,3-glucan, at wound sites. Traditionally, this deposition is thought to reinforce the cell wall and is regarded as a defense response. Surprisingly, here we found that powdery mildew resistant 4 (pmr4), a mutant lacking pathogen-induced callose, became resistant to pathogens, rather than more susceptible. This resistance was due to mutation of a callose synthase, resulting in a loss of the induced callose response. Double-mutant analysis indicated that blocking the salicylic acid (SA) defense signaling pathway was sufficient to restore susceptibility to pmr4 mutants. Thus, callose or callose synthase negatively regulates the SA pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, Marc T -- Stein, Monica -- Hou, Bi-Huei -- Vogel, John P -- Edwards, Herb -- Somerville, Shauna C -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):969-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920300" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/cytology/genetics/*metabolism/*microbiology ; Ascomycota/*physiology ; Cell Death ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Glucans/metabolism ; Glucosyltransferases/*genetics/metabolism ; *Membrane Proteins ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; *Plant Diseases ; Plant Leaves/metabolism ; Salicylic Acid/*metabolism ; *Schizosaccharomyces pombe Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2003-07-05
    Description: Raf kinases have been linked to endothelial cell survival. Here, we show that basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) differentially activate Raf, resulting in protection from distinct pathways of apoptosis in human endothelial cells and chick embryo vasculature. bFGF activated Raf-1 via p21-activated protein kinase-1 (PAK-1) phosphorylation of serines 338 and 339, resulting in Raf-1 mitochondrial translocation and endothelial cell protection from the intrinsic pathway of apoptosis, independent of the mitogen-activated protein kinase kinase-1 (MEK1). In contrast, VEGF activated Raf-1 via Src kinase, leading to phosphorylation of tyrosines 340 and 341 and MEK1-dependent protection from extrinsic-mediated apoptosis. These findings implicate Raf-1 as a pivotal regulator of endothelial cell survival during angiogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alavi, Alireza -- Hood, John D -- Frausto, Ricardo -- Stupack, Dwayne G -- Cheresh, David A -- CA45726/CA/NCI NIH HHS/ -- CA50286/CA/NCI NIH HHS/ -- CA75924/CA/NCI NIH HHS/ -- P01 CA78045/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 4;301(5629):94-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12843393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Cell Survival ; Cells, Cultured ; Chick Embryo ; Endothelial Growth Factors/pharmacology ; Endothelium, Vascular/*cytology/drug effects ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Fibroblast Growth Factor 2/pharmacology ; Flavonoids/pharmacology ; Humans ; Intercellular Signaling Peptides and Proteins/pharmacology ; Lymphokines/pharmacology ; MAP Kinase Kinase 1 ; Mitochondria/metabolism ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Neovascularization, Pathologic ; *Neovascularization, Physiologic/drug effects ; Phosphorylation ; Point Mutation ; Protein Transport ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins B-raf ; Proto-Oncogene Proteins c-raf/chemistry/genetics/*metabolism ; Signal Transduction ; Umbilical Veins ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factors ; p21-Activated Kinases ; src-Family Kinases/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2003-05-10
    Description: Multidrug efflux pumps cause serious problems in cancer chemotherapy and treatment of bacterial infections. Yet high-resolution structures of ligand transporter complexes have previously been unavailable. We obtained x-ray crystallographic structures of the trimeric AcrB pump from Escherichia coli with four structurally diverse ligands. The structures show that three molecules of ligands bind simultaneously to the extremely large central cavity of 5000 cubic angstroms, primarily by hydrophobic, aromatic stacking and van der Waals interactions. Each ligand uses a slightly different subset of AcrB residues for binding. The bound ligand molecules often interact with each other, stabilizing the binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Edward W -- McDermott, Gerry -- Zgurskaya, Helen I -- Nikaido, Hiroshi -- Koshland, Daniel E Jr -- AI 09644/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):976-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738864" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Infective Agents/chemistry/metabolism ; Anti-Infective Agents, Local/chemistry/metabolism ; Binding Sites ; Carrier Proteins/*chemistry/isolation & purification/*metabolism ; Cell Membrane/chemistry ; Chemistry, Physical ; Ciprofloxacin/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dequalinium/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/isolation & purification/*metabolism ; Ethidium/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Proteins/*chemistry/isolation & purification/*metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allen, John F -- New York, N.Y. -- Science. 2003 Mar 7;299(5612):1530-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biochemistry, Center for Chemistry and Chemical Engineering, Box 124, Lund University, SE-221 00 Lund, Sweden. john.allen@plantbio.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12624254" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/chemistry/genetics/isolation & purification/metabolism ; Animals ; Binding Sites ; Chlamydomonas reinhardtii/*enzymology/genetics/metabolism ; Chlorophyll/metabolism ; Electron Transport ; Fluorescence ; Gene Library ; Light ; Light-Harvesting Protein Complexes ; Models, Biological ; Mutation ; Oxidation-Reduction ; Phosphorylation ; Photosynthesis ; Photosynthetic Reaction Center Complex Proteins/*metabolism ; Plastoquinone/metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*isolation & ; purification/*metabolism ; Signal Transduction ; Thylakoids/*enzymology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2003-09-23
    Description: Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Minsoo -- Carman, Christopher V -- Springer, Timothy A -- CA31798/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1720-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500982" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD11a/*chemistry ; Antigens, CD18/*chemistry ; Bacterial Proteins ; Cell Adhesion ; Cell Membrane/*metabolism ; Chemokine CXCL12 ; Chemokines, CXC/metabolism ; Cytoplasm/*chemistry ; Dimerization ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Humans ; Intercellular Adhesion Molecule-1/metabolism ; Ligands ; Luminescent Proteins ; Lymphocyte Function-Associated Antigen-1/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CXCR4/metabolism ; Recombinant Fusion Proteins/chemistry ; *Signal Transduction ; Talin/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Derse, David -- Heidecker, Gisela -- New York, N.Y. -- Science. 2003 Mar 14;299(5613):1670-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702, USA. derse@ncifcrf.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637723" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Adhesion Molecules/metabolism ; Cell Communication ; Cell Polarity ; Dendritic Cells/virology ; Extracellular Space/virology ; Gene Products, env/metabolism ; Gene Products, tax/physiology ; HTLV-I Infections/virology ; Human T-lymphotropic virus 1/genetics/*physiology ; Humans ; Intercellular Junctions/*physiology/ultrastructure/virology ; Microtubule-Organizing Center/*physiology/ultrastructure ; Receptors, Virus/metabolism ; Signal Transduction ; T-Lymphocytes/*ultrastructure/*virology ; Talin/metabolism ; Virion/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2003-03-01
    Description: The mechanisms that determine how folding attempts are interrupted to target folding-incompetent proteins for endoplasmic reticulum-associated degradation (ERAD) are poorly defined. Here the alpha-mannosidase I-like protein EDEM was shown to extract misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle. EDEM overexpression resulted in faster release of folding-incompetent proteins from the calnexin cycle and earlier onset of degradation, whereas EDEM down-regulation prolonged folding attempts and delayed ERAD. Up-regulation of EDEM during ER stress may promote cell recovery by clearing the calnexin cycle and by accelerating ERAD of terminally misfolded polypeptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molinari, Maurizio -- Calanca, Verena -- Galli, Carmela -- Lucca, Paola -- Paganetti, Paolo -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1397-400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland. Maurizio.molinari@irb.unisi.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610306" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases/chemistry/*metabolism ; Calnexin/*metabolism ; Cell Line ; Down-Regulation ; Electrophoresis, Polyacrylamide Gel ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/chemistry/*metabolism ; Glycosylation ; Humans ; Kinetics ; Membrane Proteins/*metabolism ; Molecular Weight ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; RNA Interference ; Transfection ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harberd, Nicholas P -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1853-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉John Innes Centre, Norwich, Norfolk NR4 7UH, UK. nicholas.harberd@bbsrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649470" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; Genes, Plant ; Gibberellins/*metabolism/pharmacology ; Indoleacetic Acids/metabolism ; Ligases/metabolism ; Models, Biological ; Mutation ; Oryza/genetics/*growth & development/metabolism ; Peptide Hydrolases/metabolism ; Phosphorylation ; Plant Proteins/*genetics/*metabolism ; *Proteasome Endopeptidase Complex ; Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2003-11-15
    Description: Cranial radiation therapy causes a progressive decline in cognitive function that is linked to impaired neurogenesis. Chronic inflammation accompanies radiation injury, suggesting that inflammatory processes may contribute to neural stem cell dysfunction. Here, we show that neuroinflammation alone inhibits neurogenesis and that inflammatory blockade with indomethacin, a common nonsteroidal anti-inflammatory drug, restores neurogenesis after endotoxin-induced inflammation and augments neurogenesis after cranial irradiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monje, Michelle L -- Toda, Hiroki -- Palmer, Theo D -- F30 NS04696701/NS/NINDS NIH HHS/ -- MH20016-05/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1760-5. Epub 2003 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stanford University, Department of Neurosurgery, MSLS P309, Mail Code 5487, 1201 Welch Road, Stanford, CA 94305-5487, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14615545" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Antigens, CD/metabolism ; Apoptosis ; Cell Differentiation ; Cells, Cultured ; Coculture Techniques ; Culture Media, Conditioned ; Cytokine Receptor gp130 ; Cytokines/physiology ; Dentate Gyrus/cytology/drug effects/physiology/radiation effects ; Female ; Gamma Rays ; Hippocampus/cytology/drug effects/*physiology/radiation effects ; In Situ Nick-End Labeling ; Indomethacin/*pharmacology ; Inflammation/drug therapy/*physiopathology ; Interleukin-6/pharmacology/physiology ; Lipopolysaccharides/pharmacology ; Membrane Glycoproteins/metabolism ; Mice ; Microglia/*physiology ; Mitotic Index ; Neurons/drug effects/*physiology/radiation effects ; Rats ; Rats, Inbred F344 ; Receptors, Interleukin-6/metabolism ; Recombinant Proteins/pharmacology ; Signal Transduction ; Stem Cells/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-13
    Description: Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harper, Shannon M -- Neil, Lori C -- Gardner, Kevin H -- CA90601/CA/NCI NIH HHS/ -- GM08297/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970567" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avena/*chemistry ; Cryptochromes ; Darkness ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/*chemistry/metabolism ; *Light ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; *Photoreceptor Cells, Invertebrate ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2003-06-07
    Description: Insulin resistance is a major hallmark in the development of type II diabetes, which is characterized by the failure of insulin to promote glucose uptake in muscle and to suppress glucose production in liver. The serine-threonine kinase Akt (PKB) is a principal target of insulin signaling that inhibits hepatic glucose output when glucose is available from food. Here we show that TRB3, a mammalian homolog of Drosophila tribbles, functions as a negative modulator of Akt. TRB3 expression is induced in liver under fasting conditions, and TRB3 disrupts insulin signaling by binding directly to Akt and blocking activation of the kinase. Amounts of TRB3 RNA and protein were increased in livers of db/db diabetic mice compared with those in wild-type mice. Hepatic overexpression of TRB3 in amounts comparable to those in db/db mice promoted hyperglycemia and glucose intolerance. Our results suggest that, by interfering with Akt activation, TRB3 contributes to insulin resistance in individuals with susceptibility to type II diabetes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Du, Keyong -- Herzig, Stephan -- Kulkarni, Rohit N -- Montminy, Marc -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1574-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Peptide Biology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791994" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Amino Acid Substitution ; Animals ; Blood Glucose/metabolism ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Diabetes Mellitus/genetics/metabolism ; Enzyme Activation ; Fasting ; Genetic Vectors ; Glucose/metabolism ; Glucose Intolerance ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Insulin/blood/*metabolism ; Insulin Resistance ; Insulin-Like Growth Factor I/pharmacology ; Liver/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; Polymerase Chain Reaction ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; RNA Interference ; Rats ; Repressor Proteins ; Signal Transduction ; Transfection ; Transgenes ; Tumor Cells, Cultured ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: A C4-symmetric tetrameric aldolase was used to produce a quadratic network consisting of the enzyme as a rigid four-way connector and stiff streptavidin rods as spacers. Each aldolase subunit was furnished with a His6 tag for oriented binding to a planar surface and two tethered biotins for binding streptavidin in an oriented manner. The networks were improved by starting with composite units and also by binding to nickel-nitrilotriacetic acid-lipid monolayers. The mesh was adjustable in 5-nanometer increments. The production of a net with switchable mesh was initiated with the use of a calcium ion-containing beta-helix spacer that denatured on calcium ion depletion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ringler, Philippe -- Schulz, Georg E -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):106-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat Freiburg, Albertstrasse 21, D-79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526081" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde-Lyases/*chemistry/genetics/metabolism ; Binding Sites ; Biotin/chemistry/metabolism ; Calcium/metabolism ; Edetic Acid ; *Glycoside Hydrolases ; Lipids/chemistry ; Macromolecular Substances ; Metalloendopeptidases/chemistry/metabolism ; Microscopy, Electron ; Models, Molecular ; Mutation ; Nitrilotriacetic Acid ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Structure, Secondary ; Recombinant Fusion Proteins/chemistry ; Streptavidin/*chemistry ; beta-Galactosidase/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2003-06-28
    Description: Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calarese, Daniel A -- Scanlan, Christopher N -- Zwick, Michael B -- Deechongkit, Songpon -- Mimura, Yusuke -- Kunert, Renate -- Zhu, Ping -- Wormald, Mark R -- Stanfield, Robyn L -- Roux, Kenneth H -- Kelly, Jeffery W -- Rudd, Pauline M -- Dwek, Raymond A -- Katinger, Hermann -- Burton, Dennis R -- Wilson, Ian A -- AI33292/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2065-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Binding Sites, Antibody ; Cell Adhesion Molecules/metabolism ; Centrifugation, Density Gradient ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Disaccharides/chemistry/metabolism ; Epitopes ; HIV Antibodies/*chemistry/genetics/*immunology/metabolism ; HIV Envelope Protein gp120/*immunology ; HIV-1/*immunology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/*immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin Light Chains/chemistry/immunology ; Immunoglobulin Variable Region/chemistry/immunology ; Lectins/chemistry/immunology/metabolism ; Lectins, C-Type/metabolism ; Ligands ; Mannans/chemistry/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Oligosaccharides/chemistry/*immunology/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2003-04-26
    Description: Eukaryotic 2-Cys peroxiredoxins (2-Cys Prxs) not only act as antioxidants, but also appear to regulate hydrogen peroxide-mediated signal transduction. We show that bacterial 2-Cys Prxs are much less sensitive to oxidative inactivation than are eukaryotic 2-Cys Prxs. By identifying two sequence motifs unique to the sensitive 2-Cys Prxs and comparing the crystal structure of a bacterial 2-Cys Prx at 2.2 angstrom resolution with other Prx structures, we define the structural origins of sensitivity. We suggest this adaptation allows 2-Cys Prxs to act as floodgates, keeping resting levels of hydrogen peroxide low, while permitting higher levels during signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Zachary A -- Poole, Leslie B -- Karplus, P Andrew -- ES00210/ES/NIEHS NIH HHS/ -- GM50389/GM/NIGMS NIH HHS/ -- R01 GM050389/GM/NIGMS NIH HHS/ -- R01 GM050389-10/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 25;300(5619):650-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12714747" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Bacteria/enzymology ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Cysteine/metabolism ; Disulfides/chemistry/metabolism ; Evolution, Molecular ; Humans ; Hydrogen Peroxide/*metabolism ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Salmonella typhimurium/*enzymology ; Sequence Alignment ; *Signal Transduction ; Sulfenic Acids/metabolism ; Sulfinic Acids/metabolism ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2020-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829759" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Desulfurococcaceae/chemistry ; Glycosylation ; Hot Temperature ; *Ion Channel Gating ; *Models, Molecular ; Models, Neurological ; Neurons/chemistry/physiology ; Potassium Channels, Voltage-Gated/*chemistry/*physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2003-12-13
    Description: The crystal structure at 4.8 angstrom resolution of the reaction center-light harvesting 1 (RC-LH1) core complex from Rhodopseudomonas palustris shows the reaction center surrounded by an oval LH1 complex that consists of 15 pairs of transmembrane helical alpha- and beta-apoproteins and their coordinated bacteriochlorophylls. Complete closure of the RC by the LH1 is prevented by a single transmembrane helix, out of register with the array of inner LH1 alpha-apoproteins. This break, located next to the binding site in the reaction center for the secondary electron acceptor ubiquinone (UQB), may provide a portal through which UQB can transfer electrons to cytochrome b/c1.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roszak, Aleksander W -- Howard, Tina D -- Southall, June -- Gardiner, Alastair T -- Law, Christopher J -- Isaacs, Neil W -- Cogdell, Richard J -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1969-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671305" target="_blank"〉PubMed〈/a〉
    Keywords: Apoproteins/chemistry ; Bacterial Proteins/*chemistry ; Bacteriochlorophyll A/chemistry ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Light-Harvesting Protein Complexes/*chemistry ; Macromolecular Substances ; Models, Molecular ; Photosynthetic Reaction Center Complex Proteins/*chemistry ; Protein Conformation ; Protein Structure, Secondary ; Rhodopseudomonas/*chemistry ; Ubiquinone/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2003-10-25
    Description: Paracaspase (MALT1), a member of an evolutionarily conserved superfamily of caspase-like proteins, has been shown to bind and colocalize with the protein Bcl10 in vitro and, because of this association, has been suggested to be involved in the CARMA1-Bcl10 pathway of antigen-induced nuclear factor kappaB (NF-kappaB) activation. We demonstrate that primary T and B lymphocytes from paracaspase-deficient mice are defective in antigen-receptor-induced NF-kappaB activation, cytokine production, and proliferation. Paracaspase acts downstream of Bcl10 to induce NF-kappaB activation and is required for the normal development of B cells, indicating that paracaspase provides the missing link between Bcl10 and activation of the IkappaB kinase complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruefli-Brasse, Astrid A -- French, Dorothy M -- Dixit, Vishva M -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1581-4. Epub 2003 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576442" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antibody Formation ; Antigens, CD/analysis ; B-Lymphocyte Subsets/immunology/physiology ; B-Lymphocytes/*immunology/metabolism/physiology ; Caspases ; Cell Differentiation ; Cell Division ; Cell Survival ; Cells, Cultured ; Cytokines/metabolism ; Gene Deletion ; Gene Targeting ; Guanylate Kinase ; I-kappa B Kinase ; *Lymphocyte Activation ; Lymphoma, B-Cell, Marginal Zone/chemistry/*metabolism ; Mice ; Mice, Inbred C57BL ; NF-kappa B/*metabolism ; Neoplasm Proteins/chemistry/*metabolism ; Nucleoside-Phosphate Kinase/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Antigen, B-Cell/metabolism ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology/physiology ; T-Lymphocytes/*immunology/metabolism/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2003-02-22
    Description: We have developed a proteomic approach for identifying phosphopeptide binding domains that modulate kinase-dependent signaling pathways. An immobilized library of partially degenerate phosphopeptides biased toward a particular protein kinase phosphorylation motif is used to isolate phospho-binding domains that bind to proteins phosphorylated by that kinase. Applying this approach to cyclin-dependent kinases (Cdks), we identified the polo-box domain (PBD) of the mitotic kinase polo-like kinase 1 (Plk1) as a specific phosphoserine (pSer) or phosphothreonine (pThr) binding domain and determined its optimal binding motif. This motif is present in known Plk1 substrates such as Cdc25, and an optimal phosphopeptide containing the motif disrupted PBD-substrate binding and localization of the PBD to centrosomes. This finding reveals how Plk1 can localize to specific sites within cells in response to Cdk phosphorylation at those sites and provides a structural mechanism for targeting the Plk1 kinase domain to its substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elia, Andrew E H -- Cantley, Lewis C -- Yaffe, Michael B -- GM52981/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1228-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595692" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Calorimetry ; Cell Cycle Proteins ; Centrosome/metabolism ; HeLa Cells ; Humans ; Ligands ; Mitosis ; Peptide Library ; Phosphopeptides/chemistry/*metabolism ; Phosphorylation ; Phosphoserine/*metabolism ; Phosphothreonine/*metabolism ; Point Mutation ; Protein Binding ; Protein Kinases/*chemistry/genetics/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2003-08-02
    Description: Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramson, Jeff -- Smirnova, Irina -- Kasho, Vladimir -- Verner, Gillian -- Kaback, H Ronald -- Iwata, So -- DK51131: 08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):610-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ion Transport ; Lactose/*metabolism ; Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protons ; Substrate Specificity ; *Symporters ; Thiogalactosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2003-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrero, Isabel -- Ruiz i Altaba, Ariel -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):774-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Universidad Autonoma de Madrid, Madrid E-28049, Spain. iguerrero@cbm.uam.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Central Nervous System/cytology/*embryology ; Chick Embryo ; Drosophila/growth & development/metabolism ; Drosophila Proteins/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Neoplasms/etiology ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface ; Signal Transduction ; Trans-Activators/*metabolism ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2003-08-30
    Description: The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Limpens, Erik -- Franken, Carolien -- Smit, Patrick -- Willemse, Joost -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):630-3. Epub 2003 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Gene Expression ; *Genes, Plant ; Ligands ; Lipopolysaccharides/*metabolism ; Medicago/genetics/microbiology/*physiology ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nitrogen Fixation ; Peas ; Phenotype ; Plant Roots/*microbiology/physiology ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Sinorhizobium meliloti/chemistry/genetics/growth & development/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2003-02-01
    Description: The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yankovskaya, Victoria -- Horsefield, Rob -- Tornroth, Susanna -- Luna-Chavez, Cesar -- Miyoshi, Hideto -- Leger, Christophe -- Byrne, Bernadette -- Cecchini, Gary -- Iwata, So -- GM61606/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):700-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560550" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Dinitrophenols/chemistry/pharmacology ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Mutation ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/*metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Succinic Acid/metabolism ; Superoxides/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2003-09-06
    Description: The earliest of a series of copper efflux genes in Escherichia coli are controlled by CueR, a member of the MerR family of transcriptional activators. Thermodynamic calibration of CueR reveals a zeptomolar (10(-21) molar) sensitivity to free Cu+, which is far less than one atom per cell. Atomic details of this extraordinary sensitivity and selectivity for +1transition-metal ions are revealed by comparing the crystal structures of CueR and a Zn2+-sensing homolog, ZntR. An unusual buried metal-receptor site in CueR restricts the metal to a linear, two-coordinate geometry and uses helix-dipole and hydrogen-bonding interactions to enhance metal binding. This binding mode is rare among metalloproteins but well suited for an ultrasensitive genetic switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Changela, Anita -- Chen, Kui -- Xue, Yi -- Holschen, Jackie -- Outten, Caryn E -- O'Halloran, Thomas V -- Mondragon, Alfonso -- F32 DK61868/DK/NIDDK NIH HHS/ -- GM08382/GM/NIGMS NIH HHS/ -- GM38784/GM/NIGMS NIH HHS/ -- GM51350/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1383-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958362" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Copper/*metabolism ; Crystallization ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Dimerization ; Escherichia coli/*chemistry/genetics/metabolism ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Helix-Turn-Helix Motifs ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metals/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Sequence Alignment ; Thermodynamics ; Transcription Factors/chemistry/genetics/metabolism ; Transcriptional Activation ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2003-09-06
    Description: Wnt proteins, regulators of development in many organisms, bind to seven transmembrane-spanning (7TMS) receptors called frizzleds, thereby recruiting the cytoplasmic molecule dishevelled (Dvl) to the plasma membrane.Frizzled-mediated endocytosis of Wg (a Drosophila Wnt protein) and lysosomal degradation may regulate the formation of morphogen gradients. Endocytosis of Frizzled 4 (Fz4) in human embryonic kidney 293 cells was dependent on added Wnt5A protein and was accomplished by the multifunctional adaptor protein beta-arrestin 2 (betaarr2), which was recruited to Fz4 by binding to phosphorylated Dvl2. These findings provide a previously unrecognized mechanism for receptor recruitment of beta-arrestin and demonstrate that Dvl plays an important role in the endocytosis of frizzled, as well as in promoting signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Wei -- ten Berge, Derk -- Brown, Jeff -- Ahn, Seungkirl -- Hu, Liaoyuan A -- Miller, William E -- Caron, Marc G -- Barak, Larry S -- Nusse, Roel -- Lefkowitz, Robert J -- HL 16037/HL/NHLBI NIH HHS/ -- HL 61365/HL/NHLBI NIH HHS/ -- NS 19576/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 5;301(5638):1391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12958364" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Arrestins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Clathrin/metabolism ; Cytoplasm/metabolism ; *Endocytosis ; Frizzled Receptors ; Humans ; Mice ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/metabolism ; Proteins/genetics/*metabolism ; Proto-Oncogene Proteins/*metabolism/pharmacology ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Wnt Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2003-07-26
    Description: The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Emily H Y -- Sheiko, Tatiana V -- Fisher, Jill K -- Craigen, William J -- Korsmeyer, Stanley J -- NS42319/NS/NINDS NIH HHS/ -- R37CA50239/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):513-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Biopolymers ; Carrier Proteins/metabolism/pharmacology ; Cell Line ; Cells, Cultured ; Etoposide/pharmacology ; Humans ; Intracellular Membranes/metabolism ; Jurkat Cells ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria/*metabolism ; Mitochondria, Liver/metabolism ; Porins/genetics/isolation & purification/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Recombinant Proteins/pharmacology ; Staurosporine/pharmacology ; Voltage-Dependent Anion Channel 1 ; Voltage-Dependent Anion Channel 2 ; Voltage-Dependent Anion Channels ; bcl-2 Homologous Antagonist-Killer Protein ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locher, Kaspar P -- Bass, Randal B -- Rees, Douglas C -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):603-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie und Biophysik, Eidgenossische Technische Hochschule Zurich, Zurich CH-8093, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893929" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Escherichia coli/chemistry/enzymology ; Escherichia coli Proteins/*chemistry/metabolism ; Glycerophosphates/metabolism ; Lactose/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Symporters
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2003-09-23
    Description: Erythrocytic mechanisms involved in malarial infection are poorly understood. We have found that signaling via the erythrocyte beta2-adrenergic receptor and heterotrimeric guanine nucleotide-binding protein (Galphas) regulated the entry of the human malaria parasite Plasmodium falciparum. Agonists that stimulate cyclic adenosine 3',5'-monophosphate production led to an increase in malarial infection that could be blocked by specific receptor antagonists. Moreover, peptides designed to inhibit Galphas protein function reduced parasitemia in P. falciparum cultures in vitro, and beta-antagonists reduced parasitemia of P. berghei infections in an in vivo mouse model. Thus, signaling via the erythrocyte beta2-adrenergic receptor and Galphas may regulate malarial infection across parasite species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harrison, Travis -- Samuel, Benjamin U -- Akompong, Thomas -- Hamm, Heidi -- Mohandas, Narla -- Lomasney, Jon W -- Haldar, Kasturi -- AI39071/AI/NIAID NIH HHS/ -- DK32094/DK/NIDDK NIH HHS/ -- EY06062/EY/NEI NIH HHS/ -- EY10291/EY/NEI NIH HHS/ -- HL03961/HL/NHLBI NIH HHS/ -- HL55591/HL/NHLBI NIH HHS/ -- HL69630/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1734-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 Chicago Avenue, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500986" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Adrenergic beta-Agonists/pharmacology ; Adrenergic beta-Antagonists/pharmacology ; Alprenolol/pharmacology ; Animals ; Catecholamines/metabolism ; Cyclic AMP/metabolism ; Erythrocyte Membrane/metabolism ; Erythrocytes/metabolism/*parasitology ; GTP-Binding Protein alpha Subunits, Gs/chemistry/*metabolism ; Humans ; Malaria/metabolism/*parasitology ; Membrane Microdomains/metabolism ; Mice ; Parasitemia ; Peptide Fragments/pharmacology ; Plasmodium berghei/*physiology ; Plasmodium falciparum/growth & development/*physiology ; Propranolol/pharmacology ; Purinergic P1 Receptor Agonists ; Purinergic P1 Receptor Antagonists ; Receptors, Adrenergic, beta-2/*metabolism ; Receptors, Purinergic P1/metabolism ; Signal Transduction ; Stereoisomerism ; Vacuoles/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Alan J -- Zon, Leonard I -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):835-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Hematology/Oncology, Children's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. zon@hhmi.tchlab.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574609" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbon Tetrachloride/toxicity ; Cell Communication ; Cell Division ; Coculture Techniques ; Drug-Induced Liver Injury ; Endothelial Growth Factors/metabolism/*physiology ; Endothelium, Vascular/*cytology/physiology ; Hepatocyte Growth Factor/physiology/secretion ; Hepatocytes/*physiology ; Interleukin-6/physiology/secretion ; Liver/blood supply/*cytology/pathology/*physiology ; Liver Diseases/metabolism/pathology/prevention & control ; *Liver Regeneration ; Mice ; Necrosis ; Signal Transduction ; Up-Regulation ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factor Receptor-1/*metabolism ; Vascular Endothelial Growth Factor Receptor-2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lewcock, Joseph W -- Reed, Randall R -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2078-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684811" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Alleles ; Animals ; Cell Nucleus/metabolism ; Chromosomes, Artificial, Yeast ; Feedback, Physiological ; *Gene Expression Regulation ; Genes, Reporter ; Mice ; Mice, Transgenic ; Multigene Family ; Odors ; Olfactory Receptor Neurons/*metabolism ; Promoter Regions, Genetic ; Pseudogenes ; Receptors, Odorant/*genetics/*metabolism ; Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2003-04-12
    Description: Vascular smooth muscle cell (SMC) proliferation and migration are important events in the development of atherosclerosis. The low-density lipoprotein receptor-related protein (LRP1) mediates suppression of SMC migration induced by platelet-derived growth factor (PDGF). Here we show that LRP1 forms a complex with the PDGF receptor (PDGFR). Inactivation of LRP1 in vascular SMCs of mice causes PDGFR overexpression and abnormal activation of PDGFR signaling, resulting in disruption of the elastic layer, SMC proliferation, aneurysm formation, and marked susceptibility to cholesterol-induced atherosclerosis. The development of these abnormalities was reduced by treatment with Gleevec, an inhibitor of PDGF signaling. Thus, LRP1 has a pivotal role in protecting vascular wall integrity and preventing atherosclerosis by controlling PDGFR activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boucher, Philippe -- Gotthardt, Michael -- Li, Wei-Ping -- Anderson, Richard G W -- Herz, Joachim -- GM 52016/GM/NIGMS NIH HHS/ -- HL20948/HL/NHLBI NIH HHS/ -- HL63762/HL/NHLBI NIH HHS/ -- NS43408/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Apr 11;300(5617):329-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12690199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aorta/cytology/metabolism/*pathology ; Arteriosclerosis/*pathology/physiopathology/*prevention & control ; Benzamides ; Cattle ; Cell Division ; Cell Line ; Cholesterol, Dietary/administration & dosage ; Diet, Atherogenic ; Elastin/analysis ; Enzyme Inhibitors/pharmacology ; Imatinib Mesylate ; Ligands ; Low Density Lipoprotein Receptor-Related ; Protein-1/genetics/metabolism/*physiology ; Mesenteric Arteries/cytology/pathology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle, Smooth, Vascular/cytology/*metabolism/pathology ; Myocytes, Smooth Muscle/*metabolism/physiology ; Phosphorylation ; Piperazines/pharmacology ; Platelet-Derived Growth Factor/metabolism/pharmacology ; Proto-Oncogene Proteins c-sis ; Pyrimidines/pharmacology ; Receptor, Platelet-Derived Growth Factor beta/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2003-06-28
    Description: Interleukin-6 (IL-6) is an immunoregulatory cytokine that activates a cell-surface signaling assembly composed of IL-6, the IL-6 alpha-receptor (IL-6Ralpha), and the shared signaling receptor gp130. The 3.65 angstrom-resolution structure of the extracellular signaling complex reveals a hexameric, interlocking assembly mediated by a total of 10 symmetry-related, thermodynamically coupled interfaces. Assembly of the hexameric complex occurs sequentially: IL-6 is first engaged by IL-6Ralpha and then presented to gp130in the proper geometry to facilitate a cooperative transition into the high-affinity, signaling-competent hexamer. The quaternary structures of other IL-6/IL-12 family signaling complexes are likely constructed by means of a similar topological blueprint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulanger, Martin J -- Chow, Dar-chone -- Brevnova, Elena E -- Garcia, K Christopher -- AI51321/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Department of Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829785" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Humans ; Interleukin-6/*chemistry/*metabolism ; Macromolecular Substances ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Interleukin-6/*chemistry/*metabolism ; Signal Transduction ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: Cell adhesion by adherens junctions and desmosomes relies on interactions between cadherin molecules. However, the molecular interfaces that define molecular specificity and that mediate adhesion remain controversial. We used electron tomography of plastic sections from neonatal mouse skin to visualize the organization of desmosomes in situ. The resulting three-dimensional maps reveal individual cadherin molecules forming discrete groups and interacting through their tips. Fitting of an x-ray crystal structure for C-cadherin to these maps is consistent with a flexible intermolecular interface mediated by an exchange of amino-terminal tryptophans. This flexibility suggests a novel mechanism for generating both cis and trans interactions and for propagating these adhesive interactions along the junction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Wanzhong -- Cowin, Pamela -- Stokes, David L -- R01 GM47429/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):109-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA..〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526082" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Cadherins/*chemistry/*ultrastructure ; Cell Adhesion ; Crystallography, X-Ray ; Cytoskeletal Proteins/chemistry/ultrastructure ; Desmoplakins ; Desmosomes/*chemistry/*ultrastructure ; Dimerization ; Epidermis/chemistry/ultrastructure ; Freeze Substitution ; Hydrophobic and Hydrophilic Interactions ; *Image Processing, Computer-Assisted ; Mice ; Microscopy, Electron/methods ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; *Tomography ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2003-11-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ehlers, Michael D -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):800-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA. ehlers@neuro.duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593160" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Awards and Prizes ; Carrier Proteins/metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; Cysteine Endopeptidases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Multienzyme Complexes/metabolism ; Nerve Tissue Proteins/*metabolism ; Neurons/metabolism ; Proteasome Endopeptidase Complex ; Receptors, N-Methyl-D-Aspartate/metabolism ; Signal Transduction ; Synapses/*metabolism/ultrastructure ; Synaptic Membranes/*metabolism/ultrastructure ; *Synaptic Transmission ; Ubiquitin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2003-10-25
    Description: Rab/Ypt guanosine triphosphatases (GTPases) represent a family of key membrane traffic regulators in eukaryotic cells whose function is governed by the guanosine diphosphate (GDP) dissociation inhibitor (RabGDI). Using a combination of chemical synthesis and protein engineering, we generated and crystallized the monoprenylated Ypt1:RabGDI complex. The structure of the complex was solved to 1.5 angstrom resolution and provides a structural basis for the ability of RabGDI to inhibit the release of nucleotide by Rab proteins. Isoprenoid binding requires a conformational change that opens a cavity in the hydrophobic core of its domain II. Analysis of the structure provides a molecular basis for understanding a RabGDI mutant that causes mental retardation in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rak, Alexey -- Pylypenko, Olena -- Durek, Thomas -- Watzke, Anja -- Kushnir, Susanna -- Brunsveld, Lucas -- Waldmann, Herbert -- Goody, Roger S -- Alexandrov, Kirill -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576435" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Guanine Nucleotide Dissociation Inhibitors/*chemistry/genetics/metabolism ; Guanosine Diphosphate/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Metabolism ; Magnesium/chemistry/metabolism ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Protein Prenylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; rab GTP-Binding Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2003-09-27
    Description: Like many bacterial pathogens, Salmonella spp. use a type III secretion system to inject virulence proteins into host cells. The Salmonella invasion protein A (SipA) binds host actin, enhances its polymerization near adherent extracellular bacteria, and contributes to cytoskeletal rearrangements that internalize the pathogen. By combining x-ray crystallography of SipA with electron microscopy and image analysis of SipA-actin filaments, we show that SipA functions as a "molecular staple," in which a globular domain and two nonglobular "arms" mechanically stabilize the filament by tethering actin subunits in opposing strands. Deletion analysis of the tethering arms provides strong support for this model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lilic, Mirjana -- Galkin, Vitold E -- Orlova, Albina -- VanLoock, Margaret S -- Egelman, Edward H -- Stebbins, C Erec -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512630" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/*metabolism ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Microfilament Proteins/*chemistry/genetics/*metabolism ; Microscopy, Electron ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Salmonella typhimurium/chemistry/*metabolism ; Sequence Deletion ; Subtilisin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2003-11-25
    Description: Individual cellular clocks in the suprachiasmatic nucleus (SCN), the circadian center, are integrated into a stable and robust pacemaker with a period length of about 24 hours. We used real-time analysis of gene expression to show synchronized rhythms of clock gene transcription across hundreds of neurons within the mammalian SCN in organotypic slice culture. Differentially phased neuronal clocks are topographically arranged across the SCN. A protein synthesis inhibitor set all cell clocks to the same initial phase and, after withdrawal, intrinsic interactions among cell clocks reestablished the stable program of gene expression across the assemblage. Na+-dependent action potentials contributed to establishing cellular synchrony and maintaining spontaneous oscillation across the SCN.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Shun -- Isejima, Hiromi -- Matsuo, Takuya -- Okura, Ryusuke -- Yagita, Kazuhiro -- Kobayashi, Masaki -- Okamura, Hitoshi -- New York, N.Y. -- Science. 2003 Nov 21;302(5649):1408-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Brain Science, Department of Brain Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14631044" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Action Potentials/drug effects ; Animals ; Basic Helix-Loop-Helix Transcription Factors ; Biological Clocks/*physiology ; CLOCK Proteins ; Cell Cycle Proteins ; Circadian Rhythm/*physiology ; Cycloheximide/pharmacology ; Gene Expression ; Glyceraldehyde-3-Phosphate Dehydrogenases/genetics/metabolism ; Luminescence ; Mice ; Mice, Knockout ; Mice, Transgenic ; Neurons/*physiology ; Nuclear Proteins/genetics/metabolism ; Organ Culture Techniques ; Period Circadian Proteins ; Promoter Regions, Genetic ; Protein Synthesis Inhibitors/pharmacology ; Signal Transduction ; Sodium/metabolism ; Suppression, Genetic ; Suprachiasmatic Nucleus/cytology/*physiology ; Tetrodotoxin/pharmacology ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2003-10-18
    Description: The Rho guanosine triphosphatases (GTPases) Rac1 and Rac2 are critical signaling regulators in mammalian cells. The deletion of both Rac1 and Rac2 murine alleles leads to a massive egress of hematopoietic stem/progenitor cells (HSC/Ps) into the blood from the marrow, whereas Rac1-/- but not Rac2-/- HSC/Ps fail to engraft in the bone marrow of irradiated recipient mice. In contrast, Rac2, but not Rac1, regulates superoxide production and directed migration in neutrophils, and in each cell type, the two GTPases play distinct roles in actin organization, cell survival, and proliferation. Thus, Rac1 and Rac2 regulate unique aspects of hematopoietic development and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, Yi -- Filippi, Marie-Dominique -- Cancelas, Jose A -- Siefring, Jamie E -- Williams, Emily P -- Jasti, Aparna C -- Harris, Chad E -- Lee, Andrew W -- Prabhakar, Rethinasamy -- Atkinson, Simon J -- Kwiatkowski, David J -- Williams, David A -- DK62757/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 17;302(5644):445-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564009" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Apoptosis ; Bone Marrow Transplantation ; Cell Adhesion ; Cell Cycle ; Cell Movement ; Cell Size ; Colony-Forming Units Assay ; Cyclin D1/metabolism ; Fibronectins/metabolism ; Hematopoiesis ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*physiology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mitogen-Activated Protein Kinases/metabolism ; Neutrophils/*physiology ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Recombination, Genetic ; Signal Transduction ; Stem Cell Factor/pharmacology ; Superoxides/metabolism ; rac GTP-Binding Proteins/genetics/*metabolism ; rac1 GTP-Binding Protein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cassman, Marvin -- New York, N.Y. -- Science. 2003 May 2;300(5620):756-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 94131, USA. mcassman@research.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12730591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aplysia/physiology ; B-Lymphocytes/metabolism ; Calcium/metabolism ; *Cell Physiological Phenomena ; *Computational Biology ; *Computer Simulation ; Electrophysiology ; Gene Expression ; Memory ; *Models, Biological ; *Models, Neurological ; Myocytes, Cardiac/metabolism ; Neurons/*physiology ; Neurons, Afferent/physiology ; Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2003-02-08
    Description: Nitric oxide was found to trigger mitochondrial biogenesis in cells as diverse as brown adipocytes and 3T3-L1, U937, and HeLa cells. This effect of nitric oxide was dependent on guanosine 3',5'-monophosphate (cGMP) and was mediated by the induction of peroxisome proliferator-activated receptor gamma coactivator 1alpha, a master regulator of mitochondrial biogenesis. Moreover, the mitochondrial biogenesis induced by exposure to cold was markedly reduced in brown adipose tissue of endothelial nitric oxide synthase null-mutant (eNOS-/-) mice, which had a reduced metabolic rate and accelerated weight gain as compared to wild-type mice. Thus, a nitric oxide-cGMP-dependent pathway controls mitochondrial biogenesis and body energy balance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nisoli, Enzo -- Clementi, Emilio -- Paolucci, Clara -- Cozzi, Valeria -- Tonello, Cristina -- Sciorati, Clara -- Bracale, Renata -- Valerio, Alessandra -- Francolini, Maura -- Moncada, Salvador -- Carruba, Michele O -- New York, N.Y. -- Science. 2003 Feb 7;299(5608):896-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Preclinical Sciences, Center for Study and Research on Obesity, Luigi Sacco Hospital, University of Milan, Milan 20157, Italy. enzo.nisoli@unimi.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12574632" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Adipocytes/*metabolism/ultrastructure ; Adipose Tissue, Brown/cytology/metabolism/ultrastructure ; Animals ; Cold Temperature ; Cyclic GMP/metabolism ; DNA, Mitochondrial/metabolism ; DNA-Binding Proteins/metabolism ; Eating ; Energy Metabolism ; Female ; HeLa Cells ; High Mobility Group Proteins ; Humans ; Male ; Mice ; Mice, Knockout ; Mitochondria/*metabolism/ultrastructure ; *Mitochondrial Proteins ; Motor Activity ; NF-E2-Related Factor 1 ; Nitric Oxide/*physiology ; Nitric Oxide Synthase/genetics/*metabolism ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; Nuclear Proteins/metabolism ; Nuclear Respiratory Factors ; Oligonucleotides, Antisense/pharmacology ; Oxadiazoles/pharmacology ; Oxygen Consumption ; Penicillamine/*analogs & derivatives/pharmacology ; Quinoxalines/pharmacology ; RNA, Messenger/genetics/metabolism ; Rats ; Signal Transduction ; Trans-Activators/metabolism ; Transcription Factors/metabolism ; U937 Cells ; Weight Gain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2003-10-11
    Description: Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haw -- Luo, Guobin -- Karnchanaphanurach, Pallop -- Louie, Tai-Man -- Rech, Ivan -- Cova, Sergio -- Xun, Luying -- Xie, X Sunney -- R01GM61577-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):262-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551431" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Catalysis ; Chemistry, Physical ; Computer Simulation ; Electrons ; Escherichia coli/enzymology ; FMN Reductase/*chemistry/genetics/metabolism ; Flavin Mononucleotide/*chemistry/metabolism ; Flavin-Adenine Dinucleotide/*chemistry/metabolism ; Flavins ; Fluorescence ; Hydrogen Bonding ; Likelihood Functions ; Mathematics ; Models, Molecular ; Mutagenesis, Site-Directed ; Photons ; Physicochemical Phenomena ; Protein Conformation ; Serine ; Spectrometry, Fluorescence ; Temperature ; Thermodynamics ; Tyrosine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-27
    Description: This viewpoint comments on recent advances in understanding the design principles of biological networks. It highlights the surprising discovery of "good-engineering" principles in biochemical circuitry that evolved by random tinkering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alon, U -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1866-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100. urialon@weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biochemical Phenomena ; Biochemistry ; *Biological Evolution ; *Biology ; DNA/metabolism ; Engineering ; *Models, Biological ; Proteins/metabolism ; Signal Transduction ; Systems Theory
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2003-03-29
    Description: Acetyl-coenzyme A carboxylases (ACCs) are required for the biosynthesis and oxidation of long-chain fatty acids. They are targets for therapeutics against obesity and diabetes, and several herbicides function by inhibiting their carboxyltransferase (CT) domain. We determined the crystal structure of the free enzyme and the coenzyme A complex of yeast CT at 2.7 angstrom resolution and found that it comprises two domains, both belonging to the crotonase/ClpP superfamily. The active site is at the interface of a dimer. Mutagenesis and kinetic studies reveal the functional roles of conserved residues here. The herbicides target the active site of CT, providing a lead for inhibitor development against human ACCs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Hailong -- Yang, Zhiru -- Shen, Yang -- Tong, Liang -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2064-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12663926" target="_blank"〉PubMed〈/a〉
    Keywords: Acetyl-CoA Carboxylase/antagonists & inhibitors/*chemistry/genetics/metabolism ; Amino Acid Sequence ; Binding Sites ; Biotin/chemistry/metabolism ; Catalysis ; Coenzyme A/chemistry/metabolism ; Crystallography, X-Ray ; Dimerization ; Enzyme Inhibitors/metabolism/pharmacology ; Hydrogen Bonding ; Kinetics ; Molecular Sequence Data ; Mutagenesis ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyridines/metabolism/pharmacology ; Saccharomyces cerevisiae/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2003-10-04
    Description: Control of integrin affinity for ligands (integrin activation) is essential for normal cell adhesion, migration, and assembly of an extracellular matrix. Integrin activation is usually mediated through the integrin beta subunit cytoplasmic tail and can be regulated by many different biochemical signaling pathways. We report that specific binding of the cytoskeletal protein talin to integrin beta subunit cytoplasmic tails leads to the conformational rearrangements of integrin extracellular domains that increase their affinity. Thus, regulated binding of talin to integrin beta tails is a final common element of cellular signaling cascades that control integrin activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tadokoro, Seiji -- Shattil, Sanford J -- Eto, Koji -- Tai, Vera -- Liddington, Robert C -- de Pereda, Jose M -- Ginsberg, Mark H -- Calderwood, David A -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, The Burnham Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526080" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, CD29/chemistry/metabolism ; Cell Line ; Fibronectins/metabolism ; Humans ; Integrin beta Chains/chemistry/*metabolism ; Integrin beta3/chemistry/metabolism ; Molecular Sequence Data ; Mutation ; Platelet Glycoprotein GPIIb-IIIa Complex/chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Proteins/metabolism ; *Signal Transduction ; Talin/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2003-05-15
    Description: A novel coronavirus has been identified as the causative agent of severe acute respiratory syndrome (SARS). The viral main proteinase (Mpro, also called 3CLpro), which controls the activities of the coronavirus replication complex, is an attractive target for therapy. We determined crystal structures for human coronavirus (strain 229E) Mpro and for an inhibitor complex of porcine coronavirus [transmissible gastroenteritis virus (TGEV)] Mpro, and we constructed a homology model for SARS coronavirus (SARS-CoV) Mpro. The structures reveal a remarkable degree of conservation of the substrate-binding sites, which is further supported by recombinant SARS-CoV Mpro-mediated cleavage of a TGEV Mpro substrate. Molecular modeling suggests that available rhinovirus 3Cpro inhibitors may be modified to make them useful for treating SARS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anand, Kanchan -- Ziebuhr, John -- Wadhwani, Parvesh -- Mesters, Jeroen R -- Hilgenfeld, Rolf -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1763-7. Epub 2003 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, University of Lubeck, D-23538 Lubeck, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12746549" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Chloromethyl Ketones/chemistry/metabolism ; Amino Acid Sequence ; *Antiviral Agents ; Binding Sites ; Catalytic Domain ; Coronavirus 229E, Human/*enzymology ; Crystallization ; Crystallography, X-Ray ; Cysteine Endopeptidases/*chemistry/metabolism ; Cysteine Proteinase Inhibitors/chemistry/metabolism ; Dimerization ; *Drug Design ; Humans ; Isoxazoles/chemistry/metabolism/pharmacology ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrrolidinones/chemistry/metabolism/pharmacology ; Recombinant Proteins/chemistry/metabolism ; SARS Virus/*drug effects/*enzymology ; Sequence Alignment ; Sequence Homology, Amino Acid ; Severe Acute Respiratory Syndrome/drug therapy ; Transmissible gastroenteritis virus/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2003-10-18
    Description: Unfolded proteins in the endoplasmic reticulum cause trans-autophosphorylation of the bifunctional transmembrane kinase Ire1, which induces its endoribonuclease activity. The endoribonuclease initiates nonconventional splicing of HAC1 messenger RNA to trigger the unfolded-protein response (UPR). We explored the role of Ire1's kinase domain by sensitizing it through site-directed mutagenesis to the ATP-competitive inhibitor 1NM-PP1. Paradoxically, rather than being inhibited by 1NM-PP1, drug-sensitized Ire1 mutants required 1NM-PP1 as a cofactor for activation. In the presence of 1NM-PP1, drug-sensitized Ire1 bypassed mutations that inactivate its kinase activity and induced a full UPR. Thus, rather than through phosphorylation per se, a conformational change in the kinase domain triggered by occupancy of the active site with a ligand leads to activation of all known downstream functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Papa, Feroz R -- Zhang, Chao -- Shokat, Kevan -- Walter, Peter -- AI44009/AI/NIAID NIH HHS/ -- GM32384/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1533-7. Epub 2003 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Francisco, CA 94143-2200, USA. frpapa@medicine.ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14564015" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/pharmacology ; Adenosine Triphosphate/analogs & derivatives/chemistry/*metabolism/pharmacology ; Basic-Leucine Zipper Transcription Factors ; Binding Sites ; Binding, Competitive ; Cytosol/metabolism ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/metabolism ; Enzyme Activation ; Ligands ; Membrane Glycoproteins/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Models, Biological ; Mutagenesis, Site-Directed ; Phosphorylation ; Protein Conformation ; *Protein Folding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Pyrazoles/chemistry/*metabolism/*pharmacology ; Pyrimidines/chemistry/*metabolism/*pharmacology ; RNA Splicing ; RNA, Messenger/genetics/metabolism ; Repressor Proteins/genetics/metabolism ; Saccharomyces cerevisiae Proteins/antagonists & ; inhibitors/*chemistry/genetics/*metabolism ; Signal Transduction ; Structure-Activity Relationship ; Substrate Specificity ; Transcription Factors/genetics/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2003-03-22
    Description: Local circuits in the spinal cord that generate locomotion are termed central pattern generators (CPGs). These provide coordinated bilateral control over the normal limb alternation that underlies walking. The molecules that organize the mammalian CPG are unknown. Isolated spinal cords from mice lacking either the EphA4 receptor or its ligand ephrinB3 have lost left-right limb alternation and instead exhibit synchrony. We identified EphA4-positive neurons as an excitatory component of the locomotor CPG. Our study shows that dramatic locomotor changes can occur as a consequence of local genetic rewiring and identifies genes required for the development of normal locomotor behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kullander, Klas -- Butt, Simon J B -- Lebret, James M -- Lundfald, Line -- Restrepo, Carlos E -- Rydstrom, Anna -- Klein, Rudiger -- Kiehn, Ole -- New York, N.Y. -- Science. 2003 Mar 21;299(5614):1889-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry, Gothenburg University, Medicinaregatan 9 A, 405 30 Gothenburg, Sweden. klas.kullander@medkem.gu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12649481" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Bicuculline/pharmacology ; Carrier Proteins/genetics/metabolism ; Electrophysiology ; Ephrin-B3/genetics/*physiology ; Gait ; In Vitro Techniques ; Interneurons/physiology ; *Membrane Transport Proteins ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Motor Activity ; Neurons/*physiology ; Nipecotic Acids/pharmacology ; Receptor, EphA4/genetics/*physiology ; Sarcosine/pharmacology ; Signal Transduction ; Spinal Cord/*physiology ; Spinal Nerve Roots/physiology ; Strychnine/pharmacology ; Vesicular Glutamate Transport Protein 1 ; Vesicular Glutamate Transport Protein 2 ; *Vesicular Transport Proteins ; *Walking
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2003-01-04
    Description: How scaffold proteins control information flow in signaling pathways is poorly understood: Do they simply tether components, or do they precisely orient and activate them? We found that the yeast mitogen-activated protein (MAP) kinase scaffold Ste5 is tolerant to major stereochemical perturbations; heterologous protein interactions could functionally replace native kinase recruitment interactions, indicating that simple tethering is largely sufficient for scaffold-mediated signaling. Moreover, by engineering a scaffold that tethers a unique kinase set, we could create a synthetic MAP kinase pathway with non-natural input-output properties. These findings demonstrate that scaffolds are highly flexible organizing factors that can facilitate pathway evolution and engineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Hyun -- Zarrinpar, Ali -- Lim, Wendell A -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1061-4. Epub 2003 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511654" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Evolution, Molecular ; MAP Kinase Kinase Kinases/genetics/*metabolism ; *MAP Kinase Signaling System ; Membrane Proteins/metabolism ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/metabolism ; Mutation ; Osmolar Concentration ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Kinases/genetics/*metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Paul -- Parkhurst, Susan M -- New York, N.Y. -- Science. 2003 Apr 4;300(5616):63-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, University College London, Gower Street, London WC1E 6BT, UK. paul.martin@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12677046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion ; Cell Polarity ; Drosophila/*embryology/genetics ; Embryo, Nonmammalian/*physiology ; Embryonic Development ; Epithelial Cells/physiology ; Epithelium/physiology ; Genes, Insect ; Lasers ; Mathematics ; Microsurgery ; *Models, Biological ; *Morphogenesis ; Mutation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2003-08-16
    Description: Genes associated with Hirschsprung disease, a failure to form enteric ganglia in the hindgut, were highly up-regulated in gut neural crest stem cells relative to whole-fetus RNA. One of these genes, the glial cell line-derived neurotrophic factor (GDNF) receptor Ret, was necessary for neural crest stem cell migration in the gut. GDNF promoted the migration of neural crest stem cells in culture but did not affect their survival or proliferation. Gene expression profiling, combined with reverse genetics and analyses of stem cell function, suggests that Hirschsprung disease is caused by defects in neural crest stem cell function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2614078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwashita, Toshihide -- Kruger, Genevieve M -- Pardal, Ricardo -- Kiel, Mark J -- Morrison, Sean J -- CA46592/CA/NCI NIH HHS/ -- DK58771/DK/NIDDK NIH HHS/ -- NIH5P60-DK20572/DK/NIDDK NIH HHS/ -- P30 AR48310/AR/NIAMS NIH HHS/ -- P60-AR20557/AR/NIAMS NIH HHS/ -- R01 NS040750/NS/NINDS NIH HHS/ -- R01 NS040750-01/NS/NINDS NIH HHS/ -- R01 NS40750-01/NS/NINDS NIH HHS/ -- R21 HD40760-02/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 15;301(5635):972-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0934, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12920301" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Movement ; Cell Separation ; Cell Survival ; Cells, Cultured ; Digestive System/cytology/*embryology/innervation/metabolism ; Fetus/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Glial Cell Line-Derived Neurotrophic Factor ; Glial Cell Line-Derived Neurotrophic Factor Receptors ; Hirschsprung Disease/*etiology/genetics ; Mice ; Multipotent Stem Cells/*physiology ; Nerve Growth Factors/genetics/metabolism/pharmacology ; Neural Crest/*cytology/physiology ; Oligonucleotide Array Sequence Analysis ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-ret ; Rats ; Rats, Sprague-Dawley ; Receptor Protein-Tyrosine Kinases/*genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2003-11-01
    Description: In the mouse olfactory system, each olfactory sensory neuron (OSN) expresses only one odorant receptor (OR) gene in a monoallelic and mutually exclusive manner. Such expression forms the genetic basis for OR-instructed axonal projection of OSNs to the olfactory bulb of the brain during development. Here, we identify an upstream cis-acting DNA region that activates the OR gene cluster in mouse and allows the expression of only one OR gene within the cluster. Deletion of the coding region of the expressed OR gene or a naturally occurring frame-shift mutation allows a second OR gene to be expressed. We propose that stochastic activation of only one OR gene within the cluster and negative feedback regulation by that OR gene product are necessary to ensure the one receptor-one neuron rule.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Serizawa, Shou -- Miyamichi, Kazunari -- Nakatani, Hiroko -- Suzuki, Misao -- Saito, Michiko -- Yoshihara, Yoshihiro -- Sakano, Hitoshi -- New York, N.Y. -- Science. 2003 Dec 19;302(5653):2088-94. Epub 2003 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593185" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Axons/physiology ; Chromosomes, Artificial, Yeast ; Conserved Sequence ; *Feedback, Physiological ; Frameshift Mutation ; *Gene Expression Regulation ; Gene Silencing ; In Situ Hybridization ; *Locus Control Region ; Mice ; Mice, Transgenic ; Multigene Family ; Olfactory Bulb/cytology ; Olfactory Receptor Neurons/*metabolism ; Promoter Regions, Genetic ; Pseudogenes ; Receptors, Odorant/*genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaffe, Aron B -- Hall, Alan -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1690-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London WC1E 6BT, UK. a.jaffe@ucl.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657480" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; *Cell Movement ; *Cell Polarity ; GTPase-Activating Proteins/metabolism ; Guanine Nucleotide Exchange Factors/metabolism ; Guanosine Triphosphate/metabolism ; Humans ; Mice ; Protein Kinase C/metabolism ; Pseudopodia/metabolism ; Signal Transduction ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/*metabolism ; cdc42 GTP-Binding Protein/metabolism ; rac GTP-Binding Proteins/metabolism ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2003-05-17
    Description: Asymmetric divisions are crucial for generating cell diversity; they rely on coupling between polarity cues and spindle positioning, but how this coupling is achieved is poorly understood. In one-cell stage Caenorhabditis elegans embryos, polarity cues set by the PAR proteins mediate asymmetric spindle positioning by governing an imbalance of net pulling forces acting on spindle poles. We found that the GoLoco-containing proteins GPR-1 and GPR-2, as well as the Galpha subunits GOA-1 and GPA-16, were essential for generation of proper pulling forces. GPR-1/2 interacted with guanosine diphosphate-bound GOA-1 and were enriched on the posterior cortex in a par-3- and par-2-dependent manner. Thus, the extent of net pulling forces may depend on cortical Galpha activity, which is regulated by anterior-posterior polarity cues through GPR-1/2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colombo, Kelly -- Grill, Stephan W -- Kimple, Randall J -- Willard, Francis S -- Siderovski, David P -- Gonczy, Pierre -- GM62338/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 20;300(5627):1957-61. Epub 2003 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges/Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12750478" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/cytology/*embryology/genetics/physiology ; Caenorhabditis elegans Proteins/genetics/*metabolism ; *Cell Division ; *Cell Polarity ; Cues ; GTP-Binding Proteins/genetics/metabolism ; Phenotype ; Protein Subunits/genetics/metabolism ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Spindle Apparatus/*physiology/ultrastructure ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2003-03-15
    Description: Members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily share an intracytoplasmic Toll-IL-1 receptor (TIR) domain, which mediates recruitment of the interleukin-1 receptor-associated kinase (IRAK) complex via TIR-containing adapter molecules. We describe three unrelated children with inherited IRAK-4 deficiency. Their blood and fibroblast cells did not activate nuclear factor kappaB and mitogen-activated protein kinase (MAPK) and failed to induce downstream cytokines in response to any of the known ligands of TIR-bearing receptors. The otherwise healthy children developed infections caused by pyogenic bacteria. These findings suggest that, in humans, the TIR-IRAK signaling pathway is crucial for protective immunity against specific bacteria but is redundant against most other microorganisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Picard, Capucine -- Puel, Anne -- Bonnet, Marion -- Ku, Cheng-Lung -- Bustamante, Jacinta -- Yang, Kun -- Soudais, Claire -- Dupuis, Stephanie -- Feinberg, Jacqueline -- Fieschi, Claire -- Elbim, Carole -- Hitchcock, Remi -- Lammas, David -- Davies, Graham -- Al-Ghonaium, Abdulaziz -- Al-Rayes, Hassan -- Al-Jumaah, Sulaiman -- Al-Hajjar, Sami -- Al-Mohsen, Ibrahim Zaid -- Frayha, Husn H -- Rucker, Rajivi -- Hawn, Thomas R -- Aderem, Alan -- Tufenkeji, Haysam -- Haraguchi, Soichi -- Day, Noorbibi K -- Good, Robert A -- Gougerot-Pocidalo, Marie-Anne -- Ozinsky, Adrian -- Casanova, Jean-Laurent -- New York, N.Y. -- Science. 2003 Mar 28;299(5615):2076-9. Epub 2003 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Humaine des Maladies Infectieuses, Universite Rene Descartes-INSERM U550, Faculte Necker, 156 rue de Vaugirard, 75015 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637671" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Child ; Codon, Terminator ; Cytokines/secretion ; *Drosophila Proteins ; Female ; Fibroblasts/immunology ; Humans ; Interleukin-1 Receptor-Associated Kinases ; Interleukins/immunology/secretion ; Lipopolysaccharides/immunology ; Male ; Membrane Glycoproteins/chemistry/immunology/metabolism ; Monocytes/immunology ; Mutation ; Neutrophils/immunology ; Pedigree ; Phosphotransferases (Alcohol Group Acceptor)/*deficiency/*genetics/metabolism ; Pneumococcal Infections/*immunology/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/immunology/metabolism ; Receptors, Interleukin/immunology ; Receptors, Interleukin-1/chemistry ; Signal Transduction ; Staphylococcal Infections/*immunology/metabolism ; Toll-Like Receptors ; Tumor Necrosis Factor-alpha/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2003-06-07
    Description: Although the role of Toll-like receptors in extracellular bacterial sensing has been investigated intensively, intracellular detection of bacteria through Nod molecules remains largely uncharacterized. Here, we show that human Nod1 specifically detects a unique diaminopimelate-containing N-acetylglucosamine-N-acetylmuramic acid (GlcNAc-MurNAc) tripeptide motif found in Gram-negative bacterial peptidoglycan, resulting in activation of the transcription factor NF-kappaB pathway. Moreover, we show that in epithelial cells (which represent the first line of defense against invasive pathogens), Nod1is indispensable for intracellular Gram-negative bacterial sensing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Girardin, Stephen E -- Boneca, Ivo G -- Carneiro, Leticia A M -- Antignac, Aude -- Jehanno, Muguette -- Viala, Jerome -- Tedin, Karsten -- Taha, Muhamed-Kheir -- Labigne, Agnes -- Zahringer, Ulrich -- Coyle, Anthony J -- DiStefano, Peter S -- Bertin, John -- Sansonetti, Philippe J -- Philpott, Dana J -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite de Pathogenie Microbienne Moleculaire, INSERM U389, Institut Pasteur, 28, Rue du Dr. Roux, 75724Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791997" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Animals ; Antigens, Differentiation/metabolism ; Carrier Proteins/chemistry/metabolism/*physiology ; Cell Line ; Cytoplasm/microbiology ; Epithelial Cells/metabolism/microbiology ; Gram-Negative Bacteria/*chemistry/immunology ; Gram-Positive Bacteria/chemistry/immunology ; Humans ; Immunity, Innate ; Interleukin-8/metabolism ; *Intracellular Signaling Peptides and Proteins ; Lipopolysaccharides/pharmacology ; Mice ; Myeloid Differentiation Factor 88 ; NF-kappa B/chemistry/metabolism ; Nod1 Signaling Adaptor Protein ; Nod2 Signaling Adaptor Protein ; Oligopeptides/*analysis/chemistry ; Peptidoglycan/*chemistry/pharmacology ; Protein Structure, Tertiary ; Receptors, Immunologic/metabolism ; Signal Transduction ; Trisaccharides/*analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin, Jennifer -- New York, N.Y. -- Science. 2003 Feb 14;299(5609):1002-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12586919" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone Neoplasms/secondary ; Breast Neoplasms/pathology ; Cell Adhesion ; Cell Movement ; Chemokines/metabolism ; Embryo, Nonmammalian/cytology ; Gene Expression Profiling ; Genes, Tumor Suppressor ; Humans ; *Neoplasm Metastasis/genetics/pathology/physiopathology ; Neoplasm Seeding ; Neoplastic Cells, Circulating ; Neoplastic Stem Cells/physiology ; Oligonucleotide Array Sequence Analysis ; Receptors, Chemokine/metabolism ; Signal Transduction ; Stem Cells/physiology ; Transforming Growth Factor beta/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2003-05-10
    Description: The splicing factor SF3b is a multiprotein complex essential for the accurate excision of introns from pre-messenger RNA. As an integral component of the U2 small nuclear ribonucleoprotein (snRNP) and the U11/U12 di-snRNP, SF3b is involved in the recognition of the pre-messenger RNA's branch site within the major and minor spliceosomes. We have determined the three-dimensional structure of the human SF3b complex by single-particle electron cryomicroscopy at a resolution of less than 10 angstroms, allowing identification of protein domains with known structural folds. The best fit of a modeled RNA-recognition motif indicates that the protein p14 is located in the central cavity of the complex. The 22 tandem helical repeats of the protein SF3b155 are located in the outer shell of the complex enclosing p14.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golas, Monika M -- Sander, Bjoern -- Will, Cindy L -- Luhrmann, Reinhard -- Stark, Holger -- New York, N.Y. -- Science. 2003 May 9;300(5621):980-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738865" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Cryoelectron Microscopy ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted ; Macromolecular Substances ; Models, Molecular ; Multiprotein Complexes ; Phosphoproteins/*chemistry ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Precursors/chemistry/metabolism ; RNA Splicing ; *RNA-Binding Proteins ; Repetitive Sequences, Amino Acid ; Ribonucleoprotein, U2 Small Nuclear/*chemistry ; Spliceosomes/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2003-01-04
    Description: Neurogenesis occurs in the olfactory system of the adult brain throughout life, in both invertebrates and vertebrates, but its physiological regulation is not understood. We show that the production of neuronal progenitors is stimulated in the forebrain subventricular zone of female mice during pregnancy and that this effect is mediated by the hormone prolactin. The progenitors then migrate to produce new olfactory interneurons, a process likely to be important for maternal behavior, because olfactory discrimination is critical for recognition and rearing of offspring. Neurogenesis occurs even in females that mate with sterile males. These findings imply that forebrain olfactory neurogenesis may contribute to adaptive behaviors in mating and pregnancy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shingo, Tetsuro -- Gregg, Christopher -- Enwere, Emeka -- Fujikawa, Hirokazu -- Hassam, Rozina -- Geary, Colleen -- Cross, James C -- Weiss, Samuel -- New York, N.Y. -- Science. 2003 Jan 3;299(5603):117-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genes & Development Research Group, Department of Cell Biology and Anatomy, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada T2N 4N1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12511652" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Movement ; Cells, Cultured ; Choroid Plexus/metabolism ; Dentate Gyrus/cytology ; Epidermal Growth Factor/pharmacology ; Estradiol/administration & dosage/pharmacology ; Female ; Interneurons/cytology/*physiology ; Male ; Mice ; Neurons/cytology/*physiology ; Olfactory Bulb/*cytology ; Pregnancy ; Progesterone/administration & dosage/pharmacology ; Prolactin/administration & dosage/blood/pharmacology/*physiology ; Prosencephalon/*cytology/*physiology ; Pseudopregnancy ; Receptors, Prolactin/genetics/metabolism ; Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2003-12-03
    Description: The early genetic pathway(s) triggering the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) remain largely unknown. Here, we describe an autosomal dominant form of CAD/MI (adCAD1) that is caused by the deletion of seven amino acids in transcription factor MEF2A. The deletion disrupts nuclear localization of MEF2A, reduces MEF2A-mediated transcription activation, and abolishes synergistic activation by MEF2A and by the transcription factor GATA-1 through a dominant-negative mechanism. The MEF2A protein demonstrates strong expression in the endothelium of coronary arteries. These results identify a pathogenic gene for a familial vascular disease with features of CAD and implicate the MEF2A signaling pathway in the pathogenesis of CAD/MI.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618876/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Lejin -- Fan, Chun -- Topol, Sarah E -- Topol, Eric J -- Wang, Qing -- R01 HL065630/HL/NHLBI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- R01 HL65630/HL/NHLBI NIH HHS/ -- R01 HL66251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1578-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645853" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Amino Acid Sequence ; Animals ; Arteries/metabolism ; Base Sequence ; Cell Nucleus/metabolism ; Chromosomes, Human, Pair 15/genetics ; Coronary Artery Disease/*genetics/metabolism ; Coronary Vessels/metabolism ; DNA-Binding Proteins/chemistry/*genetics/metabolism ; Dimerization ; Endothelium, Vascular/metabolism ; Erythroid-Specific DNA-Binding Factors ; Female ; Fluorescent Antibody Technique ; GATA1 Transcription Factor ; Gene Expression ; Genes, Dominant ; Genetic Linkage ; Genetic Markers ; Genetic Predisposition to Disease ; Humans ; MADS Domain Proteins ; MEF2 Transcription Factors ; Male ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myocardial Infarction/*genetics/metabolism ; Myogenic Regulatory Factors ; Pedigree ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Protein Transport ; Rats ; Risk Factors ; *Sequence Deletion ; Signal Transduction ; Transcription Factors/chemistry/*genetics/metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-21
    Description: Spore formation by the bacterium Bacillus subtilis is an elaborate developmental process that is triggered by nutrient limitation. Here we report that cells that have entered the pathway to sporulate produce and export a killing factor and a signaling protein that act cooperatively to block sister cells from sporulating and to cause them to lyse. The sporulating cells feed on the nutrients thereby released, which allows them to keep growing rather than to complete morphogenesis. We propose that sporulation is a stress-response pathway of last resort and that B. subtilis delays a commitment to spore formation by cannibalizing its siblings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Pastor, Jose E -- Hobbs, Errett C -- Losick, Richard -- GM18568/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):510-3. Epub 2003 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12817086" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacillus subtilis/genetics/metabolism/*physiology ; Bacterial Proteins/genetics/*metabolism ; Bacteriolysis ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Mutation ; Oligonucleotide Array Sequence Analysis ; *Operon ; Sigma Factor/genetics/metabolism ; Signal Transduction ; Spores, Bacterial/*physiology ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sifers, Richard N -- New York, N.Y. -- Science. 2003 Feb 28;299(5611):1330-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA. rsifers@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12610289" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases/chemistry/metabolism ; Calnexin/*metabolism ; Endoplasmic Reticulum/enzymology/*metabolism ; Glycoproteins/chemistry/*metabolism ; Mannosidases/metabolism ; Membrane Proteins/*metabolism ; Polysaccharides/metabolism ; Protein Conformation ; Protein Folding ; alpha 1-Antitrypsin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sillje, Herman H W -- Nigg, Erich A -- New York, N.Y. -- Science. 2003 Feb 21;299(5610):1190-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany. sillje@biochem.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12595680" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Catalytic Domain ; Cell Cycle Proteins ; Centrosome/metabolism ; Humans ; Mitosis ; Peptide Library ; Phosphoproteins/*metabolism ; Phosphorylation ; Phosphotransferases/metabolism ; Protein Conformation ; Protein Kinases/*chemistry/*metabolism ; *Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases ; Proteomics ; Proto-Oncogene Proteins ; Signal Transduction ; cdc25 Phosphatases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-20
    Description: Kinesin is a processive motor that takes 8.3-nm center-of-mass steps along microtubules for each adenosine triphosphate hydrolyzed. Whether kinesin moves by a "hand-over-hand" or an "inchworm" model has been controversial. We have labeled a single head of the kinesin dimer with a Cy3 fluorophore and localized the position of the dye to within 2 nm before and after a step. We observed that single kinesin heads take steps of 17.3 +/- 3.3 nm. A kinetic analysis of the dwell times between steps shows that the 17-nm steps alternate with 0-nm steps. These results strongly support a hand-over-hand mechanism, and not an inchworm mechanism. In addition, our results suggest that kinesin is bound by both heads to the microtubule while it waits for adenosine triphosphate in between steps.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yildiz, Ahmet -- Tomishige, Michio -- Vale, Ronald D -- Selvin, Paul R -- AR42895/AR/NIAMS NIH HHS/ -- AR44420/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 30;303(5658):676-8. Epub 2003 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14684828" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate ; Carbocyanines ; Dimerization ; Fluorescence ; Fluorescent Dyes ; Humans ; Kinesin/chemistry/genetics/*metabolism ; Kinetics ; Microtubules/*metabolism ; *Models, Biological ; Models, Molecular ; Molecular Motor Proteins/chemistry/genetics/*metabolism ; Mutation ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...