ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-14
    Description: We report a draft sequence for the genome of the domesticated silkworm (Bombyx mori), covering 90.9% of all known silkworm genes. Our estimated gene count is 18,510, which exceeds the 13,379 genes reported for Drosophila melanogaster. Comparative analyses to fruitfly, mosquito, spider, and butterfly reveal both similarities and differences in gene content.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xia, Qingyou -- Zhou, Zeyang -- Lu, Cheng -- Cheng, Daojun -- Dai, Fangyin -- Li, Bin -- Zhao, Ping -- Zha, Xingfu -- Cheng, Tingcai -- Chai, Chunli -- Pan, Guoqing -- Xu, Jinshan -- Liu, Chun -- Lin, Ying -- Qian, Jifeng -- Hou, Yong -- Wu, Zhengli -- Li, Guanrong -- Pan, Minhui -- Li, Chunfeng -- Shen, Yihong -- Lan, Xiqian -- Yuan, Lianwei -- Li, Tian -- Xu, Hanfu -- Yang, Guangwei -- Wan, Yongji -- Zhu, Yong -- Yu, Maode -- Shen, Weide -- Wu, Dayang -- Xiang, Zhonghuai -- Yu, Jun -- Wang, Jun -- Li, Ruiqiang -- Shi, Jianping -- Li, Heng -- Li, Guangyuan -- Su, Jianning -- Wang, Xiaoling -- Li, Guoqing -- Zhang, Zengjin -- Wu, Qingfa -- Li, Jun -- Zhang, Qingpeng -- Wei, Ning -- Xu, Jianzhe -- Sun, Haibo -- Dong, Le -- Liu, Dongyuan -- Zhao, Shengli -- Zhao, Xiaolan -- Meng, Qingshun -- Lan, Fengdi -- Huang, Xiangang -- Li, Yuanzhe -- Fang, Lin -- Li, Changfeng -- Li, Dawei -- Sun, Yongqiao -- Zhang, Zhenpeng -- Yang, Zheng -- Huang, Yanqing -- Xi, Yan -- Qi, Qiuhui -- He, Dandan -- Huang, Haiyan -- Zhang, Xiaowei -- Wang, Zhiqiang -- Li, Wenjie -- Cao, Yuzhu -- Yu, Yingpu -- Yu, Hong -- Li, Jinhong -- Ye, Jiehua -- Chen, Huan -- Zhou, Yan -- Liu, Bin -- Wang, Jing -- Ye, Jia -- Ji, Hai -- Li, Shengting -- Ni, Peixiang -- Zhang, Jianguo -- Zhang, Yong -- Zheng, Hongkun -- Mao, Bingyu -- Wang, Wen -- Ye, Chen -- Li, Songgang -- Wang, Jian -- Wong, Gane Ka-Shu -- Yang, Huanming -- Biology Analysis Group -- 1 P50 HG02351/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1937-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Southwest Agricultural University, Chongqing Beibei, 400716, China. xiaqy@swau.cq.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591204" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Anopheles/genetics ; Body Patterning/genetics ; Bombyx/*genetics/growth & development/metabolism ; Butterflies/genetics ; Computational Biology ; DNA Transposable Elements ; Drosophila melanogaster/genetics ; Exocrine Glands/metabolism ; Expressed Sequence Tags ; Female ; Genes, Homeobox ; *Genes, Insect ; *Genome ; Immunity, Innate/genetics ; Insect Hormones/genetics ; Insect Proteins/genetics ; Male ; Molecular Sequence Data ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Sex Determination Processes ; Spiders/genetics ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-25
    Description: Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dongying -- Hugenholtz, Philip -- Mavromatis, Konstantinos -- Pukall, Rudiger -- Dalin, Eileen -- Ivanova, Natalia N -- Kunin, Victor -- Goodwin, Lynne -- Wu, Martin -- Tindall, Brian J -- Hooper, Sean D -- Pati, Amrita -- Lykidis, Athanasios -- Spring, Stefan -- Anderson, Iain J -- D'haeseleer, Patrik -- Zemla, Adam -- Singer, Mitchell -- Lapidus, Alla -- Nolan, Matt -- Copeland, Alex -- Han, Cliff -- Chen, Feng -- Cheng, Jan-Fang -- Lucas, Susan -- Kerfeld, Cheryl -- Lang, Elke -- Gronow, Sabine -- Chain, Patrick -- Bruce, David -- Rubin, Edward M -- Kyrpides, Nikos C -- Klenk, Hans-Peter -- Eisen, Jonathan A -- R01 GM054592-09/GM/NIGMS NIH HHS/ -- R01 GM067012-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1056-60. doi: 10.1038/nature08656.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033048" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry ; Amino Acid Sequence ; Archaea/*classification/*genetics ; Bacteria/*classification/*genetics ; Bacterial Proteins/chemistry ; Biodiversity ; Databases, Genetic ; Genes, rRNA/genetics ; Genome, Archaeal/*genetics ; Genome, Bacterial/*genetics ; Models, Molecular ; Molecular Sequence Data ; *Phylogeny ; Protein Structure, Tertiary ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-10
    Description: Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1-infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1-infected donor. By expressing immunoglobulin genes from individual cells, we identified three monoclonal antibodies, including a pair of somatic variants that neutralized over 90% of circulating HIV-1 isolates. Exceptionally broad HIV-1 neutralization can be achieved with individual antibodies targeted to the functionally conserved CD4bs of glycoprotein 120, an important insight for future HIV-1 vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965066/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965066/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Yang, Zhi-Yong -- Li, Yuxing -- Hogerkorp, Carl-Magnus -- Schief, William R -- Seaman, Michael S -- Zhou, Tongqing -- Schmidt, Stephen D -- Wu, Lan -- Xu, Ling -- Longo, Nancy S -- McKee, Krisha -- O'Dell, Sijy -- Louder, Mark K -- Wycuff, Diane L -- Feng, Yu -- Nason, Martha -- Doria-Rose, Nicole -- Connors, Mark -- Kwong, Peter D -- Roederer, Mario -- Wyatt, Richard T -- Nabel, Gary J -- Mascola, John R -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):856-61. doi: 10.1126/science.1187659. Epub 2010 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616233" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Antibodies, Monoclonal/*immunology/isolation & purification ; Antibodies, Neutralizing/*immunology/isolation & purification ; Antibody Specificity ; Antigens, CD4/immunology/metabolism ; B-Lymphocytes/immunology ; Binding Sites, Antibody ; Cross Reactions ; Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes/immunology ; Genes, Immunoglobulin Heavy Chain ; Genes, Immunoglobulin Light Chain ; HIV Antibodies/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology/virology ; HIV-1/genetics/*immunology ; Humans ; Molecular Sequence Data ; Neutralization Tests ; Protein Engineering ; Recombinant Proteins/chemistry/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-13
    Description: Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Zhou, Tongqing -- Zhu, Jiang -- Zhang, Baoshan -- Georgiev, Ivelin -- Wang, Charlene -- Chen, Xuejun -- Longo, Nancy S -- Louder, Mark -- McKee, Krisha -- O'Dell, Sijy -- Perfetto, Stephen -- Schmidt, Stephen D -- Shi, Wei -- Wu, Lan -- Yang, Yongping -- Yang, Zhi-Yong -- Yang, Zhongjia -- Zhang, Zhenhai -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Simek, Melissa -- Burton, Dennis R -- Koff, Wayne C -- Doria-Rose, Nicole A -- Connors, Mark -- NISC Comparative Sequencing Program -- Mullikin, James C -- Nabel, Gary J -- Roederer, Mario -- Shapiro, Lawrence -- Kwong, Peter D -- Mascola, John R -- 5U19 AI 067854-06/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1593-602. doi: 10.1126/science.1207532. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Base Sequence ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; *Evolution, Molecular ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; HIV-1/chemistry/*immunology ; High-Throughput Nucleotide Sequencing ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin J-Chains/genetics ; Immunoglobulin Light Chains/chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-20
    Description: The homeodomain is a DNA binding motif that is usually conserved among diverse taxa. Rapidly evolving homeodomains are thus of interest because their divergence may be associated with speciation. The exact site of the Odysseus (Ods) locus of hybrid male sterility in Drosophila contains such a homeobox gene. In the past half million years, this homeodomain has experienced more amino acid substitutions than it did in the preceding 700 million years; during this period, it has also evolved faster than other parts of the protein or even the introns. Such rapid sequence divergence is driven by positive selection and may contribute to reproductive isolation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ting, C T -- Tsaur, S C -- Wu, M L -- Wu, C I -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822383" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cloning, Molecular ; Drosophila/*genetics/physiology ; *Drosophila Proteins ; Drosophila melanogaster/genetics ; *Evolution, Molecular ; *Genes, Homeobox ; Genes, Insect ; Homeodomain Proteins/chemistry/*genetics/physiology ; Hybridization, Genetic ; Infertility, Male ; Insect Proteins/chemistry/*genetics/physiology ; Male ; Molecular Sequence Data ; Reproduction ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-18
    Description: Strigolactones (SLs), a newly discovered class of carotenoid-derived phytohormones, are essential for developmental processes that shape plant architecture and interactions with parasitic weeds and symbiotic arbuscular mycorrhizal fungi. Despite the rapid progress in elucidating the SL biosynthetic pathway, the perception and signalling mechanisms of SL remain poorly understood. Here we show that DWARF 53 (D53) acts as a repressor of SL signalling and that SLs induce its degradation. We find that the rice (Oryza sativa) d53 mutant, which produces an exaggerated number of tillers compared to wild-type plants, is caused by a gain-of-function mutation and is insensitive to exogenous SL treatment. The D53 gene product shares predicted features with the class I Clp ATPase proteins and can form a complex with the alpha/beta hydrolase protein DWARF 14 (D14) and the F-box protein DWARF 3 (D3), two previously identified signalling components potentially responsible for SL perception. We demonstrate that, in a D14- and D3-dependent manner, SLs induce D53 degradation by the proteasome and abrogate its activity in promoting axillary bud outgrowth. Our combined genetic and biochemical data reveal that D53 acts as a repressor of the SL signalling pathway, whose hormone-induced degradation represents a key molecular link between SL perception and responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Feng -- Lin, Qibing -- Zhu, Lihong -- Ren, Yulong -- Zhou, Kunneng -- Shabek, Nitzan -- Wu, Fuqing -- Mao, Haibin -- Dong, Wei -- Gan, Lu -- Ma, Weiwei -- Gao, He -- Chen, Jun -- Yang, Chao -- Wang, Dan -- Tan, Junjie -- Zhang, Xin -- Guo, Xiuping -- Wang, Jiulin -- Jiang, Ling -- Liu, Xi -- Chen, Weiqi -- Chu, Jinfang -- Yan, Cunyu -- Ueno, Kotomi -- Ito, Shinsaku -- Asami, Tadao -- Cheng, Zhijun -- Wang, Jie -- Lei, Cailin -- Zhai, Huqu -- Wu, Chuanyin -- Wang, Haiyang -- Zheng, Ning -- Wan, Jianmin -- R01 CA107134/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 19;504(7480):406-10. doi: 10.1038/nature12878. Epub 2013 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China [2] National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China. ; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China. ; 1] Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA [2] Howard Hughes Medical Institute, Box 357280, University of Washington, Seattle, Washington 98195, USA. ; National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 1-2 Beichen West Road, Beijing 100101, China. ; Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Lactones/*metabolism ; Molecular Sequence Data ; Mutation/genetics ; Oryza/genetics/*metabolism ; Phenotype ; Plant Growth Regulators/*metabolism ; Plant Proteins/genetics/*metabolism ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; *Proteolysis ; SKP Cullin F-Box Protein Ligases/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-08-28
    Description: Polycomb repressive complex 2 (PRC2)-mediated histone H3 lysine 27 (H3K27) methylation is vital for Polycomb gene silencing, a classic epigenetic phenomenon that maintains transcriptional silencing throughout cell divisions. We report that PRC2 activity is regulated by the density of its substrate nucleosome arrays. Neighboring nucleosomes activate the PRC2 complex with a fragment of their H3 histones (Ala(31) to Arg(42)). We also identified mutations on PRC2 subunit Su(z)12, which impair its binding and response to the activating peptide and its ability in establishing H3K27 trimethylation levels in vivo. In mouse embryonic stem cells, local chromatin compaction occurs before the formation of trimethylated H3K27 upon transcription cessation of the retinoic acid-regulated gene CYP26a1. We propose that PRC2 can sense the chromatin environment to exert its role in the maintenance of transcriptional states.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Wen -- Wu, Tong -- Fu, Hang -- Dai, Chao -- Wu, Hui -- Liu, Nan -- Li, Xiang -- Xu, Mo -- Zhang, Zhuqiang -- Niu, Tianhui -- Han, Zhifu -- Chai, Jijie -- Zhou, Xianghong Jasmine -- Gao, Shaorong -- Zhu, Bing -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):971-5. doi: 10.1126/science.1225237.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923582" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; CD4-Positive T-Lymphocytes ; Chromatin Immunoprecipitation ; Cytochrome P-450 Enzyme System/genetics ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster ; Embryonic Stem Cells ; Gene Silencing ; Histone-Lysine N-Methyltransferase/chemistry/genetics/*metabolism ; Histones/chemistry/genetics/*metabolism ; Humans ; Lysine/metabolism ; Methylation ; Mice ; Molecular Sequence Data ; Mutagenesis ; Nucleosomes/*metabolism/ultrastructure ; Peptide Fragments/metabolism ; Polycomb Repressive Complex 2 ; Polycomb-Group Proteins ; Repressor Proteins/chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1999-07-31
    Description: Many immune receptors are composed of separate ligand-binding and signal-transducing subunits. In natural killer (NK) and T cells, DAP10 was identified as a cell surface adaptor protein in an activating receptor complex with NKG2D, a receptor for the stress-inducible and tumor-associated major histocompatibility complex molecule MICA. Within the DAP10 cytoplasmic domain, an Src homology 2 (SH2) domain-binding site was capable of recruiting the p85 subunit of the phosphatidylinositol 3-kinase (PI 3-kinase), providing for NKG2D-dependent signal transduction. Thus, NKG2D-DAP10 receptor complexes may activate NK and T cell responses against MICA-bearing tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, J -- Song, Y -- Bakker, A B -- Bauer, S -- Spies, T -- Lanier, L L -- Phillips, J H -- AI30581/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 30;285(5428):730-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNAX Research Institute, 901 California Avenue, Palo Alto, CA 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10426994" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cytotoxicity, Immunologic ; Humans ; Killer Cells, Natural/*immunology/metabolism ; Ligands ; *Lymphocyte Activation ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Molecular Sequence Data ; NK Cell Lectin-Like Receptor Subfamily K ; Neoplasms/immunology ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Receptors, Immunologic/chemistry/genetics/*metabolism ; Receptors, Natural Killer Cell ; Signal Transduction ; T-Lymphocytes/*immunology/metabolism ; Tumor Cells, Cultured ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-12-30
    Description: The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, G -- Chen, Y G -- Ozdamar, B -- Gyuricza, C A -- Chong, P A -- Wrana, J L -- Massague, J -- Shi, Y -- CA85171/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 7;287(5450):92-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10615055" target="_blank"〉PubMed〈/a〉
    Keywords: *Activin Receptors, Type I ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Point Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction ; Smad2 Protein ; Trans-Activators/*chemistry/genetics/*metabolism ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...