ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-08
    Description: The original Kepler mission observed and characterized over 2400 eclipsing binaries (EBs) in addition to its prolific exoplanet detections. Despite the mechanical malfunction and subsequent non-recovery of two reaction wheels used to stabilize the instrument, the Kepler satellite continues collecting data in its repurposed K2 mission surveying a series of fields along the ecliptic plane. Here, we present an analysis of the first full baseline K2 data release: the Campaign 0 data set. In the 7761 light curves we have identified a total of 207 EBs. Of these, 97 are new discoveries that were not previously identified. Our pixel-level analysis of these objects has also resulted in identification of several false positives (observed targets contaminated by neighbouring EBs), as well as the serendipitous discovery of two short-period exoplanet candidates. We provide catalogue cross-matched source identifications, orbital periods, morphologies and ephemerides for these eclipsing systems. We also describe the incorporation of the K2 sample into the Kepler Eclipsing Binary Catalog, § present spectroscopic follow-up observations for a limited selection of nine systems and discuss prospects for upcoming K2 campaigns.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-09
    Description: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borucki, William J -- Koch, David -- Basri, Gibor -- Batalha, Natalie -- Brown, Timothy -- Caldwell, Douglas -- Caldwell, John -- Christensen-Dalsgaard, Jorgen -- Cochran, William D -- DeVore, Edna -- Dunham, Edward W -- Dupree, Andrea K -- Gautier, Thomas N 3rd -- Geary, John C -- Gilliland, Ronald -- Gould, Alan -- Howell, Steve B -- Jenkins, Jon M -- Kondo, Yoji -- Latham, David W -- Marcy, Geoffrey W -- Meibom, Soren -- Kjeldsen, Hans -- Lissauer, Jack J -- Monet, David G -- Morrison, David -- Sasselov, Dimitar -- Tarter, Jill -- Boss, Alan -- Brownlee, Don -- Owen, Toby -- Buzasi, Derek -- Charbonneau, David -- Doyle, Laurance -- Fortney, Jonathan -- Ford, Eric B -- Holman, Matthew J -- Seager, Sara -- Steffen, Jason H -- Welsh, William F -- Rowe, Jason -- Anderson, Howard -- Buchhave, Lars -- Ciardi, David -- Walkowicz, Lucianne -- Sherry, William -- Horch, Elliott -- Isaacson, Howard -- Everett, Mark E -- Fischer, Debra -- Torres, Guillermo -- Johnson, John Asher -- Endl, Michael -- MacQueen, Phillip -- Bryson, Stephen T -- Dotson, Jessie -- Haas, Michael -- Kolodziejczak, Jeffrey -- Van Cleve, Jeffrey -- Chandrasekaran, Hema -- Twicken, Joseph D -- Quintana, Elisa V -- Clarke, Bruce D -- Allen, Christopher -- Li, Jie -- Wu, Haley -- Tenenbaum, Peter -- Verner, Ekaterina -- Bruhweiler, Frederick -- Barnes, Jason -- Prsa, Andrej -- New York, N.Y. -- Science. 2010 Feb 19;327(5968):977-80. doi: 10.1126/science.1185402. Epub 2010 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, CA 94035, USA. William.J.Borucki@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20056856" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-17
    Description: We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degrees of a single plane, suggesting that the planet formed within a circumbinary disk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doyle, Laurance R -- Carter, Joshua A -- Fabrycky, Daniel C -- Slawson, Robert W -- Howell, Steve B -- Winn, Joshua N -- Orosz, Jerome A -- Prsa, Andrej -- Welsh, William F -- Quinn, Samuel N -- Latham, David -- Torres, Guillermo -- Buchhave, Lars A -- Marcy, Geoffrey W -- Fortney, Jonathan J -- Shporer, Avi -- Ford, Eric B -- Lissauer, Jack J -- Ragozzine, Darin -- Rucker, Michael -- Batalha, Natalie -- Jenkins, Jon M -- Borucki, William J -- Koch, David -- Middour, Christopher K -- Hall, Jennifer R -- McCauliff, Sean -- Fanelli, Michael N -- Quintana, Elisa V -- Holman, Matthew J -- Caldwell, Douglas A -- Still, Martin -- Stefanik, Robert P -- Brown, Warren R -- Esquerdo, Gilbert A -- Tang, Sumin -- Furesz, Gabor -- Geary, John C -- Berlind, Perry -- Calkins, Michael L -- Short, Donald R -- Steffen, Jason H -- Sasselov, Dimitar -- Dunham, Edward W -- Cochran, William D -- Boss, Alan -- Haas, Michael R -- Buzasi, Derek -- Fischer, Debra -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1602-6. doi: 10.1126/science.1210923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carl Sagan Center for the Study of Life in the Universe, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA. ldoyle@seti.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921192" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-20
    Description: We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R plus sign in circle), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R plus sign in circle 〈 planet radius 〈/= 2.0 R plus sign in circle) planets in the habitable zone of their host star, respectively receiving 1.2 +/- 0.2 times and 0.41 +/- 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borucki, William J -- Agol, Eric -- Fressin, Francois -- Kaltenegger, Lisa -- Rowe, Jason -- Isaacson, Howard -- Fischer, Debra -- Batalha, Natalie -- Lissauer, Jack J -- Marcy, Geoffrey W -- Fabrycky, Daniel -- Desert, Jean-Michel -- Bryson, Stephen T -- Barclay, Thomas -- Bastien, Fabienne -- Boss, Alan -- Brugamyer, Erik -- Buchhave, Lars A -- Burke, Chris -- Caldwell, Douglas A -- Carter, Josh -- Charbonneau, David -- Crepp, Justin R -- Christensen-Dalsgaard, Jorgen -- Christiansen, Jessie L -- Ciardi, David -- Cochran, William D -- DeVore, Edna -- Doyle, Laurance -- Dupree, Andrea K -- Endl, Michael -- Everett, Mark E -- Ford, Eric B -- Fortney, Jonathan -- Gautier, Thomas N 3rd -- Geary, John C -- Gould, Alan -- Haas, Michael -- Henze, Christopher -- Howard, Andrew W -- Howell, Steve B -- Huber, Daniel -- Jenkins, Jon M -- Kjeldsen, Hans -- Kolbl, Rea -- Kolodziejczak, Jeffery -- Latham, David W -- Lee, Brian L -- Lopez, Eric -- Mullally, Fergal -- Orosz, Jerome A -- Prsa, Andrej -- Quintana, Elisa V -- Sanchis-Ojeda, Roberto -- Sasselov, Dimitar -- Seader, Shawn -- Shporer, Avi -- Steffen, Jason H -- Still, Martin -- Tenenbaum, Peter -- Thompson, Susan E -- Torres, Guillermo -- Twicken, Joseph D -- Welsh, William F -- Winn, Joshua N -- New York, N.Y. -- Science. 2013 May 3;340(6132):587-90. doi: 10.1126/science.1234702. Epub 2013 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, CA 94035, USA. william.j.borucki@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599262" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Models, Theoretical ; *Planets ; Stars, Celestial ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-13
    Description: Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than approximately 1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welsh, William F -- Orosz, Jerome A -- Carter, Joshua A -- Fabrycky, Daniel C -- Ford, Eric B -- Lissauer, Jack J -- Prsa, Andrej -- Quinn, Samuel N -- Ragozzine, Darin -- Short, Donald R -- Torres, Guillermo -- Winn, Joshua N -- Doyle, Laurance R -- Barclay, Thomas -- Batalha, Natalie -- Bloemen, Steven -- Brugamyer, Erik -- Buchhave, Lars A -- Caldwell, Caroline -- Caldwell, Douglas A -- Christiansen, Jessie L -- Ciardi, David R -- Cochran, William D -- Endl, Michael -- Fortney, Jonathan J -- Gautier, Thomas N 3rd -- Gilliland, Ronald L -- Haas, Michael R -- Hall, Jennifer R -- Holman, Matthew J -- Howard, Andrew W -- Howell, Steve B -- Isaacson, Howard -- Jenkins, Jon M -- Klaus, Todd C -- Latham, David W -- Li, Jie -- Marcy, Geoffrey W -- Mazeh, Tsevi -- Quintana, Elisa V -- Robertson, Paul -- Shporer, Avi -- Steffen, Jason H -- Windmiller, Gur -- Koch, David G -- Borucki, William J -- England -- Nature. 2012 Jan 11;481(7382):475-9. doi: 10.1038/nature10768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. wfw@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237021" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment/chemistry ; *Planets ; Space Flight ; Spacecraft ; Stars, Celestial
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-13
    Description: The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2013-08-27
    Description: Author(s): T. Shiroka, F. Casola, W. Lorenz, K. Prša, A. Zheludev, H.-R. Ott, and J. Mesot The disordered quasi-one-dimensional magnet BaCu 2 SiGeO 7 is considered as one of the best physical realizations of the random Heisenberg chain model, which features an irregular distribution of the exchange parameters and whose ground state is predicted to be the scarcely investigated random-singlet ... [Phys. Rev. B 88, 054422] Published Mon Aug 26, 2013
    Keywords: Magnetism
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-18
    Description: We present Kepler photometry and ground-based spectroscopy of KIC 4544587, a short-period eccentric eclipsing binary system with self-excited pressure and gravity modes, tidally excited modes, tidally influenced p modes and rapid apsidal motion of 182 yr per cycle. The primary and secondary components of KIC 4544587 reside within the  Scuti and  Dor instability region of the Hertzsprung–Russell diagram, respectively. By applying the binary modelling software phoebe to prewhitened Kepler photometric data and radial velocity data obtained using the William Herschel Telescope and 4-m Mayall telescope at Kitt Peak Northern Observatory (KPNO), the fundamental parameters of this important system have been determined, including the stellar masses, 1.98 ±0.07 and 1.60 ± 0.06  M , and radii, 1.76 ± 0.03 and 1.42 ± 0.02 R , for the primary and secondary components, respectively. Frequency analysis of the residual data revealed 31 modes, 14 in the gravity mode region and 17 in the pressure mode region. Of the 14 gravity modes, 8 are orbital harmonics: a signature of tidal resonance. While the measured amplitude of these modes may be partially attributed to residual signal from binary model subtraction, we demonstrate through consideration of the folded light curve that these frequencies do in fact correspond to tidally excited pulsations. Furthermore, we present an echelle diagram of the pressure mode frequency region (modulo the orbital frequency) and demonstrate that the tides are also influencing the p modes. A first look at asteroseismology hints that the secondary component is responsible for the p modes, which is contrary to our expectation that the hotter star should pulsate in higher radial overtone, higher frequency p modes.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...