ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-14
    Description: In the standard model of terrestrial planet formation, the first step in the process is for interstellar dust to coagulate within a protoplanetary disk surrounding a young star, forming large grains that settle towards the disk plane. Interstellar grains of typical size approximately 0.1 microm are expected to grow to millimetre- (sand), centimetre- (pebble) or even metre-sized (boulder) objects rather quickly. Unfortunately, such evolved disks are hard to observe because the ratio of surface area to volume of their constituents is small. We readily detect dust around young objects known as 'classical' T Tauri stars, but there is little or no evidence of it in the slightly more evolved 'weak-line' systems. Here we report observations of a 3-Myr-old star, which show that grains have grown to about millimetre size or larger in the terrestrial zone (within approximately 3 au) of this star. The fortuitous geometry of the KH 15D binary star system allows us to infer that, when both stars are occulted by the surrounding disk, it appears as a nearly edge-on ring illuminated by one of the central binary components. This work complements the study of terrestrial zones of younger disks that have been recently resolved by interferometry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herbst, William -- Hamilton, Catrina M -- LeDuc, Katherine -- Winn, Joshua N -- Johns-Krull, Christopher M -- Mundt, Reinhard -- Ibrahimov, Mansur -- England -- Nature. 2008 Mar 13;452(7184):194-7. doi: 10.1038/nature06671.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, Wesleyan University, Middletown, Connecticut 06459, USA. wherbst@wesleyan.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337817" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-18
    Description: A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Charbonneau, David -- Berta, Zachory K -- Irwin, Jonathan -- Burke, Christopher J -- Nutzman, Philip -- Buchhave, Lars A -- Lovis, Christophe -- Bonfils, Xavier -- Latham, David W -- Udry, Stephane -- Murray-Clay, Ruth A -- Holman, Matthew J -- Falco, Emilio E -- Winn, Joshua N -- Queloz, Didier -- Pepe, Francesco -- Mayor, Michel -- Delfosse, Xavier -- Forveille, Thierry -- England -- Nature. 2009 Dec 17;462(7275):891-4. doi: 10.1038/nature08679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA. dcharbonneau@cfa.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016595" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-09-18
    Description: The orbits of binary stars precess as a result of general relativistic effects, forces arising from the asphericity of the stars, and forces from any additional stars or planets in the system. For most binaries, the theoretical and observed precession rates are in agreement. One system, however-DI Herculis-has resisted explanation for 30 years. The observed precession rate is a factor of four slower than the theoretical rate, a disagreement that once was interpreted as evidence for a failure of general relativity. Among the contemporary explanations are the existence of a circumbinary planet and a large tilt of the stellar spin axes with respect to the orbit. Here we report that both stars of DI Herculis rotate with their spin axes nearly perpendicular to the orbital axis (contrary to the usual assumption for close binary stars). The rotationally induced stellar oblateness causes precession in the direction opposite to that of relativistic precession, thereby reconciling the theoretical and observed rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Albrecht, Simon -- Reffert, Sabine -- Snellen, Ignas A G -- Winn, Joshua N -- England -- Nature. 2009 Sep 17;461(7262):373-6. doi: 10.1038/nature08408.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands. albrecht@space.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19759615" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-17
    Description: We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degrees of a single plane, suggesting that the planet formed within a circumbinary disk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doyle, Laurance R -- Carter, Joshua A -- Fabrycky, Daniel C -- Slawson, Robert W -- Howell, Steve B -- Winn, Joshua N -- Orosz, Jerome A -- Prsa, Andrej -- Welsh, William F -- Quinn, Samuel N -- Latham, David -- Torres, Guillermo -- Buchhave, Lars A -- Marcy, Geoffrey W -- Fortney, Jonathan J -- Shporer, Avi -- Ford, Eric B -- Lissauer, Jack J -- Ragozzine, Darin -- Rucker, Michael -- Batalha, Natalie -- Jenkins, Jon M -- Borucki, William J -- Koch, David -- Middour, Christopher K -- Hall, Jennifer R -- McCauliff, Sean -- Fanelli, Michael N -- Quintana, Elisa V -- Holman, Matthew J -- Caldwell, Douglas A -- Still, Martin -- Stefanik, Robert P -- Brown, Warren R -- Esquerdo, Gilbert A -- Tang, Sumin -- Furesz, Gabor -- Geary, John C -- Berlind, Perry -- Calkins, Michael L -- Short, Donald R -- Steffen, Jason H -- Sasselov, Dimitar -- Dunham, Edward W -- Cochran, William D -- Boss, Alan -- Haas, Michael R -- Buzasi, Derek -- Fischer, Debra -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1602-6. doi: 10.1126/science.1210923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carl Sagan Center for the Study of Life in the Universe, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA. ldoyle@seti.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921192" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-31
    Description: We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orosz, Jerome A -- Welsh, William F -- Carter, Joshua A -- Fabrycky, Daniel C -- Cochran, William D -- Endl, Michael -- Ford, Eric B -- Haghighipour, Nader -- MacQueen, Phillip J -- Mazeh, Tsevi -- Sanchis-Ojeda, Roberto -- Short, Donald R -- Torres, Guillermo -- Agol, Eric -- Buchhave, Lars A -- Doyle, Laurance R -- Isaacson, Howard -- Lissauer, Jack J -- Marcy, Geoffrey W -- Shporer, Avi -- Windmiller, Gur -- Barclay, Thomas -- Boss, Alan P -- Clarke, Bruce D -- Fortney, Jonathan -- Geary, John C -- Holman, Matthew J -- Huber, Daniel -- Jenkins, Jon M -- Kinemuchi, Karen -- Kruse, Ethan -- Ragozzine, Darin -- Sasselov, Dimitar -- Still, Martin -- Tenenbaum, Peter -- Uddin, Kamal -- Winn, Joshua N -- Koch, David G -- Borucki, William J -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1511-4. Epub 2012 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. orosz@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22933522" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-19
    Description: Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple coplanar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting coplanar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Daniel -- Carter, Joshua A -- Barbieri, Mauro -- Miglio, Andrea -- Deck, Katherine M -- Fabrycky, Daniel C -- Montet, Benjamin T -- Buchhave, Lars A -- Chaplin, William J -- Hekker, Saskia -- Montalban, Josefina -- Sanchis-Ojeda, Roberto -- Basu, Sarbani -- Bedding, Timothy R -- Campante, Tiago L -- Christensen-Dalsgaard, Jorgen -- Elsworth, Yvonne P -- Stello, Dennis -- Arentoft, Torben -- Ford, Eric B -- Gilliland, Ronald L -- Handberg, Rasmus -- Howard, Andrew W -- Isaacson, Howard -- Johnson, John Asher -- Karoff, Christoffer -- Kawaler, Steven D -- Kjeldsen, Hans -- Latham, David W -- Lund, Mikkel N -- Lundkvist, Mia -- Marcy, Geoffrey W -- Metcalfe, Travis S -- Silva Aguirre, Victor -- Winn, Joshua N -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):331-4. doi: 10.1126/science.1242066.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136961" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-20
    Description: We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R plus sign in circle), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R plus sign in circle 〈 planet radius 〈/= 2.0 R plus sign in circle) planets in the habitable zone of their host star, respectively receiving 1.2 +/- 0.2 times and 0.41 +/- 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borucki, William J -- Agol, Eric -- Fressin, Francois -- Kaltenegger, Lisa -- Rowe, Jason -- Isaacson, Howard -- Fischer, Debra -- Batalha, Natalie -- Lissauer, Jack J -- Marcy, Geoffrey W -- Fabrycky, Daniel -- Desert, Jean-Michel -- Bryson, Stephen T -- Barclay, Thomas -- Bastien, Fabienne -- Boss, Alan -- Brugamyer, Erik -- Buchhave, Lars A -- Burke, Chris -- Caldwell, Douglas A -- Carter, Josh -- Charbonneau, David -- Crepp, Justin R -- Christensen-Dalsgaard, Jorgen -- Christiansen, Jessie L -- Ciardi, David -- Cochran, William D -- DeVore, Edna -- Doyle, Laurance -- Dupree, Andrea K -- Endl, Michael -- Everett, Mark E -- Ford, Eric B -- Fortney, Jonathan -- Gautier, Thomas N 3rd -- Geary, John C -- Gould, Alan -- Haas, Michael -- Henze, Christopher -- Howard, Andrew W -- Howell, Steve B -- Huber, Daniel -- Jenkins, Jon M -- Kjeldsen, Hans -- Kolbl, Rea -- Kolodziejczak, Jeffery -- Latham, David W -- Lee, Brian L -- Lopez, Eric -- Mullally, Fergal -- Orosz, Jerome A -- Prsa, Andrej -- Quintana, Elisa V -- Sanchis-Ojeda, Roberto -- Sasselov, Dimitar -- Seader, Shawn -- Shporer, Avi -- Steffen, Jason H -- Still, Martin -- Tenenbaum, Peter -- Thompson, Susan E -- Torres, Guillermo -- Twicken, Joseph D -- Welsh, William F -- Winn, Joshua N -- New York, N.Y. -- Science. 2013 May 3;340(6132):587-90. doi: 10.1126/science.1234702. Epub 2013 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, CA 94035, USA. william.j.borucki@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599262" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Models, Theoretical ; *Planets ; Stars, Celestial ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-30
    Description: A design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies was used in fabricating an all-dielectric omnidirectional reflector consisting of multilayer films. The reflector was simply constructed as a stack of nine alternating micrometer-thick layers of polystyrene and tellurium and demonstrates omnidirectional reflection over the wavelength range from 10 to 15 micrometers. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, whereas a planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fink -- Winn -- Fan -- Chen -- Michel -- Joannopoulos -- Thomas -- New York, N.Y. -- Science. 1998 Nov 27;282(5394):1679-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Y. Fink, Department of Material Science and Engineering and Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. J. N. Winn, S. Fan, J. D. Joannopoulos, Department of Physics, Massachusetts Institute.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9831553" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-01
    Description: Planets with sizes between that of Earth (with radius R Earth symbol) and Neptune (about 4R Earth symbol) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass--and hence its density, which is a clue to its composition--is more difficult. Planets of size 2-4R Earth symbol have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 +/- 0.09 R Earth symbol and a mass of 1.69 +/- 0.41 R Earth symbol, the planet's mean density of 5.3 +/- 1.8 g cm(-3) is similar to Earth's, suggesting a composition of rock and iron.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howard, Andrew W -- Sanchis-Ojeda, Roberto -- Marcy, Geoffrey W -- Johnson, John Asher -- Winn, Joshua N -- Isaacson, Howard -- Fischer, Debra A -- Fulton, Benjamin J -- Sinukoff, Evan -- Fortney, Jonathan J -- England -- Nature. 2013 Nov 21;503(7476):381-4. doi: 10.1038/nature12767. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172898" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-13
    Description: Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than approximately 1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welsh, William F -- Orosz, Jerome A -- Carter, Joshua A -- Fabrycky, Daniel C -- Ford, Eric B -- Lissauer, Jack J -- Prsa, Andrej -- Quinn, Samuel N -- Ragozzine, Darin -- Short, Donald R -- Torres, Guillermo -- Winn, Joshua N -- Doyle, Laurance R -- Barclay, Thomas -- Batalha, Natalie -- Bloemen, Steven -- Brugamyer, Erik -- Buchhave, Lars A -- Caldwell, Caroline -- Caldwell, Douglas A -- Christiansen, Jessie L -- Ciardi, David R -- Cochran, William D -- Endl, Michael -- Fortney, Jonathan J -- Gautier, Thomas N 3rd -- Gilliland, Ronald L -- Haas, Michael R -- Hall, Jennifer R -- Holman, Matthew J -- Howard, Andrew W -- Howell, Steve B -- Isaacson, Howard -- Jenkins, Jon M -- Klaus, Todd C -- Latham, David W -- Li, Jie -- Marcy, Geoffrey W -- Mazeh, Tsevi -- Quintana, Elisa V -- Robertson, Paul -- Shporer, Avi -- Steffen, Jason H -- Windmiller, Gur -- Koch, David G -- Borucki, William J -- England -- Nature. 2012 Jan 11;481(7382):475-9. doi: 10.1038/nature10768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. wfw@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237021" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment/chemistry ; *Planets ; Space Flight ; Spacecraft ; Stars, Celestial
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...