ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-20
    Description: Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274 days on a low eccentricity of 0.11 +/- 0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a 'temperate' photospheric temperature estimated to be between 250 and 430 K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deeg, H J -- Moutou, C -- Erikson, A -- Csizmadia, Sz -- Tingley, B -- Barge, P -- Bruntt, H -- Havel, M -- Aigrain, S -- Almenara, J M -- Alonso, R -- Auvergne, M -- Baglin, A -- Barbieri, M -- Benz, W -- Bonomo, A S -- Borde, P -- Bouchy, F -- Cabrera, J -- Carone, L -- Carpano, S -- Ciardi, D -- Deleuil, M -- Dvorak, R -- Ferraz-Mello, S -- Fridlund, M -- Gandolfi, D -- Gazzano, J-C -- Gillon, M -- Gondoin, P -- Guenther, E -- Guillot, T -- den Hartog, R -- Hatzes, A -- Hidas, M -- Hebrard, G -- Jorda, L -- Kabath, P -- Lammer, H -- Leger, A -- Lister, T -- Llebaria, A -- Lovis, C -- Mayor, M -- Mazeh, T -- Ollivier, M -- Patzold, M -- Pepe, F -- Pont, F -- Queloz, D -- Rabus, M -- Rauer, H -- Rouan, D -- Samuel, B -- Schneider, J -- Shporer, A -- Stecklum, B -- Street, R -- Udry, S -- Weingrill, J -- Wuchterl, G -- England -- Nature. 2010 Mar 18;464(7287):384-7. doi: 10.1038/nature08856.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Astrofisica de Canarias, C. Via Lactea S/N, E-38205 La Laguna, Tenerife, Spain. hdeeg@iac.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237564" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-17
    Description: We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degrees of a single plane, suggesting that the planet formed within a circumbinary disk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doyle, Laurance R -- Carter, Joshua A -- Fabrycky, Daniel C -- Slawson, Robert W -- Howell, Steve B -- Winn, Joshua N -- Orosz, Jerome A -- Prsa, Andrej -- Welsh, William F -- Quinn, Samuel N -- Latham, David -- Torres, Guillermo -- Buchhave, Lars A -- Marcy, Geoffrey W -- Fortney, Jonathan J -- Shporer, Avi -- Ford, Eric B -- Lissauer, Jack J -- Ragozzine, Darin -- Rucker, Michael -- Batalha, Natalie -- Jenkins, Jon M -- Borucki, William J -- Koch, David -- Middour, Christopher K -- Hall, Jennifer R -- McCauliff, Sean -- Fanelli, Michael N -- Quintana, Elisa V -- Holman, Matthew J -- Caldwell, Douglas A -- Still, Martin -- Stefanik, Robert P -- Brown, Warren R -- Esquerdo, Gilbert A -- Tang, Sumin -- Furesz, Gabor -- Geary, John C -- Berlind, Perry -- Calkins, Michael L -- Short, Donald R -- Steffen, Jason H -- Sasselov, Dimitar -- Dunham, Edward W -- Cochran, William D -- Boss, Alan -- Haas, Michael R -- Buzasi, Derek -- Fischer, Debra -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1602-6. doi: 10.1126/science.1210923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carl Sagan Center for the Study of Life in the Universe, SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043, USA. ldoyle@seti.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921192" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-31
    Description: We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orosz, Jerome A -- Welsh, William F -- Carter, Joshua A -- Fabrycky, Daniel C -- Cochran, William D -- Endl, Michael -- Ford, Eric B -- Haghighipour, Nader -- MacQueen, Phillip J -- Mazeh, Tsevi -- Sanchis-Ojeda, Roberto -- Short, Donald R -- Torres, Guillermo -- Agol, Eric -- Buchhave, Lars A -- Doyle, Laurance R -- Isaacson, Howard -- Lissauer, Jack J -- Marcy, Geoffrey W -- Shporer, Avi -- Windmiller, Gur -- Barclay, Thomas -- Boss, Alan P -- Clarke, Bruce D -- Fortney, Jonathan -- Geary, John C -- Holman, Matthew J -- Huber, Daniel -- Jenkins, Jon M -- Kinemuchi, Karen -- Kruse, Ethan -- Ragozzine, Darin -- Sasselov, Dimitar -- Still, Martin -- Tenenbaum, Peter -- Uddin, Kamal -- Winn, Joshua N -- Koch, David G -- Borucki, William J -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1511-4. Epub 2012 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. orosz@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22933522" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-20
    Description: We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R plus sign in circle), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R plus sign in circle 〈 planet radius 〈/= 2.0 R plus sign in circle) planets in the habitable zone of their host star, respectively receiving 1.2 +/- 0.2 times and 0.41 +/- 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borucki, William J -- Agol, Eric -- Fressin, Francois -- Kaltenegger, Lisa -- Rowe, Jason -- Isaacson, Howard -- Fischer, Debra -- Batalha, Natalie -- Lissauer, Jack J -- Marcy, Geoffrey W -- Fabrycky, Daniel -- Desert, Jean-Michel -- Bryson, Stephen T -- Barclay, Thomas -- Bastien, Fabienne -- Boss, Alan -- Brugamyer, Erik -- Buchhave, Lars A -- Burke, Chris -- Caldwell, Douglas A -- Carter, Josh -- Charbonneau, David -- Crepp, Justin R -- Christensen-Dalsgaard, Jorgen -- Christiansen, Jessie L -- Ciardi, David -- Cochran, William D -- DeVore, Edna -- Doyle, Laurance -- Dupree, Andrea K -- Endl, Michael -- Everett, Mark E -- Ford, Eric B -- Fortney, Jonathan -- Gautier, Thomas N 3rd -- Geary, John C -- Gould, Alan -- Haas, Michael -- Henze, Christopher -- Howard, Andrew W -- Howell, Steve B -- Huber, Daniel -- Jenkins, Jon M -- Kjeldsen, Hans -- Kolbl, Rea -- Kolodziejczak, Jeffery -- Latham, David W -- Lee, Brian L -- Lopez, Eric -- Mullally, Fergal -- Orosz, Jerome A -- Prsa, Andrej -- Quintana, Elisa V -- Sanchis-Ojeda, Roberto -- Sasselov, Dimitar -- Seader, Shawn -- Shporer, Avi -- Steffen, Jason H -- Still, Martin -- Tenenbaum, Peter -- Thompson, Susan E -- Torres, Guillermo -- Twicken, Joseph D -- Welsh, William F -- Winn, Joshua N -- New York, N.Y. -- Science. 2013 May 3;340(6132):587-90. doi: 10.1126/science.1234702. Epub 2013 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, CA 94035, USA. william.j.borucki@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599262" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Models, Theoretical ; *Planets ; Stars, Celestial ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-06-23
    Description: The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a 'fossil' record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets, supporting the model that planets form by accumulation of dust and ice particles. Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets. However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA's Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buchhave, Lars A -- Latham, David W -- Johansen, Anders -- Bizzarro, Martin -- Torres, Guillermo -- Rowe, Jason F -- Batalha, Natalie M -- Borucki, William J -- Brugamyer, Erik -- Caldwell, Caroline -- Bryson, Stephen T -- Ciardi, David R -- Cochran, William D -- Endl, Michael -- Esquerdo, Gilbert A -- Ford, Eric B -- Geary, John C -- Gilliland, Ronald L -- Hansen, Terese -- Isaacson, Howard -- Laird, John B -- Lucas, Philip W -- Marcy, Geoffrey W -- Morse, Jon A -- Robertson, Paul -- Shporer, Avi -- Stefanik, Robert P -- Still, Martin -- Quinn, Samuel N -- England -- Nature. 2012 Jun 13;486(7403):375-7. doi: 10.1038/nature11121.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark. buchhave@astro.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722196" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-13
    Description: Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than approximately 1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welsh, William F -- Orosz, Jerome A -- Carter, Joshua A -- Fabrycky, Daniel C -- Ford, Eric B -- Lissauer, Jack J -- Prsa, Andrej -- Quinn, Samuel N -- Ragozzine, Darin -- Short, Donald R -- Torres, Guillermo -- Winn, Joshua N -- Doyle, Laurance R -- Barclay, Thomas -- Batalha, Natalie -- Bloemen, Steven -- Brugamyer, Erik -- Buchhave, Lars A -- Caldwell, Caroline -- Caldwell, Douglas A -- Christiansen, Jessie L -- Ciardi, David R -- Cochran, William D -- Endl, Michael -- Fortney, Jonathan J -- Gautier, Thomas N 3rd -- Gilliland, Ronald L -- Haas, Michael R -- Hall, Jennifer R -- Holman, Matthew J -- Howard, Andrew W -- Howell, Steve B -- Isaacson, Howard -- Jenkins, Jon M -- Klaus, Todd C -- Latham, David W -- Li, Jie -- Marcy, Geoffrey W -- Mazeh, Tsevi -- Quintana, Elisa V -- Robertson, Paul -- Shporer, Avi -- Steffen, Jason H -- Windmiller, Gur -- Koch, David G -- Borucki, William J -- England -- Nature. 2012 Jan 11;481(7382):475-9. doi: 10.1038/nature10768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. wfw@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237021" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment/chemistry ; *Planets ; Space Flight ; Spacecraft ; Stars, Celestial
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-08
    Description: The original Kepler mission observed and characterized over 2400 eclipsing binaries (EBs) in addition to its prolific exoplanet detections. Despite the mechanical malfunction and subsequent non-recovery of two reaction wheels used to stabilize the instrument, the Kepler satellite continues collecting data in its repurposed K2 mission surveying a series of fields along the ecliptic plane. Here, we present an analysis of the first full baseline K2 data release: the Campaign 0 data set. In the 7761 light curves we have identified a total of 207 EBs. Of these, 97 are new discoveries that were not previously identified. Our pixel-level analysis of these objects has also resulted in identification of several false positives (observed targets contaminated by neighbouring EBs), as well as the serendipitous discovery of two short-period exoplanet candidates. We provide catalogue cross-matched source identifications, orbital periods, morphologies and ephemerides for these eclipsing systems. We also describe the incorporation of the K2 sample into the Kepler Eclipsing Binary Catalog, § present spectroscopic follow-up observations for a limited selection of nine systems and discuss prospects for upcoming K2 campaigns.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-18
    Description: Heartbeat stars are eccentric ( e 〉 0.2) ellipsoidal variables whose light curves resemble a cardiogram. We present the observations and corresponding model of KIC 3749404, a highly eccentric ( e  = 0.66), short period ( P  = 20.3 d) heartbeat star with tidally induced pulsations. A binary star model was created using phoebe , which we modified to include tidally induced pulsations and Doppler boosting. The morphology of the photometric periastron variation (heartbeat) depends strongly on the eccentricity, inclination and argument of periastron. We show that the inclusion of tidally induced pulsations in the model significantly changes the parameter values, specifically the inclination and those parameters dependent on it. Furthermore, we determine the rate of apsidal advance by modelling the periastron variation at the beginning and end of the 4-yr Kepler data set and dividing by the elapsed time. We compare the model with the theoretical expectations for classical and general relativistic apsidal motion and find the observed rate to be two orders of magnitude greater than the theoretical rate. We find that the observed rate cannot be explained by tidally induced pulsations alone and consequently hypothesize the presence of a third body in the system.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-10-15
    Description: We present multiwavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of 1 month, and recorded multiple transit events with depths varying between ~20 and 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5–1.2 μm. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2 lower limit of 0.8 μm on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of $10^{+5}_{-3} \,\mu$ m.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...