ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-04-13
    Description: Article Theory predicts a deficit of super-Earth sized planets, which orbit close to their host star. Here, Lundkvist et al . use data from the NASA Kepler mission to show that this deficit is also seen in observations, thereby providing new insight into exoplanetary systems. Nature Communications doi: 10.1038/ncomms11201 Authors: M. S. Lundkvist, H. Kjeldsen, S. Albrecht, G. R. Davies, S. Basu, D. Huber, A. B. Justesen, C. Karoff, V. Silva Aguirre, V. Van Eylen, C. Vang, T. Arentoft, T. Barclay, T. R. Bedding, T. L. Campante, W. J. Chaplin, J. Christensen-Dalsgaard, Y. P. Elsworth, R. L. Gilliland, R. Handberg, S. Hekker, S. D. Kawaler, M. N. Lund, T. S. Metcalfe, A. Miglio, J. F. Rowe, D. Stello, B. Tingley, T. R. White
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-12-18
    Description: Mechanosensitive ion channels play a critical role in transducing physical stresses at the cell membrane into an electrochemical response. The MscL family of large-conductance mechanosensitive channels is widely distributed among prokaryotes and may participate in the regulation of osmotic pressure changes within the cell. In an effort to better understand the structural basis for the function of these channels, the structure of the MscL homolog from Mycobacterium tuberculosis was determined by x-ray crystallography to 3.5 angstroms resolution. This channel is organized as a homopentamer, with each subunit containing two transmembrane alpha helices and a third cytoplasmic alpha helix. From the extracellular side, a water-filled opening approximately 18 angstroms in diameter leads into a pore lined with hydrophilic residues which narrows at the cytoplasmic side to an occluded hydrophobic apex that may act as the channel gate. This structure may serve as a model for other mechanosensitive channels, as well as the broader class of pentameric ligand-gated ion channels exemplified by the nicotinic acetylcholine receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, G -- Spencer, R H -- Lee, A T -- Barclay, M T -- Rees, D C -- GM18486/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Dec 18;282(5397):2220-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, 147-75CH, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9856938" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Cell Membrane/chemistry ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; *Escherichia coli Proteins ; *Ion Channel Gating ; Ion Channels/*chemistry/metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Mycobacterium tuberculosis/*chemistry ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-31
    Description: We report the detection of Kepler-47, a system consisting of two planets orbiting around an eclipsing pair of stars. The inner and outer planets have radii 3.0 and 4.6 times that of Earth, respectively. The binary star consists of a Sun-like star and a companion roughly one-third its size, orbiting each other every 7.45 days. With an orbital period of 49.5 days, 18 transits of the inner planet have been observed, allowing a detailed characterization of its orbit and those of the stars. The outer planet's orbital period is 303.2 days, and although the planet is not Earth-like, it resides within the classical "habitable zone," where liquid water could exist on an Earth-like planet. With its two known planets, Kepler-47 establishes that close binary stars can host complete planetary systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Orosz, Jerome A -- Welsh, William F -- Carter, Joshua A -- Fabrycky, Daniel C -- Cochran, William D -- Endl, Michael -- Ford, Eric B -- Haghighipour, Nader -- MacQueen, Phillip J -- Mazeh, Tsevi -- Sanchis-Ojeda, Roberto -- Short, Donald R -- Torres, Guillermo -- Agol, Eric -- Buchhave, Lars A -- Doyle, Laurance R -- Isaacson, Howard -- Lissauer, Jack J -- Marcy, Geoffrey W -- Shporer, Avi -- Windmiller, Gur -- Barclay, Thomas -- Boss, Alan P -- Clarke, Bruce D -- Fortney, Jonathan -- Geary, John C -- Holman, Matthew J -- Huber, Daniel -- Jenkins, Jon M -- Kinemuchi, Karen -- Kruse, Ethan -- Ragozzine, Darin -- Sasselov, Dimitar -- Still, Martin -- Tenenbaum, Peter -- Uddin, Kamal -- Winn, Joshua N -- Koch, David G -- Borucki, William J -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1511-4. Epub 2012 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA. orosz@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22933522" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-04-20
    Description: We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R plus sign in circle), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R plus sign in circle 〈 planet radius 〈/= 2.0 R plus sign in circle) planets in the habitable zone of their host star, respectively receiving 1.2 +/- 0.2 times and 0.41 +/- 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borucki, William J -- Agol, Eric -- Fressin, Francois -- Kaltenegger, Lisa -- Rowe, Jason -- Isaacson, Howard -- Fischer, Debra -- Batalha, Natalie -- Lissauer, Jack J -- Marcy, Geoffrey W -- Fabrycky, Daniel -- Desert, Jean-Michel -- Bryson, Stephen T -- Barclay, Thomas -- Bastien, Fabienne -- Boss, Alan -- Brugamyer, Erik -- Buchhave, Lars A -- Burke, Chris -- Caldwell, Douglas A -- Carter, Josh -- Charbonneau, David -- Crepp, Justin R -- Christensen-Dalsgaard, Jorgen -- Christiansen, Jessie L -- Ciardi, David -- Cochran, William D -- DeVore, Edna -- Doyle, Laurance -- Dupree, Andrea K -- Endl, Michael -- Everett, Mark E -- Ford, Eric B -- Fortney, Jonathan -- Gautier, Thomas N 3rd -- Geary, John C -- Gould, Alan -- Haas, Michael -- Henze, Christopher -- Howard, Andrew W -- Howell, Steve B -- Huber, Daniel -- Jenkins, Jon M -- Kjeldsen, Hans -- Kolbl, Rea -- Kolodziejczak, Jeffery -- Latham, David W -- Lee, Brian L -- Lopez, Eric -- Mullally, Fergal -- Orosz, Jerome A -- Prsa, Andrej -- Quintana, Elisa V -- Sanchis-Ojeda, Roberto -- Sasselov, Dimitar -- Seader, Shawn -- Shporer, Avi -- Steffen, Jason H -- Still, Martin -- Tenenbaum, Peter -- Thompson, Susan E -- Torres, Guillermo -- Twicken, Joseph D -- Welsh, William F -- Winn, Joshua N -- New York, N.Y. -- Science. 2013 May 3;340(6132):587-90. doi: 10.1126/science.1234702. Epub 2013 Apr 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, CA 94035, USA. william.j.borucki@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599262" target="_blank"〉PubMed〈/a〉
    Keywords: Exobiology ; Extraterrestrial Environment ; Models, Theoretical ; *Planets ; Stars, Celestial ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-12-22
    Description: Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R( plus sign in circle)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R( plus sign in circle)) and the other smaller than the Earth (0.87R( plus sign in circle)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fressin, Francois -- Torres, Guillermo -- Rowe, Jason F -- Charbonneau, David -- Rogers, Leslie A -- Ballard, Sarah -- Batalha, Natalie M -- Borucki, William J -- Bryson, Stephen T -- Buchhave, Lars A -- Ciardi, David R -- Desert, Jean-Michel -- Dressing, Courtney D -- Fabrycky, Daniel C -- Ford, Eric B -- Gautier, Thomas N 3rd -- Henze, Christopher E -- Holman, Matthew J -- Howard, Andrew -- Howell, Steve B -- Jenkins, Jon M -- Koch, David G -- Latham, David W -- Lissauer, Jack J -- Marcy, Geoffrey W -- Quinn, Samuel N -- Ragozzine, Darin -- Sasselov, Dimitar D -- Seager, Sara -- Barclay, Thomas -- Mullally, Fergal -- Seader, Shawn E -- Still, Martin -- Twicken, Joseph D -- Thompson, Susan E -- Uddin, Kamal -- England -- Nature. 2011 Dec 20;482(7384):195-8. doi: 10.1038/nature10780.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA. ffressin@cfa.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22186831" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-22
    Description: Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barclay, Thomas -- Rowe, Jason F -- Lissauer, Jack J -- Huber, Daniel -- Fressin, Francois -- Howell, Steve B -- Bryson, Stephen T -- Chaplin, William J -- Desert, Jean-Michel -- Lopez, Eric D -- Marcy, Geoffrey W -- Mullally, Fergal -- Ragozzine, Darin -- Torres, Guillermo -- Adams, Elisabeth R -- Agol, Eric -- Barrado, David -- Basu, Sarbani -- Bedding, Timothy R -- Buchhave, Lars A -- Charbonneau, David -- Christiansen, Jessie L -- Christensen-Dalsgaard, Jorgen -- Ciardi, David -- Cochran, William D -- Dupree, Andrea K -- Elsworth, Yvonne -- Everett, Mark -- Fischer, Debra A -- Ford, Eric B -- Fortney, Jonathan J -- Geary, John C -- Haas, Michael R -- Handberg, Rasmus -- Hekker, Saskia -- Henze, Christopher E -- Horch, Elliott -- Howard, Andrew W -- Hunter, Roger C -- Isaacson, Howard -- Jenkins, Jon M -- Karoff, Christoffer -- Kawaler, Steven D -- Kjeldsen, Hans -- Klaus, Todd C -- Latham, David W -- Li, Jie -- Lillo-Box, Jorge -- Lund, Mikkel N -- Lundkvist, Mia -- Metcalfe, Travis S -- Miglio, Andrea -- Morris, Robert L -- Quintana, Elisa V -- Stello, Dennis -- Smith, Jeffrey C -- Still, Martin -- Thompson, Susan E -- England -- Nature. 2013 Feb 28;494(7438):452-4. doi: 10.1038/nature11914. Epub 2013 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Ames Research Center, Moffett Field, California 94035, USA. thomas.barclay@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23426260" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-13
    Description: Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than approximately 1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Welsh, William F -- Orosz, Jerome A -- Carter, Joshua A -- Fabrycky, Daniel C -- Ford, Eric B -- Lissauer, Jack J -- Prsa, Andrej -- Quinn, Samuel N -- Ragozzine, Darin -- Short, Donald R -- Torres, Guillermo -- Winn, Joshua N -- Doyle, Laurance R -- Barclay, Thomas -- Batalha, Natalie -- Bloemen, Steven -- Brugamyer, Erik -- Buchhave, Lars A -- Caldwell, Caroline -- Caldwell, Douglas A -- Christiansen, Jessie L -- Ciardi, David R -- Cochran, William D -- Endl, Michael -- Fortney, Jonathan J -- Gautier, Thomas N 3rd -- Gilliland, Ronald L -- Haas, Michael R -- Hall, Jennifer R -- Holman, Matthew J -- Howard, Andrew W -- Howell, Steve B -- Isaacson, Howard -- Jenkins, Jon M -- Klaus, Todd C -- Latham, David W -- Li, Jie -- Marcy, Geoffrey W -- Mazeh, Tsevi -- Quintana, Elisa V -- Robertson, Paul -- Shporer, Avi -- Steffen, Jason H -- Windmiller, Gur -- Koch, David G -- Borucki, William J -- England -- Nature. 2012 Jan 11;481(7382):475-9. doi: 10.1038/nature10768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astronomy Department, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA. wfw@sciences.sdsu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237021" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment/chemistry ; *Planets ; Space Flight ; Spacecraft ; Stars, Celestial
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-28
    Description: The Sun's equator and the planets' orbital planes are nearly aligned, which is presumably a consequence of their formation from a single spinning gaseous disk. For exoplanetary systems this well-aligned configuration is not guaranteed: dynamical interactions may tilt planetary orbits, or stars may be misaligned with the protoplanetary disk through chaotic accretion , magnetic interactions or torques from neighbouring stars. Indeed, isolated 'hot Jupiters' are often misaligned and even orbiting retrograde. Here we report an analysis of transits of planets over starspots on the Sun-like star Kepler-30 (ref. 8), and show that the orbits of its three planets are aligned with the stellar equator. Furthermore, the orbits are aligned with one another to within a few degrees. This configuration is similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The orderly alignment seen in the Kepler-30 system suggests that high obliquities are confined to systems that experienced disruptive dynamical interactions. Should this be corroborated by observations of other coplanar multi-planet systems, then star-disk misalignments would be ruled out as the explanation for the high obliquities of hot Jupiters, and dynamical interactions would be implicated as the origin of hot Jupiters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanchis-Ojeda, Roberto -- Fabrycky, Daniel C -- Winn, Joshua N -- Barclay, Thomas -- Clarke, Bruce D -- Ford, Eric B -- Fortney, Jonathan J -- Geary, John C -- Holman, Matthew J -- Howard, Andrew W -- Jenkins, Jon M -- Koch, David -- Lissauer, Jack J -- Marcy, Geoffrey W -- Mullally, Fergal -- Ragozzine, Darin -- Seader, Shawn E -- Still, Martin -- Thompson, Susan E -- England -- Nature. 2012 Jul 25;487(7408):449-53. doi: 10.1038/nature11301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. rsanchis86@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22836999" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-20
    Description: The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 +/- 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 +/- 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quintana, Elisa V -- Barclay, Thomas -- Raymond, Sean N -- Rowe, Jason F -- Bolmont, Emeline -- Caldwell, Douglas A -- Howell, Steve B -- Kane, Stephen R -- Huber, Daniel -- Crepp, Justin R -- Lissauer, Jack J -- Ciardi, David R -- Coughlin, Jeffrey L -- Everett, Mark E -- Henze, Christopher E -- Horch, Elliott -- Isaacson, Howard -- Ford, Eric B -- Adams, Fred C -- Still, Martin -- Hunter, Roger C -- Quarles, Billy -- Selsis, Franck -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):277-80. doi: 10.1126/science.1249403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744370" target="_blank"〉PubMed〈/a〉
    Keywords: Earth (Planet) ; Exobiology ; Extraterrestrial Environment ; *Planets ; *Stars, Celestial ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...