ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (2,852)
  • American Association for the Advancement of Science (AAAS)  (2,852)
Collection
Keywords
Publisher
Years
  • 101
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-24
    Description: A flurry of findings points to protein translation in the dendrites of neurons as a key feature leading to the changes at synapses that are vital to learning (see main text). And one recent discovery suggests that when this translation goes awry, it can lead to mental retardation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2000 Oct 27;290(5492):737.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11184206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*metabolism ; Fragile X Mental Retardation Protein ; Fragile X Syndrome/etiology/genetics/metabolism ; Humans ; Intellectual Disability/*etiology/genetics/metabolism ; Mice ; Mutation ; Nerve Tissue Proteins/*genetics/metabolism ; *Protein Biosynthesis ; *RNA-Binding Proteins ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-05-08
    Description: The telomerase ribonucleoprotein has a phylogenetically divergent RNA subunit, which contains a short template for telomeric DNA synthesis. To understand how telomerase RNA participates in mechanistic aspects of telomere synthesis, we studied a conserved secondary structure adjacent to the template. Disruption of this structure caused DNA synthesis to proceed beyond the normal template boundary, resulting in altered telomere sequences, telomere shortening, and cellular growth defects. Compensatory mutations restored normal telomerase function. Thus, the RNA structure, rather than its sequence, specifies the template boundary. This study reveals a specific function for an RNA structure in the enzymatic action of telomerase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tzfati, Y -- Fulton, T B -- Roy, J -- Blackburn, E H -- GM26259/GM/NIGMS NIH HHS/ -- T32CA09270/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 May 5;288(5467):863-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143-0414, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10797010" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Cloning, Molecular ; DNA, Fungal/biosynthesis ; Genes, Fungal ; Kluyveromyces/*enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; RNA, Fungal/*chemistry/genetics/*metabolism ; Telomerase/*chemistry/genetics/*metabolism ; Telomere/genetics/metabolism ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-21
    Description: We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultes, E A -- Bartel, D P -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903205" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Evolution, Molecular ; Gene Duplication ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Point Mutation ; RNA/metabolism ; RNA, Catalytic/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2001-02-07
    Description: Atomic force microscopy and single-molecule force spectroscopy were combined to image and manipulate purple membrane patches from Halobacterium salinarum. Individual bacteriorhodopsin molecules were first localized and then extracted from the membrane; the remaining vacancies were imaged again. Anchoring forces between 100 and 200 piconewtons for the different helices were found. Upon extraction, the helices were found to unfold. The force spectra revealed the individuality of the unfolding pathways. Helices G and F as well as helices E and D always unfolded pairwise, whereas helices B and C occasionally unfolded one after the other. Experiments with cleaved loops revealed the origin of the individuality: stabilization of helix B by neighboring helices.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oesterhelt, F -- Oesterhelt, D -- Pfeiffer, M -- Engel, A -- Gaub, H E -- Muller, D J -- New York, N.Y. -- Science. 2000 Apr 7;288(5463):143-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CeNS and Lehrstuhl fur angewandte Physik, Ludwig Maximilians-Universitat Munchen, Amalienstrasse 54, 80799 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10753119" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacteriorhodopsins/*chemistry/genetics ; Cysteine/chemistry ; Halobacterium salinarum/*chemistry ; Membrane Proteins/*chemistry/genetics ; *Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Folding ; Protein Structure, Secondary ; Purple Membrane/*chemistry ; Serine Endopeptidases/metabolism ; Spectrum Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-15
    Description: Working out how organs form during embryonic development is a fascinating area of research. In a witty Perspective, Jeff Hardin describes new findings (Nishiwaki et al.) that reveal the many intricate steps needed for gonads to form in the worm C. elegans. Two key players, GON-1 and MIG-17, are metalloproteases that may help migration of distal tip cells by degrading extracellular matrix components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardin, J -- New York, N.Y. -- Science. 2000 Jun 23;288(5474):2142-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology and Program in Cellular and Molecular Biology, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706, USA. jdhardin@facstaff.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10896589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*enzymology/genetics/growth & development ; *Caenorhabditis elegans Proteins ; Cell Movement ; Disintegrins/chemistry/genetics/*metabolism ; Extracellular Matrix/*metabolism ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Gonads/cytology/growth & development/metabolism ; Larva/cytology/enzymology/growth & development ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Morphogenesis ; Muscles/cytology/enzymology ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2453.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752547" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/physiology ; Circadian Rhythm/drug effects/*physiology ; Cricetinae ; Darkness ; Hypothalamus/*metabolism ; Light ; Mice ; *Motor Activity/drug effects ; Mutation ; Neurons/*metabolism ; Receptor, Epidermal Growth Factor/genetics/*metabolism ; Retinal Ganglion Cells/metabolism ; Signal Transduction ; Suprachiasmatic Nucleus/*metabolism ; Transforming Growth Factor alpha/*metabolism/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hayashi, C Y -- Lewis, R V -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1477-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA. hayashi@uwyo.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688794" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Crossing Over, Genetic ; DNA/genetics ; DNA Replication ; *Evolution, Molecular ; *Exons ; Gene Conversion ; *Genes ; *Introns ; Molecular Sequence Data ; Mutation ; Proteins/chemistry/*genetics ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic ; Species Specificity ; Spiders/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2001-11-03
    Description: SNAREs (soluble NSF-attachment protein receptors) are generally acknowledged as central components of membrane fusion reactions, but their precise function has remained enigmatic. Competing hypotheses suggest roles for SNAREs in mediating the specificity of fusion, catalyzing fusion, or actually executing fusion. We generated knockout mice lacking synaptobrevin/VAMP 2, the vesicular SNARE protein responsible for synaptic vesicle fusion in forebrain synapses, to make use of the exquisite temporal resolution of electrophysiology in measuring fusion. In the absence of synaptobrevin 2, spontaneous synaptic vesicle fusion and fusion induced by hypertonic sucrose were decreased approximately 10-fold, but fast Ca2+-triggered fusion was decreased more than 100-fold. Thus, synaptobrevin 2 may function in catalyzing fusion reactions and stabilizing fusion intermediates but is not absolutely required for synaptic fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schoch, S -- Deak, F -- Konigstorfer, A -- Mozhayeva, M -- Sara, Y -- Sudhof, T C -- Kavalali, E T -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1117-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691998" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism/pharmacology ; Cells, Cultured ; Hypertonic Solutions ; *Membrane Fusion ; Membrane Proteins/genetics/*physiology ; Mice ; Mice, Knockout ; Mutation ; Patch-Clamp Techniques ; Potassium/pharmacology ; Presynaptic Terminals/physiology ; Prosencephalon/physiology ; R-SNARE Proteins ; SNARE Proteins ; Sucrose/pharmacology ; Synapses/*physiology ; Synaptic Transmission ; Synaptic Vesicles/*physiology ; *Vesicular Transport Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: The mushroom bodies, substructures of the Drosophila brain, are involved in olfactory learning and short-term memory, but their role in long-term memory is unknown. Here we show that the alpha-lobes-absent (ala) mutant lacks either the two vertical lobes of the mushroom body or two of the three median lobes which contain branches of vertical lobe neurons. This unique phenotype allows analysis of mushroom body function. Long-term memory required the presence of the vertical lobes but not the median lobes. Short-term memory was normal in flies without either vertical lobes or the two median lobes studied.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pascual, A -- Preat, T -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1115-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developpement, Evolution, Plasticite du Systeme Nerveux, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Conditioning (Psychology) ; Dendrites/physiology ; Drosophila/genetics/*physiology ; Electroshock ; Genes, Insect ; Memory/*physiology ; Memory, Short-Term/physiology ; Microscopy, Confocal ; Mushroom Bodies/anatomy & histology/*physiology ; Mutation ; Neurons, Efferent/physiology ; Odors ; Phenotype
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2001-04-17
    Description: A critical step in the infectious cycle of Leishmania is the differentiation of parasites within the sand fly vector to the highly infective metacyclic promastigote stage. Here, we establish tetrahydrobiopterin (H4B) levels as an important factor controlling the extent of metacyclogenesis. H4B levels decline substantially during normal development, and genetic or nutritional manipulations showed that low H4B caused elevated metacyclogenesis. Mutants lacking pteridine reductase 1 (PTR1) had low levels of H4B, remained infectious to mice, and induced larger cutaneous lesions (hypervirulence). Thus, the control of pteridine metabolism has relevance to the mechanism of Leishmania differentiation and the limitation of virulence during evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, M L -- Titus, R G -- Turco, S J -- Beverley, S M -- AI21903/AI/NIAID NIH HHS/ -- AI31078/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 13;292(5515):285-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11303103" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biopterin/*analogs & derivatives/*metabolism/pharmacology ; Carrier Proteins/genetics/metabolism ; Chromatography, High Pressure Liquid ; Folic Acid/metabolism ; Genes, Protozoan ; Glycosphingolipids/analysis ; Leishmania major/genetics/*growth & development/*metabolism/pathogenicity ; Leishmaniasis, Cutaneous/*parasitology ; *Membrane Transport Proteins ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Oxidoreductases/genetics/metabolism ; *Protozoan Proteins ; Signal Transduction ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pellman, D -- New York, N.Y. -- Science. 2001 Mar 30;291(5513):2555-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Pediatric Hematology/Oncology, Children's Hospital, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA. david_pellman@dfci.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11286276" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein ; Aneuploidy ; Animals ; Cell Transformation, Neoplastic ; Cells, Cultured ; Chromosome Aberrations ; Chromosome Segregation ; Chromosomes/*physiology ; Colonic Neoplasms/*genetics/metabolism/pathology ; Cytoskeletal Proteins/chemistry/*metabolism ; *Genes, APC ; Humans ; Kinetochores/*metabolism ; Mice ; Microtubule-Associated Proteins/metabolism ; Microtubules/*metabolism ; Mitosis ; Mutation ; Protein Kinases/metabolism ; Protein-Serine-Threonine Kinases ; Spindle Apparatus/metabolism ; Stem Cells/cytology/metabolism ; *Trans-Activators ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peltonen, L -- McKusick, V A -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1224-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of California Los Angeles School of Medicine, Los Angeles, CA 90095-7088, USA. lpeltonen@mednet.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11233446" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computational Biology ; Delivery of Health Care ; *Disease ; Environment ; Gene Expression Profiling ; *Genetic Diseases, Inborn ; Genetic Predisposition to Disease ; Genetic Testing ; Genetic Variation ; *Genetics, Medical ; Genome ; *Genome, Human ; *Genomics ; Human Genome Project ; Humans ; Metabolic Diseases/genetics ; Multifactorial Inheritance ; Mutation ; Phenotype ; Polymorphism, Single Nucleotide ; Quantitative Trait, Heritable ; Risk Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-03
    Description: How does human immunodeficiency virus (HIV) gain access to the carefully guarded nucleus of the host cell? In a Perspective, Segura-Totten and Wilson elaborate on new findings (de Noronha et al.) showing that the HIV protein Vpr is crucial for causing transient herniations in the host cell nuclear envelope. These ruptures are sufficient to enable the preintegration complexes of invading virions to enter the nucleus and to integrate with host cell DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segura-Totten, M -- Wilson, K L -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1016-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691977" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/*metabolism/*virology ; Chromatin/metabolism ; DNA-Binding Proteins/metabolism ; G2 Phase ; Gene Products, vpr/genetics/*metabolism ; HIV/*physiology ; HeLa Cells ; Humans ; Lamins ; Membrane Proteins/metabolism ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Proteins/metabolism ; Phosphorylation ; Thymopoietins/metabolism ; *Virus Integration ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2001-03-17
    Description: Chloroplasts relocate their positions in a cell in response to the intensity of incident light, moving to the side wall of the cell to avoid strong light, but gathering at the front face under weak light to maximize light interception. Here, Arabidopsis thaliana mutants defective in the avoidance response were isolated, and the mutated gene was identified as NPL1 (NPH-like 1), a homolog of NPH1 (nonphototropic hypocotyl 1), a blue light receptor used in phototropism. Hence, NPL1 is likely a blue light receptor regulating the avoidance response under strong light.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kagawa, T -- Sakai, T -- Suetsugu, N -- Oikawa, K -- Ishiguro, S -- Kato, T -- Tabata, S -- Okada, K -- Wada, M -- New York, N.Y. -- Science. 2001 Mar 16;291(5511):2138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉"Unit Process and Combined Circuit," PRESTO, Japan Science and Technology Corporation, 1-8, Honcho 4-chome, Kawaguchi-city, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11251116" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/genetics/*physiology/ultrastructure ; *Arabidopsis Proteins ; Cell Membrane/metabolism ; Chloroplasts/*physiology ; Genes, Plant ; *Light ; Movement ; Mutation ; Phosphoproteins/chemistry/physiology ; Phototropism ; Plant Leaves/metabolism ; Plant Proteins/chemistry/*genetics/*physiology ; Plant Structures/metabolism ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-11-17
    Description: We studied the underlying neural mechanism of a simple choice behavior between competing alternatives in Drosophila. In a flight simulator, individual flies were conditioned to choose one of two flight paths in response to color and shape cues; after the training, they were tested with contradictory cues. Wild-type flies made a discrete choice that switched from one alternative to the other as the relative salience of color and shape cues gradually changed, but this ability was greatly diminished in mutant (mbm1) flies with miniature mushroom bodies or with hydroxyurea ablation of mushroom bodies. Thus, Drosophila genetics may be useful for elucidating the neural basis of choice behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, S -- Guo, A -- New York, N.Y. -- Science. 2001 Nov 16;294(5546):1543-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11711680" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; *Choice Behavior ; Color ; Color Perception ; Conditioning (Psychology) ; *Cues ; Drosophila/genetics/*physiology ; Flight, Animal ; Form Perception ; Hot Temperature ; Hydroxyurea/pharmacology ; Learning ; Memory ; Mushroom Bodies/drug effects/*physiology ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2001-08-25
    Description: beta-Amyloid plaques and neurofibrillary tangles (NFTs) are the defining neuropathological hallmarks of Alzheimer's disease, but their pathophysiological relation is unclear. Injection of beta-amyloid Abeta42 fibrils into the brains of P301L mutant tau transgenic mice caused fivefold increases in the numbers of NFTs in cell bodies within the amygdala from where neurons project to the injection sites. Gallyas silver impregnation identified NFTs that contained tau phosphorylated at serine 212/threonine 214 and serine 422. NFTs were composed of twisted filaments and occurred in 6-month-old mice as early as 18 days after Abeta42 injections. Our data support the hypothesis that Abeta42 fibrils can accelerate NFT formation in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gotz, J -- Chen, F -- van Dorpe, J -- Nitsch, R M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Psychiatry Research, University of Zurich, August Forel Strasse 1, 8008 Zurich, Switzerland. goetz@bli.unizh.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520988" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/metabolism/*pathology ; Amygdala/*pathology ; Amyloid beta-Peptides/administration & dosage/*metabolism ; Animals ; Brain/*pathology ; Epitopes ; Female ; Fluorescent Antibody Technique ; Humans ; Male ; Mice ; Mice, Transgenic ; Microscopy, Immunoelectron ; Mutation ; Neurofibrillary Tangles/*metabolism/pathology ; Peptide Fragments/administration & dosage/*metabolism ; Phosphorylation ; Plaque, Amyloid/*metabolism/pathology ; Protein Conformation ; Protein Isoforms ; Sex Characteristics ; tau Proteins/chemistry/genetics/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2001-06-09
    Description: The p53 protein is present in low amounts in normally growing cells and is activated in response to physiological insults. MDM2 regulates p53 either through inhibiting p53's transactivating function in the nucleus or by targeting p53 degradation in the cytoplasm. We identified a previously unknown nuclear export signal (NES) in the amino terminus of p53, spanning residues 11 to 27 and containing two serine residues phosphorylated after DNA damage, which was required for p53 nuclear export in colloboration with the carboxyl-terminal NES. Serine-15-phosphorylated p53 induced by ultraviolet irradiation was not exported. Thus, DNA damage-induced phosphorylation may achieve optimal p53 activation by inhibiting both MDM2 binding to, and the nuclear export of, p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Y -- Xiong, Y -- CA65572/CA/NCI NIH HHS/ -- K01 CA087580/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 8;292(5523):1910-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11397945" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Animals ; Cell Fusion ; Cell Line ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cytoplasm/metabolism ; *DNA Damage ; Mice ; Molecular Sequence Data ; Mutation ; *Nuclear Proteins ; Phosphorylation ; Phosphoserine/metabolism ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-mdm2 ; Recombinant Fusion Proteins/metabolism ; Transfection ; Tumor Suppressor Protein p14ARF ; Tumor Suppressor Protein p53/*chemistry/genetics/*metabolism ; Ubiquitins/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):426-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330289" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Animals ; Antigens/metabolism ; Aurora Kinases ; *CDC2-CDC28 Kinases ; Cell Division ; Cell Transformation, Neoplastic ; Centrosome/*physiology/ultrastructure ; Cyclin-Dependent Kinase 2 ; Cyclin-Dependent Kinases/metabolism ; Genes, p53 ; Humans ; Mitosis ; Mutation ; Neoplasms/*etiology/genetics/pathology ; Protein-Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2001-03-27
    Description: During its development, a plant shoot progresses from a juvenile to an adult phase of vegetative growth and from a reproductively incompetent to a reproductively competent state. In Arabidopsis, loss-of-function mutations in SQUINT (SQN) reduced the number of juvenile leaves and had subtle effects on inflorescence morphology but had no effect on flowering time or on reproductive competence. SQN encodes the Arabidopsis homolog of cyclophilin 40 (CyP40), a protein found in association with the Hsp90 chaperone complex in yeast, mammals, and plants. Thus, in Arabidopsis, CyP40 is specifically required for the vegetative but not the reproductive maturation of the shoot.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berardini, T Z -- Bollman, K -- Sun, H -- Poethig, R S -- R01-GM1893-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2405-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA. spoethig@sas.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264535" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/anatomy & histology/*genetics/*growth & development/physiology ; Carrier Proteins/chemistry/genetics/physiology ; Chromosome Mapping ; *Cyclophilins ; Exons ; Gene Expression Regulation, Plant ; Genes, Plant ; Heat-Shock Proteins/genetics ; Molecular Sequence Data ; Mutation ; Peptidylprolyl Isomerase/chemistry/genetics/physiology ; Phenotype ; Plant Leaves/anatomy & histology/growth & development ; Plant Shoots/growth & development/physiology ; Reproduction ; Sequence Alignment ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2001-08-04
    Description: The development of resistance is the main threat to the long-term use of toxins from Bacillus thuringiensis (Bt) in transgenic plants. Here we report the cloning of a Bt toxin resistance gene, Caenorhabditis elegans bre-5, which encodes a putative beta-1,3-galactosyltransferase. Lack of bre-5 in the intestine led to resistance to the Bt toxin Cry5B. Wild-type but not bre-5 mutant animals were found to uptake toxin into their gut cells, consistent with bre-5 mutants lacking toxin-binding sites on their apical gut. bre-5 mutants displayed resistance to Cry14A, a Bt toxin lethal to both nematodes and insects; this indicates that resistance by loss of carbohydrate modification is relevant to multiple Bt toxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Griffitts, J S -- Whitacre, J L -- Stevens, D E -- Aroian, R V -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):860-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486087" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bacterial Proteins/metabolism/*toxicity ; *Bacterial Toxins ; Biological Transport ; Caenorhabditis elegans/enzymology/*genetics/metabolism ; *Caenorhabditis elegans Proteins ; Cloning, Molecular ; Digestive System/enzymology/metabolism ; Disorders of Sex Development ; Drug Resistance/genetics ; Endocytosis ; Endotoxins/metabolism/*toxicity ; Feeding Behavior ; Galactosyltransferases/chemistry/*genetics/*metabolism ; Genes, Helminth ; Hemolysin Proteins ; *Insect Proteins ; Molecular Sequence Data ; Mosaicism ; Mutation ; *Pest Control, Biological ; Receptors, Cell Surface/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2001-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Temple, L K -- McLeod, R S -- Gallinger, S -- Wright, J G -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):807-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Toronto, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, ON, Canada M5G 1X5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486074" target="_blank"〉PubMed〈/a〉
    Keywords: Diagnosis ; *Disease/etiology ; *Genetic Predisposition to Disease ; Genetic Research ; *Genetic Variation ; *Genome, Human ; *Genomics ; Genotype ; Humans ; Mutation ; Phenotype ; Polymorphism, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2001-09-29
    Description: The embryonic role of endothelial cells and nascent vessels in promoting organogenesis, prior to vascular function, is unclear. We find that early endothelial cells in mouse embryos surround newly specified hepatic endoderm and delimit the mesenchymal domain into which the liver bud grows. In flk-1 mutant embryos, which lack endothelial cells, hepatic specification occurs, but liver morphogenesis fails prior to mesenchyme invasion. We developed an embryo tissue explant system that permits liver bud vasculogenesis and show that in the absence of endothelial cells, or when the latter are inhibited, there is a selective defect in hepatic outgrowth. We conclude that vasculogenic endothelial cells and nascent vessels are critical for the earliest stages of organogenesis, prior to blood vessel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumoto, K -- Yoshitomi, H -- Rossant, J -- Zaret, K S -- CA06297/CA/NCI NIH HHS/ -- GM36477/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 19;294(5542):559-63. Epub 2001 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Developmental Biology Program, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11577199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/cytology/embryology/physiology ; Culture Techniques ; *Embryonic Induction ; Endoderm/*physiology ; Endothelium, Vascular/cytology/embryology/*physiology ; Female ; Hepatocyte Growth Factor/antagonists & inhibitors/metabolism/pharmacology ; Hepatocytes/physiology ; Liver/blood supply/cytology/drug effects/*embryology ; Male ; Mesoderm/physiology ; Mice ; Mice, Inbred C3H ; *Mitogens ; Morphogenesis ; Mutation ; Neovascularization, Physiologic ; Receptor Protein-Tyrosine Kinases/genetics/physiology ; Receptors, Growth Factor/genetics/physiology ; Receptors, Vascular Endothelial Growth Factor ; Signal Transduction/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2001-06-02
    Description: The GGAs are a multidomain protein family implicated in protein trafficking between the Golgi and endosomes. Here, the VHS domain of GGA2 was shown to bind to the acidic cluster-dileucine motif in the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CI-MPR). Receptors with mutations in this motif were defective in lysosomal enzyme sorting. The hinge domain of GGA2 bound clathrin, suggesting that GGA2 could be a link between cargo molecules and clathrin-coated vesicle assembly. Thus, GGA2 binding to the CI-MPR is important for lysosomal enzyme targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, Y -- Doray, B -- Poussu, A -- Lehto, V P -- Kornfeld, S -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Jun 1;292(5522):1716-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387476" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular Transport ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; *Carrier Proteins ; Cations ; Clathrin/metabolism ; Dipeptides/chemistry/metabolism ; L Cells (Cell Line) ; Lysosomes/*enzymology ; Mice ; Molecular Sequence Data ; Mutation ; Protein Sorting Signals ; Protein Structure, Tertiary ; *Protein Transport ; Proteins/chemistry/genetics/*metabolism ; Rats ; Receptor, IGF Type 2/*chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Solubility ; Transcription Factor AP-1/metabolism ; Transport Vesicles/metabolism ; Two-Hybrid System Techniques ; trans-Golgi Network/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2001-06-16
    Description: Huntingtin is a 350-kilodalton protein of unknown function that is mutated in Huntington's disease (HD), a neurodegenerative disorder. The mutant protein is presumed to acquire a toxic gain of function that is detrimental to striatal neurons in the brain. However, loss of a beneficial activity of wild-type huntingtin may also cause the death of striatal neurons. Here we demonstrate that wild-type huntingtin up-regulates transcription of brain-derived neurotrophic factor (BDNF), a pro-survival factor produced by cortical neurons that is necessary for survival of striatal neurons in the brain. We show that this beneficial activity of huntingtin is lost when the protein becomes mutated, resulting in decreased production of cortical BDNF. This leads to insufficient neurotrophic support for striatal neurons, which then die. Restoring wild-type huntingtin activity and increasing BDNF production may be therapeutic approaches for treating HD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zuccato, C -- Ciammola, A -- Rigamonti, D -- Leavitt, B R -- Goffredo, D -- Conti, L -- MacDonald, M E -- Friedlander, R M -- Silani, V -- Hayden, M R -- Timmusk, T -- Sipione, S -- Cattaneo, E -- E.0840/Telethon/Italy -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):493-8. Epub 2001 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacological Sciences, University of Milano, Via Balzaretti 9, 20133 Milano, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408619" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Apoptosis ; Brain-Derived Neurotrophic Factor/biosynthesis/*genetics/metabolism ; Cell Survival ; Cells, Cultured ; Cerebral Cortex/cytology/*metabolism ; Corpus Striatum/cytology/*metabolism/pathology ; Exons ; Hippocampus/cytology/metabolism/pathology ; Humans ; Huntington Disease/*genetics/metabolism/pathology ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Nerve Growth Factors/genetics/metabolism ; Nerve Tissue Proteins/genetics/*physiology ; Neurons/*metabolism/pathology ; Nuclear Proteins/genetics/*physiology ; Promoter Regions, Genetic ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2001-11-03
    Description: Human immunodeficiency virus-1 (HIV-1) Vpr expression halts the proliferation of human cells at or near the G2 cell-cycle checkpoint. The transition from G2 to mitosis is normally controlled by changes in the state of phosphorylation and subcellular compartmentalization of key cell-cycle regulatory proteins. In studies of the intracellular trafficking of these regulators, we unexpectedly found that wild-type Vpr, but not Vpr mutants impaired for G2 arrest, induced transient, localized herniations in the nuclear envelope (NE). These herniations were associated with defects in the nuclear lamina. Intermittently, these herniations ruptured, resulting in the mixing of nuclear and cytoplasmic components. These Vpr-induced NE changes probably contribute to the observed cell-cycle arrest.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Noronha, C M -- Sherman, M P -- Lin, H W -- Cavrois, M V -- Moir, R D -- Goldman, R D -- Greene, W C -- KO8 AI01866/AI/NIAID NIH HHS/ -- P30 MH59037/MH/NIMH NIH HHS/ -- R01 AI145234/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 2;294(5544):1105-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gladstone Institute of Virology and Immunology, Department of Medicine, University of California, San Francisco, CA 94103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11691994" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Cell Cycle Proteins/metabolism ; Cell Nucleus/*metabolism/virology ; Cyclin B/metabolism ; Cyclin B1 ; Cytoplasm/metabolism ; *G2 Phase ; Gene Products, vpr/genetics/*physiology ; HIV-1/*physiology ; HeLa Cells ; Humans ; *Lamin Type B ; Lamins ; Macrophages/virology ; Microscopy, Fluorescence ; Microscopy, Video ; Mitosis ; Mutation ; Nuclear Envelope/*metabolism/ultrastructure ; Nuclear Pore Complex Proteins/metabolism ; Nuclear Proteins/metabolism ; Protein-Tyrosine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; Transfection ; Virus Integration ; cdc25 Phosphatases/metabolism ; vpr Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1733-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11249817" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/genetics ; Culture ; DNA, Mitochondrial/*genetics ; *Emigration and Immigration ; Ethnic Groups/genetics ; Female ; Genetic Markers ; *Genetics, Population ; Humans ; Male ; Mutation ; Sex Characteristics ; Y Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2001-09-05
    Description: The developmental signaling functions of cell surface heparan sulfate proteoglycans (HSPGs) are dependent on their sulfation states. Here, we report the identification of QSulf1, the avian ortholog of an evolutionarily conserved protein family related to heparan-specific N-acetyl glucosamine sulfatases. QSulf1 expression is induced by Sonic hedgehog in myogenic somite progenitors in quail embryos and is required for the activation of MyoD, a Wnt-induced regulator of muscle specification. QSulf1 is localized on the cell surface and regulates heparan-dependent Wnt signaling in C2C12 myogenic progenitor cells through a mechanism that requires its catalytic activity, providing evidence that QSulf1 regulates Wnt signaling through desulfation of cell surface HSPGs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dhoot, G K -- Gustafsson, M K -- Ai, X -- Sun, W -- Standiford, D M -- Emerson , C P Jr -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1663-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Basic Veterinary Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW1 OTU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533491" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Body Patterning ; CHO Cells ; Cell Membrane/metabolism ; Cells, Cultured ; Cloning, Molecular ; Coculture Techniques ; Cricetinae ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Hedgehog Proteins ; Heparan Sulfate Proteoglycans/*metabolism ; Heparin/metabolism/pharmacology ; Heparitin Sulfate/metabolism ; Molecular Sequence Data ; Muscles/cytology/*embryology/metabolism ; Mutation ; MyoD Protein/genetics/metabolism ; Oligonucleotides, Antisense ; Proto-Oncogene Proteins/*metabolism ; Quail/*embryology ; Recombinant Fusion Proteins/metabolism ; Sequence Alignment ; *Signal Transduction ; Somites/metabolism ; Stem Cells/*metabolism ; Sulfatases/chemistry/genetics/*metabolism ; Trans-Activators/genetics/metabolism ; Transfection ; Wnt Proteins ; *Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2001-06-26
    Description: A(2), a capsid protein of RNA phage Qbeta, is also responsible for host lysis. A(2) blocked synthesis of murein precursors in vivo by inhibiting MurA, the catalyst of the committed step of murein biosynthesis. An A(2)-resistance mutation mapped to an exposed surface near the substrate-binding cleft of MurA. Moreover, purified Qbeta virions inhibited wild-type MurA, but not the mutant MurA, in vitro. Thus, the two small phages characterized for their lysis strategy, Qbeta and the small DNA phage phiX174, effect host lysis by targeting different enzymes in the multistep, universally conserved pathway of cell wall biosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bernhardt, T G -- Wang, I N -- Struck, D K -- Young, R -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2326-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA..〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423662" target="_blank"〉PubMed〈/a〉
    Keywords: Alkyl and Aryl Transferases/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Allolevivirus/genetics/*metabolism ; Anti-Bacterial Agents/*metabolism/pharmacology ; Bacterial Proteins/antagonists & inhibitors/metabolism ; *Bacteriolysis ; Bacteriophage phi X 174/metabolism/physiology ; Binding Sites ; Capsid/*metabolism/pharmacology ; Escherichia coli/enzymology/genetics/*virology ; Mutation ; Peptidoglycan/*biosynthesis ; *Transferases ; Uridine Diphosphate N-Acetylglucosamine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, V M -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1446-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA. vmylee@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520974" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/drug therapy/metabolism/*pathology ; Amyloid beta-Peptides/administration & dosage/genetics/*metabolism/pharmacology ; Amyloid beta-Protein Precursor/genetics/metabolism ; Animals ; Brain/metabolism/*pathology ; Disease Models, Animal ; Humans ; Mice ; Mice, Transgenic ; Mutation ; Nerve Degeneration ; Neurofibrillary Tangles/metabolism/*pathology ; Peptide Fragments/administration & dosage/pharmacology ; Plaque, Amyloid/metabolism/*pathology ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2001-06-26
    Description: The frequencies of low-activity alleles of glucose-6-phosphate dehydrogenase in humans are highly correlated with the prevalence of malaria. These "deficiency" alleles are thought to provide reduced risk from infection by the Plasmodium parasite and are maintained at high frequency despite the hemopathologies that they cause. Haplotype analysis of "A-" and "Med" mutations at this locus indicates that they have evolved independently and have increased in frequency at a rate that is too rapid to be explained by random genetic drift. Statistical modeling indicates that the A- allele arose within the past 3840 to 11,760 years and the Med allele arose within the past 1600 to 6640 years. These results support the hypothesis that malaria has had a major impact on humans only since the introduction of agriculture within the past 10,000 years and provide a striking example of the signature of selection on the human genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tishkoff, S A -- Varkonyi, R -- Cahinhinan, N -- Abbes, S -- Argyropoulos, G -- Destro-Bisol, G -- Drousiotou, A -- Dangerfield, B -- Lefranc, G -- Loiselet, J -- Piro, A -- Stoneking, M -- Tagarelli, A -- Tagarelli, G -- Touma, E H -- Williams, S M -- Clark, A G -- G12-RR03032/RR/NCRR NIH HHS/ -- HL03321/HL/NHLBI NIH HHS/ -- T37-TW00043/TW/FIC NIH HHS/ -- New York, N.Y. -- Science. 2001 Jul 20;293(5529):455-62. Epub 2001 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Biology/Psychology Building, University of Maryland, College Park, MD 20742, USA. st130@umail.umd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11423617" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/epidemiology ; Agriculture ; Alleles ; Animals ; Endemic Diseases ; Evolution, Molecular ; Female ; *Genetic Variation ; Glucosephosphate Dehydrogenase/*genetics ; Glucosephosphate Dehydrogenase Deficiency/epidemiology/*genetics ; *Haplotypes ; Humans ; Immunity, Innate/genetics ; *Linkage Disequilibrium ; Malaria/enzymology/epidemiology/*genetics ; Malaria, Falciparum/enzymology/epidemiology/genetics ; Male ; Mediterranean Region/epidemiology ; Mutation ; Plasmodium falciparum/genetics ; Polymorphism, Restriction Fragment Length ; Selection, Genetic ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2001-02-07
    Description: The disulfide reducing enzymes glutathione reductase and thioredoxin reductase are highly conserved among bacteria, fungi, worms, and mammals. These proteins maintain intracellular redox homeostasis to protect the organism from oxidative damage. Here we demonstrate the absence of glutathione reductase in Drosophila melanogaster, identify a new type of thioredoxin reductase, and provide evidence that a thioredoxin system supports GSSG reduction. Our data suggest that antioxidant defense in Drosophila, and probably in related insects, differs fundamentally from that in other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kanzok, S M -- Fechner, A -- Bauer, H -- Ulschmid, J K -- Muller, H M -- Botella-Munoz, J -- Schneuwly, S -- Schirmer, R -- Becker, K -- New York, N.Y. -- Science. 2001 Jan 26;291(5504):643-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center of Biochemistry, Im Neuenheimer Feld 328, Heidelberg University, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11158675" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Drosophila melanogaster/*enzymology/genetics/metabolism ; Genes, Insect ; Glutathione/*metabolism ; Glutathione Disulfide/metabolism ; Glutathione Reductase/*metabolism ; Humans ; Kinetics ; Molecular Sequence Data ; Mutation ; NADP/metabolism ; Oxidation-Reduction ; Sequence Alignment ; Species Specificity ; Substrate Specificity ; Thioredoxin-Disulfide Reductase/antagonists & ; inhibitors/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-05-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bock, A -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):453-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Universitat, Institut fur Genetik und Mikrobiologie, Munich 19 80638, Germany. august.boeck@lrz.uni-muenchen.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11330299" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/genetics/*metabolism ; Aminobutyrates/metabolism ; Codon/genetics/metabolism ; Cysteine/metabolism ; Escherichia coli/genetics ; *Genetic Code ; Methanococcus/genetics ; Methyltyrosines/metabolism ; Mutation ; *Protein Biosynthesis ; RNA, Bacterial/genetics/metabolism ; RNA, Transfer, Amino Acid-Specific/genetics/*metabolism ; RNA, Transfer, Tyr/genetics/metabolism ; RNA, Transfer, Val/metabolism ; Suppression, Genetic ; Transformation, Bacterial ; Tyrosine-tRNA Ligase/genetics/metabolism ; Valine-tRNA Ligase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2001-08-18
    Description: Cell division depends on the separation of sister chromatids in anaphase. In yeast, sister separation is initiated by cleavage of cohesin by the protease separase. In vertebrates, most cohesin is removed from chromosome arms by a cleavage-independent mechanism. Only residual amounts of cohesin are cleaved at the onset of anaphase, coinciding with its disappearance from centromeres. We have identified two separase cleavage sites in the human cohesin subunit SCC1 and have conditionally expressed noncleavable SCC1 mutants in human cells. Our results indicate that cohesin cleavage by separase is essential for sister chromatid separation and for the completion of cytokinesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hauf, S -- Waizenegger, I C -- Peters, J M -- New York, N.Y. -- Science. 2001 Aug 17;293(5533):1320-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Dr.-Bohr Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509732" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Aneuploidy ; Aurora Kinases ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; *Cell Division ; Cell Nucleus/ultrastructure ; Centromere/metabolism ; Chromatids/metabolism ; Chromosomal Proteins, Non-Histone ; Chromosomes/*metabolism ; Cyclin B/metabolism ; DNA Replication ; Endopeptidases/*metabolism ; HeLa Cells ; Humans ; Karyotyping ; Microscopy, Fluorescence ; Microscopy, Video ; Mutation ; Nuclear Proteins ; Phosphoproteins ; Protein-Serine-Threonine Kinases/metabolism ; Saccharomyces cerevisiae Proteins ; Separase ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2001-09-22
    Description: Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder characterized by multiple clinical features that include pigmentary retinal dystrophy, polydactyly, obesity, developmental delay, and renal defects. BBS is considered an autosomal recessive disorder, and recent positional cloning efforts have identified two BBS genes (BBS2 and BBS6). We screened our cohort of 163 BBS families for mutations in both BBS2 and BBS6 and report the presence of three mutant alleles in affected individuals in four pedigrees. In addition, we detected unaffected individuals in two pedigrees who carry two BBS2 mutations but not a BBS6 mutation. We therefore propose that BBS may not be a single-gene recessive disease but a complex trait requiring three mutant alleles to manifest the phenotype. This triallelic model of disease transmission may be important in the study of both Mendelian and multifactorial disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katsanis, N -- Ansley, S J -- Badano, J L -- Eichers, E R -- Lewis, R A -- Hoskins, B E -- Scambler, P J -- Davidson, W S -- Beales, P L -- Lupski, J R -- EY12666/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2256-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, The Texas Children's Hospital, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11567139" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Bardet-Biedl Syndrome/*genetics ; Cohort Studies ; Female ; Genes, Recessive ; Haplotypes ; Humans ; Male ; Microsatellite Repeats ; *Multifactorial Inheritance ; Mutation ; Open Reading Frames ; Pedigree
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2001-12-26
    Description: Stem cells, which regenerate tissue by producing differentiating cells, also produce cells that renew the stem cell population. Signals from regulatory microenvironments (niches) are thought to cause stem cells to retain self-renewing potential. However, the molecular characterization of niches remains an important goal. In Drosophila testes, germ line and somatic stem cells attach to a cluster of support cells called the hub. The hub specifically expresses Unpaired, a ligand activating the JAK-STAT (Janus kinase-signal transducer and activator of transcription) signaling cascade. Without JAK-STAT signaling, germ line stem cells differentiate but do not self-renew. Conversely, ectopic JAK-STAT signaling greatly expands both stem cell populations. We conclude that the support cells of the hub signal to adjacent stem cells by activation of the JAK-STAT pathway, thereby defining a niche for stem cell self-renewal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tulina, N -- Matunis, E -- R01 HD040307/HD/NICHD NIH HHS/ -- R01HD40307/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2546-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Lineage ; Cell Survival ; Contractile Proteins/analysis ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila/cytology/genetics/*physiology ; Drosophila Proteins/genetics/*metabolism ; Gene Expression ; Germ Cells/cytology/*physiology ; Glycoproteins/genetics/*metabolism ; Insect Proteins/genetics/metabolism ; Janus Kinases ; Ligands ; Male ; Microscopy, Confocal ; Mutation ; Protein-Tyrosine Kinases/genetics/*metabolism ; STAT Transcription Factors ; Signal Transduction ; Spermatogenesis ; Spermatogonia/physiology ; Stem Cells/cytology/*physiology ; Testis/cytology/metabolism ; Trans-Activators/genetics/*metabolism ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2001-09-08
    Description: Bcl-2 family members bearing only the BH3 domain are essential inducers of apoptosis. We identified a BH3-only protein, Bmf, and show that its BH3 domain is required both for binding to prosurvival Bcl-2 proteins and for triggering apoptosis. In healthy cells, Bmf is sequestered to myosin V motors by association with dynein light chain 2. Certain damage signals, such as loss of cell attachment (anoikis), unleash Bmf, allowing it to translocate and bind prosurvival Bcl-2 proteins. Thus, at least two mammalian BH3-only proteins, Bmf and Bim, function to sense intracellular damage by their localization to distinct cytoskeletal structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Puthalakath, H -- Villunger, A -- O'Reilly, L A -- Beaumont, J G -- Coultas, L -- Cheney, R E -- Huang, D C -- Strasser, A -- CA 80188/CA/NCI NIH HHS/ -- R29 DC003299/DC/NIDCD NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1829-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Walter and Eliza Hall Institute of Medical Research, Melbourne, P.O. Royal Melbourne Hospital, 3050 VIC, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546872" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; *Anoikis ; Apoptosis Regulatory Proteins ; Calmodulin-Binding Proteins/*metabolism ; Carrier Proteins/*chemistry/genetics/*metabolism ; Cell Line ; Cytoskeleton/metabolism ; *Drosophila Proteins ; Dyneins ; Gene Expression Profiling ; Humans ; *Membrane Proteins ; Mice ; Molecular Motor Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Myeloid Cell Leukemia Sequence 1 Protein ; *Myosin Type V ; Neoplasm Proteins/genetics/metabolism ; Nerve Tissue Proteins/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-bcl-2/chemistry/genetics/metabolism ; RNA, Messenger/analysis/genetics ; Transfection ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2001-12-12
    Description: Nasopharyngeal carriage is the major reservoir for Streptococcus pneumoniae in the community. Although eliminating this reservoir would greatly reduce disease occurrence, no suitable intervention has been available for this purpose. We show here that seconds after contact, a purified pneumococcal bacteriophage lytic enzyme (Pal) is able to kill 15 common serotypes of pneumococci, including highly penicillin-resistant strains. In vivo, previously colonized mice revealed undetectable pneumococcal titers 5 hours after a single enzyme treatment. Pal enzyme had little or no effect on microorganisms normally found in the human oropharynx, and Pal-resistant pneumococci could not be detected after extensive exposure to the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loeffler, J M -- Nelson, D -- Fischetti, V A -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2170-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bacterial Pathogenesis, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739958" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Capsules/physiology ; Bacteriolysis ; Cell Membrane/drug effects/ultrastructure ; Cell Wall/drug effects/ultrastructure ; Colony Count, Microbial ; Drug Resistance, Bacterial ; Humans ; Mice ; Mutation ; N-Acetylmuramoyl-L-alanine Amidase/*metabolism/*pharmacology ; Nasopharynx/*microbiology ; Random Allocation ; Streptococcus/drug effects/growth & development ; Streptococcus Phages/*enzymology ; Streptococcus pneumoniae/*drug effects/growth & ; development/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2001-12-12
    Description: Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heun, P -- Laroche, T -- Shimada, K -- Furrer, P -- Gasser, S M -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2181-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Geneva, Department of Molecular Biology, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739961" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Cell Nucleus/physiology ; Centromere/physiology ; Chromatin/*physiology ; Chromosomes, Fungal/*physiology ; DNA Replication ; DNA, Fungal/biosynthesis ; G1 Phase ; Green Fluorescent Proteins ; *Interphase ; Luminescent Proteins ; Motion Pictures as Topic ; Mutation ; Nuclear Envelope/physiology ; Replication Origin ; S Phase ; Saccharomyces cerevisiae/genetics/growth & development/*physiology ; Telomere/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, M -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):759-61.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679638" target="_blank"〉PubMed〈/a〉
    Keywords: Anthrax/*drug therapy/microbiology ; Anti-Bacterial Agents/pharmacology/therapeutic use ; Anti-Infective Agents/pharmacology/*therapeutic use ; *Antigens, Bacterial ; Bacillus anthracis/*drug effects/genetics ; Bacterial Toxins/chemistry/metabolism ; *Bioterrorism ; Ciprofloxacin/pharmacology/*therapeutic use ; Drug Resistance, Bacterial ; Drug Utilization ; Humans ; Mutation ; Receptors, Cell Surface/metabolism ; Respiratory Tract Infections/*drug therapy/microbiology ; United States ; United States Food and Drug Administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2001-03-27
    Description: Protein actions are usually discussed in terms of static structures, but function requires motion. We find a strong correlation between phosphorylation-driven activation of the signaling protein NtrC and microsecond time-scale backbone dynamics. Using nuclear magnetic resonance relaxation, we characterized the motions of NtrC in three functional states: unphosphorylated (inactive), phosphorylated (active), and a partially active mutant. These dynamics are indicative of exchange between inactive and active conformations. Both states are populated in unphosphorylated NtrC, and phosphorylation shifts the equilibrium toward the active species. These results support a dynamic population shift between two preexisting conformations as the underlying mechanism of activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Volkman, B F -- Lipson, D -- Wemmer, D E -- Kern, D -- GM62117/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2429-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Magnetic Resonance Facility at Madison (NMRFAM), Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264542" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Binding Sites ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Time ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2001-03-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nadeau, J H -- Balling, R -- Barsh, G -- Beier, D -- Brown, S D -- Bucan, M -- Camper, S -- Carlson, G -- Copeland, N -- Eppig, J -- Fletcher, C -- Frankel, W N -- Ganten, D -- Goldowitz, D -- Goodnow, C -- Guenet, J L -- Hicks, G -- Hrabe de Angelis, M -- Jackson, I -- Jacob, H J -- Jenkins, N -- Johnson, D -- Justice, M -- Kay, S -- Kingsley, D -- Lehrach, H -- Magnuson, T -- Meisler, M -- Poustka, A -- Rinchik, E M -- Rossant, J -- Russell, L B -- Schimenti, J -- Shiroishi, T -- Skarnes, W C -- Soriano, P -- Stanford, W -- Takahashi, J S -- Wurst, W -- Zimmer, A -- International Mouse Mutagenesis Consortium -- New York, N.Y. -- Science. 2001 Feb 16;291(5507):1251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, BRB 624, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA. jhn4@po.cwru.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11233449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; *Computational Biology ; Costs and Cost Analysis ; Genes/physiology ; Genetic Techniques ; *Genome ; *Genomics ; International Cooperation ; Mice/*genetics ; Mutagenesis ; Mutation ; Phenotype ; Private Sector ; Public Sector ; Research Support as Topic ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2001-07-14
    Description: Long-distance movement of RNA through the phloem is known to occur, but the functional importance of these transported RNAs has remained unclear. Grafting experiments with a naturally occurring dominant gain-of-function leaf mutation in tomato were used to demonstrate long-distance movement of mutant messenger RNA (mRNA) into wild-type scions. The stock-specific pattern of mRNA expression was graft transmissible, indicating that the mRNA accumulation pattern is inherent to the transcript and not attributable to the promoter. The translocated mRNA caused changes in leaf morphology of the wild-type scions, suggesting that the translocated RNA is functional.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, M -- Canio, W -- Kessler, S -- Sinha, N -- New York, N.Y. -- Science. 2001 Jul 13;293(5528):287-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Plant Biology, Division of Biological Sciences, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11452121" target="_blank"〉PubMed〈/a〉
    Keywords: Artificial Gene Fusion ; Genes, Homeobox ; Genes, Plant ; Homeodomain Proteins/genetics ; Lutein/genetics ; Lycopersicon esculentum/genetics/growth & development/*metabolism ; Mutation ; Phosphotransferases/genetics ; Plant Leaves/growth & development/*metabolism ; Plant Proteins/genetics ; RNA, Messenger/*metabolism ; RNA, Plant/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: In Drosophila melanogaster, the antennae, legs, genitalia, and analia make up a serially homologous set of ventral appendages that depend on different selector genes for their unique identities. The diversity among these structures implies that there is a common ground state that selector genes modify to generate these different appendage morphologies. Here we show that the ventral appendage that forms in the absence of selector gene activity is leglike but consists of only two segments along its proximo-distal axis: a proximal segment and a distal tarsus. These results raise the possibility that, during evolution, leglike appendages could have developed without selector gene activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Casares, F -- Mann, R S -- R01 GM058575/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1477-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168 Street, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antennapedia Homeodomain Protein ; Biological Evolution ; Calcium-Binding Proteins ; *Drosophila Proteins ; Drosophila melanogaster/anatomy & histology/*genetics/*growth & development ; Epistasis, Genetic ; Extremities/growth & development ; *Gene Expression Regulation, Developmental ; *Genes, Homeobox ; Genes, Insect ; Glycosyltransferases/genetics/metabolism ; Homeodomain Proteins/*genetics/physiology ; Insect Proteins/genetics ; Intercellular Signaling Peptides and Proteins ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/genetics/metabolism ; Mutation ; *N-Acetylglucosaminyltransferases ; *Nuclear Proteins ; Phenotype ; Receptors, Notch ; Sense Organs/growth & development ; Signal Transduction ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2001-03-07
    Description: Loss of telomere function in metazoans results in catastrophic damage to the genome, cell cycle arrest, and apoptosis. Here we show that the mustard weed Arabidopsis thaliana can survive up to 10 generations without telomerase. The last five generations of telomerase-deficient plants endured increasing levels of cytogenetic damage, which was correlated with developmental anomalies in both vegetative and reproductive organs. Mutants ultimately arrested at a terminal vegetative state harboring shoot meristems that were grossly enlarged, disorganized, and in some cases, dedifferentiated into a callusoid mass. Unexpectedly, late-generation mutants had an extended life-span and remained metabolically active. The differences in plant and animal responses to dysfunctional telomeres may reflect the more plastic nature of plant development and genome organization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riha, K -- McKnight, T D -- Griffing, L R -- Shippen, D E -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1797-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, 2128 TAMU, Texas A&M University, College Station, TX 77843-2128, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230697" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Apoptosis ; Arabidopsis/anatomy & histology/genetics/growth & development/*physiology ; Cell Differentiation ; Cell Division ; *Genome, Plant ; Meristem/anatomy & histology/cytology/growth & development ; Mitotic Index ; Mutation ; Phenotype ; Plant Leaves/anatomy & histology/cytology/growth & development ; Plant Structures/anatomy & histology/cytology/growth & development ; Telomerase/genetics/*metabolism ; Telomere/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-06-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferber, D -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):1983-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408629" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Alzheimer Disease/metabolism/pathology ; Animals ; Animals, Genetically Modified ; Brain/metabolism/pathology ; *Dementia/metabolism/pathology ; *Disease Models, Animal ; *Drosophila/genetics ; Humans ; Mutation ; Nerve Degeneration ; *Neurodegenerative Diseases/metabolism/pathology ; Neurofibrillary Tangles/ultrastructure ; Neurons/metabolism/*ultrastructure ; tau Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2001-03-27
    Description: Length determination in biology generally uses molecular rulers. The hook, a part of the flagellum of motile bacteria, has an invariant length. Here, we examined hook length and found that it was determined not by molecular rulers but probably by the amount of subunit protein secreted by the flagellar export apparatus. The export apparatus shares common features with the type III virulence-factor secretion machinery and thus may be used more widely in length determination of structures other than flagella.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makishima, S -- Komoriya, K -- Yamaguchi, S -- Aizawa, S I -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2411-3. Epub 2001 Feb 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya 320-8551, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Binding Sites ; Flagella/metabolism/physiology/*ultrastructure ; Flagellin/*metabolism ; Genes, Bacterial ; Microscopy, Electron ; Movement ; Mutation ; Protein Transport ; Salmonella typhimurium/genetics/metabolism/physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2001-10-27
    Description: ErbB-4 is a transmembrane receptor tyrosine kinase that regulates cell proliferation and differentiation. After binding of its ligand heregulin (HRG) or activation of protein kinase C (PKC) by 12-O-tetradecanoylphorbol-13-acetate (TPA), the ErbB-4 ectodomain is cleaved by a metalloprotease. We now report a subsequent cleavage by gamma-secretase that releases the ErbB-4 intracellular domain from the membrane and facilitates its translocation to the nucleus. gamma-Secretase cleavage was prevented by chemical inhibitors or a dominant negative presenilin. Inhibition of gamma-secretase also prevented growth inhibition by HRG. gamma-Secretase cleavage of ErbB-4 may represent another mechanism for receptor tyrosine kinase-mediated signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ni, C Y -- Murphy, M P -- Golde, T E -- Carpenter, G -- CA24071/CA/NCI NIH HHS/ -- CA68485/CA/NCI NIH HHS/ -- DK20593/DK/NIDDK NIH HHS/ -- NS39072/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2179-81. Epub 2001 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679632" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Animals ; Aspartic Acid Endopeptidases ; COS Cells ; Carbamates/pharmacology ; Cell Division/drug effects ; Cell Line ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; Dipeptides/pharmacology ; Endopeptidases/*metabolism ; Fatty Acids, Unsaturated/pharmacology ; Humans ; Membrane Proteins/genetics/metabolism ; Metalloendopeptidases/metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neuregulin-1/pharmacology ; Presenilin-1 ; Protease Inhibitors/pharmacology ; Protein Structure, Tertiary ; Receptor, Epidermal Growth Factor/chemistry/*metabolism ; Receptor, ErbB-4 ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Tetradecanoylphorbol Acetate/pharmacology ; Transcriptional Activation ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adler, M J -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):53-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11589230" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Gene Expression Regulation ; Humans ; Mutation ; Phenotype ; RNA, Messenger/*genetics/metabolism ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-04
    Description: What do the regulation of translation initiation and glucose metabolism have to do with each other? Quite a lot, it seems, according to Sonenberg and Newgard in their Perspective. They discuss new findings that identify the kinase responsible for inactivating eIF2--a factor that is required for translation initiation (and hence protein synthesis)--when the endoplasmic reticulum is under stress. Loss of this kinase results in destruction of insulin-producing b cells in the pancreas and dysregulation of glucose homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonenberg, N -- Newgard, C B -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):818-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Endoplasmic Reticulum/*metabolism ; Eukaryotic Initiation Factor-2/*metabolism ; Gluconeogenesis ; Glucose/*metabolism ; Homeostasis ; Hyperglycemia/etiology ; Hypoglycemia/etiology ; Islets of Langerhans/enzymology/metabolism ; Liver/metabolism ; Mice ; Mutation ; Phosphorylation ; *Protein Biosynthesis ; Protein Folding ; eIF-2 Kinase/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2001-08-04
    Description: An early event in RNA interference (RNAi) is the cleavage of the initiating double-stranded RNA (dsRNA) to short pieces, 21 to 23 nucleotides in length. Here we describe a null mutation in dicer-1 (dcr-1), a gene proposed to encode the enzyme that generates these short RNAs. We find that dcr-1(-/-) animals have defects in RNAi under some, but not all, conditions. Mutant animals have germ line defects that lead to sterility, suggesting that cleavage of dsRNA to short pieces is a requisite event in normal development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855227/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855227/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knight, S W -- Bass, B L -- R01 GM044073/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Sep 21;293(5538):2269-71. Epub 2001 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, 50 North Medical Drive, Room 211, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486053" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Caenorhabditis elegans/cytology/*enzymology/*genetics/growth & development ; Cell Differentiation ; Disorders of Sex Development ; Endoribonucleases/genetics/*metabolism ; Female ; *Gene Silencing ; Genes, Helminth ; Germ Cells/*cytology/metabolism ; Male ; Mutation ; Oocytes/cytology ; Phenotype ; RNA, Double-Stranded/*genetics/*metabolism ; RNA, Helminth/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease III ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-10-13
    Description: When individuals of two species interact, they can adjust their phenotypes in response to their respective partner, be they antagonists or mutualists. The reciprocal phenotypic change between individuals of interacting species can reflect an evolutionary response to spatial and temporal variation in species interactions and ecologically result in the structuring of food chains. The evolution of adaptive phenotypic plasticity has led to the success of organisms in novel habitats, and potentially contributes to genetic differentiation and speciation. Taken together, phenotypic responses in species interactions represent modifications that can lead to reciprocal change in ecological time, altered community patterns, and expanded evolutionary potential of species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agrawal, A A -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):321-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada. agrawal@botany.utoronto.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11598291" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; *Ecosystem ; Environment ; Food Chain ; Genetic Variation ; Genotype ; Mutation ; *Phenotype ; Plant Physiological Phenomena ; Predatory Behavior ; Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2001-09-05
    Description: Cardiac valve formation is a complex process that involves cell signaling events between the myocardial and endocardial layers of the heart across an elaborate extracellular matrix. These signals lead to marked morphogenetic movements and transdifferentiation of the endocardial cells at chamber boundaries. Here we identify the genetic defect in zebrafish jekyll mutants, which are deficient in the initiation of heart valve formation. The jekyll mutation disrupts a homolog of Drosophila Sugarless, a uridine 5'-diphosphate (UDP)-glucose dehydrogenase required for heparan sulfate, chondroitin sulfate, and hyaluronic acid production. The atrioventricular border cells do not differentiate from their neighbors in jekyll mutants, suggesting that Jekyll is required in a cell signaling event that establishes a boundary between the atrium and ventricle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, E C -- Stainier, D Y -- HL54737/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 31;293(5535):1670-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11533493" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antisense Elements (Genetics) ; Body Patterning ; Bone Morphogenetic Proteins/genetics ; Endocardium/embryology/metabolism ; Female ; Gene Expression ; Glycosaminoglycans/metabolism ; Heart/*embryology ; Heart Valves/cytology/*embryology/enzymology/metabolism ; Male ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Myocardium/cytology/metabolism ; Phenotype ; Physical Chromosome Mapping ; Signal Transduction ; Uridine Diphosphate Glucose Dehydrogenase/*genetics/*metabolism ; Zebrafish/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wand, A J -- New York, N.Y. -- Science. 2001 Aug 24;293(5534):1395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA. wand@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520951" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; *Bacterial Proteins ; Calcium/metabolism ; Calmodulin/chemistry/metabolism ; DNA-Binding Proteins/*chemistry/genetics/*metabolism ; Motion ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; PII Nitrogen Regulatory Proteins ; Phosphorylation ; Protein Conformation ; Thermodynamics ; *Trans-Activators ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2001-08-04
    Description: One of the most dominant influences in the patterning of multicellular embryos is exerted by the Hedgehog (Hh) family of secreted signaling proteins. Here, we identify a segment polarity gene in Drosophila melanogaster, skinny hedgehog (ski), and show that its product is required in Hh-expressing cells for production of appropriate signaling activity in embryos and in the imaginal precursors of adult tissues. The ski gene encodes an apparent acyltransferase, and we provide genetic and biochemical evidence that Hh proteins from ski mutant cells retain carboxyl-terminal cholesterol modification but lack amino-terminal palmitate modification. Our results suggest that ski encodes an enzyme that acts within the secretory pathway to catalyze amino-terminal palmitoylation of Hh, and further demonstrate that this lipid modification is required for the embryonic and larval patterning activities of the Hh signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamoun, Z -- Mann, R K -- Nellen, D -- von Kessler, D P -- Bellotto, M -- Beachy, P A -- Basler, K -- New York, N.Y. -- Science. 2001 Sep 14;293(5537):2080-4. Epub 2001 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie and Zoologisches Institut, Universitat Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486055" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Acyltransferases/chemistry/*genetics/*metabolism ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Body Patterning ; Cholesterol/metabolism ; *Drosophila Proteins ; Drosophila melanogaster/embryology/*genetics/growth & development/metabolism ; Gene Expression ; Genes, Insect ; Hedgehog Proteins ; Insect Proteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Palmitic Acid/*metabolism ; Protein Structure, Tertiary ; *Signal Transduction ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2001-06-02
    Description: Acetylation of core histone tails plays a fundamental role in transcription regulation. In addition to acetylation, other posttranslational modifications, such as phosphorylation and methylation, occur in core histone tails. Here, we report the purification, molecular identification, and functional characterization of a histone H4-specific methyltransferase PRMT1, a protein arginine methyltransferase. PRMT1 specifically methylates arginine 3 (Arg 3) of H4 in vitro and in vivo. Methylation of Arg 3 by PRMT1 facilitates subsequent acetylation of H4 tails by p300. However, acetylation of H4 inhibits its methylation by PRMT1. Most important, a mutation in the S-adenosyl-l-methionine-binding site of PRMT1 substantially crippled its nuclear receptor coactivator activity. Our finding reveals Arg 3 of H4 as a novel methylation site by PRMT1 and indicates that Arg 3 methylation plays an important role in transcriptional regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Huang, Z Q -- Xia, L -- Feng, Q -- Erdjument-Bromage, H -- Strahl, B D -- Briggs, S D -- Allis, C D -- Wong, J -- Tempst, P -- Zhang, Y -- GM63067-01/GM/NIGMS NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):853-7. Epub 2001 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11387442" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Animals ; Arginine/*metabolism ; Binding Sites ; Cell Nucleus/metabolism ; HeLa Cells ; Histones/chemistry/*metabolism ; Humans ; Hydroxamic Acids/pharmacology ; Intracellular Signaling Peptides and Proteins ; Lysine/metabolism ; Methylation ; Methyltransferases/chemistry/genetics/isolation & purification/*metabolism ; Molecular Sequence Data ; Mutation ; Oocytes ; Protein-Arginine N-Methyltransferases ; Receptors, Androgen/*metabolism ; Recombinant Proteins/metabolism ; S-Adenosylmethionine/metabolism ; *Transcriptional Activation ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, D -- New York, N.Y. -- Science. 2001 Dec 14;294(5550):2281-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11743182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Breast Neoplasms/genetics ; Cichlids/genetics/physiology ; DNA Replication/genetics ; Female ; Genes, BRCA1 ; Genetic Predisposition to Disease ; *Genomics ; Humans ; Mutation ; Polymorphism, Genetic ; Rod Opsins/genetics ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2001-08-18
    Description: Arabidopsis seedling photomorphogenesis involves two antagonistically acting components, COP1 and HY5. COP1 specifically targets HY5 for degradation via the 26S proteasome in the dark through their direct physical interaction. Little is known regarding how light signals perceived by photoreceptors are transduced to regulate COP1. Arabidopsis has two related cryptochromes (cry1 and cry2) mediating various blue/ultraviolet-A light responses. Here we show that both photoactivated cryptochromes repress COP1 activity through a direct protein-protein contact and that this direct regulation is primarily responsible for the cryptochrome-mediated blue light regulation of seedling photomorphogenic development and genome expression profile.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, H -- Ma, L G -- Li, J M -- Zhao, H Y -- Deng, X W -- GM-47850/GM/NIGMS NIH HHS/ -- GM59507/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Oct 5;294(5540):154-8. Epub 2001 Aug 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11509693" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*growth & development/*metabolism ; *Arabidopsis Proteins ; Basic-Leucine Zipper Transcription Factors ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Nucleus/metabolism ; Crosses, Genetic ; Cryptochromes ; Darkness ; *Drosophila Proteins ; Expressed Sequence Tags ; *Eye Proteins ; Flavoproteins/genetics/*metabolism ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; *Light ; Morphogenesis ; Mutation ; Nuclear Proteins/metabolism ; Oxidation-Reduction ; Phenotype ; *Photoreceptor Cells, Invertebrate ; Plant Proteins/chemistry/genetics/*metabolism ; Plants, Genetically Modified ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; *Ubiquitin-Protein Ligases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2001-04-21
    Description: A unique transfer RNA (tRNA)/aminoacyl-tRNA synthetase pair has been generated that expands the number of genetically encoded amino acids in Escherichia coli. When introduced into E. coli, this pair leads to the in vivo incorporation of the synthetic amino acid O-methyl-l-tyrosine into protein in response to an amber nonsense codon. The fidelity of translation is greater than 99%, as determined by analysis of dihydrofolate reductase containing the unnatural amino acid. This approach should provide a general method for increasing the genetic repertoire of living cells to include a variety of amino acids with novel structural, chemical, and physical properties not found in the common 20 amino acids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, L -- Brock, A -- Herberich, B -- Schultz, P G -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):498-500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313494" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Codon/genetics/metabolism ; Codon, Terminator ; Escherichia coli/*genetics/growth & development/metabolism ; *Genetic Code ; Mass Spectrometry ; Methanococcus/enzymology/genetics ; Methyltyrosines/*metabolism ; Mutation ; *Protein Biosynthesis ; RNA, Bacterial/genetics/metabolism ; RNA, Transfer/genetics/*metabolism ; RNA, Transfer, Tyr/genetics/*metabolism ; Suppression, Genetic ; Transfer RNA Aminoacylation ; Transformation, Bacterial ; Tyrosine-tRNA Ligase/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alper, J -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2340.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11269310" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Brain/*enzymology/metabolism ; Humans ; Mammals/genetics ; Mixed Function Oxygenases/*genetics/*metabolism ; Mutation ; N-Acetylneuraminic Acid/metabolism ; Neuraminic Acids/*metabolism ; Pan troglodytes/*genetics/metabolism ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2001-02-07
    Description: Human beings contain complex societies of indigenous microbes, yet little is known about how resident bacteria shape our physiology. We colonized germ-free mice with Bacteroides thetaiotaomicron, a prominent component of the normal mouse and human intestinal microflora. Global intestinal transcriptional responses to colonization were observed with DNA microarrays, and the cellular origins of selected responses were established by laser-capture microdissection. The results reveal that this commensal bacterium modulates expression of genes involved in several important intestinal functions, including nutrient absorption, mucosal barrier fortification, xenobiotic metabolism, angiogenesis, and postnatal intestinal maturation. These findings provide perspectives about the essential nature of the interactions between resident microorganisms and their hosts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hooper, L V -- Wong, M H -- Thelin, A -- Hansson, L -- Falk, P G -- Gordon, J I -- DK30292/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 2;291(5505):881-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11157169" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroides/genetics/growth & development/*physiology ; Bifidobacterium/growth & development/physiology ; Colony Count, Microbial ; Cornified Envelope Proline-Rich Proteins ; Escherichia coli/growth & development/physiology ; Gastrointestinal Motility/genetics ; Gene Expression Profiling ; *Gene Expression Regulation ; Germ-Free Life ; Humans ; Ileum/cytology/immunology/*metabolism/*microbiology ; Intestinal Absorption/genetics ; Intestinal Mucosa/cytology/immunology/*metabolism/*microbiology ; Male ; Matched-Pair Analysis ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, Inbred Strains ; Mutation ; Neovascularization, Physiologic/genetics ; Oligonucleotide Array Sequence Analysis ; Protein Precursors/genetics/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Xenobiotics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2001-06-16
    Description: The phytohormone abscisic acid (ABA) promotes plant water conservation by decreasing the apertures of stomatal pores in the epidermis through which water loss occurs. We found that Arabidopsis thaliana plants harboring transferred DNA insertional mutations in the sole prototypical heterotrimeric GTP-binding (G) protein alpha subunit gene, GPA1, lack both ABA inhibition of guard cell inward K(+) channels and pH-independent ABA activation of anion channels. Stomatal opening in gpa1 plants is insensitive to inhibition by ABA, and the rate of water loss from gpa1 mutants is greater than that from wild-type plants. Manipulation of G protein status in guard cells may provide a mechanism for controlling plant water balance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, X Q -- Ullah, H -- Jones, A M -- Assmann, S M -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2070-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802-5301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408655" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/metabolism/*pharmacology ; Arabidopsis/cytology/genetics/*metabolism ; *Arabidopsis Proteins ; *GTP-Binding Protein alpha Subunits ; Genes, Plant ; Heterotrimeric GTP-Binding Proteins/genetics/*metabolism ; Hydrogen-Ion Concentration ; Ion Channels/*metabolism ; Mutagenesis, Insertional ; Mutation ; Patch-Clamp Techniques ; Plant Epidermis/cytology/metabolism ; Plant Leaves/cytology/metabolism ; Potassium/metabolism ; Potassium Channels/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Protein Subunits ; *Signal Transduction ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2001-04-09
    Description: The Drosophila melanogaster gene chico encodes an insulin receptor substrate that functions in an insulin/insulin-like growth factor (IGF) signaling pathway. In the nematode Caenorhabditis elegans, insulin/IGF signaling regulates adult longevity. We found that mutation of chico extends fruit fly median life-span by up to 48% in homozygotes and 36% in heterozygotes. Extension of life-span was not a result of impaired oogenesis in chico females, nor was it consistently correlated with increased stress resistance. The dwarf phenotype of chico homozygotes was also unnecessary for extension of life-span. The role of insulin/IGF signaling in regulating animal aging is therefore evolutionarily conserved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clancy, D J -- Gems, D -- Harshman, L G -- Oldham, S -- Stocker, H -- Hafen, E -- Leevers, S J -- Partridge, L -- New York, N.Y. -- Science. 2001 Apr 6;292(5514):104-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11292874" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*physiology ; Alleles ; Animals ; Body Constitution ; Carrier Proteins/genetics/metabolism ; Crosses, Genetic ; *Drosophila Proteins ; Drosophila melanogaster/genetics/*physiology ; Female ; Fertility ; Genes, Insect ; Heterozygote ; Hot Temperature ; Insect Proteins/*genetics/*metabolism ; Insulin/metabolism ; Insulin Receptor Substrate Proteins ; *Intracellular Signaling Peptides and Proteins ; Longevity/*physiology ; Male ; Mutation ; Oxidative Stress ; Protein-Tyrosine Kinases/genetics/metabolism ; *Receptor Protein-Tyrosine Kinases ; Receptor, Insulin/*metabolism ; Reproduction ; Signal Transduction ; Somatomedins/metabolism ; Starvation ; Superoxide Dismutase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-08-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, E -- New York, N.Y. -- Science. 2001 Aug 3;293(5531):778.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11486062" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism/*toxicity ; *Bacterial Toxins ; Cadherins/genetics/metabolism ; Caenorhabditis elegans/*genetics/metabolism ; *Caenorhabditis elegans Proteins ; Crops, Agricultural/*genetics ; Digestive System/metabolism ; Endotoxins/genetics/metabolism/*toxicity ; Galactosyltransferases/genetics/metabolism ; Genes, Helminth ; Genes, Insect ; Gossypium/genetics ; Hemolysin Proteins ; Insecticide Resistance/genetics ; Moths/*genetics/metabolism ; Mutation ; *Pest Control, Biological ; Plants, Genetically Modified ; Retroelements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2001-05-08
    Description: We demonstrate an integrated approach to build, test, and refine a model of a cellular pathway, in which perturbations to critical pathway components are analyzed using DNA microarrays, quantitative proteomics, and databases of known physical interactions. Using this approach, we identify 997 messenger RNAs responding to 20 systematic perturbations of the yeast galactose-utilization pathway, provide evidence that approximately 15 of 289 detected proteins are regulated posttranscriptionally, and identify explicit physical interactions governing the cellular response to each perturbation. We refine the model through further iterations of perturbation and global measurements, suggesting hypotheses about the regulation of galactose utilization and physical interactions between this and a variety of other metabolic pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ideker, T -- Thorsson, V -- Ranish, J A -- Christmas, R -- Buhler, J -- Eng, J K -- Bumgarner, R -- Goodlett, D R -- Aebersold, R -- Hood, L -- New York, N.Y. -- Science. 2001 May 4;292(5518):929-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Institute for Systems Biology, 4225 Roosevelt Way NE, Suite 200, Seattle, WA 98105, USA. tideker@systemsbiology.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11340206" target="_blank"〉PubMed〈/a〉
    Keywords: Computational Biology ; Culture Media ; Databases, Factual ; Fungal Proteins/metabolism ; Galactose/*metabolism ; Galactosephosphates/metabolism ; *Gene Expression Profiling ; Gene Expression Regulation, Fungal ; *Genome, Fungal ; Models, Biological ; Models, Genetic ; Monosaccharide Transport Proteins/metabolism ; Mutation ; Oligonucleotide Array Sequence Analysis ; *Proteome ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Saccharomyces cerevisiae/genetics/*metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garelik, Glenn -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1702-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459565" target="_blank"〉PubMed〈/a〉
    Keywords: Cloning, Molecular ; DNA/genetics ; Developed Countries ; Developing Countries ; Drug Resistance, Microbial ; Fungicides, Industrial ; Genes ; Genes, Plant ; Genetic Engineering ; Genome ; Mutation ; *Phytophthora/genetics/pathogenicity/physiology ; *Plant Diseases ; Sequence Analysis, DNA ; Solanum tuberosum/genetics/*microbiology ; Spores/physiology ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-03
    Description: The gastric pathogen Helicobacter pylori is known to be able to use molecular hydrogen as a respiratory substrate when grown in the laboratory. We found that hydrogen is available in the gastric mucosa of mice and that its use greatly increased the stomach colonization by H. pylori. Hydrogenase activity in H. pylori is constitutive but increased fivefold upon incubation with hydrogen. Hydrogen concentrations measured in the stomachs of live mice were found to be 10 to 50 times as high as the H. pylori affinity for hydrogen. A hydrogenase mutant strain is much less efficient in its colonization of mice. Therefore, hydrogen present in animals as a consequence of normal colonic flora is an energy-yielding substrate that can facilitate the maintenance of a pathogenic bacterium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olson, Jonathan W -- Maier, Robert J -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1788-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12459589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catechol 2,3-Dioxygenase ; Colon/metabolism/microbiology ; *Dioxygenases ; Energy Metabolism ; Fermentation ; Gastric Mucosa/*metabolism/*microbiology ; Gene Expression Regulation, Bacterial ; Genes, Reporter ; Helicobacter pylori/growth & development/*metabolism ; Hydrogen/*metabolism ; Hydrogenase/genetics/*metabolism ; Kinetics ; Mice ; Mutation ; Oxidation-Reduction ; Oxygenases/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2001-02-13
    Description: We cloned and characterized a protein kinase and ion channel, TRP-PLIK. As part of the long transient receptor potential channel subfamily implicated in control of cell division, it is a protein that is both an ion channel and a protein kinase. TRP-PLIK phosphorylated itself, displayed a wide tissue distribution, and, when expressed in CHO-K1 cells, constituted a nonselective, calcium-permeant, 105-picosiemen, steeply outwardly rectifying conductance. The zinc finger containing alpha-kinase domain was functional. Inactivation of the kinase activity by site-directed mutagenesis and the channel's dependence on intracellular adenosine triphosphate (ATP) demonstrated that the channel's kinase activity is essential for channel function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Runnels, L W -- Yue, L -- Clapham, D E -- New York, N.Y. -- Science. 2001 Feb 9;291(5506):1043-7. Epub 2001 Jan 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Cardiology, Department of Neurobiology, Harvard Medical School, 1309 Enders Building, 320 Longwood Avenue, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11161216" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; CHO Cells ; Calcium/metabolism ; Catalytic Domain ; Cations/metabolism ; Cell Line ; Cricetinae ; DNA, Complementary ; Electric Conductivity ; Humans ; Ion Channels/chemistry/*genetics/*metabolism ; *Membrane Proteins ; Mice ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Patch-Clamp Techniques ; Phosphorylation ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein-Serine-Threonine Kinases ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; TRPM Cation Channels ; Transfection ; Two-Hybrid System Techniques ; Type C Phospholipases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chicurel, M -- New York, N.Y. -- Science. 2001 Jan 12;291(5502):226-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11253206" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/*genetics ; Casein Kinases ; Chromosomes, Human, Pair 2/genetics ; Circadian Rhythm/*genetics ; Humans ; Mutation ; Nuclear Proteins ; Period Circadian Proteins ; Phosphorylation ; Protein Kinases/metabolism ; Proteins/*genetics/metabolism ; Sleep Disorders, Circadian Rhythm/*genetics/metabolism ; Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-03-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Archer, G L -- Bosilevac, J M -- New York, N.Y. -- Science. 2001 Mar 9;291(5510):1915-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Medical College of Virginia/Commonwealth University, Richmond, VA 23298, USA. garcher@hsc.vcu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11245199" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/metabolism/pharmacology ; Bacterial Proteins/genetics ; Carrier Proteins/biosynthesis/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; *Hexosyltransferases ; Muramoylpentapeptide Carboxypeptidase/biosynthesis/genetics ; Mutation ; Penicillin-Binding Proteins ; *Peptidyl Transferases ; Repressor Proteins/chemistry/metabolism ; *Signal Transduction ; Staphylococcus/*drug effects/genetics/*metabolism ; *beta-Lactam Resistance/genetics ; beta-Lactamases/biosynthesis/*genetics ; beta-Lactams
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-04-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, D -- New York, N.Y. -- Science. 2001 Apr 6;292(5514):44-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11294209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Blood Cells/metabolism ; Bone and Bones/chemistry ; Cerebral Cortex/*metabolism ; Fossils ; *Gene Expression ; Gene Expression Profiling ; Genomics ; Humans ; Lectins/chemistry/metabolism ; Liver/metabolism ; Macaca mulatta/*genetics/metabolism ; Mixed Function Oxygenases/genetics/metabolism ; Mutation ; N-Acetylneuraminic Acid/metabolism ; Neuraminic Acids/metabolism ; Pan troglodytes/*genetics/metabolism ; Sialic Acids/metabolism ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2001-04-21
    Description: As growing retinotectal axons navigate from the eye to the tectum, they sense guidance molecules distributed along the optic pathway. Mutations in the zebrafish astray gene severely disrupt retinal axon guidance, causing anterior-posterior pathfinding defects, excessive midline crossing, and defasciculation of the retinal projection. Eye transplantation experiments show that astray function is required in the eye. We identify astray as zebrafish robo2, a member of the Roundabout family of axon guidance receptors. Retinal ganglion cells express robo2 as they extend axons. Thus, robo2 is required for multiple axon guidance decisions during establishment of the vertebrate visual projection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fricke, C -- Lee, J S -- Geiger-Rudolph, S -- Bonhoeffer, F -- Chien, C B -- R01-EY12873/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2001 Apr 20;292(5516):507-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology and Anatomy, University of Utah Medical Center, 50 North Medical Drive, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11313496" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Axons/*physiology ; Body Patterning ; Chromosome Mapping ; Crosses, Genetic ; Eye/embryology/transplantation ; Female ; Gene Expression Regulation, Developmental ; Genes ; In Situ Hybridization ; Male ; Mutation ; Nerve Tissue Proteins/*genetics/physiology ; Phenotype ; Receptors, Immunologic/*genetics/*physiology ; Retina/embryology/metabolism ; Retinal Ganglion Cells/metabolism/*physiology ; Superior Colliculi/cytology/*embryology ; Visual Pathways/embryology ; Zebrafish/embryology/genetics ; Zebrafish Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2002-09-14
    Description: Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Haijuan -- Jeffrey, Philip D -- Miller, Julie -- Kinnucan, Elspeth -- Sun, Yutong -- Thoma, Nicolas H -- Zheng, Ning -- Chen, Phang-Lang -- Lee, Wen-Hwa -- Pavletich, Nikola P -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1837-48.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Sloan-Kettering Division, Joan and Sanford I. Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228710" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; BRCA2 Protein/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; DNA/metabolism ; *DNA Repair ; DNA, Single-Stranded/*metabolism ; DNA-Binding Proteins/metabolism ; Genes, BRCA2 ; Helix-Turn-Helix Motifs ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Mutation ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/chemistry/*metabolism ; Rad51 Recombinase ; Rats ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2002-01-05
    Description: The isoprenylated benzoquinone coenzyme Q is a redox-active lipid essential for electron transport in aerobic respiration. Here, we show that withdrawal of coenzyme Q (Q) from the diet of wild-type nematodes extends adult life-span by approximately 60%. The longevity of clk-1, daf-2, daf-12, and daf-16 mutants is also extended by a Q-less diet. These results establish the importance of Q in life-span determination. The findings suggest that Q and the daf-2 pathway intersect at the mitochondria and imply that a concerted production coupled with enhanced scavenging of reactive oxygen species contributes to the substantial life-span extension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larsen, Pamela L -- Clarke, Catherine F -- New York, N.Y. -- Science. 2002 Jan 4;295(5552):120-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, 607 Charles E. Young Drive East, Box 951569, University of California, Los Angeles, CA 90095, USA. larsen@chem.ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778046" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Caenorhabditis elegans/genetics/growth & development/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/metabolism ; Diet ; Escherichia coli/genetics/metabolism ; Fermentation ; Forkhead Transcription Factors ; Genes, Helminth ; Helminth Proteins/genetics/metabolism ; Larva/growth & development/metabolism ; *Longevity ; Mitochondria/metabolism ; Models, Biological ; Mutation ; Oxidation-Reduction ; Oxygen Consumption ; Phenotype ; Reactive Oxygen Species/metabolism ; Receptor, Insulin/genetics/metabolism ; Receptors, Cytoplasmic and Nuclear/genetics/metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism ; Ubiquinone/administration & dosage/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2002-05-11
    Description: Aneuploidy (trisomy or monosomy) is the leading genetic cause of pregnancy loss in humans and results from errors in meiotic chromosome segregation. Here, we show that the absence of synaptonemal complex protein 3 (SCP3) promotes aneuploidy in murine oocytes by inducing defective meiotic chromosome segregation. The abnormal oocyte karyotype is inherited by embryos, which die in utero at an early stage of development. In addition, embryo death in SCP3-deficient females increases with advancing maternal age. We found that SCP3 is required for chiasmata formation and for the structural integrity of meiotic chromosomes, suggesting that altered chromosomal structure triggers nondisjunction. SCP3 is thus linked to inherited aneuploidy in female germ cells and provides a model system for studying age-dependent degeneration in oocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Li -- Liu, Jian-Guo -- Hoja, Mary-Rose -- Wilbertz, Johannes -- Nordqvist, Katarina -- Hoog, Christer -- New York, N.Y. -- Science. 2002 May 10;296(5570):1115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomics and Bioinformatics and Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004129" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Animals ; Chromosome Segregation ; Chromosomes/*physiology/ultrastructure ; Crossing Over, Genetic ; *Embryo Loss ; Female ; Karyotyping ; Litter Size ; Male ; Maternal Age ; *Meiosis ; Mice ; Mice, Inbred C57BL ; Mutation ; Nondisjunction, Genetic ; Nuclear Proteins/genetics/*physiology ; Oocytes/*physiology ; Pregnancy ; Recombination, Genetic ; Synaptonemal Complex/physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2002-11-26
    Description: The untranslated roX1 and roX2 RNAs are components of the Drosophila male-specific lethal (MSL) complex, which modifies histones to up-regulate transcription of the male X chromosome. roX genes are normally located on the X chromosome, and roX transgenes can misdirect the dosage compensation machinery to spread locally on other chromosomes. Here we define MSL protein abundance as a determinant of whether the MSL complex will spread in cis from an autosomal roX transgene. The number of expressed roX genes in a nucleus was inversely correlated with spreading from roX transgenes. We suggest a model in which MSL proteins assemble into active complexes by binding nascent roX transcripts. When MSL protein/roX RNA ratios are high, assembly will be efficient, and complexes may be completed while still tethered to the DNA template. We propose that this local production of MSL complexes determines the extent of spreading into flanking chromatin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Yongkyu -- Kelley, Richard L -- Oh, Hyangyee -- Kuroda, Mitzi I -- Meller, Victoria H -- GM45744/GM/NIGMS NIH HHS/ -- GM58427/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 22;298(5598):1620-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12446910" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/*metabolism ; Chromosomes/metabolism ; DNA, Complementary ; DNA-Binding Proteins ; *Dosage Compensation, Genetic ; Drosophila/*genetics/metabolism ; *Drosophila Proteins ; Gene Expression Regulation ; Mutation ; Nuclear Proteins/genetics/*metabolism ; RNA, Messenger/*genetics/metabolism ; RNA, Untranslated/*genetics/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Transgenes ; X Chromosome/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2002-06-29
    Description: Despite the importance of selection against deleterious mutations in natural populations, reliable estimates of the genomic numbers of mutant alleles in wild populations are scarce. We found that, in wild-caught bluefin killifish Lucania goodei (Fundulidae) and wild-caught zebrafish Danio rerio (Cyprinidae), the average numbers of recessive lethal alleles per individual are 1.9 (95% confidence limits 1.3 to 2.6) and 1.4 (95% confidence limits 1.0 to 2.0), respectively. These results, together with data on several Drosophila species and on Xenopus laevis, show that phylogenetically distant animals with different genome sizes and numbers of genes carry similar numbers of lethal mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McCune, Amy R -- Fuller, Rebecca C -- Aquilina, Allisan A -- Dawley, Robert M -- Fadool, James M -- Houle, David -- Travis, Joseph -- Kondrashov, Alexey S -- New York, N.Y. -- Science. 2002 Jun 28;296(5577):2398-401.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. arm2@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12089444" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Crosses, Genetic ; Drosophila/genetics ; Female ; Fundulidae/abnormalities/*genetics ; *Genes, Lethal ; *Genes, Recessive ; *Genome ; Likelihood Functions ; Male ; Mutation ; Phenotype ; Xenopus laevis/genetics ; Zebrafish/abnormalities/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-02-16
    Description: The corepressor CtBP (carboxyl-terminal binding protein) is involved in transcriptional pathways important for development, cell cycle regulation, and transformation. We demonstrate that CtBP binding to cellular and viral transcriptional repressors is regulated by the nicotinamide adenine dinucleotides NAD+ and NADH, with NADH being two to three orders of magnitude more effective. Levels of free nuclear nicotinamide adenine dinucleotides, determined using two-photon microscopy, correspond to the levels required for half-maximal CtBP binding and are considerably lower than those previously reported. Agents capable of increasing NADH levels stimulate CtBP binding to its partners in vivo and potentiate CtBP-mediated repression. We propose that this ability to detect changes in nuclear NAD+/NADH ratio allows CtBP to serve as a redox sensor for transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Qinghong -- Piston, David W -- Goodman, Richard H -- K01 CA096561/CA/NCI NIH HHS/ -- R01 CA115468/CA/NCI NIH HHS/ -- R01 CA115468-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1895-7. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847309" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/metabolism ; Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Binding Sites ; Cadherins/genetics ; Cell Nucleus/*metabolism ; Cytoplasm/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Gene Expression Regulation ; HeLa Cells ; Homeodomain Proteins/metabolism ; Humans ; Microscopy, Fluorescence ; Molecular Sequence Data ; Mutation ; NAD/*metabolism ; Oxidation-Reduction ; Phosphoproteins/chemistry/genetics/*metabolism ; Promoter Regions, Genetic ; Protein Binding ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/*metabolism ; *Transcription Factors ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2002-11-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joint, Ian -- Tait, Karen -- Callow, Maureen E -- Callow, James A -- Milton, Debra -- Williams, Paul -- Camara, Miguel -- New York, N.Y. -- Science. 2002 Nov 8;298(5596):1207.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. I.Joint@pml.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12424372" target="_blank"〉PubMed〈/a〉
    Keywords: 4-Butyrolactone/*analogs & derivatives/*metabolism ; Bacterial Proteins/genetics/metabolism ; *Biofilms ; Cell Adhesion ; Cell Communication ; Chemotaxis ; Chlorophyta/*physiology ; Escherichia coli/genetics/metabolism/*physiology ; Hydrogen-Ion Concentration ; Mutation ; Spores/physiology ; *Transcription Factors ; Vibrio/genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMichael, Andrew -- Klenerman, Paul -- New York, N.Y. -- Science. 2002 May 24;296(5572):1410-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK. andrew.mcmichael@clinical-medicine.oxford.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12029119" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Epitopes/genetics/immunology ; Epitopes, T-Lymphocyte/genetics/immunology ; Gene Products, pol/immunology ; Genes, MHC Class I ; HIV Antigens/genetics/*immunology ; HIV Core Protein p24/genetics/immunology ; HIV Infections/*immunology/virology ; HIV-1/genetics/*immunology/physiology ; HLA Antigens/genetics/*immunology ; HLA-B Antigens/immunology ; HLA-B27 Antigen/immunology ; Histocompatibility Antigens Class I/genetics/*immunology ; Humans ; Immunodominant Epitopes/genetics/immunology ; Macaca ; Mutation ; Simian Acquired Immunodeficiency Syndrome/immunology ; Simian Immunodeficiency Virus/genetics/immunology ; T-Lymphocytes, Cytotoxic/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2002-04-20
    Description: The 19S proteasome regulatory particle plays a critical role in cellular proteolysis. However, recent reports have demonstrated that 19S proteins play a nonproteolytic role in nucleotide excision repair and transcription elongation. We show by chromatin immunoprecipitation assays that proteins comprising the 19S complex are recruited to the GAL1-10 promoter by the Gal4 transactivator upon induction with galactose. This recruited complex does not contain proteins from the 20S proteolytic particle and includes a subset of the 19S proteins. This subset is also specifically retained from an extract by the Gal4 activation domain. These data indicate that in vivo, the base of the 19S complex functions independently of the larger complex and plays a direct, nonproteolytic role in RNA polymerase II transcription.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez, Fernando -- Delahodde, Agnes -- Kodadek, Thomas -- Johnston, Stephen Albert -- New York, N.Y. -- Science. 2002 Apr 19;296(5567):548-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomedical Inventions, University of Texas-Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8573, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11964484" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; Cysteine Endopeptidases/metabolism ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins ; Endopeptidases/*metabolism ; Fungal Proteins/genetics/metabolism ; Galactose/metabolism ; Gene Expression Regulation, Fungal ; Multienzyme Complexes/metabolism ; Mutation ; Precipitin Tests ; *Promoter Regions, Genetic ; Proteasome Endopeptidase Complex ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/genetics/metabolism ; *Transcription, Genetic ; Ubiquitin/metabolism ; Yeasts/enzymology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2002-01-19
    Description: Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thisse, Christine -- Zon, Leonard I -- DK49216/DK/NIDDK NIH HHS/ -- R01-HL-48801/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 18;295(5554):457-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Moleculaire et Cellulaire, CNRS, INSERM, Universite Louis Pasteur, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C. U. de Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Vessels/*embryology ; Body Patterning ; Cell Differentiation/genetics ; Cell Lineage ; *Gene Expression Regulation, Developmental ; Heart/*embryology/physiology ; *Hematopoiesis/genetics ; Humans ; Morphogenesis/genetics ; Mutation ; Stem Cells/physiology ; Zebrafish/*embryology/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2002-09-21
    Description: Persons with the autosomal recessive disorder Bloom syndrome are predisposed to cancers of many types due to loss-of-function mutations in the BLM gene, which encodes a recQ-like helicase. Here we show that mice heterozygous for a targeted null mutation of Blm, the murine homolog of BLM, develop lymphoma earlier than wild-type littermates in response to challenge with murine leukemia virus and develop twice the number of intestinal tumors when crossed with mice carrying a mutation in the Apc tumor suppressor. These observations indicate that Blm is a modifier of tumor formation in the mouse and that Blm haploinsufficiency is associated with tumor predisposition, a finding with important implications for cancer risk in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goss, Kathleen Heppner -- Risinger, Mary A -- Kordich, Jennifer J -- Sanz, Maureen M -- Straughen, Joel E -- Slovek, Lisa E -- Capobianco, Anthony J -- German, James -- Boivin, Gregory P -- Groden, Joanna -- CA63507/CA/NCI NIH HHS/ -- CA84291/CA/NCI NIH HHS/ -- CA88460/CA/NCI NIH HHS/ -- ES06096/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 20;297(5589):2051-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Department of Molecular Genetics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12242442" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/genetics/pathology ; Adenosine Triphosphatases/*genetics ; Alleles ; Animals ; Bloom Syndrome/*genetics ; Cells, Cultured ; Crosses, Genetic ; DNA Helicases/*genetics ; Female ; Gene Targeting ; Genes, APC ; *Genetic Predisposition to Disease ; *Heterozygote ; Humans ; Intestinal Neoplasms/*genetics/pathology ; Leukemia Virus, Murine ; Loss of Heterozygosity ; Lymphoma, T-Cell/*genetics/virology ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; RecQ Helicases ; Sister Chromatid Exchange
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2002-06-29
    Description: Size homeostasis in budding yeast requires that cells grow to a critical size before commitment to division in the late prereplicative growth phase of the cell cycle, an event termed Start. We determined cell size distributions for the complete set of approximately 6000 Saccharomyces cerevisiae gene deletion strains and identified approximately 500 abnormally small (whi) or large (lge) mutants. Genetic analysis revealed a complex network of newly found factors that govern critical cell size at Start, the most potent of which were Sfp1, Sch9, Cdh1, Prs3, and Whi5. Ribosome biogenesis is intimately linked to cell size through Sfp1, a transcription factor that controls the expression of at least 60 genes implicated in ribosome assembly. Cell growth and division appear to be coupled by multiple conserved mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jorgensen, Paul -- Nishikawa, Joy L -- Breitkreutz, Bobby-Joe -- Tyers, Mike -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):395-400. Epub 2002 Jun 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12089449" target="_blank"〉PubMed〈/a〉
    Keywords: Cdh1 Proteins ; Cell Cycle ; *Cell Division ; Cell Nucleolus/metabolism ; Crosses, Genetic ; DNA-Binding Proteins/genetics/*physiology ; Epistasis, Genetic ; Gene Deletion ; Gene Expression Regulation, Fungal ; Genes, Essential ; *Genes, Fungal ; Mutation ; Oligonucleotide Array Sequence Analysis ; Oxygen Consumption ; Phenotype ; Protein Kinases/genetics/physiology ; Ribosomes/*metabolism ; Saccharomyces cerevisiae/*cytology/genetics/growth & ; development/*physiology/ultrastructure ; Saccharomyces cerevisiae Proteins/biosynthesis/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2002-04-16
    Description: One of the factors postulated to drive the aging process is the accumulation of DNA damage. Here, we provide strong support for this hypothesis by describing studies of mice with a mutation in XPD, a gene encoding a DNA helicase that functions in both repair and transcription and that is mutated in the human disorder trichothiodystrophy (TTD). TTD mice were found to exhibit many symptoms of premature aging, including osteoporosis and kyphosis, osteosclerosis, early greying, cachexia, infertility, and reduced life-span. TTD mice carrying an additional mutation in XPA, which enhances the DNA repair defect, showed a greatly accelerated aging phenotype, which correlated with an increased cellular sensitivity to oxidative DNA damage. We hypothesize that aging in TTD mice is caused by unrepaired DNA damage that compromises transcription, leading to functional inactivation of critical genes and enhanced apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Boer, Jan -- Andressoo, Jaan Olle -- de Wit, Jan -- Huijmans, Jan -- Beems, Rudolph B -- van Steeg, Harry -- Weeda, Geert -- van der Horst, Gijsbertus T J -- van Leeuwen, Wibeke -- Themmen, Axel P N -- Meradji, Morteza -- Hoeijmakers, Jan H J -- AG 17242-02/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2002 May 17;296(5571):1276-9. Epub 2002 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Genetics Center, Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11950998" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Aging, Premature/*etiology ; Animals ; Apoptosis ; Bone Density ; Cachexia/etiology ; Crosses, Genetic ; *DNA Damage ; DNA Helicases/genetics/*physiology ; *DNA Repair ; DNA-Binding Proteins/genetics/physiology ; Female ; Fertility ; Gene Targeting ; Growth Disorders/etiology/genetics ; Hair Diseases/genetics ; Kyphosis/etiology/genetics/pathology ; Male ; Mice ; Mutation ; Oxidative Stress ; Phenotype ; Point Mutation ; Proteins/genetics/*physiology ; RNA-Binding Proteins/genetics/physiology ; *Transcription Factors ; Transcription, Genetic ; Xeroderma Pigmentosum Group A Protein ; Xeroderma Pigmentosum Group D Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2002-01-26
    Description: Posttranscriptional gene silencing in Caenorhabditis elegans results from exposure to double-stranded RNA (dsRNA), a phenomenon designated as RNA interference (RNAi), or from co-suppression, in which transgenic DNA leads to silencing of both the transgene and the endogenous gene. Here we show that single-stranded RNA oligomers of antisense polarity can also be potent inducers of gene silencing. As is the case for co-suppression, antisense RNAs act independently of the RNAi genes rde-1 and rde-4 but require the mutator/RNAi gene mut-7 and a putative DEAD box RNA helicase, mut-14. Our data favor the hypothesis that gene silencing is accomplished by RNA primer extension using the mRNA as template, leading to dsRNA that is subsequently degraded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tijsterman, Marcel -- Ketting, Rene F -- Okihara, Kristy L -- Sijen, Titia -- Plasterk, Ronald H A -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):694-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809977" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Caenorhabditis elegans/embryology/enzymology/*genetics ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; DEAD-box RNA Helicases/chemistry/genetics/*metabolism ; *Gene Silencing ; *Genes, Helminth ; Genes, Reporter ; Green Fluorescent Proteins ; Luminescent Proteins/genetics/metabolism ; Mutation ; Oligoribonucleotides/genetics ; RNA Helicases/chemistry/genetics/*metabolism ; RNA, Antisense/*genetics ; RNA, Double-Stranded/genetics ; RNA, Helminth/genetics/metabolism ; RNA, Messenger/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2002-10-26
    Description: The insulin/IGF-1 (where IGF-1 is insulin-like growth factor-1) signaling pathway influences longevity, reproduction, and diapause in many organisms. Because of the fundamental importance of this system in animal physiology, we asked when during the animal's life it is required to regulate these different processes. We find that in Caenorhabditis elegans, the pathway acts during adulthood, to relatively advanced ages, to influence aging. In contrast, it regulates diapause during development. In addition, the pathway controls longevity and reproduction independently of one another. Together our findings show that life-span regulation can be dissociated temporally from phenotypes that might seem to decrease the quality of life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dillin, Andrew -- Crawford, Douglas K -- Kenyon, Cynthia -- 5RO1AG11816/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 25;298(5594):830-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12399591" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Caenorhabditis elegans/genetics/growth & development/metabolism/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; DEAD-box RNA Helicases ; Forkhead Transcription Factors ; Insulin/*physiology ; Insulin-Like Growth Factor I/*physiology ; Life Cycle Stages/physiology ; Longevity ; Mutation ; Oxidative Stress ; RNA Helicases/genetics/physiology ; RNA Interference ; Receptor, Insulin/genetics/*physiology ; Reproduction ; *Signal Transduction ; Temperature ; Transcription Factors/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2002-09-28
    Description: Unc104/KIF1A belongs to a class of monomeric kinesin motors that have been thought to possess an unusual motility mechanism. Unlike the unidirectional motion driven by the coordinated actions of the two heads in conventional kinesins, single-headed KIF1A was reported to undergo biased diffusional motion along microtubules. Here, we show that Unc104/KIF1A can dimerize and move unidirectionally and processively with rapid velocities characteristic of transport in living cells. These results suggest that Unc104/KIF1A operates in vivo by a mechanism similar to conventional kinesin and that regulation of motor dimerization may be used to control transport by this class of kinesins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomishige, Michio -- Klopfenstein, Dieter R -- Vale, Ronald D -- AR42895/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2263-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351789" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins/chemistry/physiology ; Diffusion ; Dimerization ; Humans ; Kinesin/*chemistry/physiology ; Liposomes ; Microtubules/*physiology ; Molecular Motor Proteins/*chemistry/*physiology ; Molecular Sequence Data ; Movement ; Mutation ; Nerve Tissue Proteins/*chemistry/*physiology ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-11-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Chi -- Thompson, Craig B -- New York, N.Y. -- Science. 2002 Nov 15;298(5597):1346-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. drt@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12434041" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology/therapeutic use ; *Apoptosis ; Asparagine/metabolism ; Aspartic Acid/metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; Cyclins/metabolism ; *DNA Damage ; DNA, Neoplasm/drug effects ; Genes, Retinoblastoma ; Genes, p53 ; Humans ; Models, Biological ; Mutation ; Neoplasms/*drug therapy/metabolism/*pathology ; Protein Binding ; Protein Structure, Tertiary ; Proto-Oncogene Proteins c-bcl-2/*metabolism ; Retinoblastoma Protein/metabolism ; Tumor Suppressor Protein p53/metabolism ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2002-08-17
    Description: The enediynes exemplify nature's ingenuity. We have cloned and characterized the biosynthetic locus coding for perhaps the most notorious member of the nonchromoprotein enediyne family, calicheamicin. This gene cluster contains an unusual polyketide synthase (PKS) that is demonstrated to be essential for enediyne biosynthesis. Comparison of the calicheamicin locus with the locus encoding the chromoprotein enediyne C-1027 reveals that the enediyne PKS is highly conserved among these distinct enediyne families. Contrary to previous hypotheses, this suggests that the chromoprotein and nonchromoprotein enediynes are generated by similar biosynthetic pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahlert, Joachim -- Shepard, Erica -- Lomovskaya, Natalia -- Zazopoulos, Emmanuel -- Staffa, Alfredo -- Bachmann, Brian O -- Huang, Kexue -- Fonstein, Leonid -- Czisny, Anne -- Whitwam, Ross E -- Farnet, Chris M -- Thorson, Jon S -- CA08748/CA/NCI NIH HHS/ -- CA84374/CA/NCI NIH HHS/ -- GM58196/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1173-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Biosynthetic Chemistry, Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183629" target="_blank"〉PubMed〈/a〉
    Keywords: *Aminoglycosides ; Anti-Bacterial Agents/*biosynthesis ; Antibiotics, Antineoplastic/*biosynthesis ; Blotting, Southern ; Chromatography, High Pressure Liquid ; Cloning, Molecular ; Conserved Sequence ; Enediynes ; *Genes, Bacterial ; Micromonospora/enzymology/*genetics/metabolism ; Multienzyme Complexes/*chemistry/*genetics/metabolism ; Multigene Family ; Mutation ; Open Reading Frames ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2002-09-07
    Description: The Golgi-localized, gamma-ear-containing, adenosine diphosphate ribosylation factor-binding proteins (GGAs) are multidomain proteins that bind mannose 6-phosphate receptors (MPRs) in the Golgi and have an essential role in lysosomal enzyme sorting. Here the GGAs and the coat protein adaptor protein-1 (AP-1) were shown to colocalize in clathrin-coated buds of the trans-Golgi networks of mouse L cells and human HeLa cells. Binding studies revealed a direct interaction between the hinge domains of the GGAs and the gamma-ear domain of AP-1. Further, AP-1 contained bound casein kinase-2 that phosphorylated GGA1 and GGA3, thereby causing autoinhibition. This could induce the directed transfer of the MPRs from GGAs to AP-1. MPRs that are defective in binding to GGAs are poorly incorporated into AP-1-containing clathrin-coated vesicles. Thus, the GGAs and AP-1 interact to package MPRs into AP-1-containing coated vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doray, Balraj -- Ghosh, Pradipta -- Griffith, Janice -- Geuze, Hans J -- Kornfeld, Stuart -- R01 CA-08759/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1700-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215646" target="_blank"〉PubMed〈/a〉
    Keywords: ADP-Ribosylation Factors/*metabolism ; Adaptor Proteins, Vesicular Transport ; Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Cattle ; Cell Line ; Clathrin-Coated Vesicles/metabolism ; HeLa Cells ; Humans ; L Cells (Cell Line) ; Membrane Proteins/*metabolism ; Mice ; Mutation ; Phosphorylation ; Protein Binding ; Receptor, IGF Type 2/genetics/*metabolism ; Recombinant Proteins/metabolism ; trans-Golgi Network/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2002-07-27
    Description: Budding yeast Mec1, homolog of mammalian ATR, is an essential protein that mediates S-phase checkpoint responses and meiotic recombination. Elimination of Mec1 function leads to genomewide fork stalling followed by chromosome breakage. Breaks do not result from stochastic collapse of stalled forks or other incidental lesions; instead, they occur in specific regions of the genome during a G2 chromosomal transition. Break regions are found to be genetically encoded replication slow zones (RSZs), a newly discovered yeast chromosomal determinant. Thus, Mec1 has important functions in normal S phase and the genome instability of mec1 (and, analogously, ATR-/-) mutants stems from defects in these basic roles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cha, Rita S -- Kleckner, Nancy -- GM25326/GM/NIGMS NIH HHS/ -- R01 GM025326/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):602-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142538" target="_blank"〉PubMed〈/a〉
    Keywords: *Chromosome Breakage ; Chromosomes, Fungal/*physiology ; *DNA Replication ; DNA, Fungal/*biosynthesis ; Fungal Proteins/*physiology ; G1 Phase ; G2 Phase ; Genome, Fungal ; Hydroxyurea/pharmacology ; *Interphase ; Intracellular Signaling Peptides and Proteins ; Mutation ; Protein-Serine-Threonine Kinases ; S Phase ; Saccharomyces cerevisiae/genetics/*physiology ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2002-10-12
    Description: Recent observations indicating that promoter identity influences alternative RNA-processing decisions have created interest in the regulatory interactions between RNA polymerase II transcription and precursor messenger RNA (pre-mRNA) processing. We examined the impact of steroid receptor-mediated transcription on RNA processing with reporter genes subject to alternative splicing driven by steroid-sensitive promoters. Steroid hormones affected the processing of pre-mRNA synthesized from steroid-sensitive promoters, but not from steroid-unresponsive promoters, in a steroid receptor-dependent and receptor-selective manner. Several nuclear receptor coregulators showed differential splicing effects, suggesting that steroid hormone receptors may simultaneously control gene transcription activity and exon content of the product mRNA by recruiting coregulators involved in both processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Auboeuf, Didier -- Honig, Arnd -- Berget, Susan M -- O'Malley, Bert W -- GM 38526/GM/NIGMS NIH HHS/ -- HD-08818/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 11;298(5592):416-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12376702" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Antigens, CD44/genetics ; COS Cells ; Calcitonin/genetics ; Calcitonin Gene-Related Peptide/genetics ; Carrier Proteins/*metabolism ; Dexamethasone/metabolism/pharmacology ; Estradiol/metabolism/pharmacology ; Estrogen Receptor alpha ; Estrogen Receptor beta ; Exons ; Genes, Reporter ; HeLa Cells ; Humans ; *Intracellular Signaling Peptides and Proteins ; Mutation ; Progesterone/metabolism/pharmacology ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Helicases/*metabolism ; RNA-Binding Protein FUS/*metabolism ; Receptors, Estrogen/genetics/metabolism ; Receptors, Glucocorticoid/metabolism ; Receptors, Progesterone/metabolism ; Response Elements ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enserink, Martin -- New York, N.Y. -- Science. 2002 May 10;296(5570):1002-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004096" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacillus anthracis/*classification/*genetics ; *Bioterrorism ; Cattle/microbiology ; DNA Fingerprinting ; Genetic Markers ; Genetic Variation ; *Genome, Bacterial ; Goats/microbiology ; Mutation ; Plasmids ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2002-08-17
    Description: C-1027 is a potent antitumor agent with a previously undescribed molecular architecture and mode of action. Cloning and characterization of the 85-kilobase C-1027 biosynthesis gene cluster from Streptomyces globisporus revealed (i) an iterative type I polyketide synthase that is distinct from any bacterial polyketide synthases known to date, (ii) a general polyketide pathway for the biosynthesis of both the 9- and 10-membered enediyne antibiotics, and (iii) a convergent biosynthetic strategy for the C-1027 chromophore from four building blocks. Manipulation of genes governing C-1027 biosynthesis allowed us to produce an enediyne compound in a predicted manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Wen -- Christenson, Steven D -- Standage, Scott -- Shen, Ben -- AI51689/AI/NIAID NIH HHS/ -- CA78747/CA/NCI NIH HHS/ -- T32 GM07377/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Aug 16;297(5584):1170-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pharmaceutical Sciences, University of Wisconsin, Madison, WI 53705, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12183628" target="_blank"〉PubMed〈/a〉
    Keywords: *Aminoglycosides ; Anti-Bacterial Agents/*biosynthesis ; Antibiotics, Antineoplastic/*biosynthesis ; Chromatography, High Pressure Liquid ; Cloning, Molecular ; Enediynes ; *Genes, Bacterial ; Multienzyme Complexes/chemistry/genetics/metabolism ; Multigene Family ; Mutation ; Open Reading Frames ; Protein Structure, Tertiary ; Streptomyces/enzymology/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-07-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogel, Gretchen -- New York, N.Y. -- Science. 2002 Jul 19;297(5580):328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12130764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Cell Count ; Cell Division ; Cells, Cultured ; Cerebral Cortex/cytology/*embryology ; Cytoskeletal Proteins/*genetics/physiology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Homeodomain Proteins/*genetics/physiology ; Humans ; Mice ; Mice, Transgenic ; Mutation ; Neurons/cytology/physiology ; Pituitary Gland/*cytology/growth & development ; Retina/*cytology/growth & development ; Stem Cells/cytology/*physiology ; Trans-Activators/*genetics/physiology ; beta Catenin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2002-02-16
    Description: Animal SGT1 is a component of Skp1-Cullin-F-box protein (SCF) ubiquitin ligases that target regulatory proteins for degradation. Mutations in one (SGT1b) of two highly homologous Arabidopsis SGT1 genes disable early plant defenses conferred by multiple resistance (R) genes. Loss of SGT1b function in resistance is not compensated for by SGT1a. R genes differ in their requirements for SGT1b and a second resistance signaling gene, RAR1, that was previously implicated as an SGT1 interactor. Moreover, SGT1b and RAR1 contribute additively to RPP5-mediated pathogen recognition. These data imply both operationally distinct and cooperative functions of SGT1 and RAR1 in plant disease resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Austin, Mark J -- Muskett, Paul -- Kahn, Katherine -- Feys, Bart J -- Jones, Jonathan D G -- Parker, Jane E -- New York, N.Y. -- Science. 2002 Mar 15;295(5562):2077-80. Epub 2002 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11847308" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/*genetics/metabolism/microbiology ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/*genetics/*metabolism ; Cell Death ; *Genes, Plant ; Immunity, Innate ; Molecular Sequence Data ; Mutation ; Oomycetes/pathogenicity/physiology ; *Plant Diseases ; Plant Leaves/microbiology ; Plant Proteins/*genetics/physiology ; Protein Structure, Tertiary ; Sequence Alignment ; Spores, Fungal/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-11
    Description: Thermophilic microbial inhabitants of active seafloor and continental hot springs populate the deepest branches of the universal phylogenetic tree, making hydrothermal ecosystems the most ancient continuously inhabited ecosystems on Earth. Geochemical consequences of hot water-rock interactions render these environments habitable and supply a diverse array of energy sources. Clues to the strategies for how life thrives in these dynamic ecosystems are beginning to be elucidated through a confluence of biogeochemistry, microbiology, ecology, molecular biology, and genomics. These efforts have the potential to reveal how ecosystems originate, the extent of the subsurface biosphere, and the driving forces of evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reysenbach, Anna-Louise -- Shock, Everett -- New York, N.Y. -- Science. 2002 May 10;296(5570):1077-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Portland State University, Portland, OR 97201, USA. reysenbacha@pdx.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12004120" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Archaea/classification/genetics/metabolism/*physiology ; Bacteria/classification/genetics/metabolism ; *Bacterial Physiological Phenomena ; Biofilms/growth & development ; Biological Evolution ; *Ecosystem ; Energy Metabolism ; Environmental Microbiology ; Gene Transfer, Horizontal ; Genetic Variation ; *Geologic Sediments ; *Hot Temperature ; Mutation ; Phylogeny ; *Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2002-07-27
    Description: Checkpoint-mediated control of replicating chromosomes is essential for preventing cancer. In yeast, Rad53 kinase protects stalled replication forks from pathological rearrangements. To characterize the mechanisms controlling fork integrity, we analyzed replication intermediates formed in response to replication blocks using electron microscopy. At the forks, wild-type cells accumulate short single-stranded regions, which likely causes checkpoint activation, whereas rad53 mutants exhibit extensive single-stranded gaps and hemi-replicated intermediates, consistent with a lagging-strand synthesis defect. Further, rad53 cells accumulate Holliday junctions through fork reversal. We speculate that, in checkpoint mutants, abnormal replication intermediates begin to form because of uncoordinated replication and are further processed by unscheduled recombination pathways, causing genome instability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sogo, Jose M -- Lopes, Massimo -- Foiani, Marco -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):599-602.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, ETH Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142537" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Cycle Proteins ; Checkpoint Kinase 2 ; Cross-Linking Reagents/pharmacology ; *DNA Replication ; DNA, Fungal/biosynthesis/chemistry/*metabolism ; DNA, Single-Stranded/chemistry/*metabolism ; Furocoumarins/pharmacology ; Hydroxyurea/pharmacology ; Microscopy, Electron ; Mutation ; Nucleic Acid Conformation ; Nucleosomes/metabolism/ultrastructure ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/metabolism ; *Recombination, Genetic ; Saccharomyces cerevisiae/*genetics/*metabolism ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-04-29
    Description: Human CtBP attenuates transcriptional activation and tumorigenesis mediated by the adenovirus E1A protein. The E1A sequence motif that interacts with CtBP, Pro-X-Asp-Leu-Ser-X-Lys (P-DLS-K), is present in the repression domains of two unrelated short-range repressors in Drosophila, Knirps and Snail, and is essential for the interaction of these proteins with Drosophila CtBP (dCtBP). A P-element-induced mutation in dCtBP exhibits gene-dosage interactions with a null mutation in knirps, which is consistent with the occurrence of Knirps-dCtBP interactions in vivo. These observations suggest that CtBP and dCtBP are engaged in an evolutionarily conserved mechanism of transcriptional repression, which is used in both Drosophila and mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nibu, Y -- Zhang, H -- Levine, M -- GM46638/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Apr 3;280(5360):101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Division of Genetics, 401 Barker Hall, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9525852" target="_blank"〉PubMed〈/a〉
    Keywords: Alcohol Oxidoreductases ; Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Cell Nucleus/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila/*embryology/genetics/metabolism ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Female ; Gene Dosage ; *Gene Expression Regulation ; Genes, Insect ; Genes, Reporter ; Humans ; Insect Proteins/genetics/metabolism ; Male ; Molecular Sequence Data ; Mutation ; Phosphoproteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism ; *Transcription Factors ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-11-06
    Description: Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple cell metabolism to electrical activity. Phosphatidylinositol phosphates (PIPs) profoundly antagonized ATP inhibition of KATP channels when applied to inside-out membrane patches. It is proposed that membrane-incorporated PIPs can bind to positive charges in the cytoplasmic region of the channel's Kir6.2 subunit, stabilizing the open state of the channel and antagonizing the inhibitory effect of ATP. The tremendous effect of PIPs on ATP sensitivity suggests that in vivo alterations of membrane PIP levels will have substantial effects on KATP channel activity and hence on the gain of metabolism-excitation coupling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shyng, S L -- Nichols, C G -- HL45742/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 6;282(5391):1138-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9804554" target="_blank"〉PubMed〈/a〉
    Keywords: *ATP-Binding Cassette Transporters ; Adenosine Triphosphate/metabolism/*pharmacology ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Islets of Langerhans/metabolism ; Mutation ; Myocardium/cytology/metabolism ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Phosphatidylinositol Phosphates/*metabolism/pharmacology ; Potassium Channels/chemistry/genetics/*metabolism ; *Potassium Channels, Inwardly Rectifying ; Receptors, Drug/metabolism ; Recombinant Fusion Proteins/metabolism ; Sulfonylurea Receptors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...