ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-01-26
    Description: Posttranscriptional gene silencing in Caenorhabditis elegans results from exposure to double-stranded RNA (dsRNA), a phenomenon designated as RNA interference (RNAi), or from co-suppression, in which transgenic DNA leads to silencing of both the transgene and the endogenous gene. Here we show that single-stranded RNA oligomers of antisense polarity can also be potent inducers of gene silencing. As is the case for co-suppression, antisense RNAs act independently of the RNAi genes rde-1 and rde-4 but require the mutator/RNAi gene mut-7 and a putative DEAD box RNA helicase, mut-14. Our data favor the hypothesis that gene silencing is accomplished by RNA primer extension using the mRNA as template, leading to dsRNA that is subsequently degraded.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tijsterman, Marcel -- Ketting, Rene F -- Okihara, Kristy L -- Sijen, Titia -- Plasterk, Ronald H A -- New York, N.Y. -- Science. 2002 Jan 25;295(5555):694-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11809977" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Caenorhabditis elegans/embryology/enzymology/*genetics ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; DEAD-box RNA Helicases/chemistry/genetics/*metabolism ; *Gene Silencing ; *Genes, Helminth ; Genes, Reporter ; Green Fluorescent Proteins ; Luminescent Proteins/genetics/metabolism ; Mutation ; Oligoribonucleotides/genetics ; RNA Helicases/chemistry/genetics/*metabolism ; RNA, Antisense/*genetics ; RNA, Double-Stranded/genetics ; RNA, Helminth/genetics/metabolism ; RNA, Messenger/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-05-23
    Description: Genomes are databases sensitive to invasion by viruses. In recent years, a defense mechanism has been discovered, which turns out to be conserved among eukaryotes. The system can be compared to the immune system in several ways: It has specificity against foreign elements and the ability to amplify and raise a massive response against an invading nucleic acid. The latter property is beginning to be understood at the molecular level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plasterk, Ronald H A -- New York, N.Y. -- Science. 2002 May 17;296(5571):1263-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory, Centre for Biomedical Genetics, Uppsalalaan 8, 3584 CT Utrecht, Netherlands. Plasterk@niob.knaw.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12016302" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; DNA Transposable Elements ; Endoribonucleases/metabolism ; *Gene Silencing ; Humans ; Immune System/physiology ; Plants/genetics ; RNA Replicase/metabolism ; RNA, Antisense/genetics/metabolism ; RNA, Double-Stranded/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering ; RNA, Untranslated/*metabolism ; Ribonuclease III ; Virus Physiological Phenomena ; Viruses/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-05-28
    Description: MicroRNAs (miRNAs) are small noncoding RNAs, about 21 nucleotides in length, that can regulate gene expression by base-pairing to partially complementary mRNAs. Regulation by miRNAs can play essential roles in embryonic development. We determined the temporal and spatial expression patterns of 115 conserved vertebrate miRNAs in zebrafish embryos by microarrays and by in situ hybridizations, using locked-nucleic acid-modified oligonucleotide probes. Most miRNAs were expressed in a highly tissue-specific manner during segmentation and later stages, but not early in development, which suggests that their role is not in tissue fate establishment but in differentiation or maintenance of tissue identity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wienholds, Erno -- Kloosterman, Wigard P -- Miska, Eric -- Alvarez-Saavedra, Ezequiel -- Berezikov, Eugene -- de Bruijn, Ewart -- Horvitz, H Robert -- Kauppinen, Sakari -- Plasterk, Ronald H A -- New York, N.Y. -- Science. 2005 Jul 8;309(5732):310-1. Epub 2005 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory, Centre for Biomedical Genetics, 3584 CT Utrecht, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15919954" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Northern ; Embryo, Nonmammalian/*metabolism ; Embryonic Development ; *Gene Expression ; In Situ Hybridization ; MicroRNAs/*genetics/*metabolism ; Multigene Family ; Oligonucleotide Array Sequence Analysis ; Oligonucleotide Probes ; Organ Specificity ; Time Factors ; Zebrafish/*embryology/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-07-06
    Description: The zebrafish has become a favorite organism for genetic analysis of vertebrate development, but methods for generating mutants by reverse genetic approaches have been lacking. We report a method to obtain stable mutants of a gene based on knowledge of the gene sequence only. Parental fish were mutagenized with N-ethyl-N-nitrosourea; in 2679 F1 fish, the rag1 gene was analyzed for heterozygous mutations by resequencing. In total, we found 15 mutations: 9 resulted in amino acid substitutions and 1 resulted in a premature stop codon. This truncation mutant was found to be homozygous viable and defective in V(D)J joining. Although presumably immune deficient, these homozygous rag1 mutant fish are able to reach adulthood and are fertile. As sperm samples from all 2679 F1 fish were collected and cryopreserved, we have in principle generated a mutant library from which mutants of most zebrafish genes can be isolated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wienholds, Erno -- Schulte-Merker, Stefan -- Walderich, Brigitte -- Plasterk, Ronald H A -- New York, N.Y. -- Science. 2002 Jul 5;297(5578):99-102.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12098699" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Codon, Terminator ; Ethylnitrosourea ; Female ; Gene Library ; Gene Rearrangement ; Genes, Immunoglobulin ; *Genes, RAG-1 ; Haplotypes ; Heterozygote ; Homeodomain Proteins/chemistry/genetics ; Immunoglobulin Heavy Chains/genetics ; Introns ; Male ; Mutagenesis ; *Mutation ; Mutation, Missense ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide ; Recombination, Genetic ; Zebrafish/*genetics/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-04-19
    Description: Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howe, Kerstin -- Clark, Matthew D -- Torroja, Carlos F -- Torrance, James -- Berthelot, Camille -- Muffato, Matthieu -- Collins, John E -- Humphray, Sean -- McLaren, Karen -- Matthews, Lucy -- McLaren, Stuart -- Sealy, Ian -- Caccamo, Mario -- Churcher, Carol -- Scott, Carol -- Barrett, Jeffrey C -- Koch, Romke -- Rauch, Gerd-Jorg -- White, Simon -- Chow, William -- Kilian, Britt -- Quintais, Leonor T -- Guerra-Assuncao, Jose A -- Zhou, Yi -- Gu, Yong -- Yen, Jennifer -- Vogel, Jan-Hinnerk -- Eyre, Tina -- Redmond, Seth -- Banerjee, Ruby -- Chi, Jianxiang -- Fu, Beiyuan -- Langley, Elizabeth -- Maguire, Sean F -- Laird, Gavin K -- Lloyd, David -- Kenyon, Emma -- Donaldson, Sarah -- Sehra, Harminder -- Almeida-King, Jeff -- Loveland, Jane -- Trevanion, Stephen -- Jones, Matt -- Quail, Mike -- Willey, Dave -- Hunt, Adrienne -- Burton, John -- Sims, Sarah -- McLay, Kirsten -- Plumb, Bob -- Davis, Joy -- Clee, Chris -- Oliver, Karen -- Clark, Richard -- Riddle, Clare -- Elliot, David -- Threadgold, Glen -- Harden, Glenn -- Ware, Darren -- Begum, Sharmin -- Mortimore, Beverley -- Kerry, Giselle -- Heath, Paul -- Phillimore, Benjamin -- Tracey, Alan -- Corby, Nicole -- Dunn, Matthew -- Johnson, Christopher -- Wood, Jonathan -- Clark, Susan -- Pelan, Sarah -- Griffiths, Guy -- Smith, Michelle -- Glithero, Rebecca -- Howden, Philip -- Barker, Nicholas -- Lloyd, Christine -- Stevens, Christopher -- Harley, Joanna -- Holt, Karen -- Panagiotidis, Georgios -- Lovell, Jamieson -- Beasley, Helen -- Henderson, Carl -- Gordon, Daria -- Auger, Katherine -- Wright, Deborah -- Collins, Joanna -- Raisen, Claire -- Dyer, Lauren -- Leung, Kenric -- Robertson, Lauren -- Ambridge, Kirsty -- Leongamornlert, Daniel -- McGuire, Sarah -- Gilderthorp, Ruth -- Griffiths, Coline -- Manthravadi, Deepa -- Nichol, Sarah -- Barker, Gary -- Whitehead, Siobhan -- Kay, Michael -- Brown, Jacqueline -- Murnane, Clare -- Gray, Emma -- Humphries, Matthew -- Sycamore, Neil -- Barker, Darren -- Saunders, David -- Wallis, Justene -- Babbage, Anne -- Hammond, Sian -- Mashreghi-Mohammadi, Maryam -- Barr, Lucy -- Martin, Sancha -- Wray, Paul -- Ellington, Andrew -- Matthews, Nicholas -- Ellwood, Matthew -- Woodmansey, Rebecca -- Clark, Graham -- Cooper, James D -- Tromans, Anthony -- Grafham, Darren -- Skuce, Carl -- Pandian, Richard -- Andrews, Robert -- Harrison, Elliot -- Kimberley, Andrew -- Garnett, Jane -- Fosker, Nigel -- Hall, Rebekah -- Garner, Patrick -- Kelly, Daniel -- Bird, Christine -- Palmer, Sophie -- Gehring, Ines -- Berger, Andrea -- Dooley, Christopher M -- Ersan-Urun, Zubeyde -- Eser, Cigdem -- Geiger, Horst -- Geisler, Maria -- Karotki, Lena -- Kirn, Anette -- Konantz, Judith -- Konantz, Martina -- Oberlander, Martina -- Rudolph-Geiger, Silke -- Teucke, Mathias -- Lanz, Christa -- Raddatz, Gunter -- Osoegawa, Kazutoyo -- Zhu, Baoli -- Rapp, Amanda -- Widaa, Sara -- Langford, Cordelia -- Yang, Fengtang -- Schuster, Stephan C -- Carter, Nigel P -- Harrow, Jennifer -- Ning, Zemin -- Herrero, Javier -- Searle, Steve M J -- Enright, Anton -- Geisler, Robert -- Plasterk, Ronald H A -- Lee, Charles -- Westerfield, Monte -- de Jong, Pieter J -- Zon, Leonard I -- Postlethwait, John H -- Nusslein-Volhard, Christiane -- Hubbard, Tim J P -- Roest Crollius, Hugues -- Rogers, Jane -- Stemple, Derek L -- 095908/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 1 R01 DK55377-01A1/DK/NIDDK NIH HHS/ -- P01 HD022486/HD/NICHD NIH HHS/ -- P01 HD22486/HD/NICHD NIH HHS/ -- R01 GM085318/GM/NIGMS NIH HHS/ -- R01 OD011116/OD/NIH HHS/ -- R01 RR010715/RR/NCRR NIH HHS/ -- R01 RR020833/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):498-503. doi: 10.1038/nature12111. Epub 2013 Apr 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23594743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes/genetics ; Conserved Sequence/*genetics ; Evolution, Molecular ; Female ; Genes/genetics ; Genome/*genetics ; Genome, Human/genetics ; Genomics ; Humans ; Male ; Meiosis/genetics ; Molecular Sequence Annotation ; Pseudogenes/genetics ; Reference Standards ; Sex Determination Processes/genetics ; Zebrafish/*genetics ; Zebrafish Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-10-20
    Description: Over the past two decades, the small soil nematode Caenorhabditis elegans has become established as a major model system for the study of a great variety of problems in biology and medicine. One of its most significant advantages is its simplicity, both in anatomy and in genomic organization. The entire haploid genetic content amounts to 100 million base pairs of DNA, about 1/30 the size of the human value. As a result, C. elegans has also provided a pilot system for the construction of physical maps of larger animal and plant genomes, and subsequently for the complete sequencing of those genomes. By mid-1995, approximately one-fifth of the complete DNA sequence of this animal had been determined. Caenorhabditis elegans provides a test bed not only for the development and application of mapping and sequencing technologies, but also for the interpretation and use of complete sequence information. This article reviews the progress so far toward a realizable goal--the total description of the genome of a simple animal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodgkin, J -- Plasterk, R H -- Waterston, R H -- New York, N.Y. -- Science. 1995 Oct 20;270(5235):410-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569995" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics ; *Chromosome Mapping ; Gene Expression ; *Genes, Helminth ; *Genome ; Mutation ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-10-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chalfie, M -- Eddy, S -- Hengartner, M O -- Hodgkin, J -- Kohara, Y -- Plasterk, R H -- Waterston, R H -- White, J G -- New York, N.Y. -- Science. 1995 Oct 20;270(5235):415-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Columbia University, New York, NY, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Caenorhabditis elegans/*genetics ; *Chromosome Mapping ; Gene Expression ; *Genes, Helminth ; *Genome ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-03-17
    Description: The goa-1 gene encoding the alpha subunit of the heterotrimeric guanosine triphosphate-binding protein (G protein) Go from Caenorhabditis elegans is expressed in most neurons, and in the muscles involved in egg laying and male mating. Reduction-of-function mutations in goa-1 caused a variety of behavioral defects including hyperactive movement, premature egg laying, and male impotence. Expression of the activated Go alpha subunit (G alpha o) in transgenic nematodes resulted in lethargic movement, delayed egg laying, and reduced mating efficiency. Induced expression of activated G alpha o in adults was sufficient to cause these phenotypes, indicating that G alpha o mediates behavior through its role in neuronal function and the functioning of specialized muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendel, J E -- Korswagen, H C -- Liu, K S -- Hajdu-Cronin, Y M -- Simon, M I -- Plasterk, R H -- Sternberg, P W -- New York, N.Y. -- Science. 1995 Mar 17;267(5204):1652-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, California Institute of Technology, Pasadena 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7886455" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Base Sequence ; Behavior, Animal ; Caenorhabditis elegans/genetics/*physiology ; Disorders of Sex Development ; Female ; GTP-Binding Proteins/genetics/*physiology ; Genes, Helminth ; Male ; Molecular Sequence Data ; Movement ; Muscles/innervation/physiology ; Mutation ; Neurons/physiology ; Oviposition ; Phenotype ; Serotonin/pharmacology ; Sexual Behavior, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-12-13
    Description: In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the primary siRNA, indicating that non-RISC (RNA-induced silencing complex)-cleaved mRNAs are substrates for secondary siRNA production. In lines expressing primary siRNAs with single-nucleotide mismatches, secondary siRNAs do not carry the mismatch but contain the nucleotide complementary to the mRNA. We infer that RdRPs perform unprimed RNA synthesis. Secondary siRNAs are only of antisense polarity, carry 5' di- or triphosphates, and are only in the minority associated with RDE-1, the RNAi-specific Argonaute protein. Therefore, secondary siRNAs represent a distinct class of small RNAs. Their biogenesis depends on RdRPs, and we propose that each secondary siRNA is an individual RdRP product.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sijen, Titia -- Steiner, Florian A -- Thijssen, Karen L -- Plasterk, Ronald H A -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):244-7. Epub 2006 Dec 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Laboratory (NIOB-KNAW), Uppsalalaan 8, 3584 CT, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Base Pairing ; Caenorhabditis elegans/*genetics/metabolism ; Caenorhabditis elegans Proteins/metabolism ; Cloning, Molecular ; Phosphates/analysis ; *RNA Interference ; RNA Replicase/metabolism ; RNA, Antisense/*biosynthesis/chemistry/metabolism ; RNA, Complementary/biosynthesis ; RNA, Helminth/*biosynthesis/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/*biosynthesis/chemistry/metabolism ; Ribonuclease III/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 262 (1999), S. 268-274 
    ISSN: 1617-4623
    Keywords: Key words Transposase ; Transposon ; Tc1 ; Tc3 ; Caenorhabditis elegans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Caenorhabditis elegans transposons Tc1 and Tc3 are able to transpose in heterologous systems such as human cell lines and zebrafish. Because these transposons might be useful vectors for transgenesis and mutagenesis of diverse species, we determined the minimal cis requirements for transposition. Deletion mapping of the transposon ends shows that fewer than 100 bp are sufficient for transposition of Tc3. Unlike Tc1, Tc3 has a second, internal transposase binding site at each transposon end. We found that these binding sites play no major role in the transposition reaction, since they can be deleted without reduction of the transposition frequency. Site-directed mutagenesis was performed on the conserved terminal base pairs at the Tc3 ends. The four terminal base pairs at the ends of the Tc3 inverted repeats were shown to be required for efficient transposition. Finally, increasing the length of the transposon from 1.9 kb to 12.5 kb reduced the transposition frequency by 20-fold, both in vivo and in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...