ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Structure, Tertiary  (382)
  • American Association for the Advancement of Science (AAAS)  (382)
  • American Institute of Physics (AIP)
  • 2000-2004  (382)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (382)
  • American Institute of Physics (AIP)
Years
Year
  • 1
    Publication Date: 2004-06-05
    Description: The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2.8 angstrom resolution. FadL forms a 14-stranded beta barrel that is occluded by a central hatch domain. The structures suggest that hydrophobic compounds bind to multiple sites in FadL and use a transport mechanism that involves spontaneous conformational changes in the hatch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Berg, Bert -- Black, Paul N -- Clemons, William M Jr -- Rapoport, Tom A -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1506-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. lvandenberg@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178802" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Outer Membrane Proteins/*chemistry/metabolism ; Binding Sites ; Biological Transport ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; Fatty Acid Transport Proteins ; Fatty Acids/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-02-07
    Description: The 1918 influenza pandemic resulted in about 20 million deaths. This enormous impact, coupled with renewed interest in emerging infections, makes characterization of the virus involved a priority. Receptor binding, the initial event in virus infection, is a major determinant of virus transmissibility that, for influenza viruses, is mediated by the hemagglutinin (HA) membrane glycoprotein. We have determined the crystal structures of the HA from the 1918 virus and two closely related HAs in complex with receptor analogs. They explain how the 1918 HA, while retaining receptor binding site amino acids characteristic of an avian precursor HA, is able to bind human receptors and how, as a consequence, the virus was able to spread in the human population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gamblin, S J -- Haire, L F -- Russell, R J -- Stevens, D J -- Xiao, B -- Ha, Y -- Vasisht, N -- Steinhauer, D A -- Daniels, R S -- Elliot, A -- Wiley, D C -- Skehel, J J -- AI-13654/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1838-42. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764886" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/*immunology/metabolism/pathogenicity ; Influenza, Human/epidemiology/history/*virology ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*metabolism ; Sequence Alignment ; Sialic Acids/metabolism ; Species Specificity ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-04-24
    Description: The mechanisms controlling axon guidance are of fundamental importance in understanding brain development. Growing corticospinal and somatosensory axons cross the midline in the medulla to reach their targets and thus form the basis of contralateral motor control and sensory input. The motor and sensory projections appeared uncrossed in patients with horizontal gaze palsy with progressive scoliosis (HGPPS). In patients affected with HGPPS, we identified mutations in the ROBO3 gene, which shares homology with roundabout genes important in axon guidance in developing Drosophila, zebrafish, and mouse. Like its murine homolog Rig1/Robo3, but unlike other Robo proteins, ROBO3 is required for hindbrain axon midline crossing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618874/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1618874/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jen, Joanna C -- Chan, Wai-Man -- Bosley, Thomas M -- Wan, Jijun -- Carr, Janai R -- Rub, Udo -- Shattuck, David -- Salamon, Georges -- Kudo, Lili C -- Ou, Jing -- Lin, Doris D M -- Salih, Mustafa A M -- Kansu, Tulay -- Al Dhalaan, Hesham -- Al Zayed, Zayed -- MacDonald, David B -- Stigsby, Bent -- Plaitakis, Andreas -- Dretakis, Emmanuel K -- Gottlob, Irene -- Pieh, Christina -- Traboulsi, Elias I -- Wang, Qing -- Wang, Lejin -- Andrews, Caroline -- Yamada, Koki -- Demer, Joseph L -- Karim, Shaheen -- Alger, Jeffry R -- Geschwind, Daniel H -- Deller, Thomas -- Sicotte, Nancy L -- Nelson, Stanley F -- Baloh, Robert W -- Engle, Elizabeth C -- DC00162/DC/NIDCD NIH HHS/ -- DC05524/DC/NIDCD NIH HHS/ -- EY12498/EY/NEI NIH HHS/ -- EY13583/EY/NEI NIH HHS/ -- EY15298/EY/NEI NIH HHS/ -- EY15311/EY/NEI NIH HHS/ -- MH60233/MH/NIMH NIH HHS/ -- P30 HD 18655/HD/NICHD NIH HHS/ -- R01 EY008313/EY/NEI NIH HHS/ -- R01 EY008313-14/EY/NEI NIH HHS/ -- R01 HL066251/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1509-13. Epub 2004 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles, CA 90095, USA. jjen@ucla.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105459" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Alternative Splicing ; Amino Acid Motifs ; Amino Acid Sequence ; Axons/*physiology ; Evoked Potentials, Motor ; Evoked Potentials, Somatosensory ; Female ; Functional Laterality ; Genetic Linkage ; Humans ; In Situ Hybridization ; Magnetic Resonance Imaging ; Male ; Medulla Oblongata/growth & development/pathology ; Microsatellite Repeats ; Molecular Sequence Data ; Morphogenesis ; Mutation ; Neural Pathways ; Ophthalmoplegia/*genetics/pathology/physiopathology ; Pedigree ; Protein Structure, Tertiary ; Receptors, Immunologic/chemistry/*genetics/*metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Rhombencephalon/*growth & development/pathology ; Scoliosis/*genetics/pathology/physiopathology ; Sequence Analysis, DNA ; Syndrome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-05-25
    Description: The protein-remodeling factor Hsp104 governs inheritance of [PSI+], a yeast prion formed by self-perpetuating amyloid conformers of the translation termination factor Sup35. Perplexingly, either excess or insufficient Hsp104 eliminates [PSI+]. In vitro, at low concentrations, Hsp104 catalyzed the formation of oligomeric intermediates that proved critical for the nucleation of Sup 35 fibrillization de novo and displayed a conformation common among amyloidogenic polypeptides. At higher Hsp104 concentrations, amyloidogenic oligomerization and contingent fibrillization were abolished. Hsp104 also disassembled mature fibers in a manner that initially exposed new surfaces for conformational replication but eventually exterminated prion conformers. These Hsp104 activities differed in their reaction mechanism and can explain [PSI+] inheritance patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shorter, James -- Lindquist, Susan -- GM25874/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1793-7. Epub 2004 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155912" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Amyloid/chemistry ; Amyloid beta-Peptides/chemistry/immunology ; Antibodies/immunology ; Biopolymers ; Catalysis ; Heat-Shock Proteins/chemistry/genetics/*metabolism ; Hydrolysis ; Mutation ; Peptide Fragments/chemistry/immunology ; Peptide Termination Factors ; Prions/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-10-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jordan, Frank -- GM-50380/GM/NIGMS NIH HHS/ -- GM-62330/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):818-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Rutgers University, Newark, NJ 07102, USA. frjordan@newark.rutgers.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Dihydrolipoyllysine-Residue Acetyltransferase ; Dimerization ; Geobacillus stearothermophilus/*enzymology ; Glutamic Acid/chemistry ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Kinetics ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits ; Protons ; Pyruvate Dehydrogenase (Lipoamide)/*chemistry/*metabolism ; Pyruvate Dehydrogenase Complex/*chemistry/*metabolism ; Thiamine Pyrophosphate/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-01-13
    Description: A family of unusual proteins is deposited in flat, structural platelets in reflective tissues of the squid Euprymna scolopes. These proteins, which we have named reflectins, are encoded by at least six genes in three subfamilies and have no reported homologs outside of squids. Reflectins possess five repeating domains, which are highly conserved among members of the family. The proteins have a very unusual composition, with four relatively rare residues (tyrosine, methionine, arginine, and tryptophan) comprising approximately 57% of a reflectin, and several common residues (alanine, isoleucine, leucine, and lysine) occurring in none of the family members. These protein-based reflectors in squids provide a marked example of nanofabrication in animal systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crookes, Wendy J -- Ding, Lin-Lin -- Huang, Qing Ling -- Kimbell, Jennifer R -- Horwitz, Joseph -- McFall-Ngai, Margaret J -- NEI R01 EY3897/EY/NEI NIH HHS/ -- R01 A150661/PHS HHS/ -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):235-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii-Manoa, 41 Ahui Street, Honolulu, HI 96813, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716016" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acids/analysis ; Animals ; DNA, Complementary ; Decapodiformes/anatomy & histology/*chemistry/genetics ; Electrophoresis, Polyacrylamide Gel ; Immunoblotting ; Immunohistochemistry ; *Light ; Microscopy, Immunoelectron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Proteins/*analysis/*chemistry/genetics/isolation & purification ; Sequence Alignment ; Solubility
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-01-06
    Description: Hsp70s are a ubiquitous family of molecular chaperones involved in many cellular processes. Two Hsp70s, Lhs1p and Kar2p, are required for protein biogenesis in the yeast endoplasmic reticulum. Here, we found that Lhs1p and Kar2p specifically interacted to couple, and coordinately regulate, their respective activities. Lhs1p stimulated Kar2p by providing a specific nucleotide exchange activity, whereas Kar2p reciprocally activated the Lhs1p adenosine triphosphatase (ATPase). The two ATPase activities are coupled, and their coordinated regulation is essential for normal function in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steel, Gregor J -- Fullerton, Donna M -- Tyson, John R -- Stirling, Colin J -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):98-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704430" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Carrier Proteins/metabolism ; Endoplasmic Reticulum/metabolism ; *Guanine Nucleotide Exchange Factors ; HSP70 Heat-Shock Proteins/chemistry/genetics/*metabolism ; Heat-Shock Proteins/chemistry/metabolism ; Membrane Transport Proteins/chemistry/metabolism ; Molecular Chaperones/chemistry/genetics/*metabolism ; Mutation ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-02-21
    Description: PTEN is a tumor suppressor protein that dephosphorylates phosphatidylinositol 3,4,5 trisphosphate and antagonizes the phosphatidylinositol-3 kinase signaling pathway. We show here that PTEN can also inhibit cell migration through its C2 domain, independent of its lipid phosphatase activity. This activity depends on the protein phosphatase activity of PTEN and on dephosphorylation at a single residue, threonine(383). The ability of PTEN to control cell migration through its C2 domain is likely to be an important feature of its tumor suppressor activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raftopoulou, Myrto -- Etienne-Manneville, Sandrine -- Self, Annette -- Nicholls, Sarah -- Hall, Alan -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1179-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; COS Cells ; Catalysis ; Catalytic Domain ; Cell Line, Tumor ; Cell Movement/*physiology ; Cercopithecus aethiops ; Glioma ; Humans ; Mutation ; PTEN Phosphohydrolase ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoric Monoester Hydrolases/*chemistry/genetics/metabolism/*physiology ; Phosphorylation ; Phosphothreonine/metabolism ; Precipitin Tests ; Protein Structure, Tertiary ; Recombinant Proteins/pharmacology ; Sequence Deletion ; Transfection ; Tumor Suppressor Proteins/*chemistry/genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-04-17
    Description: Calmodulin (CaM) interactions with Ca2+ channels mediate both Ca2+ regulation of channels and local Ca2+ triggering of transcription factors implicated in neuronal memory. Crucial to these functions are the number of CaM molecules (CaMs) regulating each channel, and the number of CaMs privy to the local Ca2+ signal from each channel. To resolve these parameters, we fused L-type Ca2+ channels to single CaM molecules. These chimeric molecules revealed that a single CaM directs L-type channel regulation. Similar fusion molecules were used to estimate the local CaM concentration near Ca2+ channels. This estimate indicates marked enrichment of local CaM, as if a "school" of nearby CaMs were poised to enhance the transduction of local Ca2+ entry into diverse signaling pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mori, Masayuki X -- Erickson, Michael G -- Yue, David T -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):432-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ca2+ Signals Laboratory, Department of Biomedical Engineering , Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087548" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium/*metabolism ; Calcium Channels, L-Type/chemistry/*metabolism ; Calcium Signaling ; Calmodulin/chemistry/genetics/*metabolism ; Cell Line ; Cell Nucleus/metabolism ; Cyclic AMP Response Element-Binding Protein/metabolism ; Fluorescence Resonance Energy Transfer ; Humans ; Mathematics ; Mutation ; Patch-Clamp Techniques ; Peptides/chemistry/genetics ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-02-07
    Description: The 1918 "Spanish" influenza pandemic represents the largest recorded outbreak of any infectious disease. The crystal structure of the uncleaved precursor of the major surface antigen of the extinct 1918 virus was determined at 3.0 angstrom resolution after reassembly of the hemagglutinin gene from viral RNA fragments preserved in 1918 formalin-fixed lung tissues. A narrow avian-like receptor-binding site, two previously unobserved histidine patches, and a less exposed surface loop at the cleavage site that activates viral membrane fusion reveal structural features primarily found in avian viruses, which may have contributed to the extraordinarily high infectivity and mortality rates observed during 1918.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stevens, James -- Corper, Adam L -- Basler, Christopher F -- Taubenberger, Jeffery K -- Palese, Peter -- Wilson, Ian A -- AI058113/AI/NIAID NIH HHS/ -- AI42266/AI/NIAID NIH HHS/ -- AI50619/AI/NIAID NIH HHS/ -- CA55896/CA/NCI NIH HHS/ -- P50-GM 62411/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1866-70. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764887" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Carbohydrate Conformation ; Cloning, Molecular ; Crystallography, X-Ray ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/metabolism ; Histidine/chemistry/metabolism ; History, 20th Century ; Humans ; Hydrogen Bonding ; Influenza A virus/classification/*immunology/pathogenicity ; Influenza, Human/epidemiology/history/virology ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sialic Acids/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-01-13
    Description: During genetic recombination and the recombinational repair of chromosome breaks, DNA molecules become linked at points of strand exchange. Branch migration and resolution of these crossovers, or Holliday junctions (HJs), complete the recombination process. Here, we show that extracts from cells carrying mutations in the recombination/repair genes RAD51C or XRCC3 have reduced levels of HJ resolvase activity. Moreover, depletion of RAD51C from fractionated human extracts caused a loss of branch migration and resolution activity, but these functions were restored by complementation with a variety of RAD51 paralog complexes containing RAD51C. We conclude that the RAD51 paralogs are involved in HJ processing in human cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yilun -- Masson, Jean-Yves -- Shah, Rajvee -- O'Regan, Paul -- West, Stephen C -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716019" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; CHO Cells ; Cell Line ; Cricetinae ; DNA Repair ; DNA, Cruciform/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/genetics/isolation & purification/*metabolism ; Electrophoresis, Polyacrylamide Gel ; Female ; HeLa Cells ; Holliday Junction Resolvases/*metabolism ; Humans ; Mutation ; Protein Structure, Tertiary ; Recombinant Proteins/metabolism ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-10-09
    Description: Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nioche, Pierre -- Berka, Vladimir -- Vipond, Julia -- Minton, Nigel -- Tsai, Ah-Lim -- Raman, C S -- AY343540/PHS HHS/ -- R01 AI054444/AI/NIAID NIH HHS/ -- R01 AI054444-05/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1550-3. Epub 2004 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Research Center and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472039" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Bacterial Proteins/chemistry/metabolism ; Biological Evolution ; Carrier Proteins/*chemistry/genetics/*metabolism ; Chemotaxis ; Chlamydomonas reinhardtii/chemistry/genetics/metabolism ; Cloning, Molecular ; Clostridium botulinum/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/genetics/growth & development ; Guanylate Cyclase ; Heme/chemistry/metabolism ; Hemeproteins/*chemistry/genetics/*metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Nitric Oxide/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protoporphyrins/analysis/metabolism ; Receptors, Cytoplasmic and Nuclear/chemistry/metabolism ; Sequence Alignment ; Signal Transduction ; Static Electricity ; Thermoanaerobacter/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-03-27
    Description: Images of entire cells are preceding atomic structures of the separate molecular machines that they contain. The resulting gap in knowledge can be partly bridged by protein-protein interactions, bioinformatics, and electron microscopy. Here we use interactions of known three-dimensional structure to model a large set of yeast complexes, which we also screen by electron microscopy. For 54 of 102 complexes, we obtain at least partial models of interacting subunits. For 29, including the exosome, the chaperonin containing TCP-1, a 3'-messenger RNA degradation complex, and RNA polymerase II, the process suggests atomic details not easily seen by homology, involving the combination of two or more known structures. We also consider interactions between complexes (cross-talk) and use these to construct a structure-based network of molecular machines in the cell.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aloy, Patrick -- Bottcher, Bettina -- Ceulemans, Hugo -- Leutwein, Christina -- Mellwig, Christian -- Fischer, Susanne -- Gavin, Anne-Claude -- Bork, Peer -- Superti-Furga, Giulio -- Serrano, Luis -- Russell, Robert B -- New York, N.Y. -- Science. 2004 Mar 26;303(5666):2026-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Programme, 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044803" target="_blank"〉PubMed〈/a〉
    Keywords: Chaperonins/chemistry/metabolism ; Computational Biology ; Image Processing, Computer-Assisted ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Nuclear Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; *Protein Interaction Mapping ; Protein Structure, Tertiary ; RNA Polymerase II/chemistry/metabolism ; Ribonuclease P/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/*metabolism/ultrastructure ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-14
    Description: Malaria parasites secrete proteins across the vacuolar membrane into the erythrocyte, inducing modifications linked to disease and parasite survival. We identified an 11-amino acid signal required for the secretion of proteins from the Plasmodium falciparum vacuole to the human erythrocyte. Bioinformatics predicted a secretome of 〉320 proteins and conservation of the signal across parasite species. Functional studies indicated the predictive value of the signal and its role in targeting virulence proteins to the erythrocyte and implicated its recognition by a receptor/transporter. Erythrocyte modification by the parasite may involve plasmodial heat shock proteins and be vastly more complex than hitherto realized.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hiller, N Luisa -- Bhattacharjee, Souvik -- van Ooij, Christiaan -- Liolios, Konstantinos -- Harrison, Travis -- Lopez-Estrano, Carlos -- Haldar, Kasturi -- AI39071/AI/NIAID NIH HHS/ -- HL69630/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2004 Dec 10;306(5703):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591203" target="_blank"〉PubMed〈/a〉
    Keywords: *Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Computational Biology ; Cytosol/metabolism ; Erythrocytes/*metabolism/parasitology ; Genes, Protozoan ; Humans ; Malaria, Falciparum/parasitology ; Membrane Proteins/chemistry/metabolism ; Molecular Sequence Data ; Plasmodium falciparum/genetics/growth & development/*metabolism/*pathogenicity ; *Protein Sorting Signals ; Protein Structure, Tertiary ; Protein Transport ; Protozoan Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Transgenes ; Vacuoles/metabolism/parasitology ; Virulence Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-08-07
    Description: Plexins are cell surface receptors for semaphorin molecules, and their interaction governs cell adhesion and migration in a variety of tissues. We report that the Semaphorin 4D (Sema4D) receptor Plexin-B1 directly stimulates the intrinsic guanosine triphosphatase (GTPase) activity of R-Ras, a member of the Ras superfamily of small GTP-binding proteins that has been implicated in promoting cell adhesion and neurite outgrowth. This activity required the interaction of Plexin-B1 with Rnd1, a small GTP-binding protein of the Rho family. Down-regulation of R-Ras activity by the Plexin-B1-Rnd1 complex was essential for the Sema4D-induced growth cone collapse in hippocampal neurons. Thus, Plexin-B1 mediates Sema4D-induced repulsive axon guidance signaling by acting as a GTPase activating protein for R-Ras.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oinuma, Izumi -- Ishikawa, Yukio -- Katoh, Hironori -- Negishi, Manabu -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):862-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297673" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD ; Axons/physiology ; COS Cells ; Cells, Cultured ; Down-Regulation ; GTP Phosphohydrolases/*metabolism ; GTPase-Activating Proteins/chemistry/genetics/*metabolism ; Guanosine Triphosphate/metabolism ; Hippocampus/cytology ; Humans ; Membrane Glycoproteins/*metabolism/pharmacology ; Neurites/physiology ; Neurons/*metabolism ; PC12 Cells ; Protein Structure, Tertiary ; RNA, Small Interfering ; Rats ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; *Semaphorins ; Signal Transduction ; Transfection ; ras Proteins/*metabolism ; rho GTP-Binding Proteins/genetics/metabolism ; rhoA GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-11-20
    Description: Mobilization of fatty acids from triglyceride stores in adipose tissue requires lipolytic enzymes. Dysfunctional lipolysis affects energy homeostasis and may contribute to the pathogenesis of obesity and insulin resistance. Until now, hormone-sensitive lipase (HSL) was the only enzyme known to hydrolyze triglycerides in mammalian adipose tissue. Here, we report that a second enzyme, adipose triglyceride lipase (ATGL), catalyzes the initial step in triglyceride hydrolysis. It is interesting that ATGL contains a "patatin domain" common to plant acyl-hydrolases. ATGL is highly expressed in adipose tissue of mice and humans. It exhibits high substrate specificity for triacylglycerol and is associated with lipid droplets. Inhibition of ATGL markedly decreases total adipose acyl-hydrolase activity. Thus, ATGL and HSL coordinately catabolize stored triglycerides in adipose tissue of mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Robert -- Strauss, Juliane G -- Haemmerle, Guenter -- Schoiswohl, Gabriele -- Birner-Gruenberger, Ruth -- Riederer, Monika -- Lass, Achim -- Neuberger, Georg -- Eisenhaber, Frank -- Hermetter, Albin -- Zechner, Rudolf -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1383-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biosciences, University of Graz, Graz, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550674" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/enzymology/*metabolism ; Adipose Tissue/enzymology/*metabolism ; Adipose Tissue, Brown/enzymology/metabolism ; Amino Acid Sequence ; Animals ; COS Cells ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Cytoplasm/enzymology ; DNA, Complementary ; Diglycerides/metabolism ; Fatty Acids/metabolism ; Gene Silencing ; Glycerol/metabolism ; Humans ; Isoproterenol/pharmacology ; *Lipid Mobilization ; Lipolysis ; Lipoprotein Lipase/chemistry/genetics/immunology/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Structure, Tertiary ; RNA, Messenger/genetics/metabolism ; Sterol Esterase/genetics/*metabolism ; Substrate Specificity ; Transfection ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-04-17
    Description: Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra. We previously mapped a locus for a rare familial form of PD to chromosome 1p36 (PARK6). Here we show that mutations in PINK1 (PTEN-induced kinase 1) are associated with PARK6. We have identified two homozygous mutations affecting the PINK1 kinase domain in three consanguineous PARK6 families: a truncating nonsense mutation and a missense mutation at a highly conserved amino acid. Cell culture studies suggest that PINK1 is mitochondrially located and may exert a protective effect on the cell that is abrogated by the mutations, resulting in increased susceptibility to cellular stress. These data provide a direct molecular link between mitochondria and the pathogenesis of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valente, Enza Maria -- Abou-Sleiman, Patrick M -- Caputo, Viviana -- Muqit, Miratul M K -- Harvey, Kirsten -- Gispert, Suzana -- Ali, Zeeshan -- Del Turco, Domenico -- Bentivoglio, Anna Rita -- Healy, Daniel G -- Albanese, Alberto -- Nussbaum, Robert -- Gonzalez-Maldonado, Rafael -- Deller, Thomas -- Salvi, Sergio -- Cortelli, Pietro -- Gilks, William P -- Latchman, David S -- Harvey, Robert J -- Dallapiccola, Bruno -- Auburger, Georg -- Wood, Nicholas W -- G-4029/Parkinson's UK/United Kingdom -- GGP02089/Telethon/Italy -- New York, N.Y. -- Science. 2004 May 21;304(5674):1158-60. Epub 2004 Apr 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CSS IRCCS, Mendel Institute, viale Regina Margherita 261, 00198 Rome, Italy. e.valente@css-mendel.it〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15087508" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; COS Cells ; Cell Line, Tumor ; Codon, Nonsense ; Exons ; Humans ; Leupeptins/pharmacology ; Membrane Potentials ; Mitochondria/enzymology/*metabolism ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Neurons/metabolism/physiology ; Oxidative Stress ; Parkinson Disease/enzymology/*genetics/metabolism ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-08-07
    Description: Vesicle fusion involves vesicle tethering, docking, and membrane merger. We show that mitofusin, an integral mitochondrial membrane protein, is required on adjacent mitochondria to mediate fusion, which indicates that mitofusin complexes act in trans (that is, between adjacent mitochondria). A heptad repeat region (HR2) mediates mitofusin oligomerization by assembling a dimeric, antiparallel coiled coil. The transmembrane segments are located at opposite ends of the 95 angstrom coiled coil and provide a mechanism for organelle tethering. Consistent with this proposal, truncated mitofusin, in an HR2-dependent manner, causes mitochondria to become apposed with a uniform gap. Our results suggest that HR2 functions as a mitochondrial tether before fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koshiba, Takumi -- Detmer, Scott A -- Kaiser, Jens T -- Chen, Hsiuchen -- McCaffery, J Michael -- Chan, David C -- R01 GM62967/GM/NIGMS NIH HHS/ -- S10 RR019409-01/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):858-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, 1200 East California Boulevard, MC114-96, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297672" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Crystallography, X-Ray ; Dimerization ; GTP Phosphohydrolases/*chemistry/*metabolism ; Humans ; Hybrid Cells ; Hydrophobic and Hydrophilic Interactions ; Intracellular Membranes/physiology/ultrastructure ; Membrane Fusion ; Mice ; Mitochondria/*metabolism/ultrastructure ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-01-06
    Description: The crystal structure of biotin synthase from Escherichia coli in complex with S-adenosyl-L-methionine and dethiobiotin has been determined to 3.4 angstrom resolution. This structure addresses how "AdoMet radical" or "radical SAM" enzymes use Fe4S4 clusters and S-adenosyl-L-methionine to generate organic radicals. Biotin synthase catalyzes the radical-mediated insertion of sulfur into dethiobiotin to form biotin. The structure places the substrates between the Fe4S4 cluster, essential for radical generation, and the Fe2S2 cluster, postulated to be the source of sulfur, with both clusters in unprecedented coordination environments.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456065/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456065/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berkovitch, Frederick -- Nicolet, Yvain -- Wan, Jason T -- Jarrett, Joseph T -- Drennan, Catherine L -- NSLS X25/NS/NINDS NIH HHS/ -- R01 GM059175/GM/NIGMS NIH HHS/ -- R01-GM59175/GM/NIGMS NIH HHS/ -- R01-GM65337/GM/NIGMS NIH HHS/ -- T32-GM07229/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 2;303(5654):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14704425" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Biotin/*analogs & derivatives/*chemistry/metabolism ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Escherichia coli/*enzymology ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrogen/chemistry ; Hydrogen Bonding ; Iron/chemistry ; Ligands ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; S-Adenosylmethionine/*chemistry/metabolism ; Sulfur/chemistry ; Sulfurtransferases/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉von Hippel, Peter H -- GM-15792/GM/NIGMS NIH HHS/ -- GM-29158/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):350-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, OR 97403, USA. petevh@molbio.uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256661" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; DNA, Bacterial/*chemistry/*metabolism ; Diffusion ; Dimerization ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; *Gene Expression Regulation, Bacterial ; Hydrogen Bonding ; Kinetics ; Lac Operon ; Lac Repressors ; Models, Genetic ; Models, Molecular ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Static Electricity ; Thermodynamics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-09-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sontheimer, Erik J -- Carthew, Richard W -- R01 GM068743/GM/NIGMS NIH HHS/ -- R01 GM077581/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1409-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA. erik@northwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353786" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeal Proteins/*chemistry ; Argonaute Proteins ; Catalytic Domain ; Crystallography, X-Ray ; Embryonic and Fetal Development ; Eukaryotic Initiation Factor-2 ; Humans ; Mice ; MicroRNAs/metabolism ; Peptide Initiation Factors/chemistry/genetics/*metabolism ; Point Mutation ; Protein Structure, Tertiary ; Pyrococcus furiosus/chemistry ; *RNA Interference ; RNA, Double-Stranded/metabolism ; RNA, Messenger/metabolism ; RNA, Small Interfering/metabolism ; RNA-Induced Silencing Complex/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-06-12
    Description: A tight coupling between adenosine triphosphate (ATP) hydrolysis and vectorial ion transport has to be maintained by ATP-consuming ion pumps. We report two crystal structures of Ca2+-bound sarco(endo)plasmic reticulum Ca2+-adenosine triphosphatase (SERCA) at 2.6 and 2.9 angstrom resolution in complex with (i) a nonhydrolyzable ATP analog [adenosine (beta-gamma methylene)-triphosphate] and (ii) adenosine diphosphate plus aluminum fluoride. SERCA reacts with ATP by an associative mechanism mediated by two Mg2+ ions to form an aspartyl-phosphorylated intermediate state (Ca2-E1 approximately P). The conformational changes that accompany the reaction with ATP pull the transmembrane helices 1 and 2 and close a cytosolic entrance for Ca2+, thereby preventing backflow before Ca2+ is released on the other side of the membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sorensen, Thomas Lykke-Moller -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Jun 11;304(5677):1672-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15192230" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/*analogs & derivatives/*metabolism ; Aluminum Compounds/metabolism ; Animals ; Binding Sites ; Calcium/*metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Crystallization ; Crystallography, X-Ray ; Cytosol/metabolism ; Fluorides/metabolism ; Models, Molecular ; Muscle Fibers, Fast-Twitch/*enzymology ; Phosphorylation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minna, John D -- Gazdar, Adi F -- Sprang, Stephen R -- Herz, Joachim -- P50CA70907/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1458-61.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. john.minna@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178790" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Substitution ; Antineoplastic Agents/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/therapeutic use ; Epidermal Growth Factor/metabolism ; *Genes, erbB-1 ; Humans ; Japan ; Ligands ; Lung Neoplasms/*drug therapy/*genetics/metabolism ; *Mutation ; Phosphorylation ; Protein Structure, Tertiary ; Quinazolines/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Smoking ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-10-09
    Description: Very rare cases of human T cell acute lymphoblastic leukemia (T-ALL) harbor chromosomal translocations that involve NOTCH1, a gene encoding a transmembrane receptor that regulates normal T cell development. Here, we report that more than 50% of human T-ALLs, including tumors from all major molecular oncogenic subtypes, have activating mutations that involve the extracellular heterodimerization domain and/or the C-terminal PEST domain of NOTCH1. These findings greatly expand the role of activated NOTCH1 in the molecular pathogenesis of human T-ALL and provide a strong rationale for targeted therapies that interfere with NOTCH signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weng, Andrew P -- Ferrando, Adolfo A -- Lee, Woojoong -- Morris, John P 4th -- Silverman, Lewis B -- Sanchez-Irizarry, Cheryll -- Blacklow, Stephen C -- Look, A Thomas -- Aster, Jon C -- CA109901/CA/NCI NIH HHS/ -- CA21765/CA/NCI NIH HHS/ -- CA68484/CA/NCI NIH HHS/ -- CA82308/CA/NCI NIH HHS/ -- CA94233/CA/NCI NIH HHS/ -- CA98093/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 8;306(5694):269-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472075" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Alleles ; Amino Acid Sequence ; Amyloid Precursor Protein Secretases ; Aspartic Acid Endopeptidases ; Cell Cycle ; Cell Line, Tumor ; Child ; Dimerization ; Endopeptidases/metabolism ; Frameshift Mutation ; Humans ; Leukemia-Lymphoma, Adult T-Cell/*genetics/metabolism ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Point Mutation ; Protease Inhibitors/pharmacology ; Protein Structure, Tertiary ; Receptor, Notch1 ; Receptors, Cell Surface/chemistry/*genetics/metabolism ; Sequence Deletion ; Signal Transduction ; Transcription Factors/chemistry/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-03-06
    Description: The motility of molecular motors and the dynamic instability of microtubules are key dynamic processes for mitotic spindle assembly and function. We report here that one of the mitotic kinesins that localizes to chromosomes, Xklp1 from Xenopus laevis, could inhibit microtubule growth and shrinkage. This effect appeared to be mediated by a structural change in the microtubule lattice. We also found that Xklp1 could act as a fast, nonprocessive, plus end-directed molecular motor. The integration of the two properties, motility and inhibition of microtubule dynamics, in one molecule emphasizes the versatile properties of kinesin family members.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bringmann, Henrik -- Skiniotis, Georgios -- Spilker, Annina -- Kandels-Lewis, Stefanie -- Vernos, Isabelle -- Surrey, Thomas -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1519-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrabetae 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001780" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism/pharmacology ; Animals ; Centrosome/metabolism ; Chromosomes/metabolism ; Cryoelectron Microscopy ; Dimerization ; Kinetics ; Microtubule-Associated Proteins/chemistry/genetics/*metabolism ; Microtubules/drug effects/metabolism/*physiology/ultrastructure ; Molecular Motor Proteins/*metabolism ; Paclitaxel/pharmacology ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Tubulin/metabolism ; Xenopus Proteins/chemistry/genetics/*metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-10-23
    Description: In mammalian cells, repair of DNA double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ) is critical for genome stability. Although the end-bridging and ligation steps of NHEJ have been reconstituted in vitro, little is known about the end-processing reactions that occur before ligation. Recently, functionally homologous end-bridging and ligation activities have been identified in prokarya. Consistent with its homology to polymerases and nucleases, we demonstrate that DNA ligase D from Mycobacterium tuberculosis (Mt-Lig) possesses a unique variety of nucleotidyl transferase activities, including gap-filling polymerase, terminal transferase, and primase, and is also a 3' to 5' exonuclease. These enzyme activities allow the Mt-Ku and Mt-Lig proteins to join incompatible DSB ends in vitro, as well as to reconstitute NHEJ in vivo in yeast. These results demonstrate that prokaryotic Ku and ligase form a bona fide NHEJ system that encodes all the recognition, processing, and ligation activities required for DSB repair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Della, Marina -- Palmbos, Phillip L -- Tseng, Hui-Min -- Tonkin, Louise M -- Daley, James M -- Topper, Leana M -- Pitcher, Robert S -- Tomkinson, Alan E -- Wilson, Thomas E -- Doherty, Aidan J -- R01 CA102563/CA/NCI NIH HHS/ -- R01 CA102563-01A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Oct 22;306(5696):683-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research, University of Cambridge, Department of Haematology, Hills Road, Cambridge CB2 2XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15499016" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/*metabolism ; DNA/*metabolism ; DNA Damage ; DNA Ligases/chemistry/genetics/*metabolism ; DNA Nucleotidyltransferases/chemistry/metabolism ; DNA Primase/chemistry/metabolism ; *DNA Repair ; DNA-Directed DNA Polymerase/chemistry/metabolism ; Exonucleases/chemistry/metabolism ; Mutation ; Mycobacterium tuberculosis/genetics/*metabolism ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2004-02-14
    Description: Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria (rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3, a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required for both nodulation and mycorrhizal infection, has high sequence similarity to genes encoding calcium and calmodulin-dependent protein kinases (CCaMKs). This indicates that calcium spiking is likely an essential component of the signaling cascade leading to nodule development and mycorrhizal infection, and sheds light on the biological role of plant CCaMKs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Julien -- Bres, Cecile -- Geurts, Rene -- Chalhoub, Boulos -- Kulikova, Olga -- Duc, Gerard -- Journet, Etienne-Pascal -- Ane, Jean-Michel -- Lauber, Emmanuelle -- Bisseling, Ton -- Denarie, Jean -- Rosenberg, Charles -- Debelle, Frederic -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1361-4. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire des Interactions Plantes-Microorganismes INRA-CNRS, BP27, 31326 Castanet-Tolosan Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963335" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/chemistry/genetics/*metabolism ; Calmodulin/metabolism ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; EF Hand Motifs ; Expressed Sequence Tags ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/metabolism ; Medicago/*enzymology/genetics/microbiology ; Molecular Sequence Data ; Mutation ; Mycorrhizae/*physiology ; Peas/*enzymology/genetics/microbiology ; Plant Roots/enzymology/microbiology ; Protein Structure, Tertiary ; Rhizobium/genetics ; Sinorhizobium meliloti/*physiology ; *Symbiosis ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2004-02-14
    Description: The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bushnell, David A -- Westover, Kenneth D -- Davis, Ralph E -- Kornberg, Roger D -- AI21144/AI/NIAID NIH HHS/ -- GM49985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 13;303(5660):983-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963322" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Hybridization ; Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA/chemistry/metabolism ; RNA Polymerase II/*chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; TATA Box ; TATA-Box Binding Protein/chemistry/metabolism ; Templates, Genetic ; Transcription Factor TFIIB/*chemistry/metabolism ; Transcription Factors, TFII/chemistry/metabolism ; *Transcription, Genetic ; Zinc/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-06-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woods, C Geoffrey -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1455-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Medicine Unit, School of Medicine, University of Leeds, LS9 7TF, UK. msjcgw@leeds.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism/*physiology ; Cell Adhesion Molecules/metabolism ; Down-Regulation ; Gene Expression Profiling ; Gene Expression Regulation ; Glycoproteins/metabolism ; Humans ; Mice ; Morphogenesis ; Mutation ; Nerve Growth Factors/metabolism ; Nerve Tissue Proteins/metabolism ; Neural Pathways ; Ophthalmoplegia/*genetics/pathology/physiopathology ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism ; Receptors, Immunologic/chemistry/*genetics/*metabolism ; Rhombencephalon/growth & development/metabolism/*pathology ; Scoliosis/*genetics/pathology/physiopathology ; Syndrome ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2004-08-03
    Description: The motor protein kinesin moves along microtubules, driven by adenosine triphosphate (ATP) hydrolysis. However, it remains unclear how kinesin converts the chemical energy into mechanical movement. We report crystal structures of monomeric kinesin KIF1A with three transition-state analogs: adenylyl imidodiphosphate (AMP-PNP), adenosine diphosphate (ADP)-vanadate, and ADP-AlFx (aluminofluoride complexes). These structures, together with known structures of the ADP-bound state and the adenylyl-(beta,gamma-methylene) diphosphate (AMP-PCP)-bound state, show that kinesin uses two microtubule-binding loops in an alternating manner to change its interaction with microtubules during the ATP hydrolysis cycle; loop L11 is extended in the AMP-PNP structure, whereas loop L12 is extended in the ADP structure. ADP-vanadate displays an intermediate structure in which a conformational change in two switch regions causes both loops to be raised from the microtubule, thus actively detaching kinesin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nitta, Ryo -- Kikkawa, Masahide -- Okada, Yasushi -- Hirokawa, Nobutaka -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):678-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15286375" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Adenylyl Imidodiphosphate/metabolism ; Aluminum/metabolism ; Animals ; Binding Sites ; Crystallography, X-Ray ; Fluorides/metabolism ; Hydrogen Bonding ; Kinesin/*chemistry/*metabolism ; Mice ; Microtubules/*metabolism ; Models, Molecular ; Nerve Tissue Proteins/*chemistry/*metabolism ; Phosphates/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Vanadates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2004-03-16
    Description: Plants with a winter growth habit flower earlier when exposed for several weeks to cold temperatures, a process called vernalization. We report here the positional cloning of the wheat vernalization gene VRN2, a dominant repressor of flowering that is down-regulated by vernalization. Loss of function of VRN2, whether by natural mutations or deletions, resulted in spring lines, which do not require vernalization to flower. Reduction of the RNA level of VRN2 by RNA interference accelerated the flowering time of transgenic winter-wheat plants by more than a month.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737501/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737501/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Liuling -- Loukoianov, Artem -- Blechl, Ann -- Tranquilli, Gabriela -- Ramakrishna, Wusirika -- SanMiguel, Phillip -- Bennetzen, Jeffrey L -- Echenique, Viviana -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2004 Mar 12;303(5664):1640-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Agronomy and Range Science, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15016992" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/genetics/growth & development ; Base Sequence ; Chromosome Mapping ; Cloning, Molecular ; *Cold Temperature ; Down-Regulation ; Epistasis, Genetic ; Evolution, Molecular ; Flowers/*growth & development ; Gene Deletion ; *Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Variation ; Hordeum/genetics ; Molecular Sequence Data ; Mutation ; Plant Proteins/chemistry/genetics/physiology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Interference ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Seasons ; Transcription, Genetic ; Triticum/*genetics/*growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mackinnon, Roderick -- New York, N.Y. -- Science. 2004 Nov 19;306(5700):1304-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, New York, NY 10021, USA. mackinn@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15550651" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry ; Crystallography, X-Ray ; *Ion Channel Gating ; *Lipid Bilayers ; Membrane Lipids/*chemistry ; Models, Molecular ; Potassium Channels, Voltage-Gated/*chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2004-02-28
    Description: We determined the minimal portion of Escherichia coli RNA polymerase (RNAP) holoenzyme able to accomplish promoter melting, the crucial step in transcription initiation that provides RNAP access to the template strand. Upon duplex DNA binding, the N terminus of the beta' subunit (amino acids 1 to 314) and amino acids 94 to 507 of the sigma subunit, together comprising less than one-fifth of RNAP holoenzyme, were able to melt an extended -10 promoter in a reaction remarkably similar to that of authentic holoenzyme. Our results support the model that capture of nontemplate bases extruded from the DNA helix underlies the melting process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Brian A -- Gruber, Tanja M -- Gross, Carol A -- GM 57755/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1382-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Stomatology and Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14988563" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Bacterial/chemistry/genetics/*metabolism ; DNA, Superhelical/chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/*metabolism ; Escherichia coli/*enzymology/*genetics ; Holoenzymes/chemistry/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Protein Conformation ; Protein Structure, Tertiary ; Sigma Factor/chemistry/*metabolism ; Templates, Genetic ; Transcription, Genetic ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2004-05-15
    Description: Dynamic changes in chromatin structure, induced by posttranslational modification of histones, play a fundamental role in regulating eukaryotic transcription. Here we report that histone H2B is phosphorylated at evolutionarily conserved Ser33 (H2B-S33) by the carboxyl-terminal kinase domain (CTK) of the Drosophila TFIID subunit TAF1. Phosphorylation of H2B-S33 at the promoter of the cell cycle regulatory gene string and the segmentation gene giant coincides with transcriptional activation. Elimination of TAF1 CTK activity in Drosophila cells and embryos reduces transcriptional activation and phosphorylation of H2B-S33. These data reveal that H2B-S33 is a physiological substrate for the TAF1 CTK and that H2B-S33 phosphorylation is essential for transcriptional activation events that promote cell cycle progression and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maile, Tobias -- Kwoczynski, Simona -- Katzenberger, Rebeccah J -- Wassarman, David A -- Sauer, Frank -- GM066204-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 14;304(5673):1010-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of California-Riverside, Riverside, CA 95121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15143281" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Cycle ; Cell Cycle Proteins ; DNA-Binding Proteins/genetics ; Drosophila/embryology/*genetics/metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Embryo, Nonmammalian/physiology ; Genes, Insect ; Histone Acetyltransferases ; Histones/chemistry/*metabolism ; Homeodomain Proteins/genetics ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; Protein Tyrosine Phosphatases/genetics ; RNA Interference ; Recombinant Proteins/chemistry/metabolism ; Repressor Proteins/genetics ; TATA-Binding Protein Associated Factors ; Transcription Factor TFIID/chemistry/genetics/*metabolism ; Transcription Factors ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-03-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hilgemann, Donald W -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):223-4. Epub 2004 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Texas Southwestern, Dallas, TX 75235, USA. donald.hilgemann@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Eicosanoic Acids/*metabolism/pharmacology ; Hydrophobic and Hydrophilic Interactions ; Lipid Bilayers ; Membrane Lipids/*metabolism ; Micelles ; Models, Biological ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Signal Transduction ; Sodium-Calcium Exchanger/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2004-07-13
    Description: The freshwater snail Biomphalaria glabrata possesses a diverse family of fibrinogen-related proteins (FREPs), hemolymph polypeptides that consist of one or two amino-terminal immunoglobulin superfamily (IgSF) domains and a carboxyl-terminal fibrinogen domain. Here, we show that the IgSF1 domain of the FREP3 subfamily is diversified at the genomic level at higher rates than those recorded for control genes. All sequence variants are derived from a small set of nine source sequences by point mutation and recombinatorial processes. Diverse FREP3 transcripts are also produced. We hypothesize a mechanism present in snails that is capable of diversifying molecules involved in internal defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Si-Ming -- Adema, Coen M -- Kepler, Thomas B -- Loker, Eric S -- R01AI24340/AI/NIAID NIH HHS/ -- R01AI52363/AI/NIAID NIH HHS/ -- RR-1P20RR18754/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):251-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247481" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Biomphalaria/embryology/*genetics/immunology ; Blotting, Southern ; Computational Biology ; DNA, Complementary ; Disorders of Sex Development ; Genes, Immunoglobulin ; *Genetic Variation ; Hemocytes ; Immunoglobulins/chemistry/*genetics ; Molecular Sequence Data ; Point Mutation ; Polymerase Chain Reaction ; Protein Structure, Tertiary ; Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2004-04-10
    Description: Apoptosis is triggered by activation of initiator caspases upon complex-mediated clustering of the inactive zymogen, as occurs in the caspase-9-activating apoptosome complex. Likewise, caspase-2, which is involved in stress-induced apoptosis, is recruited into a large protein complex, the molecular composition of which remains elusive. We show that activation of caspase-2 occurs in a complex that contains the death domain-containing protein PIDD, whose expression is induced by p53, and the adaptor protein RAIDD. Increased PIDD expression resulted in spontaneous activation of caspase-2 and sensitization to apoptosis by genotoxic stimuli. Because PIDD functions in p53-mediated apoptosis, the complex assembled by PIDD and caspase-2 is likely to regulate apoptosis induced by genotoxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tinel, Antoine -- Tschopp, Jurg -- New York, N.Y. -- Science. 2004 May 7;304(5672):843-6. Epub 2004 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15073321" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; *Apoptosis ; CRADD Signaling Adaptor Protein ; Carrier Proteins/chemistry/*metabolism ; Caspase 2 ; Caspases/*metabolism ; Cell Line ; Cell Line, Tumor ; Cloning, Molecular ; *DNA Damage ; Death Domain Receptor Signaling Adaptor Proteins ; Doxorubicin/pharmacology ; Enzyme Activation ; Etoposide/pharmacology ; Humans ; Protein Structure, Tertiary ; Proteins/chemistry/metabolism ; RNA, Small Interfering ; Signal Transduction ; Transfection ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2004-03-06
    Description: Activity-dependent plasticity in the brain arises in part from changes in the number of synaptic AMPA receptors. Synaptic trafficking of AMPA receptors is controlled by stargazin and homologous transmembrane AMPA receptor regulatory proteins (TARPs). We found that TARPs were stable at the plasma membrane, whereas AMPA receptors were internalized in a glutamate-regulated manner. Interaction with AMPA receptors involved both extra- and intracellular determinants of TARPs. Upon binding to glutamate, AMPA receptors detached from TARPs. This did not require ion flux or intracellular second messengers. This allosteric mechanism for AMPA receptor dissociation from TARPs may participate in glutamate-mediated internalization of receptors in synaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomita, Susumu -- Fukata, Masaki -- Nicoll, Roger A -- Bredt, David S -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1508-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-2140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001777" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology ; Animals ; Calcium Channels/analysis/*metabolism ; Cell Line ; Cells, Cultured ; Cerebral Cortex/chemistry/cytology ; Endocytosis ; Glutamic Acid/metabolism/pharmacology ; Humans ; Neuronal Plasticity ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/agonists/antagonists & inhibitors/*metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Recombinant Fusion Proteins/metabolism ; Synapses/*metabolism ; Xenopus laevis ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-07-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhuang, Xiaowei -- New York, N.Y. -- Science. 2004 Jul 9;305(5681):188-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA. zhuang@chemistry.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15247463" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Chromosomal Proteins, Non-Histone/chemistry/*metabolism ; DNA, Bacterial/*chemistry/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Dimerization ; Escherichia coli/genetics ; Escherichia coli Proteins/chemistry/*metabolism ; Lasers ; Microspheres ; Multiprotein Complexes ; *Nucleic Acid Conformation ; Protein Structure, Tertiary ; Protein Subunits ; Repressor Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2004-03-20
    Description: Voltage-gated potassium (Kv) channels control action potential repolarization, interspike membrane potential, and action potential frequency in excitable cells. It is thought that the combinatorial association between distinct alpha and beta subunits determines whether Kv channels function as non-inactivating delayed rectifiers or as rapidly inactivating A-type channels. We show that membrane lipids can convert A-type channels into delayed rectifiers and vice versa. Phosphoinositides remove N-type inactivation from A-type channels by immobilizing the inactivation domains. Conversely, arachidonic acid and its amide anandamide endow delayed rectifiers with rapid voltage-dependent inactivation. The bidirectional control of Kv channel gating by lipids may provide a mechanism for the dynamic regulation of electrical signaling in the nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oliver, Dominik -- Lien, Cheng-Chang -- Soom, Malle -- Baukrowitz, Thomas -- Jonas, Peter -- Fakler, Bernd -- New York, N.Y. -- Science. 2004 Apr 9;304(5668):265-70. Epub 2004 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Physiology, University of Freiburg, Hermann-Herder-Strabetae 7, 79104 Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonic Acids/*metabolism/pharmacology ; Brain/physiology ; Cations ; Cell Membrane/metabolism ; Delayed Rectifier Potassium Channels ; Eicosanoic Acids/*metabolism/pharmacology ; Endocannabinoids ; Interneurons/physiology ; Ion Channel Gating/drug effects ; Kinetics ; Membrane Lipids/*metabolism/pharmacology ; Oocytes ; Patch-Clamp Techniques ; Permeability ; Phosphatidylinositol 4,5-Diphosphate/*metabolism/pharmacology ; Polylysine/pharmacology ; Polyunsaturated Alkamides ; Potassium Channels/chemistry/*metabolism/physiology ; Potassium Channels, Voltage-Gated/antagonists & ; inhibitors/chemistry/*metabolism/physiology ; Protein Structure, Tertiary ; Protein Subunits ; Recombinant Proteins/chemistry/metabolism ; Signal Transduction ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2004-02-21
    Description: Mycobacteria have low-permeability outer membranes that render them resistant to most antibiotics. Hydrophilic nutrients can enter by way of transmembrane-channel proteins called porins. An x-ray analysis of the main porin from Mycobacterium smegmatis, MspA, revealed a homooctameric goblet-like conformation with a single central channel. This is the first structure of a mycobacterial outer-membrane protein. No structure-related protein was found in the Protein Data Bank. MspA contains two consecutive beta barrels with nonpolar outer surfaces that form a ribbon around the porin, which is too narrow to fit the thickness of the mycobacterial outer membrane in contemporary models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, Michael -- Niederweis, Michael -- Schulz, Georg E -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1189-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Organische Chemie und Biochemie, Albert-Ludwigs-Universitat, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arginine/chemistry ; Cell Membrane Permeability ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Electric Conductivity ; Escherichia coli/genetics ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Mycobacterium smegmatis/*chemistry/metabolism ; Porins/*chemistry/genetics/metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2004-05-01
    Description: Receptor tyrosine kinase genes were sequenced in non-small cell lung cancer (NSCLC) and matched normal tissue. Somatic mutations of the epidermal growth factor receptor gene EGFR were found in 15of 58 unselected tumors from Japan and 1 of 61 from the United States. Treatment with the EGFR kinase inhibitor gefitinib (Iressa) causes tumor regression in some patients with NSCLC, more frequently in Japan. EGFR mutations were found in additional lung cancer samples from U.S. patients who responded to gefitinib therapy and in a lung adenocarcinoma cell line that was hypersensitive to growth inhibition by gefitinib, but not in gefitinib-insensitive tumors or cell lines. These results suggest that EGFR mutations may predict sensitivity to gefitinib.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paez, J Guillermo -- Janne, Pasi A -- Lee, Jeffrey C -- Tracy, Sean -- Greulich, Heidi -- Gabriel, Stacey -- Herman, Paula -- Kaye, Frederic J -- Lindeman, Neal -- Boggon, Titus J -- Naoki, Katsuhiko -- Sasaki, Hidefumi -- Fujii, Yoshitaka -- Eck, Michael J -- Sellers, William R -- Johnson, Bruce E -- Meyerson, Matthew -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1497-500. Epub 2004 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Medical Oncology and Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15118125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Antineoplastic Agents/pharmacology/therapeutic use ; Carcinoma, Non-Small-Cell Lung/drug therapy/*genetics/metabolism ; Cell Line, Tumor ; Controlled Clinical Trials as Topic ; Enzyme Inhibitors/pharmacology/therapeutic use ; Female ; *Genes, erbB-1 ; Humans ; Japan ; Lung Neoplasms/drug therapy/*genetics/metabolism ; Male ; Molecular Sequence Data ; *Mutation ; Mutation, Missense ; Phosphorylation ; Protein Conformation ; Protein Structure, Tertiary ; Quinazolines/pharmacology/*therapeutic use ; Receptor, Epidermal Growth Factor/*antagonists & ; inhibitors/chemistry/genetics/metabolism ; Sequence Deletion ; Treatment Outcome ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2004-03-27
    Description: We investigated the effect of synaptotagmin I on membrane fusion mediated by neuronal SNARE proteins, SNAP-25, syntaxin, and synaptobrevin, which were reconstituted into vesicles. In the presence of Ca2+, the cytoplasmic domain of synaptotagmin I (syt) strongly stimulated membrane fusion when synaptobrevin densities were similar to those found in native synaptic vesicles. The Ca2+ dependence of syt-stimulated fusion was modulated by changes in lipid composition of the vesicles and by a truncation that mimics cleavage of SNAP-25 by botulinum neurotoxin A. Stimulation of fusion was abolished by disrupting the Ca2+-binding activity, or by severing the tandem C2 domains, of syt. Thus, syt and SNAREs are likely to represent the minimal protein complement for Ca2+-triggered exocytosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tucker, Ward C -- Weber, Thomas -- Chapman, Edwin R -- GM 56827/GM/NIGMS NIH HHS/ -- GM 66313/GM/NIGMS NIH HHS/ -- MH 61876/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2004 Apr 16;304(5669):435-8. Epub 2004 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15044754" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/*metabolism ; *Calcium-Binding Proteins ; Exocytosis ; Fluorescence Resonance Energy Transfer ; Lipid Bilayers ; Lipids/analysis ; Liposomes/chemistry/metabolism ; *Membrane Fusion ; Membrane Glycoproteins/chemistry/*metabolism ; Membrane Proteins/chemistry/*metabolism ; Mice ; Mutation ; Nerve Tissue Proteins/chemistry/*metabolism ; Protein Structure, Tertiary ; Qa-SNARE Proteins ; R-SNARE Proteins ; Rats ; Synaptic Vesicles/chemistry/metabolism ; Synaptosomal-Associated Protein 25 ; Synaptotagmin I ; Synaptotagmins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2004-12-25
    Description: The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwak, Su-Hwan -- Shen, Ronglai -- Schiefelbein, John -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1111-3. Epub 2004 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618487" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/cytology/*enzymology/*genetics/growth & development ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Cell Division ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Hydrophobic and Hydrophilic Interactions ; In Situ Hybridization ; Molecular Sequence Data ; Mutation ; Plant Epidermis/cytology/enzymology/growth & development ; Plant Roots/cytology/enzymology/growth & development ; Plants, Genetically Modified ; Protein Sorting Signals ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Receptor Protein-Tyrosine Kinases/chemistry/*genetics/*metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2004-01-17
    Description: Two structurally homologous guanosine triphosphatase (GTPase) domains interact directly during signal recognition particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The 2.05 angstrom structure of a complex of the NG GTPase domains of Ffh and FtsY reveals a remarkably symmetric heterodimer sequestering a composite active site that contains two bound nucleotides. The structure explains the coordinate activation of the two GTPases. Conformational changes coupled to formation of their extensive interface may function allosterically to signal formation of the targeting complex to the signal-sequence binding site and the translocon. We propose that the complex represents a molecular "latch" and that its disengagement is regulated by completion of assembly of the GTPase active site.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Focia, Pamela J -- Shepotinovskaya, Irina V -- Seidler, James A -- Freymann, Douglas M -- GM58500/GM/NIGMS NIH HHS/ -- R01 GM058500/GM/NIGMS NIH HHS/ -- RR07707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):373-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726591" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Dimerization ; Guanosine Triphosphate/*analogs & derivatives/metabolism ; Heterotrimeric GTP-Binding Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Signal Recognition Particle/*chemistry/metabolism ; Thermus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2004-05-25
    Description: Resistin, founding member of the resistin-like molecule (RELM) hormone family, is secreted selectively from adipocytes and induces liver-specific antagonism of insulin action, thus providing a potential molecular link between obesity and diabetes. Crystal structures of resistin and RELMbeta reveal an unusual multimeric structure. Each protomer comprises a carboxy-terminal disulfide-rich beta-sandwich "head" domain and an amino-terminal alpha-helical "tail" segment. The alpha-helical segments associate to form three-stranded coiled coils, and surface-exposed interchain disulfide linkages mediate the formation of tail-to-tail hexamers. Analysis of serum samples shows that resistin circulates in two distinct assembly states, likely corresponding to hexamers and trimers. Infusion of a resistin mutant, lacking the intertrimer disulfide bonds, in pancreatic-insulin clamp studies reveals substantially more potent effects on hepatic insulin sensitivity than those observed with wild-type resistin. This result suggests that processing of the intertrimer disulfide bonds may reflect an obligatory step toward activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Patel, Saurabh D -- Rajala, Michael W -- Rossetti, Luciano -- Scherer, Philipp E -- Shapiro, Lawrence -- New York, N.Y. -- Science. 2004 May 21;304(5674):1154-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155948" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Adiponectin ; Amino Acid Sequence ; Animals ; Cell Line ; Crystallization ; Crystallography, X-Ray ; Culture Media, Conditioned ; Disulfides/*chemistry ; Glucose/metabolism ; Hormones, Ectopic/*chemistry/genetics/*metabolism/pharmacology ; Humans ; Insulin/administration & dosage/blood ; Insulin Resistance ; *Intercellular Signaling Peptides and Proteins ; Liver/metabolism ; Mice ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/chemistry/metabolism ; Resistin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2004-10-30
    Description: Thiamine diphosphate (ThDP) is used as a cofactor in many key metabolic enzymes. We present evidence that the ThDPs in the two active sites of the E1 (EC 1.2.4.1) component of the pyruvate dehydrogenase complex communicate over a distance of 20 angstroms by reversibly shuttling a proton through an acidic tunnel in the protein. This "proton wire" permits the co-factors to serve reciprocally as general acid/base in catalysis and to switch the conformation of crucial active-site peptide loops. This synchronizes the progression of chemical events and can account for the oligomeric organization, conformational asymmetry, and "ping-pong" kinetic properties of E1 and other thiamine-dependent enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frank, Rene A W -- Titman, Christopher M -- Pratap, J Venkatesh -- Luisi, Ben F -- Perham, Richard N -- New York, N.Y. -- Science. 2004 Oct 29;306(5697):872-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15514159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Dihydrolipoyllysine-Residue Acetyltransferase ; Geobacillus stearothermophilus/*enzymology ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Kinetics ; Models, Molecular ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Protons ; Pyruvate Dehydrogenase (Lipoamide)/*chemistry/genetics/*metabolism ; Pyruvate Dehydrogenase Complex/*chemistry/*metabolism ; Pyruvic Acid/metabolism ; Thiamine Pyrophosphate/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2004-06-26
    Description: At the silent mating-type interval of fission yeast, the RNA interference (RNAi) machinery cooperates with cenH, a DNA element homologous to centromeric repeats, to initiate heterochromatin formation. However, in RNAi mutants, heterochromatin assembly can still occur at low efficiency. Here, we report that Atf1 and Pcr1, two ATF/CREB family proteins, act in a parallel mechanism to the RNAi pathway for heterochromatin nucleation. Deletion of atf1 or pcr1 alone has little effect on silencing at the mating-type region, but when combined with RNAi mutants, double mutants fail to nucleate heterochromatin assembly. Moreover, deletion of atf1 or pcr1 in combination with cenH deletion causes loss of silencing and heterochromatin formation. Furthermore, Atf1 and Pcr1 bind to the mating-type region and target histone H3 lysine-9 methylation and the Swi6 protein essential for heterochromatin assembly. These analyses link ATF/CREB family proteins, involved in cellular response to environmental stresses, to nucleation of constitutive heterochromatin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Songtao -- Noma, Ken-ichi -- Grewal, Shiv I S -- New York, N.Y. -- Science. 2004 Jun 25;304(5679):1971-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15218150" target="_blank"〉PubMed〈/a〉
    Keywords: Activating Transcription Factor 1 ; Activating Transcription Factors ; Binding Sites ; Chromosomal Proteins, Non-Histone/metabolism ; DNA, Fungal/metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Gene Deletion ; Genes, Fungal ; Genes, Mating Type, Fungal ; Heterochromatin/*metabolism ; Histones/metabolism ; Hydroxamic Acids/pharmacology ; Methylation ; Mutation ; Phosphoproteins/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; *RNA Interference ; Schizosaccharomyces/*genetics/*metabolism ; Schizosaccharomyces pombe Proteins/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2004-09-09
    Description: BCL-2 family proteins constitute a critical control point for the regulation of apoptosis. Protein interaction between BCL-2 members is a prominent mechanism of control and is mediated through the amphipathic alpha-helical BH3 segment, an essential death domain. We used a chemical strategy, termed hydrocarbon stapling, to generate BH3 peptides with improved pharmacologic properties. The stapled peptides, called "stabilized alpha-helix of BCL-2 domains" (SAHBs), proved to be helical, protease-resistant, and cell-permeable molecules that bound with increased affinity to multidomain BCL-2 member pockets. A SAHB of the BH3 domain from the BID protein specifically activated the apoptotic pathway to kill leukemia cells. In addition, SAHB effectively inhibited the growth of human leukemia xenografts in vivo. Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360987/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360987/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walensky, Loren D -- Kung, Andrew L -- Escher, Iris -- Malia, Thomas J -- Barbuto, Scott -- Wright, Renee D -- Wagner, Gerhard -- Verdine, Gregory L -- Korsmeyer, Stanley J -- K08 HL074049/HL/NHLBI NIH HHS/ -- K08HL074049/HL/NHLBI NIH HHS/ -- R37CA50239/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1466-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pediatric Hematology/Oncology and Children's Hospital Boston, Massachusetts, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15353804" target="_blank"〉PubMed〈/a〉
    Keywords: *Alkenes ; Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Bridged Compounds/chemical synthesis/chemistry/metabolism/*pharmacology ; Carrier Proteins/chemistry ; Cell Division/drug effects ; Cell Line, Tumor ; Cell Membrane/metabolism ; Cytochromes c/metabolism ; Dose-Response Relationship, Drug ; Endosomes/metabolism ; Humans ; Jurkat Cells ; Leukemia, Experimental/*drug therapy/pathology ; Leukemic Infiltration ; Mice ; Mice, SCID ; Mitochondria, Liver/drug effects/metabolism ; *Molecular Mimicry ; Neoplasm Transplantation ; Peptide Fragments/*chemistry ; Peptides/chemical synthesis/chemistry/metabolism/*pharmacology ; Protein Binding ; Protein Engineering ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/*chemistry ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2004-10-16
    Description: We have analyzed the local structure and dynamics of the prokaryotic voltage-dependent K+ channel (KvAP) at 0 millivolts, using site-directed spin labeling and electron paramagnetic resonance spectroscopy. We show that the S4 segment is located at the protein/lipid interface, with most of its charges protected from the lipid environment. Structurally, S4 is highly dynamic and is separated into two short helices by a flexible linker. Accessibility and dynamics data indicate that the S1 segment is surrounded by other parts of the protein. We propose that S1 is at the contact interface between the voltage-sensing and pore domains. These results establish the general principles of voltage-dependent channel structure in a biological membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuello, Luis G -- Cortes, D Marien -- Perozo, Eduardo -- New York, N.Y. -- Science. 2004 Oct 15;306(5695):491-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22906, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15486302" target="_blank"〉PubMed〈/a〉
    Keywords: Electron Spin Resonance Spectroscopy ; Hydrophobic and Hydrophilic Interactions ; *Lipid Bilayers ; Models, Molecular ; Oxygen ; Potassium Channels, Voltage-Gated/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2004-07-31
    Description: Argonaute proteins and small interfering RNAs (siRNAs) are the known signature components of the RNA interference effector complex RNA-induced silencing complex (RISC). However, the identity of "Slicer," the enzyme that cleaves the messenger RNA (mRNA) as directed by the siRNA, has not been resolved. Here, we report the crystal structure of the Argonaute protein from Pyrococcus furiosus at 2.25 angstrom resolution. The structure reveals a crescent-shaped base made up of the amino-terminal, middle, and PIWI domains. The Piwi Argonaute Zwille (PAZ) domain is held above the base by a "stalk"-like region. The PIWI domain (named for the protein piwi) is similar to ribonuclease H, with a conserved active site aspartate-aspartate-glutamate motif, strongly implicating Argonaute as "Slicer." The architecture of the molecule and the placement of the PAZ and PIWI domains define a groove for substrate binding and suggest a mechanism for siRNA-guided mRNA cleavage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, Ji-Joon -- Smith, Stephanie K -- Hannon, Gregory J -- Joshua-Tor, Leemor -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1434-7. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284453" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaeal Proteins/*chemistry/metabolism ; Binding Sites ; Catalytic Domain ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrococcus furiosus/*chemistry ; *RNA Interference ; RNA, Messenger/*metabolism ; RNA, Small Interfering/*metabolism ; RNA-Induced Silencing Complex/*metabolism ; Ribonuclease H/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2004-08-21
    Description: Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stanfield, Robyn L -- Dooley, Helen -- Flajnik, Martin F -- Wilson, Ian A -- GM38273/GM/NIGMS NIH HHS/ -- RR06603/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2004 Sep 17;305(5691):1770-3. Epub 2004 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15319492" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Complementarity Determining Regions/chemistry ; Crystallography, X-Ray ; Dimerization ; Drug Combinations ; Evolution, Molecular ; Genes, Immunoglobulin ; Immunoglobulin Heavy Chains/*chemistry/genetics/metabolism ; Immunoglobulin Variable Region/*chemistry/genetics/immunology/metabolism ; Immunoglobulins/*chemistry/genetics/immunology/metabolism ; Meglumine ; Models, Molecular ; Muramidase/*chemistry/immunology/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Receptors, Antigen/*chemistry/genetics/immunology/metabolism ; Sharks/*immunology ; Tetrahydropapaveroline/*analogs & derivatives
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohd-Sarip, Adone -- Verrijzer, C Peter -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1484-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Erasmus Medical Center, Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15567842" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromatin/*chemistry/metabolism/ultrastructure ; DNA/chemistry/*metabolism ; *Gene Expression Regulation ; *Gene Silencing ; Histones/*chemistry/metabolism ; Humans ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Multiprotein Complexes/chemistry/metabolism ; Nucleosomes/*chemistry/metabolism ; Polycomb-Group Proteins ; Protein Folding ; Protein Structure, Tertiary ; Repressor Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2004-07-17
    Description: Interaction of regulatory DNA binding proteins with their target sites is usually preceded by binding to nonspecific DNA. This speeds up the search for the target site by several orders of magnitude. We report the solution structure and dynamics of the complex of a dimeric lac repressor DNA binding domain with nonspecific DNA. The same set of residues can switch roles from a purely electrostatic interaction with the DNA backbone in the nonspecific complex to a highly specific binding mode with the base pairs of the cognate operator sequence. The protein-DNA interface of the nonspecific complex is flexible on biologically relevant time scales that may assist in the rapid and efficient finding of the target site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalodimos, Charalampos G -- Biris, Nikolaos -- Bonvin, Alexandre M J J -- Levandoski, Marc M -- Guennuegues, Marc -- Boelens, Rolf -- Kaptein, Robert -- GM 23467/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 16;305(5682):386-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256668" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/*metabolism ; Base Pairing ; Binding Sites ; DNA, Bacterial/*chemistry/*metabolism ; Diffusion ; Dimerization ; Escherichia coli/chemistry/genetics/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Hydrogen Bonding ; Lac Repressors ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Operator Regions, Genetic ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/*metabolism ; Static Electricity ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2004-07-03
    Description: Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramachandran, Niroshan -- Hainsworth, Eugenie -- Bhullar, Bhupinder -- Eisenstein, Samuel -- Rosen, Benjamin -- Lau, Albert Y -- Walter, Johannes C -- LaBaer, Joshua -- R21 CA99191-01/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2004 Jul 2;305(5680):86-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Institute of Proteomics, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 320 Charles Street, Cambridge, MA 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15232106" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/chemistry/genetics/*metabolism ; Cell-Free System ; *DNA Replication ; DNA, Complementary ; Epitopes ; Geminin ; Humans ; Minichromosome Maintenance Complex Component 2 ; Minichromosome Maintenance Complex Component 6 ; Nuclear Proteins/metabolism ; *Protein Array Analysis/instrumentation/methods ; Protein Binding ; Protein Biosynthesis ; *Protein Interaction Mapping/instrumentation/methods ; Protein Structure, Tertiary ; Proteins/genetics/*metabolism ; Replication Origin ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2004-07-17
    Description: Cytochromes P450 (P450s) metabolize a wide range of endogenous compounds and xenobiotics, such as pollutants, environmental compounds, and drug molecules. The microsomal, membrane-associated, P450 isoforms CYP3A4, CYP2D6, CYP2C9, CYP2C19, CYP2E1, and CYP1A2 are responsible for the oxidative metabolism of more than 90% of marketed drugs. Cytochrome P450 3A4 (CYP3A4) metabolizes more drug molecules than all other isoforms combined. Here we report three crystal structures of CYP3A4: unliganded, bound to the inhibitor metyrapone, and bound to the substrate progesterone. The structures revealed a surprisingly small active site, with little conformational change associated with the binding of either compound. An unexpected peripheral binding site is identified, located above a phenylalanine cluster, which may be involved in the initial recognition of substrates or allosteric effectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Pamela A -- Cosme, Jose -- Vinkovic, Dijana Matak -- Ward, Alison -- Angove, Hayley C -- Day, Philip J -- Vonrhein, Clemens -- Tickle, Ian J -- Jhoti, Harren -- New York, N.Y. -- Science. 2004 Jul 30;305(5684):683-6. Epub 2004 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Astex Technology, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15256616" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cytochrome P-450 CYP3A ; Cytochrome P-450 Enzyme System/*chemistry/*metabolism ; Heme/chemistry ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Metyrapone/*metabolism ; Models, Molecular ; Phenylalanine/chemistry/metabolism ; Progesterone/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2004-01-17
    Description: Genes for the enzymes that make plant cell wall hemicellulosic polysaccharides remain to be identified. We report here the isolation of a complementary DNA (cDNA) clone encoding one such enzyme, mannan synthase (ManS), that makes the beta-1, 4-mannan backbone of galactomannan, a hemicellulosic storage polysaccharide in guar seed endosperm walls. The soybean somatic embryos expressing ManS cDNA contained high levels of ManS activities that localized to Golgi. Phylogenetically, ManS is closest to group A of the cellulose synthase-like (Csl) sequences from Arabidopsis and rice. Our results provide the biochemical proof for the involvement of the Csl genes in beta-glycan formation in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dhugga, Kanwarpal S -- Barreiro, Roberto -- Whitten, Brad -- Stecca, Kevin -- Hazebroek, Jan -- Randhawa, Gursharn S -- Dolan, Maureen -- Kinney, Anthony J -- Tomes, Dwight -- Nichols, Scott -- Anderson, Paul -- New York, N.Y. -- Science. 2004 Jan 16;303(5656):363-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crop Genetics Research and Development, Pioneer Hi-Bred International, Inc., A DuPont Company, 7300 NW 62nd Avenue, Johnston, IA 50131, USA. Kanwarpal.Dhugga@Pioneer.Com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14726589" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/genetics ; Catalytic Domain ; Cellulose/biosynthesis ; Cyamopsis/*enzymology/genetics ; Databases, Nucleic Acid ; Expressed Sequence Tags ; Gene Expression ; Gene Library ; *Genes, Plant ; Glucosyltransferases/chemistry/*genetics/metabolism ; Golgi Apparatus/enzymology ; Mannans/*biosynthesis/metabolism ; Mannose/metabolism ; Mannosyltransferases/chemistry/*genetics/isolation & purification/*metabolism ; Molecular Sequence Data ; Multigene Family ; Oryza/enzymology/genetics ; Phylogeny ; Plants, Genetically Modified ; Protein Structure, Tertiary ; Seeds/*enzymology ; Soybeans/genetics ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2004-06-05
    Description: CRYPTOCHROME (CRY) is the primary circadian photoreceptor in Drosophila. We show that CRY binding to TIMELESS (TIM) is light-dependent in flies and irreversibly commits TIM to proteasomal degradation. In contrast, CRY degradation is dependent on continuous light exposure, indicating that the CRY-TIM interaction is transient. A novel cry mutation (cry(m)) reveals that CRY's photolyase homology domain is sufficient for light detection and phototransduction, whereas the carboxyl-terminal domain regulates CRY stability, CRY-TIM interaction, and circadian photosensitivity. This contrasts with the function of Arabidopsis CRY domains and demonstrates that insect and plant cryptochromes use different mechanisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Busza, Ania -- Emery-Le, Myai -- Rosbash, Michael -- Emery, Patrick -- 5 T32 NS07366-08/NS/NINDS NIH HHS/ -- GM66777-01/GM/NIGMS NIH HHS/ -- P01 GM33205/GM/NIGMS NIH HHS/ -- P01 NS44232/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 4;304(5676):1503-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15178801" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Cell Line ; *Circadian Rhythm ; Cryptochromes ; Cysteine Endopeptidases/metabolism ; Darkness ; Drosophila Proteins/*chemistry/genetics/*metabolism ; Drosophila melanogaster/genetics/*physiology ; Eye Proteins/*chemistry/genetics/*metabolism ; Female ; *Light ; Light Signal Transduction ; Male ; Multienzyme Complexes/metabolism ; Mutation ; Nuclear Proteins/metabolism ; Period Circadian Proteins ; Photoreceptor Cells, Invertebrate/*chemistry/*metabolism ; Proteasome Endopeptidase Complex ; Protein Binding ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2004-01-13
    Description: The lasting effects of neuronal activity on brain development involve calcium-dependent gene expression. Using a strategy called transactivator trap, we cloned a calcium-responsive transactivator called CREST (for calcium-responsive transactivator). CREST is a SYT-related nuclear protein that interacts with adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB)-binding protein (CBP) and is expressed in the developing brain. Mice that have a targeted disruption of the crest gene are viable but display defects in cortical and hippocampal dendrite development. Cortical neurons from crest mutant mice are compromised in calcium-dependent dendritic growth. Thus, calcium activation of CREST-mediated transcription helps regulate neuronal morphogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aizawa, Hiroyuki -- Hu, Shu-Ching -- Bobb, Kathryn -- Balakrishnan, Karthik -- Ince, Gulayse -- Gurevich, Inga -- Cowan, Mitra -- Ghosh, Anirvan -- MH60598/MH/NIMH NIH HHS/ -- NS39993/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jan 9;303(5655):197-202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14716005" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Brain/cytology/embryology/growth & development/metabolism ; CREB-Binding Protein ; Calcium/*metabolism ; Calcium Channels/metabolism ; Cell Line ; Cells, Cultured ; Cerebral Cortex/cytology/embryology/metabolism ; Cloning, Molecular ; Dendrites/*physiology/ultrastructure ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Library ; Gene Targeting ; Humans ; In Situ Hybridization ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Nervous System/embryology/growth & development/metabolism ; Neurons/*physiology/ultrastructure ; Nuclear Proteins/metabolism ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/metabolism ; Trans-Activators/chemistry/genetics/*metabolism ; *Transcription, Genetic ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2004-03-20
    Description: Protein kinases are targets for treatment of a number of diseases. This review focuses on kinase inhibitors that are in the clinic or in clinical trials and for which structural information is available. Structures have informed drug design and have illuminated the mechanism of inhibition. We review progress with the receptor tyrosine kinases (growth factor receptors EGFR, VEGFR, and FGFR) and nonreceptor tyrosine kinases (Bcr-Abl), where advances have been made with cancer therapeutic agents such as Herceptin and Gleevec. Among the serine-threonine kinases, p38, Rho-kinase, cyclin-dependent kinases, and Chk1 have been targeted with productive results for inflammation and cancer. Structures have provided insights into targeting the inactive or active form of the kinase, for targeting the global constellation of residues at the ATP site or less conserved additional pockets or single residues, and into targeting noncatalytic domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Noble, Martin E M -- Endicott, Jane A -- Johnson, Louise N -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1800-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, Oxford 3X2 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15031492" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Antineoplastic Agents/chemistry/pharmacology/therapeutic use ; Binding Sites ; Catalytic Domain ; Clinical Trials as Topic ; *Drug Design ; Enzyme Inhibitors/*chemistry/metabolism/pharmacology/therapeutic use ; Humans ; Models, Molecular ; Molecular Structure ; Protein Conformation ; *Protein Kinase Inhibitors ; Protein Kinases/*chemistry/metabolism ; Protein Structure, Tertiary ; Signal Transduction/drug effects ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2004-05-08
    Description: Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Xiao-Lin -- Garcia, K Christopher -- New York, N.Y. -- Science. 2004 May 7;304(5672):870-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Microbiology and Immunology, and Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131306" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Animals ; Binding Sites ; Calorimetry ; Chromatography, Gel ; Crystallography, X-Ray ; Cysteine/chemistry ; Dimerization ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lasers ; Ligands ; Molecular Sequence Data ; Molecular Weight ; Nerve Growth Factor/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Rats ; Receptor, Nerve Growth Factor ; Receptor, trkA/chemistry/metabolism ; Receptors, Nerve Growth Factor/*chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism ; Scattering, Radiation ; Signal Transduction ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2004-08-31
    Description: The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 15% of acute myeloid leukemia (AML) cases. This study shows that AML1-ETO, as well as ETO, inhibits transcriptional activation by E proteins through stable interactions that preclude recruitment of p300/CREB-binding protein (CBP) coactivators. These interactions are mediated by a conserved ETO TAF4 homology domain and a 17-amino acid p300/CBP and ETO target motif within AD1 activation domains of E proteins. In t(8;21) leukemic cells, very stable interactions between AML1-ETO and E proteins underlie a t(8;21) translocation-specific silencing of E protein function through an aberrant cofactor exchange mechanism. These studies identify E proteins as AML1-ETO targets whose dysregulation may be important for t(8;21) leukemogenesis, as well as an E protein silencing mechanism that is distinct from that associated with differentiation-inhibitory proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinsong -- Kalkum, Markus -- Yamamura, Soichiro -- Chait, Brian T -- Roeder, Robert G -- New York, N.Y. -- Science. 2004 Aug 27;305(5688):1286-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15333839" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Amino Acid Sequence ; Basic Helix-Loop-Helix Transcription Factors ; CREB-Binding Protein ; Cell Line ; Cell Line, Tumor ; Conserved Sequence ; Core Binding Factor Alpha 2 Subunit ; DNA-Binding Proteins/genetics/*metabolism ; *Gene Silencing ; HeLa Cells ; Hematopoietic Stem Cells/physiology ; Humans ; Jurkat Cells ; Leukemia, Myeloid/genetics/*metabolism ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Oncogene Proteins, Fusion/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; TCF Transcription Factors ; Trans-Activators/metabolism ; Transcription Factor 7-Like 2 Protein ; Transcription Factors/genetics/*metabolism ; Transcriptional Activation ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2004-07-03
    Description: Organelle inheritance is an essential feature of all eukaryotic cells. As with other organelles, the Golgi complex partitions between daughter cells through the fission of its membranes into numerous tubulovesicular fragments. We found that the protein CtBP3/BARS (BARS) was responsible for driving the fission of Golgi membranes during mitosis in vivo. Moreover, by in vitro analysis, we identified two stages of this Golgi fragmentation process: disassembly of the Golgi stacks into a tubular network, and BARS-dependent fission of these tubules. Finally, this BARS-induced fission of Golgi membranes controlled the G2-to-prophase transition of the cell cycle, and hence cell division.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hidalgo Carcedo, Cristina -- Bonazzi, Matteo -- Spano, Stefania -- Turacchio, Gabriele -- Colanzi, Antonino -- Luini, Alberto -- Corda, Daniela -- E.0982/Telethon/Italy -- New York, N.Y. -- Science. 2004 Jul 2;305(5680):93-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Regulation, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro (Chieti), Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15232108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cytosol ; G2 Phase ; Golgi Apparatus/*physiology/ultrastructure ; Interphase ; Intracellular Membranes/physiology/ultrastructure ; *Mitosis ; Oligonucleotides, Antisense/pharmacology ; Protein Structure, Tertiary ; Rats ; Recombinant Proteins/pharmacology ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2004-02-14
    Description: Legumes form symbiotic associations with both mycorrhizal fungi and nitrogen-fixing soil bacteria called rhizobia. Several of the plant genes required for transduction of rhizobial signals, the Nod factors, are also necessary for mycorrhizal symbiosis. Here, we describe the cloning and characterization of one such gene from the legume Medicago truncatula. The DMI1 (does not make infections) gene encodes a novel protein with low global similarity to a ligand-gated cation channel domain of archaea. The protein is highly conserved in angiosperms and ancestral to land plants. We suggest that DMI1 represents an ancient plant-specific innovation, potentially enabling mycorrhizal associations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ane, Jean-Michel -- Kiss, Gyorgy B -- Riely, Brendan K -- Penmetsa, R Varma -- Oldroyd, Giles E D -- Ayax, Celine -- Levy, Julien -- Debelle, Frederic -- Baek, Jong-Min -- Kalo, Peter -- Rosenberg, Charles -- Roe, Bruce A -- Long, Sharon R -- Denarie, Jean -- Cook, Douglas R -- New York, N.Y. -- Science. 2004 Feb 27;303(5662):1364-7. Epub 2004 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14963334" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; Fabaceae/genetics/metabolism/microbiology ; Gene Expression Regulation, Plant ; *Genes, Plant ; Lipopolysaccharides/metabolism ; Medicago/*genetics/metabolism/*microbiology ; Molecular Sequence Data ; Mycorrhizae/*physiology ; Nitrogen Fixation ; Phylogeny ; Plant Proteins/chemistry/genetics/*physiology ; Plant Roots/metabolism ; Protein Structure, Tertiary ; Recombination, Genetic ; Rhizobiaceae/*physiology ; Sequence Homology, Amino Acid ; Signal Transduction ; *Symbiosis ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-05-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zampieri, Niccolo -- Chao, Moses V -- New York, N.Y. -- Science. 2004 May 7;304(5672):833-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15131296" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Dimerization ; Ligands ; Nerve Growth Factor/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Receptor, Nerve Growth Factor ; Receptor, trkA/chemistry/metabolism ; Receptors, Nerve Growth Factor/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2004-12-25
    Description: P-type ATPases extract energy by hydrolysis of adenosine triphosphate (ATP) in two steps, formation and breakdown of a covalent phosphoenzyme intermediate. This process drives active transport and countertransport of the cation pumps. We have determined the crystal structure of rabbit sarcoplasmic reticulum Ca2+ adenosine triphosphatase in complex with aluminum fluoride, which mimics the transition state of hydrolysis of the counterion-bound (protonated) phosphoenzyme. On the basis of structural analysis and biochemical data, we find this form to represent an occluded state of the proton counterions. Hydrolysis is catalyzed by the conserved Thr-Gly-Glu-Ser motif, and it exploits an associative nucleophilic reaction mechanism of the same type as phosphoryl transfer from ATP. On this basis, we propose a general mechanism of occluded transition states of Ca2+ transport and H+ countertransport coupled to phosphorylation and dephosphorylation, respectively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olesen, Claus -- Sorensen, Thomas Lykke-Moller -- Nielsen, Rikke Christina -- Moller, Jesper Vuust -- Nissen, Poul -- New York, N.Y. -- Science. 2004 Dec 24;306(5705):2251-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Structural Biology, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15618517" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry/metabolism ; Adenosine Triphosphate/metabolism ; Aluminum Compounds/chemistry ; Amino Acid Motifs ; Animals ; Binding Sites ; Biological Transport, Active ; Calcium/metabolism ; Calcium-Transporting ATPases/*chemistry/*metabolism ; Chemistry, Physical ; Crystallization ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Fluorides/chemistry ; Hydrolysis ; Ion Transport ; Models, Chemical ; Models, Molecular ; Phosphorylation ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; *Protons ; Rabbits ; Sarcoplasmic Reticulum/enzymology ; Thapsigargin ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2004-02-07
    Description: Photosynthesis uses light energy to drive the oxidation of water at an oxygen-evolving catalytic site within photosystem II (PSII). We report the structure of PSII of the cyanobacterium Thermosynechococcus elongatus at 3.5 angstrom resolution. We have assigned most of the amino acid residues of this 650-kilodalton dimeric multisubunit complex and refined the structure to reveal its molecular architecture. Consequently, we are able to describe details of the binding sites for cofactors and propose a structure of the oxygen-evolving center (OEC). The data strongly suggest that the OEC contains a cubane-like Mn3CaO4 cluster linked to a fourth Mn by a mono-micro-oxo bridge. The details of the surrounding coordination sphere of the metal cluster and the implications for a possible oxygen-evolving mechanism are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ferreira, Kristina N -- Iverson, Tina M -- Maghlaoui, Karim -- Barber, James -- Iwata, So -- F32 GM068304/GM/NIGMS NIH HHS/ -- F32 GM068304-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Mar 19;303(5665):1831-8. Epub 2004 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14764885" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Calcium/analysis/chemistry/metabolism ; Carotenoids/chemistry/metabolism ; Chlorophyll/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Cyanobacteria/*enzymology ; Dimerization ; Electron Transport ; Free Radicals ; Histidine/chemistry/metabolism ; Hydrogen Bonding ; Ligands ; Manganese/analysis/chemistry/metabolism ; Models, Chemical ; Models, Molecular ; Oxidation-Reduction ; Oxygen/*metabolism ; Photosynthetic Reaction Center Complex Proteins/chemistry/metabolism ; Photosystem II Protein Complex/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Tyrosine/*analogs & derivatives/chemistry/metabolism ; Water/*metabolism ; beta Carotene/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2003-07-12
    Description: Direct interaction between platelet receptor glycoprotein Ibalpha (GpIbalpha) and thrombin is required for platelet aggregation and activation at sites of vascular injury. Abnormal GpIbalpha-thrombin binding is associated with many pathological conditions,including occlusive arterial thrombosis and bleeding disorders. The crystal structure of the GpIbalpha-thrombin complex at 2.6 angstrom resolution reveals simultaneous interactions of GpIbalpha with exosite I of one thrombin molecule,and with exosite II of a second thrombin molecule. In the crystal lattice,the periodic arrangement of GpIbalpha-thrombin complexes mirrors a scaffold that could serve as a driving force for tight platelet adhesion. The details of these interactions reconcile GpIbalpha-thrombin binding modes that are presently controversial,highlighting two distinct interfaces that are potential targets for development of novel antithrombotic drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dumas, John J -- Kumar, Ravindra -- Seehra, Jasbir -- Somers, William S -- Mosyak, Lidia -- New York, N.Y. -- Science. 2003 Jul 11;301(5630):222-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Screening Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12855811" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Blood Platelets/chemistry/physiology ; Crystallization ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Platelet Adhesiveness ; *Platelet Aggregation ; Platelet Glycoprotein GPIb-IX Complex/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thrombin/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-02-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hederstedt, Lars -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):671-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Organism Biology, Lund University, SE-22362 Lund, Sweden. lars.hederstedt@cob.lu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560540" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry/metabolism ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/*metabolism ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/*metabolism ; Succinic Acid/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-07
    Description: Rice is the world's most important food crop and a model for cereal research. At 430 megabases in size, its genome is the most compact of the cereals. We report the sequence of chromosome 10, the smallest of the 12 rice chromosomes (22.4 megabases), which contains 3471 genes. Chromosome 10 contains considerable heterochromatin with an enrichment of repetitive elements on 10S and an enrichment of expressed genes on 10L. Multiple insertions from organellar genomes were detected. Collinearity was apparent between rice chromosome 10 and sorghum and maize. Comparison between the draft and finished sequence demonstrates the importance of finished sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Chromosome 10 Sequencing Consortium -- R01-LM06845/LM/NLM NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1566-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791992" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Plant/*genetics ; Computational Biology ; DNA Transposable Elements ; DNA, Chloroplast/genetics ; DNA, Mitochondrial/genetics ; DNA, Plant/genetics ; Edible Grain/genetics ; *Evolution, Molecular ; Expressed Sequence Tags ; Genes, Plant ; *Genome, Plant ; Heterochromatin ; Oryza/*genetics/physiology ; Plant Diseases/genetics ; Plant Proteins/chemistry/*genetics/physiology ; Protein Structure, Tertiary ; Proteome ; Repetitive Sequences, Nucleic Acid ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2003-06-14
    Description: In eukaryotes, the combinatorial association of sequence-specific DNA binding proteins is essential for transcription. We have used protein arrays to test 492 pairings of a nearly complete set of coiled-coil strands from human basic-region leucine zipper (bZIP) transcription factors. We find considerable partnering selectivity despite the bZIPs' homologous sequences. The interaction data are of high quality, as assessed by their reproducibility, reciprocity, and agreement with previous observations. Biophysical studies in solution support the relative binding strengths observed with the arrays. New associations provide insights into the circadian clock and the unfolded protein response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newman, John R S -- Keating, Amy E -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2097-101. Epub 2003 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805554" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Basic-Leucine Zipper Transcription Factors ; Chromatography, High Pressure Liquid ; Circadian Rhythm ; Circular Dichroism ; Cyclic AMP Response Element-Binding Protein/chemistry/metabolism ; DNA-Binding Proteins/chemistry/isolation & purification/*metabolism ; Dimerization ; G-Box Binding Factors ; Humans ; *Leucine Zippers ; Peptides/chemistry/isolation & purification/metabolism ; *Protein Array Analysis ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; Signal Transduction ; Temperature ; Thermodynamics ; Transcription Factors/*chemistry/isolation & purification/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2003-05-10
    Description: Multidrug efflux pumps cause serious problems in cancer chemotherapy and treatment of bacterial infections. Yet high-resolution structures of ligand transporter complexes have previously been unavailable. We obtained x-ray crystallographic structures of the trimeric AcrB pump from Escherichia coli with four structurally diverse ligands. The structures show that three molecules of ligands bind simultaneously to the extremely large central cavity of 5000 cubic angstroms, primarily by hydrophobic, aromatic stacking and van der Waals interactions. Each ligand uses a slightly different subset of AcrB residues for binding. The bound ligand molecules often interact with each other, stabilizing the binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Edward W -- McDermott, Gerry -- Zgurskaya, Helen I -- Nikaido, Hiroshi -- Koshland, Daniel E Jr -- AI 09644/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 May 9;300(5621):976-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738864" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Infective Agents/chemistry/metabolism ; Anti-Infective Agents, Local/chemistry/metabolism ; Binding Sites ; Carrier Proteins/*chemistry/isolation & purification/*metabolism ; Cell Membrane/chemistry ; Chemistry, Physical ; Ciprofloxacin/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Dequalinium/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/isolation & purification/*metabolism ; Ethidium/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Membrane Proteins/*chemistry/isolation & purification/*metabolism ; Models, Molecular ; Multidrug Resistance-Associated Proteins ; Physicochemical Phenomena ; Protein Binding ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rhodamines/chemistry/metabolism ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2003-07-19
    Description: We collected and completely sequenced 28,469 full-length complementary DNA clones from Oryza sativa L. ssp. japonica cv. Nipponbare. Through homology searches of publicly available sequence data, we assigned tentative protein functions to 21,596 clones (75.86%). Mapping of the cDNA clones to genomic DNA revealed that there are 19,000 to 20,500 transcription units in the rice genome. Protein informatics analysis against the InterPro database revealed the existence of proteins presented in rice but not in Arabidopsis. Sixty-four percent of our cDNAs are homologous to Arabidopsis proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rice Full-Length cDNA Consortium -- National Institute of Agrobiological Sciences Rice Full-Length cDNA Project Team -- Kikuchi, Shoshi -- Satoh, Kouji -- Nagata, Toshifumi -- Kawagashira, Nobuyuki -- Doi, Koji -- Kishimoto, Naoki -- Yazaki, Junshi -- Ishikawa, Masahiro -- Yamada, Hitomi -- Ooka, Hisako -- Hotta, Isamu -- Kojima, Keiichi -- Namiki, Takahiro -- Ohneda, Eisuke -- Yahagi, Wataru -- Suzuki, Kohji -- Li, Chao Jie -- Ohtsuki, Kenji -- Shishiki, Toru -- Foundation of Advancement of International Science Genome Sequencing & Analysis Group -- Otomo, Yasuhiro -- Murakami, Kazuo -- Iida, Yoshiharu -- Sugano, Sumio -- Fujimura, Tatsuto -- Suzuki, Yutaka -- Tsunoda, Yuki -- Kurosaki, Takashi -- Kodama, Takeko -- Masuda, Hiromi -- Kobayashi, Michie -- Xie, Quihong -- Lu, Min -- Narikawa, Ryuya -- Sugiyama, Akio -- Mizuno, Kouichi -- Yokomizo, Satoko -- Niikura, Junko -- Ikeda, Rieko -- Ishibiki, Junya -- Kawamata, Midori -- Yoshimura, Akemi -- Miura, Junichirou -- Kusumegi, Takahiro -- Oka, Mitsuru -- Ryu, Risa -- Ueda, Mariko -- Matsubara, Kenichi -- RIKEN -- Kawai, Jun -- Carninci, Piero -- Adachi, Jun -- Aizawa, Katsunori -- Arakawa, Takahiro -- Fukuda, Shiro -- Hara, Ayako -- Hashizume, Wataru -- Hayatsu, Norihito -- Imotani, Koichi -- Ishii, Yoshiyuki -- Itoh, Masayoshi -- Kagawa, Ikuko -- Kondo, Shinji -- Konno, Hideaki -- Miyazaki, Ai -- Osato, Naoki -- Ota, Yoshimi -- Saito, Rintaro -- Sasaki, Daisuke -- Sato, Kenjiro -- Shibata, Kazuhiro -- Shinagawa, Akira -- Shiraki, Toshiyuki -- Yoshino, Masayasu -- Hayashizaki, Yoshihide -- Yasunishi, Ayako -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):376-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, National Institute of Agrobiological Sciences, 2-1-2 Kannon-dai, Tsukuba, Ibaraki 305-8602, Japan. skikuchi@nias.affrc.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869764" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Cloning, Molecular ; Computational Biology ; DNA, Complementary ; Databases, Nucleic Acid ; Databases, Protein ; Genes, Plant ; *Genome, Plant ; Molecular Sequence Data ; Open Reading Frames ; Oryza/*genetics ; Plant Proteins/chemistry/genetics/physiology ; Protein Structure, Tertiary ; RNA, Antisense/genetics ; *Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Sequence Homology, Nucleic Acid ; Transcription Factors/chemistry/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2003-09-23
    Description: Although critical for development, immunity, wound healing, and metastasis, integrins represent one of the few classes of plasma membrane receptors for which the basic signaling mechanism remains a mystery. We investigated cytoplasmic conformational changes in the integrin LFA-1 (alphaLbeta2) in living cells by measuring fluorescence resonance energy transfer between cyan fluorescent protein-fused and yellow fluorescent protein-fused alphaL and beta2 cytoplasmic domains. In the resting state these domains were close to each other, but underwent significant spatial separation upon either intracellular activation of integrin adhesiveness (inside-out signaling) or ligand binding (outside-in signaling). Thus, bidirectional integrin signaling is accomplished by coupling extracellular conformational changes to an unclasping and separation of the alpha and beta cytoplasmic domains, a distinctive mechanism for transmitting information across the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Minsoo -- Carman, Christopher V -- Springer, Timothy A -- CA31798/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1720-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CBR Institute for Biomedical Research, Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500982" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal ; Antigens, CD11a/*chemistry ; Antigens, CD18/*chemistry ; Bacterial Proteins ; Cell Adhesion ; Cell Membrane/*metabolism ; Chemokine CXCL12 ; Chemokines, CXC/metabolism ; Cytoplasm/*chemistry ; Dimerization ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins ; Humans ; Intercellular Adhesion Molecule-1/metabolism ; Ligands ; Luminescent Proteins ; Lymphocyte Function-Associated Antigen-1/chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CXCR4/metabolism ; Recombinant Fusion Proteins/chemistry ; *Signal Transduction ; Talin/chemistry/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2003-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milutinovich, Mark -- Koshland, Douglas E -- New York, N.Y. -- Science. 2003 May 16;300(5622):1101-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Baltimore, MD 21210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12750506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/*physiology ; Chromatin/*metabolism ; Chromosomal Proteins, Non-Histone/chemistry/*physiology ; Chromosome Segregation ; Chromosomes/*physiology ; Humans ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2003-06-07
    Description: Cytokines are inflammatory mediators important in responding to pathogens and other foreign challenges. Interleukin-4 (IL-4) and IL-13 are two cytokines produced by T helper type 2 cells, mast cells, and basophils. In addition to their physiological roles, these cytokines are also implicated in pathological conditions such as asthma and allergy. IL-4 can stimulate two receptors, type I and type II, whereas IL-13 signaling is mediated only by the type II receptor (see the STKE Connections Maps). These cytokines activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascades, which may contribute to allergic responses. In addition, stimulation of the phosphatidylinositol 3-kinase (PI3K) pathway through recruitment of members of the insulin receptor substrate family may contribute to survival and proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kelly-Welch, Ann E -- Hanson, Erica M -- Boothby, Mark R -- Keegan, Achsah D -- AI38985/AI/NIAID NIH HHS/ -- AI45662/AI/NIAID NIH HHS/ -- AI49460/AI/NIAID NIH HHS/ -- GM42550/GM/NIGMS NIH HHS/ -- HL61752/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 6;300(5625):1527-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Holland Laboratory, American Red Cross, Rockville, MD 20855, and the Institute for Biomedical Sciences, George Washington Medical Center, Washington, DC 20037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791978" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Asthma/immunology/metabolism ; Humans ; Hypersensitivity/immunology/metabolism ; Interleukin-13/*metabolism ; Interleukin-13 Receptor alpha1 Subunit ; Interleukin-4/*metabolism ; Lymphocyte Activation ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Phosphotyrosine/metabolism ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, T-Cell/immunology/metabolism ; Receptors, Interleukin/chemistry/metabolism ; Receptors, Interleukin-13 ; Receptors, Interleukin-4/chemistry/metabolism ; STAT6 Transcription Factor ; *Signal Transduction ; T-Lymphocytes/immunology ; Trans-Activators/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, Murray -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1513-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK. ms@mrc-lmb.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645832" target="_blank"〉PubMed〈/a〉
    Keywords: *Active Transport, Cell Nucleus ; Amino Acid Motifs ; Cell Nucleus/metabolism ; Crystallography, X-Ray ; Cytoplasm/metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Karyopherins/chemistry/metabolism ; Nuclear Localization Signals ; Nuclear Pore/*metabolism ; Protein Binding ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sterol Regulatory Element Binding Protein 2 ; Transcription Factors/*chemistry/*metabolism ; beta Karyopherins/*chemistry/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-09-13
    Description: Phototropins are light-activated kinases important for plant responses to blue light. Light initiates signaling in these proteins by generating a covalent protein-flavin mononucleotide (FMN) adduct within sensory Per-ARNT-Sim (PAS) domains. We characterized the light-dependent changes of a phototropin PAS domain by solution nuclear magnetic resonance spectroscopy and found that an alpha helix located outside the canonical domain plays a key role in this activation process. Although this helix associates with the PAS core in the dark, photoinduced changes in the domain structure disrupt this interaction. We propose that this mechanism couples light-dependent bond formation to kinase activation and identifies a signaling pathway conserved among PAS domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harper, Shannon M -- Neil, Lori C -- Gardner, Kevin H -- CA90601/CA/NCI NIH HHS/ -- GM08297/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 12;301(5639):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12970567" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avena/*chemistry ; Cryptochromes ; Darkness ; *Drosophila Proteins ; *Eye Proteins ; Flavoproteins/*chemistry/metabolism ; *Light ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; *Photoreceptor Cells, Invertebrate ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, G-Protein-Coupled ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2003-06-28
    Description: Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calarese, Daniel A -- Scanlan, Christopher N -- Zwick, Michael B -- Deechongkit, Songpon -- Mimura, Yusuke -- Kunert, Renate -- Zhu, Ping -- Wormald, Mark R -- Stanfield, Robyn L -- Roux, Kenneth H -- Kelly, Jeffery W -- Rudd, Pauline M -- Dwek, Raymond A -- Katinger, Hermann -- Burton, Dennis R -- Wilson, Ian A -- AI33292/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2065-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/immunology/metabolism ; Antibody Affinity ; Antibody Specificity ; Binding Sites, Antibody ; Cell Adhesion Molecules/metabolism ; Centrifugation, Density Gradient ; Crystallization ; Crystallography, X-Ray ; Dimerization ; Disaccharides/chemistry/metabolism ; Epitopes ; HIV Antibodies/*chemistry/genetics/*immunology/metabolism ; HIV Envelope Protein gp120/*immunology ; HIV-1/*immunology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*chemistry/genetics/*immunology/metabolism ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin Light Chains/chemistry/immunology ; Immunoglobulin Variable Region/chemistry/immunology ; Lectins/chemistry/immunology/metabolism ; Lectins, C-Type/metabolism ; Ligands ; Mannans/chemistry/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis ; Oligosaccharides/chemistry/*immunology/metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2003-11-01
    Description: The Arabidopsis autonomous floral-promotion pathway promotes flowering independently of the photoperiod and vernalization pathways by repressing FLOWERING LOCUS C (FLC), a MADS-box transcription factor that blocks the transition from vegetative to reproductive development. Here, we report that FLOWERING LOCUS D (FLD), one of six genes in the autonomous pathway, encodes a plant homolog of a protein found in histone deacetylase complexes in mammals. Lesions in FLD result in hyperacetylation of histones in FLC chromatin, up-regulation of FLC expression, and extremely delayed flowering. Thus, the autonomous pathway regulates flowering in part by histone deacetylation. However, not all autonomous-pathway mutants exhibit FLC hyperacetylation, indicating that multiple means exist by which this pathway represses FLC expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuehui -- Michaels, Scott D -- Amasino, Richard M -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1751-4. Epub 2003 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593187" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/chemistry/*genetics/*metabolism ; Chromatin/metabolism ; Flowers/*growth & development ; Gene Expression Regulation, Plant ; Genes, Plant ; Histone Deacetylases/chemistry/genetics/*metabolism ; Histones/*metabolism ; Humans ; Introns ; MADS Domain Proteins/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Phenotype ; Plants, Genetically Modified ; Precipitin Tests ; Protein Structure, Tertiary ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/chemistry/metabolism ; Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2020-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829759" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry ; Crystallization ; Crystallography, X-Ray ; Desulfurococcaceae/chemistry ; Glycosylation ; Hot Temperature ; *Ion Channel Gating ; *Models, Molecular ; Models, Neurological ; Neurons/chemistry/physiology ; Potassium Channels, Voltage-Gated/*chemistry/*physiology ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2003-10-25
    Description: Paracaspase (MALT1), a member of an evolutionarily conserved superfamily of caspase-like proteins, has been shown to bind and colocalize with the protein Bcl10 in vitro and, because of this association, has been suggested to be involved in the CARMA1-Bcl10 pathway of antigen-induced nuclear factor kappaB (NF-kappaB) activation. We demonstrate that primary T and B lymphocytes from paracaspase-deficient mice are defective in antigen-receptor-induced NF-kappaB activation, cytokine production, and proliferation. Paracaspase acts downstream of Bcl10 to induce NF-kappaB activation and is required for the normal development of B cells, indicating that paracaspase provides the missing link between Bcl10 and activation of the IkappaB kinase complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruefli-Brasse, Astrid A -- French, Dorothy M -- Dixit, Vishva M -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1581-4. Epub 2003 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576442" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing ; Animals ; Antibody Formation ; Antigens, CD/analysis ; B-Lymphocyte Subsets/immunology/physiology ; B-Lymphocytes/*immunology/metabolism/physiology ; Caspases ; Cell Differentiation ; Cell Division ; Cell Survival ; Cells, Cultured ; Cytokines/metabolism ; Gene Deletion ; Gene Targeting ; Guanylate Kinase ; I-kappa B Kinase ; *Lymphocyte Activation ; Lymphoma, B-Cell, Marginal Zone/chemistry/*metabolism ; Mice ; Mice, Inbred C57BL ; NF-kappa B/*metabolism ; Neoplasm Proteins/chemistry/*metabolism ; Nucleoside-Phosphate Kinase/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Receptors, Antigen, B-Cell/metabolism ; Receptors, Antigen, T-Cell/metabolism ; Signal Transduction ; T-Lymphocyte Subsets/immunology/physiology ; T-Lymphocytes/*immunology/metabolism/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2003-08-02
    Description: Membrane transport proteins that transduce free energy stored in electrochemical ion gradients into a concentration gradient are a major class of membrane proteins. We report the crystal structure at 3.5 angstroms of the Escherichia coli lactose permease, an intensively studied member of the major facilitator superfamily of transporters. The molecule is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the permease. A large internal hydrophilic cavity open to the cytoplasmic side represents the inward-facing conformation of the transporter. The structure with a bound lactose homolog, beta-D-galactopyranosyl-1-thio-beta-D-galactopyranoside, reveals the sugar-binding site in the cavity, and residues that play major roles in substrate recognition and proton translocation are identified. We propose a possible mechanism for lactose/proton symport (co-transport) consistent with both the structure and a large body of experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramson, Jeff -- Smirnova, Irina -- Kasho, Vladimir -- Verner, Gillian -- Kaback, H Ronald -- Iwata, So -- DK51131: 08/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):610-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/enzymology ; Escherichia coli Proteins/chemistry/genetics/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ion Transport ; Lactose/*metabolism ; Membrane Transport Proteins/*chemistry/genetics/*metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Mutation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protons ; Substrate Specificity ; *Symporters ; Thiogalactosides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2003-08-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guerrero, Isabel -- Ruiz i Altaba, Ariel -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):774-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Biologia Molecular "Severo Ochoa," CSIC-UAM, Universidad Autonoma de Madrid, Madrid E-28049, Spain. iguerrero@cbm.uam.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 3 ; Caspases/metabolism ; Central Nervous System/cytology/*embryology ; Chick Embryo ; Drosophila/growth & development/metabolism ; Drosophila Proteins/metabolism ; Hedgehog Proteins ; Humans ; Intracellular Signaling Peptides and Proteins ; Ligands ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mutation ; Neoplasms/etiology ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface ; Signal Transduction ; Trans-Activators/*metabolism ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2003-08-30
    Description: The rhizobial infection of legumes has the most stringent demand toward Nod factor structure of all host responses, and therefore a specific Nod factor entry receptor has been proposed. The SYM2 gene identified in certain ecotypes of pea (Pisum sativum) is a good candidate for such an entry receptor. We exploited the close phylogenetic relationship of pea and the model legume Medicago truncatula to identify genes specifically involved in rhizobial infection. The SYM2 orthologous region of M. truncatula contains 15 putative receptor-like genes, of which 7 are LysM domain-containing receptor-like kinases (LYKs). Using reverse genetics in M. truncatula, we show that two LYK genes are specifically involved in infection thread formation. This, as well as the properties of the LysM domains, strongly suggests that they are Nod factor entry receptors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Limpens, Erik -- Franken, Carolien -- Smit, Patrick -- Willemse, Joost -- Bisseling, Ton -- Geurts, Rene -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):630-3. Epub 2003 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12947035" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Gene Expression ; *Genes, Plant ; Ligands ; Lipopolysaccharides/*metabolism ; Medicago/genetics/microbiology/*physiology ; Models, Biological ; Molecular Sequence Data ; Mutation ; Nitrogen Fixation ; Peas ; Phenotype ; Plant Roots/*microbiology/physiology ; Protein Kinases/chemistry/*genetics/*metabolism ; Protein Structure, Tertiary ; RNA Interference ; Signal Transduction ; Sinorhizobium meliloti/chemistry/genetics/growth & development/*physiology ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2003-02-01
    Description: The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yankovskaya, Victoria -- Horsefield, Rob -- Tornroth, Susanna -- Luna-Chavez, Cesar -- Miyoshi, Hideto -- Leger, Christophe -- Byrne, Bernadette -- Cecchini, Gary -- Iwata, So -- GM61606/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jan 31;299(5607):700-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Division, VA Medical Center, San Francisco, CA 94121, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12560550" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; Binding Sites ; Crystallography, X-Ray ; Dinitrophenols/chemistry/pharmacology ; Electron Transport ; Electron Transport Complex II ; Escherichia coli/*enzymology ; Flavin-Adenine Dinucleotide/metabolism ; Heme/chemistry ; Models, Molecular ; Multienzyme Complexes/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Mutation ; Oxidation-Reduction ; Oxidoreductases/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Reactive Oxygen Species/*metabolism ; Succinate Dehydrogenase/antagonists & inhibitors/*chemistry/genetics/*metabolism ; Succinic Acid/metabolism ; Superoxides/metabolism ; Ubiquinone/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2003-09-23
    Description: G protein-coupled receptors (GPCRs) at the cell surface activate heterotrimeric G proteins by inducing the G protein alpha (Galpha) subunit to exchange guanosine diphosphate for guanosine triphosphate. Regulators of G protein signaling (RGS) proteins accelerate the deactivation of Galpha subunits to reduce GPCR signaling. Here we identified an RGS protein (AtRGS1) in Arabidopsis that has a predicted structure similar to a GPCR as well as an RGS box with GTPase accelerating activity. Expression of AtRGS1 complemented the pheromone supersensitivity phenotype of a yeast RGS mutant, sst2Delta. Loss of AtRGS1 increased the activity of the Arabidopsis Galpha subunit, resulting in increased cell elongation in hypocotyls in darkness and increased cell production in roots grown in light. These findings suggest that AtRGS1 is a critical modulator of plant cell proliferation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Jin-Gui -- Willard, Francis S -- Huang, Jirong -- Liang, Jiansheng -- Chasse, Scott A -- Jones, Alan M -- Siderovski, David P -- GM055316/GM/NIGMS NIH HHS/ -- GM62338/GM/NIGMS NIH HHS/ -- GM65533/GM/NIGMS NIH HHS/ -- GM65989/GM/NIGMS NIH HHS/ -- R01 GM065989/GM/NIGMS NIH HHS/ -- R01 GM065989-01/GM/NIGMS NIH HHS/ -- R01 GM065989-02/GM/NIGMS NIH HHS/ -- R01 GM065989-03/GM/NIGMS NIH HHS/ -- R01 GM065989-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1728-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500984" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Arabidopsis/*cytology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Cell Differentiation ; *Cell Division ; Cell Membrane/metabolism ; *GTP-Binding Protein alpha Subunits ; Heterotrimeric GTP-Binding Proteins/metabolism ; Meristem/metabolism ; Mitosis ; Molecular Sequence Data ; Mutation ; Open Reading Frames ; Phenotype ; Plant Roots/cytology/growth & development/metabolism ; Protein Precursors/metabolism ; Protein Structure, Tertiary ; RGS Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2003-10-25
    Description: The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Xiaochun -- Chini, Claudia Christiano Silva -- He, Miao -- Mer, Georges -- Chen, Junjie -- CA89239/CA/NCI NIH HHS/ -- CA92312/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):639-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Mayo Clinic and Foundation, Rochester, MN 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576433" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; BRCA1 Protein/*chemistry/*metabolism ; Carrier Proteins/chemistry/metabolism ; Cell Cycle ; *Cell Cycle Proteins ; Cell Line ; DNA Damage ; DNA Repair ; *DNA-Binding Proteins ; E2F Transcription Factors ; G2 Phase ; Humans ; Mitosis ; Mutation ; Nuclear Proteins ; Peptide Library ; Phosphoprotein Phosphatases/chemistry/metabolism ; Phosphoproteins/chemistry/genetics/*metabolism ; Phosphorylation ; Phosphoserine/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA Helicases/chemistry/genetics/*metabolism ; RNA Polymerase II/metabolism ; RNA, Small Interfering ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/metabolism ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2003-08-02
    Description: Auxin is a plant hormone that regulates many aspects of plant growth and development. We used a chemical genetics approach to identify SIR1, a regulator of many auxin-inducible genes. The sir1 mutant was resistant to sirtinol, a small molecule that activates many auxin-inducible genes and promotes auxin-related developmental phenotypes. SIR1 is predicted to encode a protein composed of a ubiquitin-activating enzyme E1-like domain and a Rhodanese-like domain homologous to that of prolyl isomerase. We suggest a molecular context for how the auxin signal is propagated to exert its biological effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yunde -- Dai, Xinhua -- Blackwell, Helen E -- Schreiber, Stuart L -- Chory, Joanne -- 1R01GM68631-01/GM/NIGMS NIH HHS/ -- 2R01GM52413/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 22;301(5636):1107-10. Epub 2003 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA. yzhao@biomail.ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893885" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Arabidopsis/drug effects/genetics/growth & development/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Benzamides/metabolism/pharmacology ; Binding Sites ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Indoleacetic Acids/*metabolism/pharmacology ; Molecular Sequence Data ; Mutation ; Naphthols/metabolism/pharmacology ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Leaves/drug effects/growth & development ; Plant Roots/drug effects/growth & development ; Protein Structure, Tertiary ; *Signal Transduction ; Sirtuins/antagonists & inhibitors ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2003-07-26
    Description: The multidomain proapoptotic molecules BAK or BAX are required to initiate the mitochondrial pathway of apoptosis. How cells maintain the potentially lethal proapoptotic effector BAK in a monomeric inactive conformation at mitochondria is unknown. In viable cells, we found BAK complexed with mitochondrial outer-membrane protein VDAC2, a VDAC isoform present in low abundance that interacts specifically with the inactive conformer of BAK. Cells deficient in VDAC2, but not cells lacking the more abundant VDAC1, exhibited enhanced BAK oligomerization and were more susceptible to apoptotic death. Conversely, overexpression of VDAC2 selectively prevented BAK activation and inhibited the mitochondrial apoptotic pathway. Death signals activate "BH3-only" molecules such as tBID, BIM, or BAD, which displace VDAC2 from BAK, enabling homo-oligomerization of BAK and apoptosis. Thus, VDAC2, an isoform restricted to mammals, regulates the activity of BAK and provides a connection between mitochondrial physiology and the core apoptotic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, Emily H Y -- Sheiko, Tatiana V -- Fisher, Jill K -- Craigen, William J -- Korsmeyer, Stanley J -- NS42319/NS/NINDS NIH HHS/ -- R37CA50239/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):513-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881569" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; BH3 Interacting Domain Death Agonist Protein ; Biopolymers ; Carrier Proteins/metabolism/pharmacology ; Cell Line ; Cells, Cultured ; Etoposide/pharmacology ; Humans ; Intracellular Membranes/metabolism ; Jurkat Cells ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mitochondria/*metabolism ; Mitochondria, Liver/metabolism ; Porins/genetics/isolation & purification/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/metabolism ; *Proto-Oncogene Proteins c-bcl-2 ; Recombinant Proteins/pharmacology ; Staurosporine/pharmacology ; Voltage-Dependent Anion Channel 1 ; Voltage-Dependent Anion Channel 2 ; Voltage-Dependent Anion Channels ; bcl-2 Homologous Antagonist-Killer Protein ; bcl-2-Associated X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Molloy, Justin E -- Veigel, Claudia -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2045-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK. jmolloy@nimr.mrc.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829773" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism/ultrastructure ; Actins/metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Fluorescent Dyes/metabolism ; Hydrolysis ; Kinetics ; Microscopy, Fluorescence ; Models, Biological ; Molecular Motor Proteins/chemistry/*metabolism ; Myosin Light Chains/chemistry/metabolism ; Myosin Type V/chemistry/*metabolism ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-08-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locher, Kaspar P -- Bass, Randal B -- Rees, Douglas C -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):603-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie und Biophysik, Eidgenossische Technische Hochschule Zurich, Zurich CH-8093, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893929" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Biological Transport ; Cell Membrane/enzymology ; Crystallography, X-Ray ; Escherichia coli/chemistry/enzymology ; Escherichia coli Proteins/*chemistry/metabolism ; Glycerophosphates/metabolism ; Lactose/metabolism ; Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; *Monosaccharide Transport Proteins ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Symporters
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2003-06-28
    Description: Interleukin-6 (IL-6) is an immunoregulatory cytokine that activates a cell-surface signaling assembly composed of IL-6, the IL-6 alpha-receptor (IL-6Ralpha), and the shared signaling receptor gp130. The 3.65 angstrom-resolution structure of the extracellular signaling complex reveals a hexameric, interlocking assembly mediated by a total of 10 symmetry-related, thermodynamically coupled interfaces. Assembly of the hexameric complex occurs sequentially: IL-6 is first engaged by IL-6Ralpha and then presented to gp130in the proper geometry to facilitate a cooperative transition into the high-affinity, signaling-competent hexamer. The quaternary structures of other IL-6/IL-12 family signaling complexes are likely constructed by means of a similar topological blueprint.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boulanger, Martin J -- Chow, Dar-chone -- Brevnova, Elena E -- Garcia, K Christopher -- AI51321/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology and Department of Structural Biology, Stanford University School of Medicine, Fairchild D319, 299 Campus Drive, Stanford, CA 94305-5124, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12829785" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Cytokine Receptor gp130 ; Humans ; Interleukin-6/*chemistry/*metabolism ; Macromolecular Substances ; Membrane Glycoproteins/*chemistry/*metabolism ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Interleukin-6/*chemistry/*metabolism ; Signal Transduction ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2003-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhopadhyay, Suchetana -- Kim, Bong-Suk -- Chipman, Paul R -- Rossmann, Michael G -- Kuhn, Richard J -- AI 45976/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, USA. West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551429" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Dengue Virus/chemistry/ultrastructure ; Dimerization ; Image Processing, Computer-Assisted ; Nucleocapsid/chemistry/ultrastructure ; Protein Structure, Tertiary ; Viral Envelope Proteins/chemistry/ultrastructure ; Viral Matrix Proteins/chemistry/ultrastructure ; West Nile virus/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2003-09-27
    Description: Many eukaryotic signaling proteins are composed of simple modular binding domains, yet they can display sophisticated behaviors such as allosteric gating and multi-input signal integration, properties essential for complex cellular circuits. To understand how such behavior can emerge from combinations of simple domains, we engineered variants of the actin regulatory protein N-WASP (neuronal Wiskott-Aldrich syndrome protein) in which the "output" domain of N-WASP was recombined with heterologous autoinhibitory "input" domains. Synthetic switch proteins were created with diverse gating behaviors in response to nonphysiological inputs. Thus, this type of modular framework can facilitate the evolution or engineering of cellular signaling circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dueber, John E -- Yeh, Brian J -- Chak, Kayam -- Lim, Wendell A -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1904-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Biological Sciences, University of California, San Francisco, CA 94143-2240, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512628" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Allosteric Regulation ; Amino Acid Motifs ; Animals ; Combinatorial Chemistry Techniques ; Evolution, Molecular ; Ligands ; Male ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Oocytes/metabolism ; Peptide Library ; Protein Engineering ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Recombination, Genetic ; *Signal Transduction ; Wiskott-Aldrich Syndrome Protein, Neuronal ; Xenopus ; cdc42 GTP-Binding Protein/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-10-04
    Description: Cell adhesion by adherens junctions and desmosomes relies on interactions between cadherin molecules. However, the molecular interfaces that define molecular specificity and that mediate adhesion remain controversial. We used electron tomography of plastic sections from neonatal mouse skin to visualize the organization of desmosomes in situ. The resulting three-dimensional maps reveal individual cadherin molecules forming discrete groups and interacting through their tips. Fitting of an x-ray crystal structure for C-cadherin to these maps is consistent with a flexible intermolecular interface mediated by an exchange of amino-terminal tryptophans. This flexibility suggests a novel mechanism for generating both cis and trans interactions and for propagating these adhesive interactions along the junction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Wanzhong -- Cowin, Pamela -- Stokes, David L -- R01 GM47429/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 3;302(5642):109-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA..〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14526082" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Cadherins/*chemistry/*ultrastructure ; Cell Adhesion ; Crystallography, X-Ray ; Cytoskeletal Proteins/chemistry/ultrastructure ; Desmoplakins ; Desmosomes/*chemistry/*ultrastructure ; Dimerization ; Epidermis/chemistry/ultrastructure ; Freeze Substitution ; Hydrophobic and Hydrophilic Interactions ; *Image Processing, Computer-Assisted ; Mice ; Microscopy, Electron/methods ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; *Tomography ; Tryptophan/chemistry ; Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2003-10-25
    Description: Rab/Ypt guanosine triphosphatases (GTPases) represent a family of key membrane traffic regulators in eukaryotic cells whose function is governed by the guanosine diphosphate (GDP) dissociation inhibitor (RabGDI). Using a combination of chemical synthesis and protein engineering, we generated and crystallized the monoprenylated Ypt1:RabGDI complex. The structure of the complex was solved to 1.5 angstrom resolution and provides a structural basis for the ability of RabGDI to inhibit the release of nucleotide by Rab proteins. Isoprenoid binding requires a conformational change that opens a cavity in the hydrophobic core of its domain II. Analysis of the structure provides a molecular basis for understanding a RabGDI mutant that causes mental retardation in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rak, Alexey -- Pylypenko, Olena -- Durek, Thomas -- Watzke, Anja -- Kushnir, Susanna -- Brunsveld, Lucas -- Waldmann, Herbert -- Goody, Roger S -- Alexandrov, Kirill -- New York, N.Y. -- Science. 2003 Oct 24;302(5645):646-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physical Biochemistry, Max-Planck-Institute for Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14576435" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallization ; Crystallography, X-Ray ; Guanine Nucleotide Dissociation Inhibitors/*chemistry/genetics/metabolism ; Guanosine Diphosphate/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Lipid Metabolism ; Magnesium/chemistry/metabolism ; Models, Molecular ; Mutation ; Protein Binding ; Protein Conformation ; Protein Prenylation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism ; rab GTP-Binding Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2003-09-27
    Description: Like many bacterial pathogens, Salmonella spp. use a type III secretion system to inject virulence proteins into host cells. The Salmonella invasion protein A (SipA) binds host actin, enhances its polymerization near adherent extracellular bacteria, and contributes to cytoskeletal rearrangements that internalize the pathogen. By combining x-ray crystallography of SipA with electron microscopy and image analysis of SipA-actin filaments, we show that SipA functions as a "molecular staple," in which a globular domain and two nonglobular "arms" mechanically stabilize the filament by tethering actin subunits in opposing strands. Deletion analysis of the tethering arms provides strong support for this model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lilic, Mirjana -- Galkin, Vitold E -- Orlova, Albina -- VanLoock, Margaret S -- Egelman, Edward H -- Stebbins, C Erec -- New York, N.Y. -- Science. 2003 Sep 26;301(5641):1918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Microbiology, Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14512630" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/*metabolism ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Image Processing, Computer-Assisted ; Microfilament Proteins/*chemistry/genetics/*metabolism ; Microscopy, Electron ; Models, Molecular ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Salmonella typhimurium/chemistry/*metabolism ; Sequence Deletion ; Subtilisin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-05-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Makalowski, Wojciech -- New York, N.Y. -- Science. 2003 May 23;300(5623):1246-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, PA 16802, USA. wojtek@psu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12764185" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Alu Elements/*genetics ; Animals ; Cattle ; DNA Transposable Elements/*genetics ; DNA, Intergenic/*genetics ; Dinucleoside Phosphates/genetics ; Evolution, Molecular ; *Exons ; Gene Duplication ; *Genome, Human ; Humans ; Introns ; Phosphoproteins/chemistry/genetics ; Point Mutation ; Protein Structure, Tertiary ; Retroelements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2003-06-07
    Description: Myosin V is a dimeric molecular motor that moves processively on actin, with the center of mass moving approximately 37 nanometers for each adenosine triphosphate hydrolyzed. We have labeled myosin V with a single fluorophore at different positions in the light-chain domain and measured the step size with a standard deviation of 〈1.5 nanometers, with 0.5-second temporal resolution, and observation times of minutes. The step size alternates between 37 + 2x nm and 37 - 2x, where x is the distance along the direction of motion between the dye and the midpoint between the two heads. These results strongly support a hand-over-hand model of motility, not an inchworm model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yildiz, Ahmet -- Forkey, Joseph N -- McKinney, Sean A -- Ha, Taekjip -- Goldman, Yale E -- Selvin, Paul R -- AR26846/AR/NIAMS NIH HHS/ -- AR44420/AR/NIAMS NIH HHS/ -- GM65367/GM/NIGMS NIH HHS/ -- PHS 5 T32 GM08276/PH/PHPPO CDC HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2003 Jun 27;300(5628):2061-5. Epub 2003 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12791999" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*metabolism/ultrastructure ; Actins/metabolism ; Adenosine Triphosphate/metabolism ; Binding Sites ; Calmodulin ; Carbocyanines/metabolism ; Catalytic Domain ; Dna ; Fluorescence ; Fluorescent Dyes/metabolism ; Kinetics ; Mathematics ; Microscopy, Fluorescence ; *Models, Biological ; Molecular Motor Proteins/chemistry/*metabolism ; Myosin Light Chains/chemistry/metabolism ; Myosin Type V/chemistry/*metabolism ; Protein Structure, Tertiary ; Rhodamines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...