ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (31)
  • 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring  (25)
  • 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution  (24)
  • 04.06. Seismology
  • Inversion
  • Seismological Society of America  (54)
  • Elsevier Science Limited  (23)
  • Copernicus Publications  (10)
  • 3
  • Wiley
Collection
Keywords
  • 1
    Publication Date: 2024-02-07
    Description: A catalogue of precisely located micro-seismicity is fundamental for investigating seismicity and rock physical properties in active tectonic and volcanic regions and for the definition of a ‘baseline’ seismicity, required for a safe future exploitation of georesource areas. In this study, we produce the first manually revised catalogue of micro-seismicity for Co. Donegal region (Ireland), an area of about 50K M2 of on-going deformation, aimed at localizing natural micro-seismic events occurred between 2012 and 2015. We develop a stochastic method based on a Markov chain Monte Carlo (McMC) sampling approach to compute earthquake hypocentral location parameters. Our results indicates that micro-seismicity is present with magnitudes lower than 2 (the highest magnitude is 2.8).The recorded seismicity is almost clustered along previously mapped NE-SW trending, steeply dipping faults and confined within the upper crust (focal depth less than 10 km). We also recorded anthropogenic seismicity mostly related to quarries' activity in the study area.
    Description: Published
    Description: 62-76
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-12
    Description: The macroseismic source parameters of earthquakes occurring within a sequence are strongly influenced by cumulative damage effects. When we deal with historical seismic sequences, in addition to the cumulative intensities, other intrinsic uncertainties due to the scarcity and indeterminacy of sources come into play. These issues imply that the parameterizations of the single earthquakes within a historical seismic sequence are not univocal and that all the uncertainties that are addressed when assessing macroseismic intensity should be carefully considered in the parameter estimation. In the light of these considerations, we performed some tests on the 2016–2017 and 1703 seismic sequences, which occurred in the same area in central Italy, to compute the macroseismic source parameters by means of two independent methods. Results show that the cumulative effects arising from multiple damaging earthquakes can cause biases in the intensity assessments, which affect the computed magnitude and epicentral locations. To reduce bias in macroseismic intensities due to cumulative damage, we illustrate a simple procedure, called cumulative intensity subtraction (CIS), which consists in discarding the localities strongly damaged by the early earthquakes of a sequence from the intensity distributions used for computing the macroseismic source parameters of the subsequent earthquakes. The outcomes show that, for the 2016 seismic sequence, the CIS approach provides locations in agreement with the instrumental epicenters and with the causative faults. For the 1703 sequence, the CIS approach along with explicit accounting for the indeterminacy in intensity assignments give a range of equally plausible solutions. The CIS represents an exploration of a simple strategy that stems from an attempt to give significance to macroseismic intensity in the presence of cumulative damage.
    Description: Published
    Description: 759–774
    Description: OST4 Descrizione in tempo reale del terremoto, del maremoto, loro predicibilità e impatto
    Description: JCR Journal
    Keywords: macroseismic intesity ; cumulative effects ; microseismic source parameters ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-13
    Description: Underdetermination is a condition affecting all problems in seismic imaging. It manifests mainly in the nonuniqueness of the models inferred from the data. This condition is exacerbated if simplifying hypotheses like isotropy are discarded in favor of more realistic anisotropic models that, although supported by seismological evidence, require more free parameters. Investigating the connections between underdetermination and anisotropy requires the implementation of solvers which explore the whole family of possibilities behind nonuniqueness and allow for more informed conclusions about the interpretation of the seismic models. Because these aspects cannot be investigated using traditional iterative linearized inversion schemes with regularization constraints that collapse the infinite possible models into a unique solution, we explore the application of transdimensional Bayesian Monte Carlo sampling to address the consequences of underdetermination in anisotropic seismic imaging. We show how teleseismic waves of P and S phases can constrain upper‐mantle anisotropy and the amount of additional information these data provide in terms of uncertainty and trade‐offs among multiple fields.
    Description: Published
    Description: 1214–1226
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Seismological Society of America
    In:  Das, R., M. L. Sharma, H. R. Wason, D. Choudhury, and G. Gonzales (2019). A seismic moment magnitude scale, Bull Seismol. Soc. Am. 109, no. 4, 1542–1555, doi: 10.1785/0120180338.
    Publication Date: 2024-05-21
    Description: Moment magnitude Mw was first defined by Hiroo Kanamori in the late 1970s, when the availability of new force balance seismometers made it possible to measure the seismic moment M0 with virtually no limits in the frequency passband. For this reason, Mw does not become saturated even for the largest earthquakes ever recorded. Mw has been chosen in such a way that it coincides best with the previous definitions of magnitude (Ms, ML, mb, etc.) on certain ranges of values but can deviate significantly from them within other ranges. A few years ago, Das and colleagues proposed a new moment magnitude scale Mwg with the aim of better reproducing the values of mb and Ms over their entire range and to better predict the energy ES radiated by earthquakes. We show that there was no need to define such a new scale and that Mwg is not even optimal to achieve the goal of matching ES.
    Description: In press
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: earthquake magnitude ; moment magnitude scale ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Seismological Society of America
    In:  "Earthquake Magnitude Conversion Problem” by Ranjit Das, H. R. Wason, Gabriel Gonzalez, M. L. Sharma, Deepankar Choudhury, Conrad Lindholm, Narayan Roy, and Pablo Salazar
    Publication Date: 2024-05-21
    Description: Similar to the previous ones, the latest paper by Das and Colleagues (Das et al.,2018) on the application of the general orthogonal regression (GOR) method (Fuller, 1987; Castellaro et al.,2006), for the conversions between different types of earthquake magnitudes, is a collection of incorrect or undemonstrated assertions, most of which have already been pointed out in several contributions that have been published in the last few years (Gasperini and Lolli, 2014a, b; Gasperini et al., 2015, 2018; Pujol, 2018). We recall below only some of them. According to the recent seismological literature, we use here the term “GOR” to indicate the errors-in variable regression method described by Fuller (1987), even if such term is not fully in line with mathematical statistics as orthogonality is only given for equal errors of the dependent and independent variables.
    Description: Published
    Description: 1366-1369
    Description: OST2 Deformazione e Hazard sismico e da maremoto
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-22
    Description: We present a new approach to estimate the predominant direction of rupture propagation during a seismic sequence. A fast estimation of the rupture propagation direction is essential to knowthe azimuthal distribution of shaking around the seismic source and the associated risks for the earthquake occurrence. The main advantage of the proposed method is that it is conceptually reliable, simple, and fast (near real time). The approach uses the empirical Green’s function technique and can be applied directly to the waveforms without requiring the deconvolution of the instrumental response and without knowing a priori the attenuation model and the orientation of the activated fault system. We apply the method to the 2016–2017 Amatrice-Visso-Norcia high-energy and long-lasting earthquake series in central Italy,which affected a large area up to 80 kmalong strike, withmore than 130,000 events of small-to-moderate magnitude recorded until the end of August 2022. Most of the selected events analyzed in this study have a magnitude greater than 4.4 and only four seismic events have a magnitude in the range of 3.3–3.7. Our results show that the complex activated normal fault system has a rupture direction mainly controlled by the pre-existing normal faults and by the orientation of the reactivated faults. In addition, the preferred direction of rupture propagation is also controlled by the presence of fluid in the pre-existing structural discontinuities. We discuss the possible role of fluids as a cause of bimaterial interface. Another important finding from our analysis is that the spatial evolution of seismicity is controlled by the directivity.
    Description: Published
    Description: 1912–1924
    Description: JCR Journal
    Keywords: directivity ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-31
    Description: We investigate the dependence of the Gutenberg–Richter b parameter on the crustal thickness quantified by the Moho depth, for nine different regional catalogs. We find that, for all the catalogs considered in our study, the b‐value is larger in areas presenting a thicker crust. This result appears in apparent contradiction with previous findings of a b decreasing with the focal depth. However, both the results are consistent with acoustic emission experiments, indicating a b‐value inversely proportion to the applied differential stress. Our results can be indeed interpreted as the signature of a larger stress concentration in areas presenting a thinner crust. This is compatible with the scenario where postseismic deformation plays a central role in stress concentration and in aftershock triggering.
    Description: Published
    Description: 1921–1934
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: b-value ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Seismological Society of America
    In:  Taroni, M., J. Zhuang, and W. Marzocchi (2021). High-definition mapping of the Gutenberg–Richter b-value and its relevance: A case study in Italy, Seismol. Res. Lett. 92, 3778–3784, doi: 10.1785/0220210017.
    Publication Date: 2023-02-21
    Description: Taroni et al. (2021) published a statistical framework to reliably estimate the b-value and its uncertainties, with the goal being the interpretation in a seismotectonic context and improving earthquake forecasting capabilities. In this comment, we show that the results presented for the Italian region and the conclusions drawn by the authors, are heavily biased due to quarry-blast events in the Italian earthquake catalog used in the analysis. Without removing this anthropogenic component in the data, a meaningful analysis of the earthquake- size distribution for natural seismicity is, in our opinion, not possible. This comment highlights the need for basic data quality analysis before sophisticated statistical tools are applied to a dataset.
    Description: European Union’s Horizon 2020 research and innovation program under Grant Agreement Number 821115 Pianeta Dinamico-Working Earth INGV-MUR project.
    Description: Published
    Description: 1089-1094
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-03
    Description: In part 1, we run multiple GIT decomposition for different choices of model assumptions, namely three different window duration for Fourier calculation, two different parametrization of the attenuation, two different site constraints. We also considered different source models (Brune, Boatwright, Brune with kappa_source) and different approaches to estimate uncertainties of source parameters (i.e., considering the covariance matrix, Monte Carlo sampling of the residual distribution, model selection with threshold based on F-test).
    Description: As part of the community stress-drop validation study initiative, we apply a spectral decomposition approach to isolate the source spectra of 556 events occurred during the 2019 Ridgecrest sequence (Southern California). We perform multiple decompositions by introducing alternative choices for some processing and model assumptions, namely: three different S-wave window durations (i.e., 5 s, 20 s, and variable between 5 and 20 s); two attenuation models that account differently for depth dependencies; and two different site amplification constraints applied to restore uniqueness of the solution. Seismic moment and corner frequency are estimated for the Brune and Boatwright source models, and an extensive archive including source spectra, site amplifications, attenuation models, and tables with source parameters is disseminated as the main product of the present study. We also compare different approaches to measure the precision of the parameters expressed in terms of 95% confidence intervals (CIs). The CIs estimated from the asymptotic standard errors and from Monte Carlo resampling of the residual distribution show an almost one-to-one correspondence; the approach based on model selection by setting a threshold for misfit chosen with an F-ratio test is conservative compared to the approach based on the asymptotic standard errors. The uncertainty analysis is completed in the companion article in which the outcomes from this work are used to compare epistemic uncertainty with precision of the source parameters.
    Description: Published
    Description: 1980–1991
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: source parameters ; GIT ; uncertainties ; moment magnitude ; corner frequency ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-23
    Description: The detection level of a seismic network is a measure of its effective ability to record small earthquakes in a given area. It can vary in both space and time and depends on several factors such as meteorological conditions, anthropic noise, local soil conditions—all factors that affect the seismic noise level—as well as the quality and operating condition of the instruments. The ability to estimate the level of detection is of tremendous importance both in the design of a new network and in determining whether a given network can recognize seismicity consistently or needs to be improved in some of its parts. In this article, we determine the detection level of the Cuban seismic network using the empirically estimated seismic noise spectral level at each station site and some theoretical relationships to predict the signal amplitude of a seismic event at individual stations. The minimum local detectable magnitude thus depends on some network parameters such as the signal‐to‐noise ratio and the number of stations used in the calculation. We also demonstrate the effectiveness of our predictions by comparing the estimated detection level with those empirically determined from one year of data (i.e., the year 2020) of the Cuban seismic catalog. Our analysis shows, on the one hand, in which areas the current Cuban network should be improved, also depending on the regional pattern of faults, and, on the other hand, indicates the magnitude threshold that can be assumed homogeneously for the catalog of Cuban earthquakes in 2020. Because the adopted method can use current measurements of the seismic noise level (e.g., daily), the proposed analysis can also be configured for continuous monitoring of network state quality.
    Description: Published
    Description: 2048-2062
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: seismic monitoring ; detection ; cuba ; seismic network ; Event Detection Level ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-03-01
    Description: Minimum 1D velocity models and station corrections have been computed for the central Mediterranean area using two main data sets. The first one consists of accurate first arrival‐time readings from 103 seismic events with magnitude (ML)≥3.5 recorded by the Italian National Seismic Network (RSN) and the AlpArray Seismic Network (AASN) in the period 2014–2021. Earthquakes were selected on the basis of their spatial distribution, epicentral distance to the nearest seismic station, and maximum distance traveled by Pn and Sn phases. This fine selection of high‐quality data combined with the spatial density of the AlpArray seismic stations was decisive in obtaining high resolution for upper mantle velocity, especially in the Alpine belt. To obtain a denser coverage of crustal rays, we extended the first data set with P and S arrivals of local earthquakes from Istituto Nazionale di Geofisica e Vulcanologia (INGV) bulletin data (2016–2018). A total of 75,807 seismic phases (47,183 P phases and 28,264 S phases) have been inverted to calculate best‐fit 1D velocity models, at regional and local scales. We then test the performance of the optimized velocity models by relocating the last four years of seismicity recorded by INGV (period 2017–2020). The computed velocity models are very effective for routine earthquake location, seismic monitoring, source parameter modeling, and future 3D seismic tomography.
    Description: Published
    Description: 2670--2685
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: geophysics ; velocity models ; Italian seismicity ; central mediterranean area ; 04. Solid Earth ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-03-25
    Description: Campi Flegrei caldera (Southern Italy) is one of the most hazardous volcanic complexes in the world since it is located inside the densely inhabited urban district of Naples-Pozzuoli. In the past, the caldera has produced devastating to moderate eruptions and periodically undergoes from strong to minor uplift episodes, named “bradyseism”, almost always accompanied by seismic swarms. Starting from 2005 Campi Flegrei has undergone an unrest crisis, characterized by ground uplift, localized gas emissions and seismicity, often occurring in seismic swarms. As a consequence, the monitoring activities have been progressively increasing, producing a huge amount of data, difficult to manage and match. GIS (Geographical Information System) represents a potent tool to manage great quantity of data, coming from different disciplines. In this study, we show two GIS technology applications to the seismic catalogue of Campi Flegrei. In the first one, a high-quality dataset is extracted from the GeoDatabase addressed to seismological studies that require high precision earthquake locations. In the second application, GIS are used to extract, visualize and analyse the typical seismic swarms of Campi Flegrei. Moreover, density and seismic moment distribution maps were generated for these swarms. In the last application, the GIS allow to highlight a clear variation in the temporal trend of the seismic swarms at Campi Flegrei.
    Description: This study has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile.
    Description: Published
    Description: 131-144
    Description: 4V. Processi pre-eruttivi
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: N/A or not JCR
    Keywords: Campi Flegrei ; Seismic swams ; Seismic network ; GIS ; 04.06. Seismology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-01-31
    Description: Within the framework of the European collaborative research initiative AlpArray (http://www.alparray.ethz. ch), the Istituto Nazionale di Geofisica e Vulcanolgia (INGV) deployed overall 20 broad-band seismic stations in Northern Italy and on two islands in the Tyrrhenian Sea (Capraia and Montecristo) during Fall-Winter 2015. The temporary deployment (16 stations) will run for two to three years and 4 INGV National Seismic Network accelerometric sites are now equipped with additional per- manent broad-band sensors. The 16 temporary stations are equipped with REF TEK 130 digitizers and Nanometrics Trillium Compact 120 s sensors, a couple have Nanometrics Trillium 120P sensors and one a Streckeisen STS2. For each site we describe the settings and discuss the noise levels, the site effects and the preliminary sensitivity analysis.
    Description: Published
    Description: 39-52
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-05-25
    Description: We explore the three‐dimensional structure of the 2016–2017 Central Italy sequence using ~34,000 ML ≥ 1.5 earthquakes that occurred between August 2016 and January 2018. We applied cross‐correlation and double‐difference location methods to waveform and parametric data routinely produced at the Italian National Institute of Geophysics and Volcanology. The sequence activated an 80 km long system of normal faults and near‐horizontal detachment faults through the MW 6.0 Amatrice, the MW 5.9 Visso, and the MW 6.5 Norcia mainshocks and aftershocks. The system has an average strike of N155°E and dips 38°–55° southwestward and is segmented into 15–30 km long faults individually activated by the cascade of MW ≥ 5.0 shocks. The two main normal fault segments, Mt. Vettore‐Mt. Bove to the North and Mt. della Laga to the South, are separated by an NNE‐SSW‐trending lateral ramp of the Sibillini thrust, a regional structure inherited from the previous compressional tectonic phase putting into contact diverse lithologies with different seismicity patterns. Space‐time reconstruction of the fault system supports a composite rupture scenario previously proposed for the MW 6.5 Norcia earthquake, where the rupture possibly propagated also along an oblique portion of the Sibillini thrust. This dissected set of normal fault segments is bounded at 8–10 km depth by a continuous 2 km thick seismicity layer of extensional nature slightly dipping eastward and interpreted as a shear zone. All three mainshocks in the sequence nucleated along the high‐angle planes at significant distance from the shear zone, thus complicating the interpretation of the mechanisms driving strain partitioning between these structures.
    Description: Published
    Description: e2019JB018440
    Description: 3T. Sorgente sismica
    Description: JCR Journal
    Keywords: normal fault ; shear zone ; fault segmentation ; apennines ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-04-09
    Description: This work is devoted to the study of both earthquakes and background seismic noise at Ischia Island (Italy) recorded pre and post the Md 4.0 earthquake occurred on 21 August 2017 (18:57 UTC). We compare and characterize noise and earthquakes in terms of Independent Component Analysis, energy and polarization properties. The earthquakes’ waveforms and the background noise are decomposed into a few independent components with two main common signals peaked around 1–2 and 3–4 Hz, respectively. A slight increase of the energy of the background seismic noise is observed comparing samples recorded in 2016 and 2017, whereas no variations are detected in 2017 pre and post the main earthquake. The polarization analysis, performed in the frequency bands individuated by Independent Component Analysis and applied to the background seismic noise, indicates a shallow propagation and the azimuthal pattern is mainly controlled by the local structural features. These results suggest that noise and earthquakes are ascribable to a common phenomenon of fluid-solid interaction in the hydrothermal system of Ischia Island.
    Description: Published
    Description: 19-28
    Description: 3T. Sorgente sismica
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Ischia volcano ; Source dynamics ; Data analysis ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-02-16
    Description: In the last two decades, several studies addressed the revaluation and homogenization of the Italian instrumental seismic catalog, but all of them refer to the time interval from 1981, that is, the starting year of the Catalogo Strumentale dei Terremoti Italiani (CSTI). At the time, the CSTI was conceived as the continuation of the catalog of the Progetto Finalizzato Geodinamica (PFG) but, over time, the PFG catalog was almost totally forgotten, and presently it is even difficult to obtain because it is not provided by any website. In this work, we integrate a genuine copy of PFG, with additional locations from the bulletins of the Istituto Nazionale di Geofisica (ING, now known as INGV) and of the International Seismological Centre (ISC) and with local magnitudes from two couples of Wood–Anderson (WA) seismometers operational in Italy in the 1970s and 1980s, mostly derived from a careful scrutiny of paper bulletins of the Osservatorio Geofisico Sperimentale (OGS) and of the ING. We restrict our analysis to the time interval from 1960 to 1980 because, based on various evidence, we can infer that within such period most instrumental magnitudes reported by the PFG catalog are reasonably coherent with the Richter’s definition. Magnitudes provided by WA stations and other data sources are calibrated with respect to Mw by general orthogonal regressions. The final catalog from 1960 to 1980 contains 8536 earthquakes, of which we compute a true or proxy Mw magnitude with related uncertainty for 6407. The analysis of the frequency–magnitude distribution indicates completeness for about Mw ≥4:0. This work extends the time coverage of the Italian instrumental catalog to about 55 yrs before the present, allowing the statistical study of some important seismic periods that occurred, for example, in 1962 (Irpinia), 1968 (Belice Valley), 1976 (Friuli), 1979 (Umbria), and 1980 (Irpinia).
    Description: Published
    Description: 481–492
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: local magnitude ; magnitude homogenization ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2018-03-12
    Description: The paper has not any abstract
    Description: Published
    Description: 720-727
    Description: 2T. Sorgente Sismica
    Description: 1IT. Reti di monitoraggio
    Description: JCR Journal
    Keywords: Earthquake ; Monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-11-08
    Description: Seismicity during Dutch colonial rule in Indonesia between 1800 and 1939 is poorly catalogued with existing summaries (e.g. Newcomb & McCann, 1987) too brief for further quantitative assessment such as the calculation of intensity magnitudes (MI). We focus on this period in Indonesian history, collating and analysing reports from official documents and newspapers from the erstwhile Dutch East Indies. We scrutinize these for macroseismic intensity using the European Macroseismic Scale (EMS-98). This scale is closely related to the Modified Mercalli Intensity (MMI) scale but is associated with better guidelines with which to assess damage to built-up environments. Our approach enables us to uniformly assess felt intensities from Sumatra, Java, Bali, and Borneo along with instances of perceived shaking from the eastern Indonesian archipelago, and from the Malay peninsula including Singapore. Building upon previous work (Martin et al., 2015), we corelate our data, when possible, with regional, and teleseismic instrumental observations. This allows us to discriminate, for example, a possible M~6 doublet in the region of South Sumatra in 1908. Felt effects in west Malaysia and Singapore from numerous earthquakes in Sumatra were also collected, and unexpectedly, we found two widely felt earthquakes in Singapore in 1922 that likely originated in the region of the southern Malaya peninsula. All our observations contribute to a database named Gempa Nusantara which roughly translates to earthquakes (gempa) in the Indonesian archipelago (nusantara) in Bahasa Indonesia. This database uses a web application called MIDOP (Macroseismic Intensity Data Online Publisher) which is an open-source program written in PHP that has been previously utilized to publish intensity data in Europe (Locati et al., 2014). In our study we extend the capabilities of the MIDOP application further, particularly in equatorial regions, and use it to manage our data from historical Indonesian earthquakes.
    Description: Earth Observatory of Singapore, Nanyang Technological University
    Description: Published
    Description: Miami, Florida, United States of America
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Keywords: historical seismology ; macroseismic intensity ; 04. Solid Earth ; 04.04. Geology ; 04.06. Seismology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-05-12
    Description: This study presents a series of self-correcting models that are obtained by integrating information about seismicity and fault sources in Italy. Four versions of the stress release model are analyzed, in which the evolution of the system over time is represented by the level of strain, moment, seismic energy, or energy scaled by the moment. We carry out the analysis on a regional basis by subdividing the study area into eight tectonically coherent regions. In each region, we reconstruct the seismic history and statistically evaluate the completeness of the resulting seismic catalog. Following the Bayesian paradigm, we apply Markov chain Monte Carlo methods to obtain parameter estimates and a measure of their uncertainty expressed by the simulated posterior distribution. The comparison of the four models through the Bayes factor and an information criterion provides evidence (to different degrees depending on the region) in favor of the stress release model based on the energy and the scaled energy. Therefore, among the quantities considered, this turns out to be the measure of the size of an earthquake to use in stress release models. At any instant, the time to the next event turns out to follow a Gompertz distribution, with a shape parameter that depends on time through the value of the conditional intensity at that instant. In light of this result, the issue of forecasting is tackled through both retrospective and prospective approaches. Retrospectively, the forecasting procedure is carried out on the occurrence times of the events recorded in each region, to determine whether the stress release model reproduces the observations used in the estimation procedure. Prospectively, the estimates of the time to the next event are compared with the dates of the earthquakes that occurred after the end of the learning catalog, in the 2003–2012 decade.
    Description: Italian Dipartimento della Protezione Civile in the framework of the 2007–2009 Agreement with Istituto Nazionale di Geofisica e Vulcanologia (INGV), project S1: Analysis of the seismic potential in Italy for the evaluation of the seismic hazard.
    Description: Published
    Description: 147-168
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: point process ; probabilistic forecasting ; interevent time distribution ; seismogenic sources ; Bayesian inference ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-03-10
    Description: Between the October 2011 and the July 2012, several seismic swarms occurred in the Hyblean foreland domain of SE Sicily (Italy) along the Cavagrande Canyon, one of the most impressive fluvial incisions of Sicily. Despite the low magnitude of the events (main shock with M~3.7), they represent the biggest strain release of the Hyblean area over the last ten years. A careful wave-form analysis of the earthquakes revealed that most of them form a family of ―multiplets‖. These findings allow us to reconstruct the attitude of the accountable fault plane by interpolating their highprecision 3D location parameters into a GIS platform. A detailed morpho-structural analysis, performed at the ideal updip projection of the modelled plane, showed that during the Middle-Late Pleistocene the epicentral area has been deformed by a belt of extensional faults, a segment of which matches well with the computer-generated surface. Despite the field evidence, computed focal solutions support contrasting strike-slip kinematics on the same fault plane, clearly indicating a dextral shearing on this pre-existing normal fault. The seismic swarms nucleated on a small rupture area along a ~10 km long, NW-SE trending fault segment, that could be able to generate M~6 earthquakes. Following our analysis and looking at seismicity distribution in the SE portion of Hyblean area, we asses that a stress pattern reorganization occurred all over the Hyblean foreland between the Late Pleistocene and present-day. Change in the trajectory of the max stress axes (from vertical to horizontal) seems to have involved a pre-existing large scale fault configuration with considerable seismotectonic implications.
    Description: Published
    Description: 215-228
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Hyblean foreland ; seismic sequences ; fault reactivation ; 3D fault modelling ; stress changing ; seismotectonics ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-05-12
    Description: Slip rate is a critical parameter for describing geologic and earthquake rates of known active faults. Although faults are inherently three-dimensional surfaces, the paucity of data allows for estimating only the slip rate at the ground surface and often only few values for an entire fault. These values are frequently assumed as proxies or as some average of slip rate at depth. Evidence of geological offset and single earthquake displacement, as well as mechanical requirements, show that fault slip varies significantly with depth. Slip rate should thus vary in a presumably similar way, yet these variations are rarely considered. In this work, we tackle the determination of slip rate depth distributions by applying the finite element method on a 2D vertical section, with stratification and faults, across the central Apennines, Italy. In a first step, we perform a plane-stress analysis assuming visco-elasto-plastic rheology and then search throughout a large range of values to minimize the RMS deviation between the model and the interseismic GPS velocities. Using a parametric analysis, we assess the accuracy of the best model and the sensitivity of its parameters. In a second step, we unlock the faults and let the model simulate 10 kyr of deformation to estimate the fault long-term slip rates. The overall average slip rate at depth is approximately 1.1 mm/yr for normal faults and 0.2 mm/yr for thrust faults. A maximum value of about 2 mm/yr characterizes the Avezzano fault that caused the 1915, Mw 7.0 earthquake. The slip rate depth distribution varies significantly from fault to fault and even between neighbouring faults, with maxima and minima located at different depths. We found uniform distributions only occasionally. We suggest that these findings can strongly influence the forecasting of cumulative earthquake depth distributions based on long-term fault slip rates.
    Description: Project “Abruzzo” (code: RBAP10ZC8K_ 003) funded by the Italian Ministry of Education, University and Research (MIUR).
    Description: Published
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: slip rate ; numerical model ; fault ; rheology ; central Italy ; active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Using a multidisciplinary dataset based on gravimetric, seismic, geodetic and geological observations,we provide an improved picture of the shallow structure and dynamics of the southern edge of the Tyrrhenian subduction zone.With a local earthquake tomographywe clearly identify twomain crustal domains in the upper 15 kmcharacterized by different P-wave velocity values: a high-velocity domain comprising southeasternmost Tyrrhenian Sea, NE Sicily and Messina Straits, and a low-velocity domain comprising Mt. Etna and eastern Sicily. The transition between the two domains shows a good spatial correspondence with a wider set of faults including the Taormina Fault System (TFS) and the Aeolian–Tindari–Letojanni Fault System (ATLFS), two nearly SE-striking fault systems crossing northeastern Sicily and ending on the Ionian shoreline of Sicily according to many investigators. Within this set of faults, most of the deformation/seismicity occurs along the northern and central segments of ATLFS, compared to lowactivity along TFS. A lack of seismicity (both recent and historical) is observed in the southern sector of ATLFS where, however, geodetic data reveal significant deformation. Ourmultidisciplinary dataset including offshore observations suggests the southeastward continuation of the ATLFS into the Ionian Sea until joiningwith the faults cutting the Ionian accretionarywedge described in the recent literature. Our findings imply the existence of a highly segmented crustal shear zone extending from the Aeolian Islands to the Ionian Abyssal plain, that we believe plays the role of accommodating differential motion between the Southern Tyrrhenian unit and the western compressional domain of Sicily. The ATLFS, which is a main part of the inferred shear zone, behaves similarly to what often observed at the edges of retreating subduction
    Description: Published
    Description: 205-218
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: subduction edge ; seismic velocity structure ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.03. Gravity and isostasy ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-11-26
    Description: A sequence of thousands of small to moderate earthquakes has been occurring since spring 2010 in the Pollino Mountains area, southern Italy, where a seismic gap was previously hypothesized by paleoseismological evidence associated with the lack of major earthquakes in historical catalogs.
    Description: Published
    Description: 955-962
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: seismic sequence ; earthquake location ; focal mechanism ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-06-21
    Description: The seismological community is currently developing operational earthquake forecasting (OEF) systems that aim to estimate, based on continuous ground motion recording by seismic networks, the rates of events exceeding a certain magnitude threshold in an area of interest and in a short-period of time (days to weeks); i.e., the seismicity. OEF may be possibly used for short-term seismic risk management in regions affected by seismic swarms only if its results may be the input to compute, in a probabilistically sound manner, consequence-based risk metrics. The present paper reports the investigation about feasibility of short-term risk assessment, or operational earthquake loss forecasting (OELF), in Italy. The approach is that of performance-based earthquake engineering, where the loss rates are computed by means of hazard, vulnerability, and exposure. The risk is expressed in terms of individual and regional measures, which are based on short-term macroseismic intensity, or ground motion intensity, hazard. The vulnerability of the built environment relies on damage probability matrices empirically calibrated for Italian structural classes, and exposure data in terms of buildings per vulnerability class and occupants per building typology. All vulnerability and exposure data are at the municipality scale. The procedure set-up, which is virtually independent on the seismological model used, is implemented in an experimental OELF system, which continuously process OEF information to produce weekly nationwide risk maps. This is illustrated by a retrospective application to the 2012 Pollino (southern Italy) seismic sequence, which provides insights on the capabilities of the system and on the impact, on short-term risk assessment, of the methodology currently used for OEF in Italy.
    Description: Published
    Description: 2286-2298
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: operational earthquake forecasting ; seismic risk ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-03-19
    Description: From simple considerations we propose a revision of the AcceleratingMoment Release (AMR) methodology for improving our knowledge of seismic sequences and then, hopefully in a close future, to reach the capability of predicting the main-shock location and occurrence with sufficient accuracy. The proposed revision is based on the introduction of a “reduced” Benioff strain for the earthquakes of the seismic sequence where, for the same magnitude and after a certain distance from the main-shock epicentre, the closer the events the more they are weighted. In addition,we retain the usual expressions proposed by the ordinary AMRmethod for the estimation of the corresponding main-shock magnitude, although this parameter is the weakest of the analysis. Then, we apply the revised method to four case studies in Italy, three of which are the most recent seismic sequences of the last 9 years culminating with a shallow main-shock, and one is instead a 1995–1996 swarm with no significant main-shock. The application of the R-AMRmethodology provides the best results in detecting the precursory seismic acceleration,when comparedwith those found by ordinaryAMR technique.We verify also the stability of the results in space, applying the analysis to real data with moving circles in a large area around each mainshock epicentre, and the efficiency of the revised technique in time, comparing the results with those obtained when applying the same analysis to simulated seismic sequences.
    Description: Published
    Description: 82–98
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake interaction ; Forecasting and prediction ; Seismicity and tectonics ; Seismic attenuation ; Seismic sequence ; Foreshocks ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-03-04
    Description: Macroseismic investigation with data collected through web- based questionnaires is today routinely applied by most impor- tant seismological institutions, such as the U.S. Geological Survey (http://earthquake.usgs.gov/earthquakes/dyfi/; last accessed December 2014), British Geological Survey (http://www. earthquakes.bgs.ac.uk/questionnaire/EqQuestIntro.html; last accessed December 2014), European-Mediterranean Seismological Centre (http://www.emsc-csem.org/Earthquake/Contribute/ choose_earthquake.php?lang=en; last accessed December 2014), Schweizerische Erdbebendienst (http://www.seismo.ethz. ch/eq/detected/eq_form/index_EN; last accessed December 2014), Bureau Central Sismologique Français (http://www .seisme.prd.fr/english.php; last accessed December 2014), and the New Zealand GeoNet project (http://www.geonet.org.nz/ quakes/; last accessed December 2014). The wide diffusion of Internet and the citizen collaboration (crowdsourcing) allow documentation of information on seismic effects and production of a macroseismic field with low costs and almost in real time. Transformation from qualitative information (as given by ques- tionnaires) to numerical quantification is a crucial issue. In the traditional evaluation of intensity, experts used to work through a complex comparison of effects basically driven by personal expe- rience. The major problem with this approach concerns the dif- ficulty in verifing and reproducing the evaluation process due to the lack of a detailed explanation of the employed workflow and to the large variability of possible cases. On the other hand, an automatic method for the estimation of macroseismic intensities needs to be completely well defined and specified in order to be reproducible and verifiable. For these reasons, this paper presents a comprehensive explanation of our intensity assessment method. A useful automatic method for intensity assessment should be computationally fast and strictly follow the macroseismic scales. To meet these requirements in 2010, we proposed a method that firstly quantified the effects using additive scores associated with each answer of the questionnaire item and then determined an intensity estimate for each questionnaire (Sbarra et al., 2010). After a trial period and having collected more than 500,000 questionnaires, we were able to thoroughly test the method. As a result of this testing, we describe here a new improved method that takes into account further factors, such as the situation and the location of the observer (Sbarra et al., 2012, 2014), to obtain a more accurate estimate of the macroseismic intensity degree at the municipality level. In this paper, we show some applications of our method with reference to the Mercalli–Cancani–Sieberg (MCS) scale, because this scale has long been used with Italian earthquakes and allows easy comparison between these intensities and other traditional ones.
    Description: Published
    Description: 985-990
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismics ; intensity ; questionnaires ; attenuation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-03-02
    Description: This study presents new geological and seismological data that are used to assess the seismic hazard of a sector of the Po Plain (northern Italy), a large alluvial basin hit by two strong earthquakes on May 20 (Mw 6.1) and May 29 (Mw 6.0), 2012. The proposed interpretation is based on high-quality relocation of 5,369 earthquakes ( 'Emilia sequence‘) and a dense grid of seismic profiles and exploration wells. The analysed seismicity was recorded by 44 seismic stations, and initially used to calibrate new one-dimensional and three- dimensional local Vp and Vs velocity models for the area. Considering these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. These data define a seismicity that is elongated in the W-NW to E-SE directions. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~45° SSW, and the surface projection indicates an area ~10 km wide and 23 km long. The aftershocks of the May 29 mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~6 km wide and 33 km long. Multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene. There is also evidence of a Mesozoic extensional fault system in the Ferrara arc, with faults that in places have been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system.
    Description: Published
    Description: 107–123
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: JCR Journal
    Description: restricted
    Keywords: velocity model ; relocated hypocenters ; double-difference locations ; Po Plain ; May 2012 Emilia earthquakes ; reactivated extensional faults ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-05-12
    Description: Any trustworthy probabilistic seismic hazard analysis (PSHA) has to account for the intrinsic variability of the system (aleatory variability) and the limited knowledge of the system itself (epistemic uncertainty). The most popular framework for this purpose is the logic tree. Notwithstanding its vast popularity, the logic tree outcomes are still interpreted in two different and irreconcilable ways. In one case, practitioners claim that the mean hazard of the logic tree is the hazard and the distribution of all outcomes does not have any probabilistic meaning. On the other hand, other practitioners describe the seismic hazard using the distribution of all logic tree outcomes. In this paper, we explore in detail the reasons of this controversy about the interpretation of logic tree, showing that the distribution of all outcomes is more appropriate to provide a joined full description of aleatory variability and epistemic uncertainty. Then, we provide a more general framework - that we name ensemble modeling - in which the logic tree outcomes can be embedded. In this framework, the logic tree is not a classical probability tree, but it is just a technical tool that samples epistemic uncertainty. Ensemble modeling consists of inferring the parent distribution of the epistemic uncertainty from which this sample is drawn. Ensemble modeling offers some remarkable additional features. First, it allows a rigorous and meaningful validation of any PSHA; this is essential if we want to keep PSHA into a scientific domain. Second, it provides a proper and clear description of the aleatory variability and epistemic uncertainty that can help stakeholders to appreciate the whole range of uncertainties in PSHA. Third, it may help to reduce the computational time when the logic tree becomes computationally intractable because of the too many branches.
    Description: Published
    Description: 2151-2159
    Description: 1SR. TERREMOTI - Servizi e ricerca per la Società
    Description: JCR Journal
    Description: reserved
    Keywords: seismic hazard ; logic tree ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-03-04
    Description: We investigate the influence of building height on the ability of people to feel earthquakes and observe that, in an urban area, short and tall buildings reach different levels of excitation. We quantify this behavior by analyzing macroseismic reports collected from individuals through the Internet, focusing on transitory effects, therefore in the elastic regime during recent earthquakes in Italy in the local magnitude (ML) range of 3 to 5.9. We find a maximum difference of 0.6 intensity units between the top floors of tall (7–10 stories) and short (1–2 stories) buildings at the highest considered magnitudes. As expected, tall buildings experience greater shaking than short buildings during large earthquakes at large source distances. However, we observe the opposite behavior at close distances when the ML is less than 3.5. These results can be explained by considering the different spectra radiated by small and large earthquakes and the different fundamental mode resonances of buildings (i.e., shorter buildings have higher resonance frequencies and vice versa). Using idealized building models excited by real acceleration time histories, we compute synthetic accelerograms on the top floors of short and tall buildings, and confirm the trend of the observed differences in felt intensities.
    Description: Published
    Description: 1803-1809
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismics ; intensity ; building height ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-06-22
    Description: Seismic aftershock-hazard analysis is one of the first steps toward estab- lishing an integrated risk-based decision-making support framework for emergency management in the event of an ongoing aftershock sequence. This work focuses on providing adaptive daily forecasts of the mean daily rate of exceeding various spectral acceleration values (the aftershock hazard). Two well-established earthquake- occurrence models suitable for daily seismicity forecasts associated with the evolution of an aftershock sequence, namely, the modified Omori’s aftershock model (MO) and the epidemic-type aftershock sequence (ETAS) are adopted. An adaptive and evolution- ary MO-based aftershock occurrence model with distinct spatial and temporal compo- nents is proposed. In this model, the parameters deciding the temporal decay are updated based on the data provided by the ongoing aftershock sequence. This model adopts an evolutionary spatial seismicity pattern loosely based on spatial clustering of aftershock events in the sequence. Bayesian updating is also employed to provide sequence-based parameter estimates for a given ground-motion prediction model. Daily forecasts of the mean rate of exceedance of various spectral acceleration levels are calculated based on alternative occurrence models and the updated ground-motion prediction relation. As a numerical example, daily forecasts of the aftershock-hazard curve are obtained for the L’Aquila aftershock sequence based on the MO-based and ETAS occurrence models, and an updated version of the Sabetta and Pugliese (1996) ground-motion prediction model. These daily hazard forecasts are then compared with the observed daily rates of exceeding various spectral acceleration thresholds.
    Description: Published
    Description: 145 – 161
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake forecast ; aftershock ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-06-25
    Description: We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Opera- tional earthquake forecasting (OEF) is the dissemination of authoritative information about these time-dependent proba- bilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground-motion exceedance probabilities as well as short-term rupture probabilities—in concert with the long-term forecasts of probabilistic seismic-hazard analysis (PSHA).
    Description: Published
    Description: 955-959
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Operational earthquake forecasting ; seismic preparedness ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: The destructive earthquake (M 7) that struck western Calabria (southern Italy) on 8 September 1905 profoundly hit a broad region, also generating a feeble tsunami. For all the damage it caused, this event was as much studied as not fully explained. Literature source models are numerous and diverse, in fault geometry, location, and associated magnitude. They also differ in nature, since these solutions are either field- based, or deriving from tsunami modeling, and macroseismic data inversion. Most. Neither all of these literature source models are not consistent with the damage pattern caused by the 1905 earthquake. To contribute to the identification of the seismogenic source of this destructive event, we performed a series of ground shaking scenarios, based on different faults that various authors associated with this event. The only documented data available suitable for our comparative purposes are the macroseismic intensities associated with localities affected by the event. We transformed the values of ground motion we computed for the same datapoints into intensities. We then attributed a quantitative fit to each modeled seismogenic source, evaluated with the quadratic sum of residuals between observed and calculated intensities. Our results show that two out of 7 literature source models are compatible with the damage distribution caused by the 1905 earthquake. The different parameters and boundary conditions constraining these two solutions suggest that either seismogenic source should include further complexities. Alternatively, since these two sources are antithetic and partially form a graben, they might have kinematically interacted, if passively, on 8 September 1905.
    Description: Project ISTEGE: “Indagine Sismotettonica del TErremoto dell'8 Settembre 1905 (Mw 7.4) nel Golfo di Sant'Eufemia – offshore tirrenico calabrese”, supported by OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale); Project RITMARE, funded by Dipartimento della Protezione Civile (Italy's National Civil Protection).
    Description: Published
    Description: 912-927
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Shaking scenarios ; Seismogenic sources ; 1905 earthquake ; Southern Italy ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Geoscience knowledge has a strong impact in modern society as it relates to natural hazards, sustainability and environmental issues. The general public has a demanding attitude towards the understanding of crucial geo-scientific topics that is only partly satisfied by science communication strategies and/or by outreach or school programs. A proper knowledge of the phenomena might help trigger crucial inquiries when approaching mitigation of geohazards and geo-resources, while providing the right tool for the understanding of news and ideas floating from the web or other media, and, in other words, help communication to be more efficient. Nonetheless available educational resources seem to be inadequate in meeting the goal, while research institutions are facing the challenge to experience new communication strategies and non-conventional way of learning capable to allow the understanding of crucial scientific contents. We suggest the use of multi-sensory approach as a successful non-conventional way of learning for children and as a different perspective of learning for older students and adults. Sense organs stimulation are perceived and processed to build the knowledge of the surrounding, including all sorts of hazards. Powerfully relying in the sense of sight, Humans have somehow lost most of their ability for a deep perception of the environment enriched by all the other senses. Since hazards involve emotions we argue that new ways to approach the learning might go exactly through emotions that one might stress with a tactile experience, a hearing or smell stimulation. To test and support our idea we are building a package of learning activities and exhibits based on a multi-sensory experience where the sight is not allowed.
    Description: Unpublished
    Description: Vienna
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: restricted
    Keywords: seismic hazard, volcanic hazard, disasters prevention, education ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-02-24
    Description: We present a coupled fluid-dynamic and electromagnetic model for volcanic ash plumes. In a forward approach, the model is able to simulate the plume dynamics from prescribed input flow conditions and generate the corresponding synthetic thermal infrared (TIR) image, allowing a comparison with field-based observations. An inversion procedure is then developed to retrieve vent conditions from TIR images, and to independently estimate the mass eruption rate. The adopted fluid-dynamic model is based on a one-dimensional, stationary description of a self-similar turbulent plume, for which an asymptotic analytical solution is obtained. The electromagnetic emission/absorption model is based on Schwarzschild's equation and on Mie's theory for disperse particles, and we assume that particles are coarser than the radiation wavelength (about 10 μm) and that scattering is negligible. In the inversion procedure, model parameter space is sampled to find the optimal set of input conditions which minimizes the difference between the experimental and the synthetic image. Application of the inversion procedure to an ash plume at Santiaguito (Santa Maria volcano, Guatemala) has allowed us to retrieve the main plume input parameters, namely mass flow rate, initial radius, velocity, temperature, gas mass ratio, entrainment coefficient and their related uncertainty. Moreover, by coupling with the electromagnetic model we have been able to obtain a reliable estimate of the equivalent Sauter diameter of the total particle size distribution. The presented method is general and, in principle, can be applied to the spatial distribution of particle concentration and temperature obtained by any fluid-dynamic model, either integral or multidimensional, stationary or time-dependent, single or multiphase. The method discussed here is fast and robust, thus indicating potential for applications to real-time estimation of ash mass flux and particle size distribution, which is crucial for model-based forecasts of the volcanic ash dispersal process.
    Description: Published
    Description: 129–147
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Volcanic ash plume ; Volcanic ash plume ; Thermal camera ; Inversion ; Mass flow ; Particle size ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.05. Mathematical geophysics::05.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-02-24
    Description: The Sybaris archaeological site, founded by the Greeks in 720 B.C., is located within the Sibari Plain near the Crati River mouth (Ionian northern Calabria, southern Italy), in an almost flat and low-lying area (Fig. 1). The plain is bounded by the Pollino chain to the north and by the Sila massif and the northern Crati basin to the south and west. From a seismotectonic point of view, Sybaris is located inferences the northeastern Calabrian arc, the tectonic evolution of which is controlled by slow north-northwest/south-southeast convergence between the Eurasian and African–Adriatic continental plates (e.g., Gvirtzmann and Nur, 1999; Argnani, 2000; Jolivet and Faccenna, 2000). Throughout the Calabrian arc, complex dynamics associated with subduction and rollback have produced back-arc extension, widespread uplift, and relative subsidence in the major tectonic basins, including Sibari, where mainly normal seismogenic faults accommodate internal deformation. The interior of the Sibari Plain has a high seismogenic potential, and recently, on July 2010, theMt. Pollino chain area experienced a three-year seismic sequence with magnitudes up to 5.2 (Fig. 1), following 30 years of seismic quiescence. In contrast, low to moderate seismicity characterizes the eastern half of the plain closer to the Ionian Sea, where the archaeological site of Sybaris is located (Fig. 1). Although not well constrained, there is evidence for active compression in this portion of northern Calabria and the Ionian Sea, where mostly strike-slip faults aremapped (e.g., Frepoli and Amato, 2000; Galadini et al., 2001; Pondrelli et al., 2006; Scognamiglio et al., 2009; Comerci et al., 2013; Fig. 1), but significant uncertainty exists on locations, geometry, and age of these faults. The 2700-year long record of history stored in the archaeological site of Sybaris may have recorded the traces of earthquakes that occurred in the area by sealing their effects in the sediments and in the archaeological remains. An archaeoseismic study of the site constitutes a unique means to deepenour knowledge of the seismotectonic of the area. The recognition and characterization of the coseismic deformation affecting the structures of the Sybaris archaeological site is the objective of the present study. To identify past seismic deformation events at Sybaris, we proceeded with (1) a systematic survey of the deformed structures, (2) an analysis of the tectonic deformation, (3) the formulation of a hypothesis for tectonics and earthquakes inferences, and (4) constraints on the timing of the deformation based on archaeological stratigraphy and absolute dating.
    Description: Published
    Description: 245-254
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Archaeo-seismology ; Active tectonics ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-05-27
    Description: Several mountainous regions are currently affected by syn- or post-orogenic active extension. We investigate how a newly-formed normal fault interacts with structures inherited from a previous contractional phase. To this end, we use analog models that adopt an innovative technique for performing a precut that mimics such inherited structures into a clay layer; this clay layer is laid on top of a master fault simulated by two rigid blocks sliding along an inclined plane. We carry out six experiments with variously oriented precuts and compare the results with those obtained in a reference isotropic experiment. All other conditions are identical for all seven realizations. Fault evolution is monitored by taking closely-spaced snapshots analyzed through the Digital Image Correlation method. We find that the upward propagation of the normal fault can be either accelerated or decelerated depending on the presence of a precut and its orientation. Such precuts can also promote or inhibit the formation of bending-moment faults. These interactions between master fault and precut also affect the shape of the fault-related syncline-anticline pair.
    Description: Published
    Description: 145–158
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Extension ; Normal faults ; Pre-existing fault ; Analogue modeling ; Accommodation space ; Blind fault ; Active tectonics ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: On 6 April 2009, an Mw 6.2 earthquake struck beneath the city of L’Aquila, central Italy. The shock created significant damage and caused more than 300 deaths in the city and environs. The event followed a seismic sequence that started at the begin- ning of the year, with its largest shock of M w 4.2 occurring on 30 March. The 6 April earthquake became infamous worldwide because seven experts, who attended a Grandi Rischi Commis- sion meeting on 31 March, were convicted of failing to properly warn the public about the possibility of the mainshock and were sentenced to six years in jail. A second trial is in process. We do not wish to further discuss this important case here (in- stead see Marzocchi, 2012 and the website http://processoaquila .wordpress.com/; last accessed June 2014); however, it illustrates the importance of providing authoritative scientific information about earthquake probabilities to the public and other users and serves as a catalyst for the scientific developments now underway in Italy.
    Description: Published
    Description: 961-969
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Operational earthquake forecasting ; ensemble modeling ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Integrated geological, geodetic and marine geophysical data provide evidence of active deformation insouth-western Sicily, in an area spatially coincident with the macroseismic zone of the destructive 1968Belice earthquake sequence. Even though the sequence represents the strongest seismic event recordedin Western Sicily in historical times, focal solutions provided by different authors are inconclusive onpossible faulting mechanism, which ranges from thrusting to transpression, and the seismogenic sourceis still undefined. Interferometric (DInSAR) observations reveal a differential ground motion on a SW–NEalignment between Campobello di Mazara and Castelvetrano (CCA), located just west of the maximummacroseismic sector. In addition, new GPS campaign-mode data acquired across the CCA alignment doc-uments NW–SE contractional strain accumulation. Morphostructural analysis allowed to associate thealignment detected through geodetic measurements with a topographic offset of Pleistocene marine sed-iments. The on-land data were complemented by new high-resolution marine geophysical surveys, whichindicate recent contraction on the offshore extension of the CCA alignment. The discovery of archaeo-logical remains displaced by a thrust fault associated with the alignment provided the first likely surfaceevidence of coseismic and/or aseismic deformation related to a seismogenic source in the area. Resultsof the integrated study supports the contention that oblique thrusting and folding in response to NW–SEoriented contraction is still active. Although we are not able to associate the CCA alignment to the 1968seismic sequence or to the historical earthquakes that destroyed the ancient Greek city of Selinunte,located on the nearby coastline, our result must be incorporated in the seismic hazard evaluation of thisdensely populated area of Sicily.
    Description: Thiswork was partially funded by the Task D7 “Enhancement of theremote sensing laboratory” of the project, “Programma Triennale di Estensione e Potenziamento dei Sistemi di Monitoraggio Vulcanico e Sismico della Sicilia – Intesa istituzionale di programmadel 7 novembre 2003 – APQ del 27/10/2006” funded by the Sicilian Regional Government and by PRIN 2010-11 Project “Active andrecent geodynamics of Calabrian Arc and accretionary complex inthe Ionian Sea” (responsible C. Monaco). The ENVISAT data wereprovided in the frame of the ESA CAT.1 5843 project.
    Description: Published
    Description: 138-149
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Belice ; Active Fault ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: In this paper, we discuss in depth, one of the basic procedures that stands behind probabilistic seismic-hazard analysis (PSHA), that is, the declustering of the seismicity rates. First, we explore the technical, scientific, and practical motivations that led to introducing the declustering of seismicity rates. Then, we show that for PSHA, declustering is essential only to minimize a spatial distortion of the earthquake occurrence process, but, conversely, it may lead to significant underestimation of the true seismic hazard. This underestimation precludes the possibility to test meaning- fully PSHA against real observations, and it may lead to underestimate the seismic risk, whenever seismic-hazard maps are used for risk assessment. Finally, we propose a methodology that can be used in PSHA to avoid this potential bias.
    Description: Published
    Description: 1838-1845
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: seismic hazard ; declustering ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2017-04-04
    Description: In their lengthy comment on Stucchi et al. (2011), Mucciarelli and Albarello (2012) propose opinions on aspects of the study that have been discussed and reviewed in countless circumstances in Italy and internationally, from the very beginning (2003) to the end (2009) of our research.
    Description: Published
    Description: 2793-2794
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic hazard ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-04
    Description: in the attempt to codify a procedure exportable to other similar cases, a thorough investigation of the seismic performance of a bituminous concrete faced rockfill dam built in Italy in the early eighties is herein presented. The dam presents a 90 m tall embankment built in a narrow canyon and is situated in a highly seismic region. The implemented methodology encompasses the indications provided by the most recent literature to point out the problems potentially caused by earthquakes and to account for the paramount factors affecting the response of the dam. Particular attention has been paid to the concept of performance, defining its goals in accordance with the most recent standards and deriving the correspondent limit conditions from observations reported in the literature. In order to optimize the computational effort, dynamic analyses with two and three dimensional finite difference codes have been combined to study the coupled response of the embankment, rocky foundation and bituminous facing. After validating the numerical models with centrifuge tests performed on small scale models of the embankment, the performance of the dam has been investigated with reference to a number of possible scenarios focusing 28 on the amplification spectra, the deformation of the embankment and the integrity of the bituminous lining.
    Description: Published
    Description: 183–198
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: rockfill ; performance ; earthquake ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-06-25
    Description: The 11 March 2011 Tohoku earthquake was the strongest event recorded in recent historic seismicity in Japan. Several researchers reported the deformation and possible mechanism as triggered by a mega thrust fault located offshore at the interface between the Pacific and the Okhotsk Plate. The studies to estimate the deformation in detail and the dynamics involved are still in progress. In this paper, coseismic GPS displacements associated with Tohoku earthquake are used to infer the amount of slip on the fault plane. Starting from the fault displacements configuration proposed by Caltech-JPL ARIA group and Geoazur CNRS, an optimization of these displacements is performed by developing a 3D finite element method (FEM) model, including the data of GPS-acoustic stations located offshore. The optimization is performed for different scenarios which include the presence of topography and bathymetry (DEM) as well as medium heterogeneities. By mean of the optimized displacement distribution for the most complete case (heterogeneous with DEM), a broad slip distribution, not narrowly centered east of hypocenter, is inferred. The resulting displacement map suggests that the beginning of the area of subsidence is not at east of MYGW GPS-acoustic station, as some researchers have suggested, and that the area of polar reversal of the vertical displacement is rather located at west of MYGW. The new fault slip distribution fits well for all the stations at ground and offshore and provides new information on the earthquake generation process and on the kinematics of Northern Japan area.
    Description: Published
    Description: 25-39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 2011 Tohoku earthquake ; Fault slip distribution ; Numerical FEM optimization ; Upper plate rebound ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-06-07
    Description: After the April 6th 2009 MW 6.3 (ML 5.9) L'Aquila earthquake (central Italy), we re-measured more than 100 km of high-precision levelling lines in the epicentral area. The joint inversion of the levelling measurements with InSAR and GPS measurements, allowed us to derive new coseismic and post-seismic slip distributions and to de- scribe, with high resolution details on surface displacements, the activation and the slip distribution of a second- ary fault during the aftershock sequence that struck the Campotosto area (major event MW 5.2). Coseismic slip on the Paganica fault occurred on one main asperity, while the afterslip distribution shows a more complex pattern, occurring on three main patches, including both slips on the shallow portions and on the deeper parts of the rup- ture plane. The comparison between coseismic and post-seismic slip distributions strongly suggests that afterslip was triggered at the edges of the coseismic asperity. The activation of a segment of the Campotosto fault during the aftershock sequence, with a good correlation between the estimated slipping area, moment release and distribution of aftershocks, raises the opportunity to discuss the local seismic hazard following the occurrence of the 2009 L'Aquila mainshock. The Campotosto fault appears capable of generating earthquakes as large as his- torical events in the region (M N 6.5) or as small as the ones associated with the 2009 sequence. In the case that the Campotosto fault is accumulating a significant portion of the current interseismic deformation, the 2009 MW N 5 events will have released only a small amount of the accumulated elastic strain, and then a significant hazard still remains in the area. Continuing geodetic monitoring and a densification of the GPS networks in the region are therefore needed to estimate the tectonic loading across the different recognized active fault systems in this part of the Apennines.
    Description: Published
    Description: 168-185
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: High-precision leveling; InSAR; GPS; Earthquake source; Normal faulting; Seismic hazard ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-04-04
    Description: Since 2002 OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Udine (Italy), the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), and the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) are using the Antelope software suite as the main tool for collecting, analyzing, archiving and exchanging seismic data in real time, initially in the framework of the EU Interreg IIIA project "Trans-national seismological networks in the South-Eastern Alps" (Bragato et al., 2004, 2010). The data exchange has proved to be effective and very useful in case of seismic events near the borders between Italy, Austria and Slovenia, where the poor single national seismic networks coverage precluded a correct localization, while the usage of common data from the integrated networks improves considerably the overall reliability of real time seismic monitoring of the area (Fig. 1). At the moment the data exchange between the seismic data centers relies on their internet connections: this however is not an ideal condition for civil protection purposes, since the reliability of standard internet connections is poor. For this reason in 2012 the Protezione Civile della Provincia Autonoma di Bolzano in Bolzano (PCBZ, Italy), OGS, ZAMG subsidiary in Tirol (ZAMG Tirol) and ARSO joined in the Interreg IV Italia-Austria Project "SeismoSAT" (Progetto SeismoSAT, 2012) aimed in connecting the seismic data centers in real time via satellite. ARSO does not belong to the Interreg Italia-Austria region: for this reason ARSO joined the SeismoSAT project as an "associated partner", which, according to Interreg rules can not be funded. ARSO participation in the project is therefore at the beginning limited in benefiting only indirectly from improvement in the robustness of the data exchange between the other data centers, while eventually fully taking part in the project if other sources of funding will be available. The project is in a preliminary phase: the general schema of the project, including first data bandwidth estimates and a possible architecture are here illustrated.
    Description: Published
    Description: 57-60
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: N/A or not JCR
    Description: open
    Keywords: satellite ; SeismoSAT ; seismic data centers ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-04-04
    Description: We present a review of our work on data acquired by GEOSTAR-class (GEophysical and Oceanographic STation for Abyssal Research) observatories deployed at three EMSO (European Multidisciplinary Seafloor and water-column Observatory; http://www.emso-eu.org) sites in southern European waters where strong geo-hazards are present: the Western Iberian Margin, the Western Ionian Sea, the Marmara Sea, and the Marsili basin in the Tyrrhenian Sea. A procedure for multiparameter data quality control is described. Then we explain why the seafloor is an interesting observation point for geophysical parameters and how it differs from land sites. We consider four interesting geophysical phenomena found at the EMSO sites that are related to geo-hazard. In the first case, we show how unknown seismicity and landslides in the Western Ionian Sea were identified and roughly localised through a single-sensor analysis based on the seismometer. In the second case, we concentrate on the problem of near-coast tsunami generation and describe a Tsunami Early Warning Detection (TEWD) system, tested in the Western Iberian Margin and currently operating in real time at the Western Ionian site. In the third case, we consider two large volcanoes in the central Mediterranean area, Mt. Etna and the Marsili seamount. Signals from the seismometer and gravimeter recorded at the seafloor at 2100 m b.s.l. show various phases of Mt. Etna's 2002–2003 eruption. For the less-known Marsili we illustrate how several indicators coming from different sensors point to hydrothermal activity. A vector magnetometer at the two volcanic sites helps identify the magnetic lithospheric depth. In the fourth and final case, we present a multiparameter analysis which was focused on finding possible correlations between methane seepage and seismic energy release in the Gulf of Izmit (Marmara Sea).
    Description: Published
    Description: 12–30
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: European Seas ; Geophysical measurements ; Multiparameter seafloor and water-column observatories ; Data quality analysis ; Geo-hazard ; Tsunami early detection ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-04-04
    Description: We investigate the transfer zone and linkage between divergent extensional seismogenic fault systems on the border amid the central and southern Apennines (central Italy). These regional NW-SE striking sets include large seismogenic sources that caused major historical earthquakes (Mw≤7). The faults in the northern part of the study area dip to the southwest; those in the southern part dip to the northeast. The SW-dipping system (Abruzzi Apennines) terminates with the Aremogna-Cinque Miglia source; the NE-dipping system (southern Apennines) terminates with the Boiano Basin source. To test whether the transfer zone model applies to the central-southern Apennines border, we analyzed and relocated seismicity that occurred from 2007 to 2011 between the Aremogna-Cinque Miglia and Boiano Basin sources, where we expect the transfer zone. Seismicity is made of independent events (Md〈3.5) and low-magnitude swarms. West of the Apennines, hypocenters are located within the uppermost 12-13 km. Events and swarms that occurred east of the axis affect the 13-25 km below. West of the chain, focal mechanisms show T-axes striking ~NNW-SSE. East of the chain, T-axes strike ~NE-SW. This trend is consistent with GPS data. The hypocentral distribution of swarms located between the Aremogna-Cinque Miglia and Boiano Basin sources shows a ~NNE-SSW trend, coincident with part of the Ortona-Roccamonfina Line, a regional transverse lineament. The spatial distribution of seismicity, the geometry and kinematics of active faulting in the region, and results from previous geophysical studies, allow us to contend the existence of a transfer zone between these seismogenic normal fault systems. Our data also allow us to recognize the activity of such transfer along the central part of the Ortona-Roccamonfina Line. We infer that reverse in dip polarity between the two normal fault systems could also result from the passage between the diverse tectonic units composing the border between central and southern Apennines.
    Description: Published
    Description: 18-31
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: seismogenic sources ; seismic swarms ; transverse lineaments ; fault polarity ; transfer zone ; southern italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-04-04
    Description: The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of the Ferrara VBB borehole station configuration and installation, with first results.
    Description: Regione Veneto
    Description: Published
    Description: 61-67
    Description: 1IT. Reti di monitoraggio e Osservazioni
    Description: N/A or not JCR
    Description: open
    Keywords: borehole seismic ; Ferrara ; OGS ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-04-04
    Description: Seismological and geodetic data provide key information about the kinematics and active tectonics of plate margins. Focal solutions enable determining the directions in which the current tectonic stress acts when fault rupturing occurs; GPS measurements provide information on the crustal velocity field and on current interseismic strain rates. The comparison of the strain rates resulting from the two datasets provides further insight into how large an area is affected by aseismic deformation, which is a valuable indicator for seismic hazard mitigation and estimating the seismic potential. In this work, we investigate both seismic and geodetic strain rates and the combined field resulting from the joint inversion of the geodetic and seismic datasets, providing a picture of the overall deformation field and its variation during the last decades. In this way, we seek to give an overview of the seismic potential distribution across the Apennines and southern Italy, as a qualitative analysis of space-time variations in the released seismic strain rate, compared to the space-time distribution of the cumulated geodetic strain rate. The results show a variable distribution of the seismic efficiency over the peninsula. The Southern Apennines shows the greatest seismic potential, highlighting a significantly lower seismicity in the last two decades over an area affected by the highest total strain rates. The Messina Straits and eastern Sicily have a significant seismic potential, together with the Calabrian arc (from the Tindari-Letojanni and central Aeolian islands to the Mt. Pollino area), as a result of seismic gaps with respect to the combined strain rates in the investigated period. This long gap highlights the longer recurrence periods for the strongest earthquakes on this area. The central-northern Apennines and off-shore northern Sicily, show a lower seismic potential than central-southern Apennines, probably due to the more recent seismicity affecting these areas.
    Description: Published
    Description: 996–1006
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: open
    Keywords: seismic potential ; geodetic strain rates ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2017-04-04
    Description: On May 20th, 2012, an ML 5.9 earthquake (Table 1) occurred near the town of Finale Emilia, in the Central Po Plain, Northern Italy (Figure 1). The mainshock caused 7 casualties and the collapse of several historical buildings and industrial sheds. The earthquake sequence continued with diminishing aftershock magnitudes until May 29th, when an ML 5.8 earthquake occurred near the town of Mirandola, ~12 km WSW of the mainshock (Scognamiglio et al., 2012). This second mainshock started a new aftershock sequence in this area, and increased structural damage and collapses, causing 19 more casualties and increasing to 15.000 the number of evacuees. Shortly after the first mainshock, the Department of Civil Protection (DPC) activated the Italian Space Agency (ASI), which provided post-seismic SAR Interferometry data coverage with all 4 COSMO-SkyMed SAR satellites. Within the next two weeks, several SAR Interferometry (InSAR) image pairs were processed by the INGV-SIGRIS system (Salvi et al., 2012), to generate displacement maps and preliminary source models for the emergency management. These results included continuous GPS site displacement data, from private and public sources, located in and around the epicentral area. In this paper we present the results of the geodetic data modeling, identifying two main fault planes for the Emilia seismic sequence and computing the corresponding slip distributions. We discuss the implication of this seismic sequence on the activity of the frontal part of the Northern Apennine accretionary wedge by comparing the co-seismic data with the long term (geological) and present day (GPS) velocity fields.
    Description: Published
    Description: 645-655
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.9. Rete GPS nazionale
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ; CFF analysis ; Tectonic ; geodynamic ; Seismic source ; Northern apennine (Italy) ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2017-04-04
    Description: In the present paper, we will describe the field survey (Fig. 1) and the data analysis of an experiment carried out to put constraints on the magnitude detection threshold in the area of Campi Flegrei. Results show that seismic radiation emitted from VT seismic events at frequency lower than 2 Hz has a high detection threshold (minimum magnitude around 1.5). In the range between 2 and 20 Hz, VT events with magnitudes smaller than about 0.5 have a high probability to be undetected. This result indicates that noise reduction through borehole stations and/or small arrays is essential for an accurate seismic monitoring in the Campi Flegrei area.
    Description: Published
    Description: 190-198
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: seismic noise ; magnitude detection ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-04-04
    Description: The societal importance and implications of seismic hazard assessment forces the scientific community to pay an increasing attention to the evaluation of uncertainty, to provide accurate assessments. Probabilistic Seismic Hazard Assessment (PSHA) formally accounts for the natural variability of the involved phenomena, from seismic sources to wave propagation. Recently, an increasing attention is paid to the consequences that alternative modeling procedures have on hazard results. This uncertainty, essentially of epistemic nature, has been shown to have major impacts on PSHA results, leading to extensive applications of techniques like the Logic Tree. Here, we develop a formal Bayesian inference scheme for PSHA that allows, on one side, to explicitly account for all uncertainties and, on the other side, to consider a larger set of sources of information, from heterogeneous models to past data. This process decreases the chance of undesirable biases, and leads to a controlled increase of the precision of the probabilistic assessment. In addition, the proposed Bayesian scheme allows (i) the assignment of a ’subjective’ reliability to single models, without requirement of completeness or homogeneity, and (ii) a transparent and uniform evaluation of the ’strength’ of each piece of information used on the final results. The applicability of the method is demonstrated through the assessment of seismic hazard in the Emilia-Romagna region (Northern Italy), in which the results of a traditional Cornell-McGuire hazard model based on a Logic Tree are locally updated with the historical macroseismic records, to provide a unified assessment that accounts for both sources of information.
    Description: Published
    Description: 1709-1722
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Cornell-McGuire approach ; site intensity ; Bayesian inference ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-04-04
    Description: On 20 May 2012, at 02:03:52 GMT, an earthquake with Mw 6.1 (RCMT, http://www.bo.ingv.it/RCMT) occurred in northern Italy striking a densely populated area. The mainshock was followed a few hours later by two severe aftershocks having the same local magnitude (Ml 5.1, 1 and 2 in Figure 1a), and by hundreds of smaller aftershocks. Nine days later, on 29 May, at 07:00:03 GMT, a second event with moment magnitude Mw 6.0 (RCMT, http://www.bo.ingv.it/RCMT) occurred to the west, on an adjacent fault segment. This event was also followed by hundreds of aftershocks, three of them having local magnitude 5.3, 5.2 and 5.1 (3, 4 and 5, respectively, in Figure 1a) (locations from Istituto Nazionale di Geofisica e Vulcanologia, hereinafter INGV, http://iside.rm.ingv.it/; Malagnini et al., 2012; Scognamiglio et al., 2012). Despite the moderate number of casualties if compared to other major events in the Italian history, the economic loss was extremely high, resulting in about EUR 5 billion (AON Benfield, 2012, http://www.aon.com/), as the majority of Italian industrial activities and infrastructures concentrate in this area, the eastern Po plain, which is the largest sedimentary basin in Italy. The mainshocks are associated to two thrust faults with an approximate E-W trend dipping to the South (Figure 1b). The majority of the faults in this region are located in the upper crust, at depths lower than 10 km. The two main shocks are among the strongest earthquakes generated by thrust faults ever recorded in Italy in the instrumental era. The Emilia sequence has been extensively recorded by several strong-motion networks, operating in the Italian territory and neighbouring countries. Some of the networks acquire continuous data streams at their national data centres, which are nodes of EIDA (European Integrated Data Archive, hhtp://eida.rm.ingv.it), a federation of several archives, so that the waveforms can be obtained immediately after the occurrence of an event. Other networks, such as the Italian accelerometric network (RAN), managed by the Italian Department of the Civil Protection (hereinafter DPC), distribute the acceleration waveforms through their web site (http://protezionecivile.gov.it). The data set explored in this study is relative to the six events of the sequence having Ml 〉 5 (Table 1) and consists in 365 accelerograms recorded within a distance of 200 km from the epicentres, that were provided by the permanent and temporary seismic networks of INGV, the Swiss Seismological Service (SED, http://www.seismo.ethz.ch/index) and the DPC.
    Description: Published
    Description: 629-644
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Strong motion ; May-June 2012 Emilia Romagna earthquake sequence ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-04-04
    Description: The number and quality of seismic stations and networks in Europe continually improves, nevertheless there is always scope to optimize their performance. In this session we welcomed contributions from all aspects of seismic network installation, operation and management. This includes site selection; equipment testing and installation; planning and implementing communication paths; policies for redundancy in data acquisition, processing and archiving; and integration of different datasets including GPS and OBS.
    Description: Published
    Description: 1-5
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: N/A or not JCR
    Description: open
    Keywords: seismic networks ; site selection ; data integration ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-04-04
    Description: Positive thermal anomalies about one month before the 3 September 2010 Mw Combining double low line 7.1 New Zealand earthquake and " coincidental" quasi-synchronous fluctuations of GPS displacement were reported. Whether there were similar phenomena associated with the aftershocks? To answer it, the following was investigated: multiple parameters including surface and near-surface air temperature, surface latent heat flux, GPS displacement and soil moisture, using a long-term statistical analysis method. We found that local thermal and deformation anomalies appeared quasi-synchronously in three particular tectonic zones, not only about one month before the mainshock, but also tens of days before the 21 February 2011 Mw Combining double low line 6.3 aftershock, and that the time series of soil moisture on the epicenter pixel had obvious peaks on most of the anomalous days. Based on local tectonic geology, hydrology and meteorology, the particular lithosphere-coversphere-atmosphere coupling mode is interpreted and four mechanisms (magmatic-hydrothermal fluids upwelling, soil moisture increasing, underground pore gases leaking, and positive holes activating and recombining) are discussed.
    Description: Published
    Description: 1059–1072
    Description: 1.10. TTC - Telerilevamento
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: aftershock ; air temperature ; earthquake event ; earthquake precursor ; earthquake prediction ; GPS ; latent heat flux ; soil moisture ; statistical analysis ; temperature anomaly ; New Zealand ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-04-04
    Description: Monitoring damaged buildings in an area where an earthquake has occurred requires the use of techniques which provide rapid and safe measurements even in emergency conditions. In particular, remote sensing techniques like terrestrial laser scanning (TLS) can satisfy these requirements, since they produce very dense point clouds in little time and also allow an accurate geometric modeling of observed buildings. Nevertheless, strong constraints on TLS data acquisition geometry, such as acquisition distance and incidence angles, typically characterize an area in seismic emergency conditions. In order to correctly interpret the data, it is necessary to estimate errors affecting TLS measurements in these critical conditions. A reliable estimation can be achieved by means of experiments and numerical simulations aimed at quantifying a realistic noise level, with emphasis on reduction of artifacts due to data acquisition, registration and modeling. This paper proposes a data analysis strategy in which TLS-based morphological maps computed as point-to-primitive differences are created. The method can be easily used for accurate surveying in emergency conditions. In order to demonstrate the proposed method in very diverse situations, it was applied to rapidly detect deformation traces in the San Giacomo Roncole Campanile (Modena), the Asinelli tower (Bologna) and the Cantalovo Church (Verona), three buildings damaged by the Mw 5.9 Emilia Romagna 2012 earthquake (Italy). 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier
    Description: Published
    Description: 185-198
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: restricted
    Keywords: Architecture ; Change Detection ; Laser Scanning ; Model ; Performance ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-04-04
    Description: With the aim of obtaining a deeper knowledge of the physical phenomena associated with the 2009 L’Aquila (Central Italy) seismic sequence, culminating with a Mw = 6.3 earthquake on 6 April 2009, and possibly of identifying some kind of earthquake-related magnetic or geoelectric anomaly, we analyse the geomagnetic field components measured at the magnetic observatory of L’Aquila and their variations in time. In particular, trends of magnetic transfer functions in the years 2006–2010 are inspected. They are calculated from the horizontal to vertical magnetic component ratio in the frequency domain, and are very sensitive to deep and lateral geoelectric characteristics of the measurement site. Entropy analysis, carried out from the transfer functions with the so called transfer function entropy, points out clear temporal burst regimes of a few distinct harmonics preceding the main shock of the seismic sequence. A possible explanation is that they could be related to deep fluid migrations and/or to variations in the micro-/meso-fracturing that affected significantly the conductivity (ordered/disordered) distribution in a large lithospheric volume under the seismogenic layer below L’Aquila area. This interpretation is also supported by the analysis of hypocentres depths before the main shock occurrence.
    Description: Published
    Description: 401-409
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 3.1. Fisica dei terremoti
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: earthquake event ; earthquake hypocenter ; earthquake magnitude ; entropy ; fluid mechanics ; geomagnetic field ; seismicity ; Abruzzi ; Italy ; L'Aquila ; Aquila ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-06-09
    Description: In the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department) within the agreement 2007-2009, a tool for probabilistic seismic hazard assessment (PSHA) was developed. The main goal of the project was to provide a flexible computational tool for PSHA; the requirements considered essential for the success of the project included: •ability to handle both stationary and non-stationary earthquake time-occurrence models; •ability to use ground-motion prediction models that are not parametric equations but probabilistic "footprints" of the intensities generated by earthquakes of known magnitude and focal characteristics. Usually, these footprints are results of ground motion simulations. Some commonly used programs (e.g., FRISK, by McGuire, 1978; SEISRISK III, by Bender and Perkins, 1987) and more recent and state-of-the-art tools (e.g. OpenSHA, by Field et al., 2003, http://www.opensha.org; OpenQuake, http://openquake.org) for PSHA were analyzed. It was decided to focus on CRISIS2007, which was already a mature and well known application (e.g., Kalyan Kumar and Dodagoudar, 2011; Teraphan et al., 2011; D’Amico et al., 2012; see also http://ecapra.org/CRISIS-2007), but also suitable for additional development and evolution since its source code is freely available on request. The computational tool resulted in an extensive redesign and renovation of the previous CRISIS2007 version. CRISIS is a computer program for PSHA, originally developed in the late 1980's using Fortran as programming language (Ordaz, 1991). In this format, still without a graphical user interface (GUI), it was distributed as part of SEISAN tools (Ottemöller et al., 2011). Ten years later, a GUI was constructed, generating what was called CRISIS99 (Ordaz, 1999). In this version, all the graphic features were written in Visual Basic, but the computation engine remained a Fortran dynamic link library. The reason for the use of mixed-language programming was that computations in Visual Basic were extremely slow. Around 2007 the program was upgraded, in view of the advantages offered by the object-oriented technologies. An object-oriented programming language was required and the natural choice was Visual Basic.Net. In the new version (called CRISIS2007), both the GUI and the computation engine were written in the same language. Finally, in the frame of the mentioned S2 project, starting from 2008, the program was split into two logical layers: core (CRISIS Core Library) and presentation (CRISIS2008). In addition, a new presentation layer was developed for accessing the same functionalities via Web (CRISISWeb). It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 495-504
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Hazard ; Seismology ; Probabilistic Seismic Hazard Assesment ; PSHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-03-01
    Description: In this work, we tackle the problem of seismic hazard at Etna deriving from the recurrent seismogenic activity of local faults, by adopting two independent methods based on probabilistic approaches. We assess the hazard in terms of macroseismic intensity and represent the occurrence probability calculated for different exposure times both on maps and at fault scale. Seismic hazard maps obtained by applying the “site approach” through the SASHA code and a new probabilistic attenuation model, indicate the eastern flank of the volcano as the most hazardous, with expected intensity (Iexp) in 50 years (i.e. the standard exposure time adopted in the seismic regulations) ranging from degrees IX to X EMS. In shorter exposure periods (20, 10, 5 years), values of Iexp up to IX are also reached in the same area, but they are clearly determined by the earthquakes generated by the Timpe fault system. In order to quantify the contribution of local seismogenic sources to the hazard of the region, we reconstruct the seismic history of each fault and calculate with SASHA the probability that earthquakes of a given intensity may be generated in different exposure times. Results confirm the high level of hazard due to the S. Tecla, Moscarello and Fiandaca faults especially for earthquakes of moderate intensity, i.e. VI≤I0≤VII, with probabilities respectively exceeding 50% and 20% in 10 years, and 30% and 10% in 5 years. Occurrence probability of major events (I0≥VIII) at the fault scale has also been investigated by statistics on intertimes. Under stationary assumptions we obtain a probability of 6.8% in 5 years for each structure; by introducing the time-dependency (time elapsed since the last event occurred on each fault) through a BPT model, we identify the Moscarello and S. Tecla faults as the most probable sources to be activated in the next 5 years (2013–2017). This result may represent a useful indication to establish priority criteria for actions aimed at reducing seismic risk at a local scale.
    Description: Published
    Description: 158-169
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Seismic history ; Occurrence probability ; Time-dependent renewal process ; Individual sources ; Seismic hazard ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-03-01
    Description: In this paper, we apply a probabilistic procedure to model the attenuation of the macroseismic intensity in the Mt. Etna region, which allows estimating probabilistic seismic scenarios. Starting from the local earthquake catalogue, we select a dataset of 47 events having epicentral intensity I0 from VI to IX–X EMS, and update the model parameters previously achieved for Italy according to the Bayesian paradigm. For each class of epicentral intensity I0, we then estimate the probability distribution of the intensity at a site conditioned on the epicentre-site distance through a binomial-beta model, under the assumption of a point seismic source and isotropic decay (circular). The mode of the distribution is taken as the expected intensity Is at that site. Since the strongest earthquakes show a preferential propagation of shaking along the fault strike and a rapid decrease in the perpendicular direction, we also consider the anisotropic decay (elliptical) of the intensity due to a linear source (finite fault). We therefore transform the plane so that the ellipse has the length of the fault rupture as maximum axis and its strike as azimuth is changed into a circle with fixed diameter; then we apply the probabilistic model obtained for the isotropic case to the modified data. The entire calculation procedure is implemented in the software PROSCEN which, given the location and the epicentral intensity (and eventually the fault parameters) of the earthquake to be simulated, generates the probabilistic seismic scenario according to the isotropic and anisotropic models of attenuation. The results can be plotted on grid maps representing (1) the intensity that can be exceeded with a fixed probability, or (2) the probability of exceeding a fixed intensity value. The first representation may also find application in seismic monitoring at Etna volcano, in order to produce real-time intensity ShakeMaps based on the instrumental parameters calculated by the automatic earthquake processing system.
    Description: Published
    Description: 149-157
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Macroseismic intensity ; Attenuation Probability distribution ; Source models ; Seismic scenario ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-03
    Description: An extension of probabilistic seismic hazard analysis is proposed to introduce a priori information about seismic source parameters. In particular, faulting style is taken into account with a theoretical corrective coefficient applied to the attenuation law. The validity of this correction is assessed through a comparison with observed data, attenuation law predictions corrected and not corrected, and the results of attenuation laws containing faulting style parameters. The probabilistic nature of the analysis is maintained, introducing into the classical hazard formulation a 2D probability density function describing the most probable focal mechanisms associated with each seismic source zone. This new expression may also be used in the framework of deaggregation analysis. Thus, the design earthquake resulting from the deaggregation is characterized by a focal mechanism. An application to a site located in the Southern Apennines, Italy, is shown. The result of the analysis emphasizes the importance of strike-slip events in the seismic hazard context, compared with normal faulting seismic activity in this region.
    Description: Published
    Description: 2124-2136
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic hazard; Focal mechanism; Ground motion predictive equations ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2017-04-04
    Description: We consider the general problem of constructing or selecting the “best” earthquake forecast/prediction model. While many researchers have presented technical methods for solving this problem, the practical and philosophical dimensions are scarcely treated in the scientific literature, and we wish to emphasize these aspects here. Of particular interest are the marked differ- ences between approaches used to build long-term earthquake rupture forecasts and those used to conduct systematic earth- quake predictability experiments. Our aim is to clarify the dif- ferent approaches, and we suggest that these differences, while perhaps not intuitive, are understandable and appropriate for their specific goals. We note that what constitutes the “best” model is not uniquely defined, and the definition often depends on the needs and goals of the model’s consumer.
    Description: Published
    Description: 442-448
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: model selection ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2017-04-04
    Description: In this paper we investigate nature and properties of narrow-band, transient seismic signals observed by a temporary array deployed in the Val Tiberina area (central Apennines, Italy). These signals are characterized by spindle-shaped, harmonic waveforms with no clear S-wave arrivals. The first portion of the seismograms exhibits a main frequency peak centred at 4.5 Hz, while the spectrum of the slowly decaying coda is peaked at about 2 Hz. Events discrimination is performed using a matched-filtering technique, resulting in a set of 2466 detections spanning the 2010 January–March time interval. From a plane-wave-fitting procedure, we estimate the kinematic properties of signals pertaining to a cluster of similar events. The repetition of measurements over a large number of precisely aligned seismograms allows for obtaining a robust statistics of horizontal slownesses and propagation azimuths associated with the early portion of the waveforms. The P-wave arrival exhibits horizontal slownesses around 0.1 s km−1, thus suggesting waves impinging at the array almost vertically. Separately, we use traveltimes measured at a sparse network to derive independent constraints on epicentral location. Ray parameters and azimuths are calibrated using slowness measurements from a local, well-located earthquake. After this correction, the joint solution from traveltime inversion and array analysis indicates a source region spanning the 1–3 km depth interval. Considerations related to the source depth and energy, and the occurrence rate which is not related to the daily and weekly working cycles, play against a surface, artificial source. Instead, the close resemblance of these signals to those commonly observed in volcanic environments suggest a source mechanism related to the resonance of a fluid–filled fracture, likely associated with instabilities in the flux of pressurized CO2.
    Description: Published
    Description: 918-928
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Fracture and flow ; Earthquake source observations ; Interface waves ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-03
    Description: The single-body mass-spring analog model has been largely used to simulate the recurrence of earthquakes on faults described by rate- and state-dependent rheology. In this paper, the fault was assumed to be governed by the classical slip-weakening (SW) law in which the frictional resistance linearly decreases as the developed slip increases. First, a closed-form fully analytical solution to the 1D elastodynamic problem was derived, expressing the time evolution of the slip and its time derivative. Second, a suitable mechanism for the recovery of stress during the interseismic stage of the rupture was proposed, and this stress recovery was shown quantitatively to make possible the simulation of repeated instabilities with the SW law. Moreover, the theoretical predictions were shown to be compatible with the numerical solutions obtained by adopting a rate and state constitutive model. The analytical solution developed here is, by definition, dynamically consistent and nonsingular. Moreover, the slip velocity function within the coseismic time window found here can be easily incorporated into slip inversion algorithms.
    Description: Published
    Description: 812-821
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake recourrence ; Source time function ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2017-04-04
    Description: In this work we propose a high performance parallelization of the software package COMPSYN, devoted to the production of syntethic seismograms, on a cluster of multicore processors with multiple GPUs. To design and implement the proposed high performance version, we started from a na¨ıve parallel version of COMPSYN. The na¨ıve version consists in a simple parallelization on both device side, obtained by exploiting CUDA, and host side, obtained by exploiting the MPI paradigm and OpenMP API. The proposed high performance version implements several practical techniques of CUDA programming and deeply exploits the GPU architecture, thus achieving a much better performance with respect to the na¨ıve version. We compare the performance of the proposed high performance version and that of the na¨ıve one with the performance of the version running on the cluster of multicore processors without invoking the GPUs. We obtain for the high performance GPU version a speedup of 25x over the version running on the cluster of multicore processors without GPUs against the 10x of the na¨ıve version. Regarding the sequential version, we estimate about 380x the speedup of the high performance GPU version against the about 140x of the na¨ıve version.
    Description: Collaboration Agreement between Dept. of Computer Science, Sapienza University of Rome and Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2011. Project n. C26G074ABJ, 2007, Cluster of multicore processor for advanced computation, Sapienza University of Rome.
    Description: Published
    Description: 966-975
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: restricted
    Keywords: GPU ; CUDA ; synthetic seismogram ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-04-04
    Description: Tectonic pseudotachylytes, i.e. quenched friction-induced silicate melts, record coseismic slip along faults and are mainly reported from the brittle crust in association with cataclasites. In this study, we document the occurrence of recrystallization of quartz to ultrafine-grained (grain size 1-2 mu m) aggregates along microshear zones (50-150 mu m thick) in the host rock adjacent to pseudotachylytes from two different faults within quartzite (Schneeberg Normal Fault Zone, Eastern Alps), and tonalite (Adamello fault, Southern Alps) in the brittle crust. The transition from the host quartz to microshear zone interior includes: (i) formation of high dislocation densities; (ii) fine (0.3-0.5 mu m) polygonization to subgrains defined by disordered to well-ordered dislocation walls; (iii) development of a mosaic aggregate of dislocation-free new grains. The crystallographic preferred orientation (CPO) of quartz towards the microshear zone shows a progressive misorientation from the host grain, by subgrain rotation recrystallization, to a nearly random CPO possibly related to grain boundary sliding. These ultrafine aggregates appear to be typically associated with pseudotachylytes in nature. We refer the crystal plastic deformation of quartz accompanied by dramatic grain size refinement to the coseismic stages of fault slip due to high differential stress and temperature transients induced by frictional heating. Microshear zones localized on precursory fractures developed during the stages of earthquake rupture propagation and the very initial stages of fault slip. Thermal models indicate that the process of recrystallization, including recovery processes, occurred in a time lapse of a few tens of seconds. (C) 2011 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 21-38
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: friction ; pseudotachylyte ; recrystallization ; seismic fault ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-04-04
    Description: The 2009 L'Aquila sequence activated a normal fault system 50 km long in the Central Apennines, composed of two main NW-trending faults 12–16 km long: the main high angle L'Aquila segment and the Campotosto listric fault. The MW 6.1 L'Aquila mainshock nucleated on the Paganica fault at a depth of ∼8.6 km and cut through the upper crust producing coseismic surface slip of up to 10 cm observed along a strike length of ∼13 km. Analysis of historical seismicity and data collected in paleo-seismological trenches suggest that this event filled a 〉500-year gap. In contrast, the blind Campotosto listric fault is composed of different fault segments displaying abrupt changes in dip at a depth where major events nucleate suggesting a rheological and geometrical control on stress concentration. A foreshock sequence that started around 4 months before the L'Aquila mainshock activated the deepest portion of the Paganica fault and marked the onset of large variations in elastic properties of the crustal volume. The variations have been modelled in terms of dilatancy and diffusion processes, corroborating the hypothesis that fluids play a key role in the nucleation process of extensional faults in the crust.
    Description: Published
    Description: 2-18
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Normal faults; Listric faults; Seismicity; Fluids; L'Aquila sequence ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2017-04-04
    Description: We investigate the possibility of inferring the dominant horizontalrupture direction for moderate earthquakes from the inversion of peak ground-motion parameters. To this aim, we adopt a technique that was devised and applied to large earthquakes for retrieving both the dominant rupture direction and the surface fault projection to be used with a proper distance metric to refine the ShakeMap computation. In the present paper, the procedure was applied to three moderate earthquakes that occurred in 2012 in Northern Italy three days apart: the M 4.2 Pre-Alpi Venete earthquake on 24 January, the M 4.9 Reggio Emilia earthquake on 25 January, and the M 5.4 Parma earthquake on 27 January. For two of the three analyzed events, the technique identifies a dominant horizontal-rupture direction, which is consistent with the strike directions inferred from the focal mechanisms. For theM 5.4 event, which is a deep (about 61 km) thrust-faulting mechanism earthquake, the inferred dominant rupture direction allows identification of the northeast-dipping plane as the fault plane in accordance with the aftershocks distribution.
    Description: Published
    Description: 2764–2770
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Fault directivity ; Peak Ground-Motion Parameters ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-04-04
    Description: We propose a very detailed picture of the seismicity occurring in the proximity of the Alto Tiberina Low Angle Normal Fault (ATF, Northern Italian Apennines) by presenting the pattern and evolution of a seismic sequence that occurred on the hanging wall of the ATF in the first months of 2010 and that was characterized by about 1000 events with ML ranging from -0.7 to 3.8. In order to capture the rupture kinematics of the investigated area, a cross-correlation technique was at first applied to calculate very accurate time shifts among the events of the sequence and then to relocate them. Considering the many factors that can affect the accuracy of a routine event location, the whole sequence was relocated with the double-difference method, including both absolute travel-time measurements and cross-correlation differential travel-times. The new locations confirm that seismic activity is mainly arranged along a NW-SE oriented structure, ranging in depth from 4 to 6 km and dipping towards North East with an angle of about 65°. A further analysis of waveforms similarity was performed at a reference station by merging the capability of the cross-correlation technique and the bridging algorithm. The analysis allows us to group events into several earthquake families (from now on multiplets), 11 of which include at least 10 events with a cross-correlation value higher than 0.9. The detected mutiplets allow us to emphasize the spatial and temporal migration of the sequence occurred along a 307°N strike direction with an averaged propagation velocity of about 0.4 km/day. The normal focal mechanisms obtained from the events with ML≥2 validate the supposed extensional tectonic regime of the investigated area. The main nodal planes, characterized by strikes ranging in 312°±12 and dips about -90°, are consistent with the spatial evolution of the aftershocks.
    Description: Published
    Description: 91-109
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: cross-correlation ; multiplets ; double-difference ; migration ; pattern ; Alto Tiberina Fault ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-04-04
    Description: The growing installation of industrial facilities for subsurface exploration worldwide requires continuous refinements in understanding both the mechanisms by which seismicity is induced by field operations and the related seismic hazard. Particularly in proximity of densely populated areas, induced low-to-moderate magnitude seismicity characterized by high-frequency content can be clearly felt by the surrounding inhabitants and, in some cases, may produce damage. In this respect we propose a technique for time-dependent probabilistic seismic-hazard analysis to be used in geothermal fields as a monitoring tool for the effects of on-going field operations. The technique integrates the observed features of the seismicity induced by fluid injection and extraction with a local ground-motion prediction equation. The result of the analysis is the time-evolving probability of exceedance of peak ground acceleration (PGA), which can be compared with selected critical values to manage field operations. To evaluate the reliability of the proposed technique, we applied it to data collected in The Geysers geothermal field in northern California between 1 September 2007 and 15 November 2010. We show that the period considered the seismic hazard at The Geysers was variable in time and space, which is a consequence of the field operations and the variation of both seismicity rate and b-value.We conclude that, for the exposure period taken into account (i.e., two months), as a conservative limit, PGA values corresponding to the lowest probability of exceedance (e.g., 30%) must not be exceeded to ensure safe field operations. We suggest testing the proposed technique at other geothermal areas or in regions where seismicity is induced, for example, by hydrocarbon exploitation or carbon dioxide storage.
    Description: Published
    Description: 2563–2573
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic hazard ; Induced seismicity ; Non-homogeneous poisson model ; The Gysers geothermal area ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2017-04-04
    Description: This paper describes the probabilistic assessment of seismic hazard (PSHA) of Italy in view of the building codes from 2003 to 2009. A code was issued in 2003 as Prime Minister Ordinance, requiring that a PSHA for updating the seismic zoning would be performed in one year, in terms of horizontal peak ground acceleration (PGA) with 10% probability of exceedance in 50 years, on hard ground. For the first time in Italy a working group, established by Istituto Nazionale di Geofisica e Vulcanologia (INGV), adopted a logic-tree approach to model the epistemic uncertainty in: the completeness of the earthquake catalog, the assessment of the seismicity rates and Mmax, and the ground motion prediction equations. The seismic hazard has been computed over a grid of more than 16,000 points for the median value (50th percentile), 84th and 16th percentiles of the 16 branches of the logic tree. Using the same input model, PGA values and spectral accelerations for 10 spectral periods were computed for 9 different probabilities of exceedance in 50 years. This wealth of data made it possible to base the design spectra of a new building code on point hazard data instead of being related to just four zones. The 2009, Mw 6.3 L’Aquila earthquake has led many to attempt to test the reliability of this study. In this paper we analyze suggestions coming from that event and conclude that significant changes to the design spectra are not be recommended based just on evidence from the L’Aquila earthquake.
    Description: Published
    Description: 1885–1911
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: seismic hazard ; italy ; building code ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-12-16
    Description: While itiswidelyrecognizedthatfluidsinfluencefaultstrengthandearthquakenucleation,propaga- tion andarrest,theireffectsonco-seismicslidingfrictionareonlyconjectured.Toshedlightonthese effects,55highvelocity(41 m s 1) frictionexperimentswereconductedatroomtemperatureon Carraramarblesamplesinthepresenceofporefluid(upto15MPaporepressure),room-humidityand ‘‘vacuum’’(10 4 mbar)conditions.Inalltheexperiments,thefrictioncoefficientevolvedfromapeak value of0.6–0.8toasteady-statevalueof0.1inabout1–1.5mofslip.However,experiments performedinthepresenceofporefluidhadalargeandmoreabruptdecreaseinfrictionatthe initiationofsliding(65%after20mmofslip),whereasexperimentsperformedundervacuumandroom humidityconditionsshowedinitialvelocity-strengtheningbehaviorfollowedbyamoregradual reductioninfriction.Thisindicatesthatcalcite-bearingrocksaremorepronetoslipinthepresence of water.Underroom-humidityconditions,CO2 was detectedduringtheentiredurationofthe experiment.Inthepresenceofporefluid,HCO3 and Ca2þ were detectedforslips 40.1 m.Thelack of decarbonationproducts(HCO3 and Ca2þ) inporefluidexperimentsforslip o0.1 mimpliesthat the abruptweakeningisnotrelatedtodecarbonation(orthattheabundanceofthereactionproductsis below theresolutionoftheanalyticalmethods).Giventhemodestthermalexpansionofwater, the estimatedthermalpressurizationduringtheabruptweakeningappearstobenegligible.Instead, we suggestthatabruptweakeningisduetosubcriticalcrack-growth,hydrolyticweakeningandbrittle failureoftheasperitiesontheslidingsurfaces.Modelingshowsthattheoccurrenceinnatureof co-seismic(water-present)decarbonationreactionssimilartothosetriggeredinthelaboratorycould yield sufficientreactionproducttobedetectedinaquiferslocatedintheproximityofactivefaults.
    Description: Published
    Description: 74-84
    Description: JCR Journal
    Description: restricted
    Keywords: earthquakes friction pore fluid carbonate-bearing rocks ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-04-04
    Description: A properly organized seismic network is a valuable tool for monitoring seismic zones and assessing seismic hazards. In this paper we propose a new method (seismic network evaluation through simulation, SNES) to evaluate the performance of hypocenter location of a seismic network. The SNES method gives, as a function of magnitude, hypocentral depth, and confidence level, the spatial distribution of the number of active stations in the location procedure and their relative azimuthal gaps, along with confidence intervals in hypocentral parameters. The application of the SNES method also permits evaluation of the magnitude of completeness (MC), the background noise levels at the stations, and assessment of the appropriateness of the velocity model used in location routine. Italy sits on a tectonically active plate boundary at the convergence of the Eurasian and African lithospheric plates and has a high level of seismicity. In this paper, we apply the SNES method to the Italian National Seismic Network (Rete Sismica Nazionale Centralizzata dell’Istituto Nazionale di Geofisica e Vulcanologia, RSNC– INGV) which has monitored Italian seismicity since the early 1980s, following the destructive 1980 Irpinia earthquake. In recent years, the RSNC–INGV has grown significantly. In fact, in February 2010, it received signals from 305 seismic stations, 258 with wideband three-component sensors. We constructed SNES maps for magnitudes of 1.5, 2, 2.5, and 3, fixing the hypocentral depth at 10 km and the confidence level at 95%. Through the application of the SNES method, we show that the RSNC–INGV provides the best monitoring coverage in the Apennine Mountains with errors that for M 2, are less than 2 and 4 km for epicenter and hypocentral depth, respectively. At M 2.5 this seismic network is capable of constraining earthquake hypocenters to depths of about 150 km for most of the Italian Peninsula. This seismic network provides a threshold of completeness down to M 2 for almost the entire Italian territory.
    Description: Published
    Description: 1213-1232
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Italian National Seismic Network ; Magnitude of Completeness ; Location Performance ; Seismic Noise ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: Calculating seismic hazard usually requires input that includes seismicity associated with known faults, historical earthquake catalogs, geodesy, and models of ground shaking. This paper will address the input generally derived from geologic studies that augment the short historical catalog to predict ground shaking at time scales of tens, hundreds, or thousands of years (e.g., SSHAC 1997). A seismogenic source model, terminology we adopt here for a fault source model, includes explicit three-dimensional faults deemed capable of generating ground motions of engineering significance within a specified time frame of interest. In tectonically active regions of the world, such as near plate boundaries, multiple seismic cycles span a few hundred to a few thousand years. In contrast, in less active regions hundreds of kilometers from the nearest plate boundary, seismic cycles generally are thousands to tens of thousands of years long. Therefore, one should include sources having both longer recurrence intervals and possibly older times of most recent rupture in less active regions of the world rather than restricting the model to include only Holocene faults (i.e., those with evidence of large-magnitude earthquakes in the past 11,500 years) as is the practice in tectonically active regions with high deformation rates. During the past 15 years, our institutions independently developed databases to characterize seismogenic sources based on geologic data at a national scale. Our goal here is to compare the content of these two publicly available seismogenic source models compiled for the primary purpose of supporting seismic hazard calculations by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the U.S. Geological Survey (USGS); hereinafter we refer to the two seismogenic source models as INGV and USGS, respectively. This comparison is timely because new initiatives are emerging to characterize seismogenic sources at the continental scale (e.g., SHARE in the Euro- Mediterranean, http://www.share-eu.org/; EMME in the Middle East, http://www.emmegem. org/) and global scale (e.g., GEM, http://www.globalquakemodel.org/; Anonymous 2008). To some extent, each of these efforts is still trying to resolve the level of optimal detail required for this type of compilation. The comparison we provide defines a common standard for consideration by the international community for future regional and global seismogenic source models by identifying the necessary parameters that capture the essence of geological fault data in order to characterize seismogenic sources. In addition, we inform potential users of differences in our usage of common geological/seismological terms to avoid inappropriate use of the data in our models and provide guidance to convert the data from one model to the other (for detailed instructions, see the electronic supplement to this article). Applying our recommendations will permit probabilistic seismic hazard assessment codes to run seamlessly using either seismogenic source input. The USGS and INGV database schema compare well at a first-level inspection. Both databases contain a set of fields representing generalized fault three-dimensional geometry and additional fields that capture the essence of past earthquake occurrences. Nevertheless, there are important differences. When we further analyze supposedly comparable fields, many are defined differently. These differences would cause anomalous results in hazard prediction if one assumes the values are similarly defined. The data, however, can be made fully compatible using simple transformations.
    Description: USGS Senior Scientist In Residence
    Description: Published
    Description: 519-525
    Description: 3.2. Tettonica attiva
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: Active fault ; fault source ; database ; seismic hazard ; Italy ; USA ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-04-03
    Description: After an earthquake, rapid, real-time assessment of hazards such as ground shaking and tsunami potential is important for early warning and emergency response. Tsunami potential depends on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of earthquake rupture. Currently, the primary discriminant for tsunami potential is the centroid-moment tensor magnitude, MwCMT, representing the seismic potency LWD, and estimated through an indirect, inversion procedure. The obtained MwCMT and the implied LWD value vary with the depth of faulting, assumed earth model and other factors, and is only available 30 min or more after an earthquake. The use of more direct procedures for hazard assessment, when available, could avoid these problems and aid in effective early warning. Here we present a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measures on P-wave seismograms – the dominant period on the velocity records, Td, and the likelihood that the high-frequency, apparent rupture-duration, T0, exceeds 50-55 sec. T0 can be related to the critical parameters L and z, while Td may be related to W, D or z. For a set of recent, large earthquakes, we show that the period-duration product TdT0 gives more information on tsunami impact and size than MwCMT and other currently used discriminants. All discriminants have difficulty in assessing the tsunami potential for oceanic strike-slip and back-arc or upper-plate, intraplate earthquake types. Our analysis and results suggest that tsunami potential is not directly related to the potency LWD from the “seismic” faulting model, as is assumed with the use of the MwCMT discriminant. Instead, knowledge of rupture length, L, and depth, z, alone can constrain well the tsunami potential of an earthquake, with explicit determination of fault width, W, and slip, D, being of secondary importance. With available real-time seismogram data, rapid calculation of the direct, period- duration discriminant can be completed within 6-10 min after an earthquake occurs and thus can aid in effective and reliable tsunami early warning.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: open
    Keywords: Earthquake dynamics ; Earthquake source observations ; Seismic monitoring ; Body waves ; Early warning ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2017-04-04
    Description: In April 1998, a swarm of 1800 microearthquakes near the village of Iznajar (southern Spain) was recorded at the Granada basin short-period seismic network. Focal mechanisms from local P-wave polarities are poorly constrained and cannot characterize the seismotectonics of the series. Here we combine polarity information and multiplet relocation to address this issue. We use waveform cross correlation on P and S arrivals to identify events with highly similar seismograms, group our detections into multiplet clusters, and invert the cross-correlation time delays to obtain precise relative locations. Relative locations have errors of several tens to a few hundreds of meters horizontally and vertically, and define strike and dip of active fault patches with an accuracy of 20°–30°. We introduce the multiplet fault plane orientations into focal mechanism inversion, now yielding mostly well-constrained solutions, in addition to resolving the nodal plane symmetry. We observe mainly north-south left-lateral strike-slip faulting and a few north-northwest–south-southeast normal faulting solutions, illustrating the kinematic complexity of the swarm, and pointing to a local deformation style different from the nearby Granada basin.
    Description: Published
    Description: 3421-3429
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Fault plane solution ; Precise location ; Seismic swarm ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-04-04
    Description: Ionograms from Rome (41.8N, 12.5E) and Sofia (42.4N, 23.2E) ionospheric stations during earthquake(EQ)activity with magnitude(M)between 5 and 6 in Central Italy are analyzed. It is found that several ionospheric disturbances occur in the intermediate E-F region before the EQ shock. In fact, besides sporadic E (Es) layer development(of type h) of short duration (transients), fmin increase, trace gaps near the critical frequencies, and E region trace disappearance are also observed within one to three hours before the EQ shock. Before the EQ shocks we find that the F2 region parameters are practically undisturbed. The only exception is the so-called fork trace that appears mostly near the critical frequency of the F2 region. Acoustic gravity waves (AGW) are suggested as one of the possible sources of transients observed in the ionosphere before the EQ shock.
    Description: Published
    Description: 1197-1208
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 3.1. Fisica dei terremoti
    Description: 3.9. Fisica della magnetosfera, ionosfera e meteorologia spaziale
    Description: JCR Journal
    Description: open
    Keywords: ionospheric transient ; ionogram ; earthquake ; acoustic gravity wave ; 01. Atmosphere::01.02. Ionosphere::01.02.99. General or miscellaneous ; 01. Atmosphere::01.02. Ionosphere::01.02.05. Wave propagation ; 01. Atmosphere::01.02. Ionosphere::01.02.06. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-04-04
    Description: Horizontal-to-vertical spectral ratios using ambient noise (HVNSR) are commonly used in site effects studies. In the practice, many operators assume stability over time of HVNSR and base their analyses on few very short time windows. The availability of a long period of continuous microtremor recording allowed us to analyze three months of data coming from a dense array experiment performed at Cavola, a village in northern Apennines. This condition offers a good opportunity to check the validity of the stability assumption and to investigate variations of the local ambient noise wave-field composition. The Cavola site is characterized by landslide sediments over stiffer materials with a moderate impedance contrast and by a complex morphology. An intense industrial activity in the village contributes to the generation of seismic noise. After identifying this noise source in the time series, we evaluate its effects on HVNSR. The results indicate that the spectral peak of HVNSR varies in amplitude and frequency, posing a warning about stability in time. Analyzing the spectra we identify the anthropic activity as responsible for changes in the composition of the noise wave field. These variations affect HVNSR, including peak frequency and also ground-motion polarization.
    Description: Published
    Description: 1263-1275
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: restricted
    Keywords: noise measurements ; Rayleigh waves ; polarization ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-06-21
    Description: Probabilistic seismic hazard analysis is currently the soundest basis for the rational evaluation of ground-motion hazard for site-specific engineering design and assessment purposes. An increasing number of building codes worldwide acknowledge the uniform hazard spectra as the reference to determine design actions on structures and to select input ground motions for seismic structural analysis. This is the case, for example, in Italy where the new seismic code also requires the seismic input for nonlinear dynamic analysis to be selected on the basis of dominating events, for example, identified via disaggregation of seismic hazard. In the present study, the design earthquakes expressed in terms of representative magnitude (M), distance (R), and ε were investigated for a wide region in the southern Apennines, Italy. To this aim, the hazards corresponding to peak ground acceleration and spectral acceleration at 1 sec with a return period of 475 yr were disaggregated. For each of the disaggregation variables the shape of the joint and marginal probability density functions were studied. The first two modes expressed by M, R, and ε were extracted and mapped for the study area. The results shown provide additional information, in terms of source and ground-motion parameters, to be used along with the standard hazard maps to better select the design earthquakes. The analyses also allow us to assess how various frequency ranges of the design spectrum are differently contributed by seismic sources in the study area.
    Description: Published
    Description: 2979–2991
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: seismic hazard ; disaggregation ; Southern Apenniens ; design earthquake ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-04-04
    Description: IEEE Standard for Local and Metropolitan Area Networks (hereafter IEEE 802.16; online at http://standards.ieee.org/getieee802/802.16.html) is one of the most promising mobile and fixed broadband wireless access technologies for next-generation all-IP networks in the 3.5 GHz band (European spectrum profile). Commonly known as Universal WiMAX (worldwide inter-operability for microwave access), this access technology reaches a high bit rate and covers large areas with a single base station, making it possible to offer connectivity to end users in a cost-effective way. A further useful property of the WiMAX technology is that the transmission can be used both in line-of-sight (LOS) and non-line-of-sight (NLOS) environments, allowing highly feasible communications (WiMAX Forum 2004). Thanks to these features, IEEE 802.16 opens the way to the use of wireless technologies in the environmental monitoring of areas such as seismic and volcanic zones.
    Description: European Community’s Sixth Framework Programme, Contract no. IST-034622-IP
    Description: Published
    Description: 411-419
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: WiMAX ; volcano monitoring ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-06-14
    Description: On 6 April 2009, at 01:32 GMT, an Mw 6.3 seismic event hit the central Apennines, severely damaging the town of L’Aquila and dozens of neighboring villages and resulting in approximately 300 casualties (Istituto Nazionale di Geofisica e Vulcanologia, http://www.ingv.it; MedNet, http://mednet.rm.ingv.it/proce- dure/events/QRCMT/090406_013322/qrcmt.html). This earth- quake was the strongest in central Italy since the devastating 1915 Fucino event (Mw 7.0). The INGV national seismic net- work located the hypocenter 5 km southwest of L’Aquila, 8–9 km deep. Based on this information and on the seismotectonic framework of the region, earthquake geologists traveled to the field to identify possible surface faulting (Emergeo Working Group 2009a, 2009b). The most convincing evidence of pri- mary surface rupture is along the Paganica fault, the geometry of which is consistent with seismological, synthetic aperture radar (SAR) and GPS data. Investigation of other known nor- mal faults of the area, i.e., the Mt. Pettino, Mt. San Franco, and Mt. Stabiata normal faults suggested that these structures were not activated during the April 6 shock (Emergeo Working Group 2009a, 2009b). In this report, we first describe the seismotectonic frame- work of the area, and then we present the field information that supports the occurrence of surficial displacement on the Paganica fault.
    Description: Published
    Description: 940-950
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Surface coseismic ruptures ; Paganica Fault ; earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-04-04
    Description: In this note, we investigate the characteristics of ambient noise cross-correlations for station pairs in northern Italy, considering the secondary microseism bandwidth (0.1-0.6 Hz). The preliminary analysis that we performed exploiting the available continuous recording in the investigated area, agrees with the recent results of Pedersen et al. (2007): the directionality of the noise signal cannot be disregarded when the group velocity is estimated in the range 0.1-0.6 Hz and the selection of the path orientation for tomography must be carefully performed. In particular, while the favourable directions with respect to microseisms generated along the Atlantic coasts of France, Norway and British Islands cover a quite wide azimuthal range (from about 270N to 5N), allowing us to reliably estimate the fundamental mode Rayleigh group velocity for paths in the Alps (about 2.7 km/s), more care must be taken when the microseisms are generated in the Mediterranean Sea. In that case, different locations of the generating areas of microseisms could provide biased estimates of the group velocity due to differences between the true and the apparent velocity of propagation between the stations.
    Description: Published
    Description: 1389-1398
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: microseisms ; ambient noise ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: The evaluation of seismic hazard over wide territories is a basic tool for planning activities aimed at earthquake damage mitigation. This is commonly performed through probabilistic approaches based on the statistical analysis of past seismicity. Among these, due to its wide application worldwide, the Cornell-McGuire approach (Cornell 1968; McGuire 1978) has become a kind of “standard” methodology for probabilistic seismic hazard assessment (PSHA). In Italy, several national seismic hazard maps were produced in recent years (Slejko et al. 1998; Albarello et al. 2000; MPS Working Group 2004) by following this procedure as implemented by Bender and Perkins (1987). Yet despite its widespread application, this standard methodology presents severe drawbacks due to its strong sensitivity to some ill-defined aspects, such as geometry of seismic sources, attenuation of ground motion with distance from the source, completeness of available seismic catalogs, etc. Moreover, this kind of approach does not allow the full exploitation of a large amount of documentary data available at the site about the seismic effects of past earthquakes (Albarello and Mucciarelli 2003). Another drawback is that the standard approach was developed with the assumption that the seismicity database used to feed the computational model is constituted by instrumental data (magnitude, epicentral locations, etc.). However, in many countries (first and foremost, Italy) the bulk of the seismic database is constituted by macroseismic data, and thus the application of the standard method requires a “forcing” of macroseismic information into a para-instrumental format. But macroseismic information is not isomorphic to instrumental data since intensity values are discrete, ordinal, and range-limited. This implies that, in principle, mathematical formalizations suitable to instrumental information cannot be used to manage macroseismic data (see, e.g., Pasolini et al. 2008a, 2008b). To overcome some of these difficulties and to better exploit available information, probabilistic hazard evaluations based on observed intensity data were performed in Europe (Monachesi et al. 1994; Papoulia and Slejko 1997; Azzaro et al. 1999; Albarello et al. 2002) and Japan (Bozkurt et al. 2007) using alternative numerical procedures. An apparent limitation of these studies is the fact that PSH estimates are provided in terms of intensity, and this conflicts with the fact that ground acceleration still remains the traditional output of PSHA devoted to seismic design. However, a new interest has recently grown around macroseismic intensity. In fact, when damage scenarios and post-earthquake emergency planning are of concern, hazard assessment in terms of intensity as ground-shaking measure may be more suitable than conventional estimates based on instrumental parameters (PGA, etc.). A further possible advantage of these kinds of approaches is that they provide hazard evaluations completely independent from the standard ones and more directly linked to empirical observations (local seismic history). Thus, they could represent a useful benchmark for a direct assessment of reliability of traditional PSH estimates (Mucciarelli et al. 2000, 2006, 2008; Bozkurt et al. 2007). In this paper we present the computer program SASHA (Site Approach to Seismic Hazard Assessment), which implements the intensity-based PSHA procedure originally proposed by Magri et al. (1994) and then improved by Albarello and Mucciarelli (2002). It relies on the analysis of the site seismic history, i.e., the dataset of seismic effects (macroseismic intensities) documented during past earthquakes at a given locality. This methodology (hereafter, site approach) has been specifically developed to handle macroseismic data, and thus both the peculiar nature of intensity values (discrete, ordinal, range-limited) and relevant uncertainty (ill-defined intensity values, completeness of site seismic history, etc.) are taken into account by a coherent statistical approach that does not require any assumption about earthquake recurrence model and seismic source geometry. Furthermore, no aftershock removal is required in advance and epicentral data are only considered to integrate (when necessary) felt data at the site. Several PSHA studies have been performed in the last decade in Italy using different versions of the site approach (Mucciarelli et al. 2000; Albarello et al. 2002; D’Amico and Albarello 2003; Albarello, Azzaro et al. 2007; Azzaro et al. 2008). SASHA’s theoretical background is briefly outlined in the next section of the paper. Then, we describe the most important features of SASHA along with a sample application to the Italian area.
    Description: Published
    Description: 663-671
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: reserved
    Keywords: computational code ; probabilistic seismic hazard assessment ; intensity data ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-04-04
    Description: The Campi Flegrei (southern Italy) is one of the most active calderas in the world. This caldera is characterized by episodes of slow vertical ground movement, called bradyseism. With several hundred thousand people living within its borders, this area is in a high-risk category should there be an eruption. The seismological monitoring system in the Campi Flegrei is based on nine seismic stations, eight of which are equipped with short-period seismometers (1 Hz), and one with a broadband seismometer (60 sec–50 Hz). While all of the seismic stations are located on land, part of the seismic activity occurs in the undersea area of the Pozzuoli Gulf (Campi Flegrei), where there are no seismic stations. This gap in the data coverage produces a biased and incomplete image of the volcanic area.We carried out an experiment in the Pozzuoli Gulf with the installation of two broadband seismic stations on the seafloor with remote and continuous data acquisition for a duration of 31 days between January and March 2005. Using the data acquired, we have computed the power spectral density (PSD) to characterize the background seismic noise, and to evaluate the true noise variation, we have generated the seismic noise probability density functions from the computed PSD curves. The results of our analysis show that the broadband seismic noise is high when compared with the Peterson noise model (land model), but for periods less than 0.3 sec, the seismic noise on the seafloor is lower than the recordings on land over the same period range. The last bradyseismic crisis (1982–1984) highlights the importance of this frequency range, where most of the spectral content of the recorded earthquakes was observed. Finally, we evaluate the detection threshold of a new seismic station located on the seafloor of the Campi Flegrei caldera considering the characteristics of the local seismicity. This analysis shows that the detection threshold for the sea-floor stations (Mw ∼ 0:2) is less than that for land stations (Mw ∼ 0:8).
    Description: Published
    Description: 2962–2974
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Campi Flegrei Caldera ; Sea-Floor and On-Land Seismic ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Seismological Society of America
    Publication Date: 2017-04-04
    Description: In 2004, on behalf of the Department of Civil Protection (DPC—Dipartimento della Protezione Civile), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) released a new Italian seismic hazard map. The entire scientific process was public and transparent: an international panel of experts conducted a peer review while the work was in progress, and all the input data, the final output, and the technical documentation was published. The details of the entire process are available on a dedicated Web site (http://zonesismiche.mi.ingv.it). Following the publication of the reference map, the DPC financed the S1 project to produce a set of additional elaborations that would better describe the Italian seismic hazard. This resulted in a set of maps expressed in terms of PGA and Sa (spectral accelerations), both evaluated for different probabilities of exceedance. Finally, the overall information, more than a “set of maps,” can be considered the realization of what can be defined as a complete seismic hazard model. One of the aims of the S1 project is the dissemination of the data through the Web (http://esse1.mi.ingv.it). To evaluate the state of the art in disseminating this type of data we conducted an overview of the Web sites of earthquake-prone countries,and in several cases we experienced difficulties and slowness in finding seismic hazard information for a specific area. Our goal was to provide a tool with a combined high level of interactivity and ease of use. Recognizing the need for a Web application that would enable users to intuitively and interactively locate the area of interest and show pertinent data in various formats, we decided to develop a dedicated Web interface.
    Description: Published
    Description: 68-78
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: 5.9. TTC - Sistema web
    Description: JCR Journal
    Description: reserved
    Keywords: WebGIS ; italy ; seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2017-04-04
    Description: Macroseismic intensity has recently attracted attention as a tool for validating probabilistic seismic hazard assessment (PSHA) studies or as an alternative method for PSHA in countries where the historical catalog is much longer than the instrumental one. In Italy, the new seismic hazard map was recently produced using the Cornell–McGuire approach in terms of the peak ground acceleration characterized by a 10% exceedance probability for an exposure time of 50 yr (Amax). We compare this map with an alternative one, produced using a different approach based on a nonparametric and zonation-free statistical analysis of local seismic histories. In this case, results are expressed in terms of the maximum intensity corresponding to an exceedance probability of not less than 10% for an exposure time of 50 yr (Iref ). In order to compare the two maps, we selected 1401 control sites, where local seismic history includes at least 10 intensity values relative to felt effects documented during past earthquakes. The values of Amax and Iref at these sites have been ranked in the respective domains. The spatial distribution of rank differences of Amax and Iref values shows a strong correlation with the seismogenic zoning used in the calculation of PSHA following the Cornell–McGuire approach. This suggests that the adopted zoning could be incomplete (some further “hidden” sources may exist) and too rough to capture actual seismogenic sources. Because more detailed zoning is prevented by the amount of data available, the results obtained suggest the preference of zonation-free approaches for seismic hazard assessment in Italy. Furthermore, among the possible zonation-free approaches, those that offer better exploitation of local information about the effects of past earthquakes would be preferred.
    Description: Published
    Description: 2652–2664
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: JCR Journal
    Description: reserved
    Keywords: probabilistic seismic hazard estimates ; statistical analysis ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-04-04
    Description: An effective early-warning system must provide probabilistic estimates of the location and size of a potentially destructive earthquake within a few seconds after the event is first detected. In this work we present an evolutionary, real-time location technique based on an equal differential time (EDT) formulation and a probabilistic approach for describing the hypocenter estimation. The algorithm, at each timestep, relies on the information from triggered arrivals and not-yet-triggered stations. With just one recorded arrival, the hypocentral location is constrained by the Voronoi cell around the first triggering station constructed using the travel times to the not-yet-triggered stations.With two or more triggered arrivals, the location is constrained by the intersection of the volume defined by the Voronoi cells for the remaining, not-yet-triggered stations and the EDT surfaces between all pairs of triggered arrivals. As time passes and more triggers become available, the evolutionary location converges to a standard EDT location. Synthetic tests performed using the geometry of the Irpinia seismic network, southern Italy (ISNet), and the simulation of an evolutionary location for the 2000 Mw 6:6 Western Tottori, Japan, earthquake indicate that when a dense seismic network is available, reliable location estimates suitable for early-warning applications can be achieved after 1–3 sec from the first event detection. A further simulation with an Mw 6:7 southern Greece earthquake shows that at a regional scale, the real-time location can provide useful constraints on the earthquake position several seconds before a non-real-time algorithm. Finally, we show that the robustness of the algorithm in the presence of outliers can be effectively used to associate phase arrivals coming from events occurring close in time, and we present a preliminary algorithm for event detection.
    Description: Published
    Description: 1482–1494
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Early warning ; earthquake location ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Seismological Society of America
    In:  Convertito, V., and A. Herrero (2004). Influence of focal mechanism in probabilistic seismic hazard analysis, Bull. Seism. Soc. Am. 94, no. 6, 2124–2136.
    Publication Date: 2017-04-04
    Description: The influence of style-of-faulting on strong groundmotions has been the subject of debate for some time. Although some controversy persists, the general consensus is that ground motions produced by reverse faults are higher than those produced by normal faults, whereas motions from strike-slip faults are somewhere in between. In a recent article, Convertito and Herrero (2004) derived a correction factor for focal mechanism to be applied to predictive equations. This issue was previously addressed by Bommer et al. (2003). Although this article is cited by Convertito and Herrero, it seems that its aims and scope were not well understood, and we would therefore like to clarify what the method presented therein entails, especially because we feel that Convertito and Herrero’s approach of characterizing focal mechanisms based solely on the radiation pattern is difficult to justify. After presenting their correction scheme, Convertito and Herrero go on to present an implementation of probabilistic seismic hazard analysis (PSHA) explicitly accounting for focal mechanism. This represents a real innovation in terms of methodology because it allows propagation of the improvements in ground-motion prediction gained through the focal-mechanism adjustments to hazard estimation. Characterizing the dominant scenario in terms of focal mechanism furthermore has the advantage of providing constraints for numerical simulations that are derived directly from the hazard computation, rather than from arbitrary assumptions. However, in our opinion, the methodology presented by Convertito and Herrero has some serious shortcomings which would need to be addressed before it can lead to improvements of the PSHA methodology. Our discussion includes a comparison with the new Italian seismic hazard map, which was derived using the Bommer et al. (2003) adjustment methodology.
    Description: Published
    Description: 750-753
    Description: JCR Journal
    Description: reserved
    Keywords: strong ground-motions ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2017-04-04
    Description: The new Italian National Seismic Network (INSN) is a dense network of broadband stations deployed for monitoring Italian seismicity. The network consists of 250 stations with a typical station spacing of !40 km. Earthquake early warning is the rapid detection of an event in progress, assessment of the hazard it poses, and transmission of a warning ahead of any significant ground motion. We explore the potential for using the INSN real-time network for the purpose of earthquake early warning. We run the ElarmS early warning methodology off-line using a data set of more than 200 events with magnitudes between 2.5 and 6.0. A scaling relation for magnitude determination from the dominant period of the first seconds of signal following the P onset is developed from the data set. The standard deviation in the magnitude estimates using this approach is 0.4 magnitude units, and all event magnitude estimates are within !0:75 magnitude units of the true magnitude. Given the existing distribution of seismic stations it takes an average of 10 sec after event initiation before the P wave has been detected at four stations. If we require a detection at four stations before issuing the first alert, then the blind zone, within which no warning would be available, has a radius of !37 km. The ElarmS methodology can provide a warning earlier than this but with a greater uncertainty. An assessment of past damaging earthquakes across Italy shows that applying ElarmS with the existing seismic network could provide warning to population centers in repeats of past events. For example, in a repeat of the 1980 Irpinia earthquake Naples could receive an !15- sec warning. The variations in the size of the blind zone and warning times for different regions can be used as a guide to selecting strategic locations for future station deployments.
    Description: Published
    Description: 495-503
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Early Warning ; Earthquake Location ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-04-04
    Description: With the aim to find a more objective way to detect seismic families, we applied a series of successive steps to constrain the results of a waveform similarity analysis. The evaluation of similarity was carried out on the waveforms recorded in the period 1999–2003 by the stations operating in the Garfagnana area, located in northern Tuscany (Italy). The algorithm is based on the cross-correlation technique applied in a process that overcomes the limit of one order of magnitude between events to be compared through a bridging technique. In practice, if two couples of events (A, B) and (B, C), each exceeding the correlation threshold, share a common quake (B), then all three events are attributed to the same family even if the match between A and C is below a value chosen as a reference for similarity. To avoid any subjective choice of threshold for cross-correlation values, the results from the computation algorithm are submitted to a routine that gives increasing reliability to them if they are confirmed by the three components of the seismogram and if the number of families detected by each station is confirmed by more recordings. This latter constraint is made possible by the geometry of the recording network, with interdistances between stations of the order of 40–50 km. The process finally leads to the recognition of 27 families detected and confirmed by, on average, 3 stations that represent 40% of the recording capabilities. Since the performances of the recording network have been very odd in the past, especially in the early years of operation, the reliability of the detection is much higher, as in most cases the stations that detected the families were the only ones to be effectively recording. The methodology proved to be more efficient than other methods applied in the past; moreover, the results could be probably improved even more if, instead of doing a one-run process, it would be borne as a trial-and-error approach.
    Description: Published
    Description: 1903-1915
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; multiplets ; seismic families ; seismic sequences ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2017-04-04
    Description: The source of repeating earthquakes on creeping faults is modeled as a weak asperity at a border between much larger locked and creeping patches on the fault plane. The x^(-1/2) decrease in stress concentration with distance x from the boundaryis shown to lead directly to the observed scaling 〈T〉~〈M0〉^(1/6) between the average repeat time and average scalar moment for a repeating sequence. The stress drop in such small events at the border depends on the size of the large locked patch. For a circular patch of radius R and representative fault parameters, Dr = 7.6(m/R)3/5 MPa, which yields stress drops between 0.08 and 0.5 MPa (0.8–5 bars) for R between 2 km and 100 m. These low stress drops are consistent with estimates of stress drop for small earthquakes based on their seismic spectra. However, they are orders of magnitude smaller than stress drops calculated under the assumption that repeating sources are isolated stuck asperities on an otherwise creeping fault plane, whose seismic slips keep pace with the surrounding creep rate. Linear streaks of microearthquakes observed on creeping fault planes are trivially explained by the present model as alignments on the boundaries between locked and creeping patches.
    Description: NSF grants NSF-EAR-9902901 (CGS) and EAR-9805182 (JRR)
    Description: Published
    Description: 532-537
    Description: open
    Keywords: 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article , article
    Format: 197949 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2017-04-04
    Description: A small aperture quadripartite seismic array was installed on the south-east flanks of Mt. Vesuvius about 1 km far from the crater axis, in order to improve the seismic monitoring of this active volcano. The array has the following main purposes: i) to discriminate natural-source generated signals by artificial-source-generated signals; ii) to detect and track the source of possible Long Period (LP) events; iii) to detect coherent phases in the low frequency noise that may be related to magma movements (tremor insurgence). In addition, the array greatly helps in locating the seismic signals produced by blasts (both in land and sea), allowing a fast discrimination of possible natural long period (LP) quakes. The array is also an useful tool for retrieving the kinematic properties of the wavefield associated to volcano-tectonic (VT) earthquakes (more than 99% of the whole natural seismicity) and to all the other transients which are routinely observed(landslides, artificial blasts). We also use the array to investigate if correlated signals are present in the background noise (insurgence of volcanic tremor). The main result obtained during this first year of observation is that one LP was clearly recognized in the background seismicity at Mt. Vesuvius.
    Description: Published
    Description: 344-355
    Description: open
    Keywords: Volcano monitoring ; Array techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 120320 bytes
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    3
    In:  Computers and Geosciences, Münster, 3, vol. 28, no. 45, pp. 309-326, pp. L11609, (ISBN 0-471-26610-8)
    Publication Date: 2002
    Keywords: Inversion ; Data analysis / ~ processing ; Non-linear effects ; Discrimination ; C&G
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Wiley
    In:  Mathematical Methods for Digital Computers, Volume 1, Sapporo, Japan, Wiley, vol. 17, no. 16, pp. 211-236, (ISBN 0080419208)
    Publication Date: 1967
    Keywords: Inversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Wiley
    In:  Mathematische Methoden für Digitalrechner, Sapporo, Japan, Wiley, vol. 1, no. 16, pp. 106-126, (ISBN 0080419208)
    Publication Date: 1967
    Keywords: Inversion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...