ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-01
    Description: Minimum 1D velocity models and station corrections have been computed for the central Mediterranean area using two main data sets. The first one consists of accurate first arrival‐time readings from 103 seismic events with magnitude (ML)≥3.5 recorded by the Italian National Seismic Network (RSN) and the AlpArray Seismic Network (AASN) in the period 2014–2021. Earthquakes were selected on the basis of their spatial distribution, epicentral distance to the nearest seismic station, and maximum distance traveled by Pn and Sn phases. This fine selection of high‐quality data combined with the spatial density of the AlpArray seismic stations was decisive in obtaining high resolution for upper mantle velocity, especially in the Alpine belt. To obtain a denser coverage of crustal rays, we extended the first data set with P and S arrivals of local earthquakes from Istituto Nazionale di Geofisica e Vulcanologia (INGV) bulletin data (2016–2018). A total of 75,807 seismic phases (47,183 P phases and 28,264 S phases) have been inverted to calculate best‐fit 1D velocity models, at regional and local scales. We then test the performance of the optimized velocity models by relocating the last four years of seismicity recorded by INGV (period 2017–2020). The computed velocity models are very effective for routine earthquake location, seismic monitoring, source parameter modeling, and future 3D seismic tomography.
    Description: Published
    Description: 2670--2685
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: geophysics ; velocity models ; Italian seismicity ; central mediterranean area ; 04. Solid Earth ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-12
    Description: Abstract Tomographic images of the lithosphere are the first step to constrain the evolution of mountain belts and their interaction. By inverting new high-quality P- and S-wave arrivals that sample the entire lithosphere, we determined Vp and Vp/Vs models with reliable resolution in the critical depth range (40–80 km) where plates of the central Mediterranean area interact. This data set yields homogeneous representation of the 3D structure over a critical area at a regional scale. Here, we show that the Alps derive from a laterally continuous underthrusting of the European plate and that the Adria lithosphere was delaminated after the collision. Tomograms resolve the lateral changes of the continental versus oceanic subduction along the Alpine belt and identify original evidence of fluids beneath the orogens able to facilitate the current deformation. Plain Language Summary A high resolution imaging of the lithosphere/asthenosphere system is crucial to understand tectonic processes of orogens and subductions. The Alpine chain is an exemplary case of complexity, with its lateral heterogeneity and changes. The largest seismic array ever developed in the Alpine chain (Alparray Seismic Network) has enabled the creation of a high-quality seismic data set contributing to new images of the entire central Mediterranean area. The novelty of this work lies in the enhanced resolution of velocity anomalies in a critical depth range (35–80 km) and with optimal homogeneity at the regional scale. The new 3D Vp and Vp/Vs models allow us to get insights into many open questions about the structure and evolution of the circum-Mediterranean orogens.
    Description: Published
    Description: e2023JB026411
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-20
    Description: Abstract
    Description: This dataset provides the surface velocity fields derived with MatPIV (open-source Matlab toolbox for Particle Image Velocimetry; Sveen 2004) of three seismotectonic analog models (e.g., Rosenau et al., 2017) performed to investigate the role of geometry and friction of a single subducting seamount on the seismogenic behavior of the megathrust. Model 1 has a seamount covered by sandpaper (i.e., high friction) that is placed at 1/2 of the trench-parallel length of the seismogenic zone. Model 3 has the same geometry of model 1, but the seamount is in direct contact with the gelatin (i.e., not covered by sandpaper, hence low friction). Model 5 has a low friction patch (i.e., no geometry) that is placed again at 1/2 of the trench-parallel length of the seismogenic zone. Together with the surface velocity fields, we also provide Matlab scripts for visualization. A more detailed description of the experimental setup, configuration of the models and materials can be found in Menichelli et al. (submitted), to which this dataset is supplementary. Our seismotectonic models represent a downscaled subduction zone (1 cm in the model corresponds to 6.4 km in nature; Rosenau et al., 2017). The experimental setup consists of a 60 x 34 cm2 Plexiglass box with a 10°-dipping aluminum basal plate that moves downward with a constant velocity of 0.01 cm/s, analog of the subducting plate. The overriding plate is represented by an elastic wedge of 2.5 wt% pigskin gelatin at T = 10 °C (Di Giuseppe et al., 2009). The seismogenic zone of the megathrust is simulated using a rectangular sandpaper patch (Corbi et al., 2013), with a downdip width of 16 cm and located 31 and 47 cm from the backstop. This corresponds to a 100-km-wide seismogenic zone extending over a depth interval between 15 and 34 km. The updip and down dip aseismic regions of the megathrust are simulated by plastic sheets that are fixed on the setup frame and not subject to subduction (Corbi et al., 2013). A 3D-printed PLA seamount is placed on the seismogenic zone (e.g., Van Rijsingen et al., 2019). The seamount has a height of 6.28 mm and a diagonal length of 94 mm, corresponding to 4 km and 60 km in nature, respectively. These dimensions scale well-known seamounts, such as the Joban Seamount chain in the Japan Trench or the Louisville seamount chain in the Tonga-Kermadec Trench. Experiments were monitored with a CCD camera that acquired a sequence of high-resolution top-view images (1600 x 1200 pixels2, 8 bit, 256 gray levels) at 7.5 fps for the entire duration of the experiment (i.e., ca. 24 minutes). Images are processed with Particle Image Velocimetry (PIV; Adam et al., 2005) using the open-source Matlab toolbox MatPIV (Sveen, 2004). MatPIV provides the velocity field between two consecutive frames, measured at the surface of the model. The velocity field was then used as input to identify analog seismic events using the open-source Matlab function findpeak. The threshold used was 0.1 cm/s. Once earthquakes were identified, we derived their source parameters such as seismic slip, magnitude, and recurrence time following Corbi et al. (2017) and van Rijsingen et al. (2019).
    Keywords: EPOS ; multi-scale laboratories ; analogue models of geologic processes ; analogue modelling results ; software tools ; PIV
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...