ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (923)
  • Elsevier  (922)
  • Institut für Meereskunde
  • American Meteorological Society
  • MDPI Publishing
  • 2010-2014  (923)
Collection
Language
Years
Year
  • 1
    Publication Date: 2018-03-08
    Description: Brackish coastal groundwater is enriched in Ra, which is transported to surface waters via submarine groundwater discharge (SGD). The Ra activity of the SGD end-member is influenced by a variety of environmental factors including salinity, pH, and isotope half-life. In the York River estuary (YRE), 223Ra, 224Ra, and 226Ra were measured in surface water and shallow groundwater across a range of salinities and additional Ra sources quantified (desorption and diffusion from sediments, input from tidal marshes). The Ra budget of the estuary indicated a major source of Ra that could only be satisfied by SGD. The apparent Ra flux was combined with groundwater Ra end-member activity to estimate SGD volume fluxes of 5–178 L m− 2 d− 1. Each isotope exhibited a different seasonal pattern, with significantly higher 224Ra flux during summer than winter, lower 226Ra SGD flux during summer than winter, and no seasonal differences in 223Ra SGD flux. However, the SGD 224Ra end-member activity varied with seasonal pore water salinity fluctuations, indicating end-member control on seasonal 224Ra flux. Each Ra isotope suggested a different SGD volume flux, indicating that different nuclide regeneration rates may respond to and reflect different flow mechanisms in the subterranean estuary. This work indicates that volume fluxes estimated using geochemical tracers are sensitive to SGD end-member variations and end-member variability must be well-characterized for reliable SGD flux estimates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-10-12
    Description: In this paper we present an in-depth analysis and synthesis of published and newly acquired data on the chemical and isotopic composition of forearc fluids, fluid fluxes, and the associated thermal regimes in well-studied, representative erosional and accretionary subduction zone (SZ) forearcs. Evidence of large-scale fluid flow, primarily focused along faults, is manifested by widespread seafloor venting, associated biological communities, extensive authigenic carbonate formation, chemical and isotopic anomalies in pore-fluid depth-profiles, and thermal anomalies. The nature of fluid venting seems to differ at the two types of SZs. At both, fluid and gas venting sites are primarily associated with faults. The décollement and coarser-grained stratigraphic horizons are the main fluid conduits at accretionary SZs, whereas at non-accreting and erosive margins, the fluids from compaction and dehydration reactions are to a great extent partitioned between the décollement and focused conduits through the prism, respectively. The measured fluid output fluxes at seeps are high, ∼15–40 times the amount that can be produced through local steady-state compaction, suggesting that in addition, other fluid sources or non-steady-state fluid flow must be involved. Recirculation of seawater must be an important component of the overall forearc output fluid flux in SZs. The most significant chemical and isotopic characteristics of the expelled fluids relative to seawater are: Cl dilution; sulfate, Ca, and Mg depletions; and enrichments in Li, B, Si, Sr, alkalinity, and hydrocarbon concentrations, often distinctive δ18O, δD, δ7Li, δ11B, and δ37Cl values, and variable Sr isotope ratios. These characteristics provide key insights on the source of the fluid and the temperature at the source. Based on the fluid chemistry, the most often reported source temperatures reported are 120–150 °C. We estimate a residence time of the global ocean in SZs of ∼100 Myr, about five times faster than the previous estimate of ∼500 Myr by Moore and Vrolijk, similar to the residence time of ∼90 Myr for fluids in the global ridge crest estimated by Elderfield and Schultz, and ∼3 times longer than the 20–36 Myr estimate by German and von Damm and Mottl. Based on this extrapolated fluid reflux to the global ocean, subduction zones are an important source and sink for several elements and isotopic ratios, in particular an important sink for seawater sulfate, Ca and Mg, and an important source of Li and B.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Treatise on Geochemistry. Reference Module in Earth Systems and Environmental Sciences, 5 . Elsevier, Amsterdam, pp. 385-404. 2.Ed. ISBN 978-0-08-099946-3
    Publication Date: 2018-04-19
    Description: A very close coupling exists between changes in atmospheric O2 and CO2 concentrations, owing to the chemistry of photosynthesis, respiration, and combustion. The coupling is not perfect, however, because CO2 variations are partially buffered by reactions involving the inorganic carbon system in seawater, which has no effect on O2. Measurements over the past two decades document variations in O2 on a range of space and time scales, including a long-term decrease driven mostly by fossil fuel burning and seasonal cycles driven by exchanges with the land biosphere and the oceans. In this chapter, these and other features seen in the measurements are described, also discussing variations in the tracer ‘atmospheric potential oxygen,’ which is a linear combination of O2 and CO2 designed to be insensitive to exchanges from the land biosphere and thereby sensitive mostly to oceanic processes. Challenges associated with measuring variations in O2 are addressed, and various applications of the observations are discussed, including quantifying the magnitude of the global land and ocean carbon sinks and testing ocean biogeochemical models. An updated budget for global carbon sinks based on O2 measurements from the Scripps O2 program is presented for the decades of the 1990s and 2000s.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-07-09
    Description: Marine laminated sediments in dysoxic areas of the ocean floor are an excellent archive for high-resolution climate reconstructions. While the existence of discontinuities produced by natural events, such as underwater landslides (slumps), strong bottom currents, and/or bioturbation is usually acknowledged for long records, the extent of their influence on high-resolution sequences is usually not considered. In the present work we show strong evidence for multiple stratigraphic discontinuities in different gravity and box-cores retrieved off Pisco (Peru) covering the last 600 years. Chronostratigraphies are largely based on cross-correlation of distinct sedimentary structures (determined by X-ray image analysis) and validated using 210Pb, 241Am, and 14C profiles, as well as proxy records. The cross-correlation of distinct stratigraphic layers allows for chronostratigraphic tie points and clearly shows that some sedimentary sequences are continuous across scales of tens of kilometers, indicating that regional processes often determine laminae formation. Some differences in laminae thickness were found among cores, which could be explained by different sedimentation rates, spatially variable deposition of diatom blooms, changes in silica dissolution and partial deposition/erosion caused by bottom currents. Using multiple stratigraphic tie points provides clear evidence for laminated sequences present in some cores to be missing in other cores. Moreover, instantaneous depositions from upslope were identified in all the cores disrupting the continuity of the sediment records. These discontinuities (instantaneous deposits and missing sequences) may be due to slumps, possibly triggered by earthquakes and/or erosion by strong bottom currents. In spite of the missing sequences in some cores, a continuous composite record of the last six centuries was reconstructed from spliced sequences of the different cores, which provides a well-constrained temporal framework to develop further high-resolution proxies in this region. The present work shows that paleoreconstructions developed from single cores, particularly in areas with strong seismic activity and/or strong bottom currents, are subject to both temporal gaps and instantaneous depositions from upslope, both of which could be misinterpreted as abrupt climate changes or anomalous climate events. We stress the need for multiple cores to determine the stratigraphic continuity and chronologies for high-resolution records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-07-14
    Description: Kelp forests represent a major habitat type in coastal waters worldwide and their structure and distribution is predicted to change due to global warming. Despite their ecological and economical importance, there is still a lack of reliable spatial information on their abundance and distribution. In recent years, various hydroacoustic mapping techniques for sublittoral environments evolved. However, in turbid coastal waters, such as off the island of Helgoland (Germany, North Sea), the kelp vegetation is present in shallow water depths normally excluded from hydroacoustic surveys. In this study, single beam survey data consisting of the two seafloor parameters roughness and hardness were obtained with RoxAnn from water depth between 2 and 18 m. Our primary aim was to reliably detect the kelp forest habitat with different densities and distinguish it from other vegetated zones. Five habitat classes were identified using underwater-video and were applied for classification of acoustic signatures. Subsequently, spatial prediction maps were produced via two classification approaches: Linear discriminant analysis (LDA) and manual classification routine (MC). LDA was able to distinguish dense kelp forest from other habitats (i.e. mixed seaweed vegetation, sand, and barren bedrock), but no variances in kelp density. In contrast, MC also provided information on medium dense kelp distribution which is characterized by intermediate roughness and hardness values evoked by reduced kelp abundances. The prediction maps reach accordance levels of 62% (LDA) and 68% (MC). The presence of vegetation (kelp and mixed seaweed vegetation) was determined with higher prediction abilities of 75% (LDA) and 76% (MC). Since the different habitat classes reveal acoustic signatures that strongly overlap, the manual classification method was more appropriate for separating different kelp forest densities and low-lying vegetation. It became evident that the occurrence of kelp in this area is not simply linked to water depth. Moreover, this study shows that the two seafloor parameters collected with RoxAnn are suitable indicators for the discrimination of different densely vegetated seafloor habitats in shallow environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-12-13
    Description: The convergence between the Indian plate and the southern margin of the Eurasian continent created an active continental margin from Late Jurassic until about 40 Ma ago, which then evolved to form the Himalaya and the Tibetan Plateau during the continental collision stage. Post-collisional magmatism in southern Tibet, north of the Yarlung Zangbo Suture Zone (YZSZ) has been active since 45 Ma and is related to normal faulting and extensional tectonism. To date no such magmatism was reported within the YZSZ itself. This paper reports on the discovery of Miocene shoshonites within the YZSZ. They are significant because the magma traveled, at least in part, through oceanic crust, thus limiting interaction with the continental crust to the mid-crustal level and which affected the post-collisional magmatic rocks occurring in the northern part of the subduction system. In addition, xenoliths and xenocrysts of crustal origin in these rocks constrain the nature of metamorphic rocks underlying the YZSZ at mid-crustal level. The geochemical signatures of the shoshonitic rocks, including Nd and Sr isotope systematics, indicate derivation from a garnet-bearing middle continental crustal source. Crustal imprint complicates modeling of the petrogenetic processes which occurred prior to mid-crustal ponding of the magma which took place between 11 and 17 Ma at depths of 40 to 50 km. The significant role of crustal contamination raises serious concerns about models proposed for similar magmatic activity elsewhere in the Himalaya and the Tibetan Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-13
    Description: Arc magmas are commonly assumed to form by melting of sub-arc mantle that has been variably enriched by a component from the subducted slab. Although most magmas that reach the surface are not primitive, the impact of assimilation of the arc crust is often ignored with the consequence that trace element and isotopic compositions are commonly attributed only to varying contributions from different components present in the mantle. This jeopardises the integrity of mass balance recycling calculations. Here we use Sr and O isotope data in minerals from a suite of volcanic rocks from St Lucia, Lesser Antilles arc, to show that assimilation of oceanic arc basement can be significant. Analysis of 87Sr/86Sr in single plagioclase phenocrysts from four Soufrière Volcanic Complex (SVC; St Lucia) hand samples with similar composition (87Sr/86Sr = 0.7089–0.7091) reveals crystal isotopic heterogeneity among hand samples ranging from 0.7083 to 0.7094 with up to 0.0008 difference within a single hand sample. measurements in the SVC crystals show extreme variation beyond the mantle range with +7.5 to ‰ for plagioclase (), +10.6 to ‰ for quartz (), +9.4 to ‰ for amphibole () and +9 to ‰ for pyroxene () while older lavas (Pre-Soufriere Volcanic Complex), with less radiogenic whole rock Sr composition (87Sr/86Sr = 0.7041–0.7062) display values closer to mantle range: +6.4 to ‰ for plagioclase () and +6 to ‰ for pyroxene (). We argue that the 87Sr/86Sr isotope disequilibrium and extreme values provide compelling evidence for assimilation of material located within the arc crust. Positive correlations between mineral and whole rock 87Sr/86Sr, 143Nd/144Nd and 206,207,208Pb/204Pb shows that assimilation seems to be responsible not only for the isotopic heterogeneity observed in St Lucia but also in the whole Lesser Antilles since St Lucia encompasses almost the whole-arc range of isotopic compositions. This highlights the need for detailed mineral-scale investigation of oceanic arc suites to quantify assimilation that could otherwise lead to misinterpretation of source composition and subduction processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Treatise on Geochemistry Vol. 8: The oceans and marine geochemistry. , ed. by Elderfield, H. and Holland, H. D. Elsevier, Amsterdam, pp. 151-189.
    Publication Date: 2017-01-18
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-19
    Description: The scleractinian cold-water corals (CWC) Lophelia pertusa and Madrepora oculata represent two major deep-sea reef-forming species that act as key ecosystem engineers over a wide temperature range, extending from the northern Atlantic (ca. 5–9 °C) to the Mediterranean Sea (ca. 11–13 °C). Recent research suggests that environmental parameters, such as food supply, settling substrate availability or aragonite saturation state may represent important precursors controlling habitat suitability for CWC. However, the effect of one principal environmental factor, temperature, on CWC key physiological processes is still unknown. In order to evaluate this effect on calcification, respiration, and dissolved organic carbon (DOC) net flux, colonies of Mediterranean L. pertusa and M. oculata were acclimated in aquaria to three temperatures (12, 9 and 6 °C), by consecutive decrements of 1 month duration. L. pertusa and M. oculata maintained at Mediterranean control conditions (i.e. 12 °C) displayed constant rates, on average respiring 4.8 and 4.0 µmol O2 cm−2 coral surface area d−1, calcifying 22.3 and 12.3 µmol CaCO3 g−1 skeletal dry weight d−1 and net releasing 2.6 and 3.1 µmol DOC cm−2 coral surface area d−1, respectively. Respiration of L. pertusa was not affected by lowered temperatures, while M. oculata respiration declined significantly (by 48%) when temperature decreased to 9 °C and 6 °C relative to controls. L. pertusa calcification at 9 °C was similar to controls, but decreased significantly (by 58%) at 6 °C. For M. oculata, calcification declined by 41% at 9 °C and by 69% at 6 °C. DOC net flux was similar throughout the experiment for both CWC. These findings reveal species-specific physiological responses by CWC within their natural temperature range. L. pertusa shows thermal acclimation in respiration and calcification, while these mechanisms appear largely absent in M. oculata. Conclusively, species-specific thermal acclimation may significantly affect the occurrence and local abundance of cosmopolitan CWC species, consequently influencing their important role in habitat engineering and ecosystem functioning in various thermal environments. Keywords
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-19
    Description: Dissolved organic matter, which contains many compounds such as lipids, sugars and amino acids, is an important source of carbon and nitrogen for several symbiotic and asymbiotic tropical coral species. However, there is still no information on its possible uptake by cold-water coral species. In this study, we demonstrated that dissolved organic matter, in the form of dissolved free amino acids (DFAA), is actively absorbed by four cold-water coral species from the Mediterranean Sea. Although the uptake rates observed with 3 µM DFAA concentration were one order of magnitude lower than those observed in tropical species, they corresponded to 12–50% of the daily excreted-nitrogen, and 16–89% of the daily respired-carbon of the cold-water corals. Consequently, DFAA, even at in situ concentrations lower than those tested in this study, can supply a significant amount of carbon and nitrogen to the corals, especially during periods when particulate food is scarce.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-07-14
    Description: Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were investigated for the first time in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 μM were found. We suggest a combination of several factors to be responsible for the domination of metal oxide reduction over sulphate reduction in these areas. These include the increased accumulation of fine-grained material with high amounts of reducible metal oxides, a reduced availability of metabolisable organic matter and an enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9 × 103 to 790 × 103 t yr-1. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5 mg m-2 yr-1 (median: 3.8 mg m-2 yr-1) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-09-22
    Description: Compared with microscopic indices such as biomass, inverted satellite images can reflect cyanobacterial blooms from a macroscopic perspective, can provide planar information for blooms, and can more definitely reflect the occurrence of visible cyanobacterial blooms. We therefore adopted inverted images (from MODIS imagery) to judge whether cyanobacterial blooms had occurred in a water area at a given time. We constructed two probit models for identifying significant environmental factors related to cyanobacterial bloom occurrence and for short-term forecasts of bloom occurrence. The models used the index of cyanobacterial bloom occurrence as the dependent variable and the predicted variable, respectively, and used three categories (water quality, hydrology, and weather) of monitoring variables as the independent variables (or predictive variables). We used the Hill Dagong water area of Lake Tai in China as a case study of the new methods. The results produced by the identification model are consistent with the general conclusions in this research field indicating the validity of the model. The mean relative error of the forecast model is 13.5%, which is close to or lower than that of two previous models. Compared with the previous models, our forecast model also has advantages in terms of spatial and temporal precision. The new models have both practical applicability and the ability to be generalized and can, therefore, be easily adapted for the prevention, control, and prediction of cyanobacterial blooms in other bodies of water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-07-14
    Description: Fresh volcanic glasses from the extrusive section of the Troodos Ophiolite in Akaki Canyon are tholeiitic and basaltic to dacitic in composition. Compared to normal MORB they have extremely low fractionation corrected Na8, Fe8 and Ti8 and are enriched in fluid-mobile trace elements, including U, Ba, Rb, Sr and Pb, relative to non-fluid mobile elements of similar incompatibility. Trace element compositions of Akaki lavas define an array extending between ‘back-arc lava’-like compositions, and the field defined by Troodos boninites from the upper part of the lava sequence. Troodos lavas were derived from a mantle source that underwent early melt depletion, and later enrichment by both fluids and small degree melts. These processes can explain the unusual negative correlation of Pb/Ce with Zr/Nb and Ba/Nb in Troodos extrusives. Although some Troodos lavas are similar in composition to lavas from back-arc spreading centres, the boninites from the upper parts of the lava pile do not appear to have exact compositional equivalents among lavas from fore-arcs, back-arcs or other tectonic settings where similar rocktypes have been recovered. We suggest that the geochemical evolution inferred for the mantle source of Troodos lavas, together with geological evidence is most consistent with an origin for the Troodos Ophiolite at a spreading centre close to a ridge–trench–trench, or ridge–trench–transform triple junction, where highly depleted, subduction-modified, fluid-enriched mantle wedge material was able to upwell and decompress to shallow depths in a ‘fore-arc’ location. In such a tectonic setting, arc volcanism is captured by the spreading centre, explaining the lack of evidence for subaerial arc magmatism in Troodos. Rapid lateral migration of the triple junction could account for the similar ages of other Tethyan supra-subduction zone ophiolites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-05-04
    Description: The geochemical features of the volatiles dissolved in artesian thermal waters discharged over three basins (Millungera, Galilee and Cooper basin) of the Australian Great Artesian Basin (GAB) consistently indicate the presence of fluids from multiple gas sources located in the crust (e.g. sediments, oil reservoirs, granites) as well as minor but detectable contributions of mantle/magma-derived fluids. The gases extracted from 19 water samples and analyzed for their chemical and isotopic composition exhibit amounts of CO2 up to about 340 mlSTP/LH2O marked by a δ13CTDC (Total Dissolved Carbon) ranging from − 16.9 to + 0.18‰ vs PDB, while CH4 concentrations vary from 4.4 × 10− 5 to 4.9 mlSTP/LH2O. Helium contents were between 9 and 〉 2800 times higher than equilibrium with Air Saturated Water (ASW), with a maximum value of 0.12 mlSTP/LH2O. Helium isotopic composition was in the 0.02–0.21 Ra range (Ra = air-normalized 3He/4He ratio). The three investigated basins differ from each other in terms of both chemical composition and isotopic signatures of the dissolved gases whose origin is attributed to both mantle and crustal volatiles. Mantle He is present in the west-central and hottest part of the GAB despite no evidence of recent volcanism. We found that the partial pressure of helium, significantly higher in crustal fluids than in mantle-type volatiles, enhances the crustal He signature in the dissolved gases, thus masking the original mantle contribution. Neotectonic activity involving deep lithospheric structures and magma intrusions, highlighted by recent geophysical investigations, is considered to be the drivers of mantle/magmatic volatiles towards the surface. The results, although pertaining to artesian waters from a vast area of 〉 542,000 km2, provide new constraints on volatile injection, and show that fluids' geochemistry can provide additional and independent information on the geo-tectonic settings of the Great Artesian Basin and its geothermal potential.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
  • 16
    Publication Date: 2015-01-09
    Description: The final phase of the closure of the Panamanian Gateway and the intensification of Northern Hemisphere Glaciation (NHG) both occurred during the Late Pliocene. Glacial–interglacial (G–IG) variations in sea level might, therefore, have had a significant impact on the remaining connections between the East Pacific and the Caribbean. Here, we present combined foraminiferal Mg/Ca and δ 18O measurements from Ocean Drilling Program (ODP) Site 1241 from the East Pacific and ODP Site 999 from the Caribbean. The studied time interval covers the first three major G–IG Marine Isotope Stages (MIS 95–100, ∼2.5 Ma∼2.5 Ma) after the intensification of NHG. Analyses were performed on the planktonic foraminifera Neogloboquadrina dutertrei and Globigerinoides sacculifer, representing water mass properties in the thermocline and the mixed-layer, respectively. Changes in sea water temperature, relative salinity, and water column stratification strongly suggest that the Panamanian Gateway temporarily closed during glacial MIS 98 and 100, as a result of changes in ice volume equivalent to a drop in sea level of 60–90 m. Reconstructed sea surface temperatures (SST) from G. sacculifer show a glacial decrease of 2.5 °C at Site 1241, but increases of up to 3 °C at Site 999 during glacial MIS 98 and 100 suggesting that the Panamanian Gateway closed during these glacial periods. The Mg/Ca-temperatures of N. dutertrei remain relatively stable in the East Pacific, but do show a 3 °C warming in the Caribbean at the onset of these glacial periods suggesting that the closing of the gateway also changed the water column stratification. We infer that the glacial closure of the gateway allowed the Western Atlantic Warm Pool to extend into the southern Caribbean, increasing SST (G. sacculifer) and deepening the thermocline (N. dutertrei). Additionally, ice volume appears to have become large enough during MIS 100 to survive the relatively short lasting interglacial MIS 99 so that the gateway remained closed. Towards the end of MIS 98, during MIS 97 and into MIS 96 temperatures on both sides are mostly similar suggesting water masses exchanged again. Additionally, Caribbean variations in SST and δ18Owater follow a precession-like cyclicity rather than the obliquity-controlled variations characteristic of the East Pacific and many other tropical areas, suggesting that regional atmospheric processes related to the trade winds and the InterTropical Convergence Zone (ITCZ) had a dominant impact in the Caribbean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-01-12
    Description: The impact of mesoscale activity on phytoplankton and nutrient distribution in the Mozambique Channel was simulated by coupling a biogeochemical model (PISCES) with a regional oceanic model (ROMS). Examples of the effects of eddies on the biogeochemistry of the Mozambique Channel are presented to illustrate the complexity of the system. In the model, several cyclonic eddies were found with low concentrations of chlorophyll at their cores, which contrasts with previous studies in the open ocean. In addition, several anticyclonic eddies were simulated with high concentrations of chlorophyll at their cores. Phytoplankton growth within these mesoscale features (both cyclonic and anticyclonic eddies) occurred in response to nutrient injection into the euphotic zone by advection, and subsequent retention of surrounding nutrient-rich waters within eddies. Offshore nutrient distributions depended strongly on lateral advection of nutrient-rich water from the coastal regions, induced by eddy interaction with the shelf. The environmental conditions at the locations where eddies were generated had an important effect on nutrient concentrations within these structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-07-19
    Description: Highlights: • A DEB model for M. leidyi was parameterized using 60 datasets from literature. • 12 °C might already be outside the optimal temperature range. • M. leidyi has high reserve turnover rates and a high structural component. • Delayed metabolic acceleration confers flexibility in controlling generation time. Abstract: Mnemiopsis leidyi is an invasive comb jelly which has successfully established itself in European seas. The species is known to produce spectacular blooms yet it is holoplanktonic and not much is known about its population dynamics in between. One way to gain insight on how M. leidyi might survive between blooms and how it can bloom so fast is to study how the metabolism of this species actually responds to environmental changes in food and temperature over its different life-stages. To this end we combined modelling and data analysis to study the energy budget of M. leidyi over its full life-cycle using Dynamic Energy Budget (DEB) theory and literature data. An analysis of data obtained at temperatures ranging from 8 to 30 °C suggests that the optimum thermal tolerance range of M. leidyi is higher than 12 °C. Furthermore M. leidyi seems to undergo a so-called metabolic acceleration after hatching. Intriguingly, the onset of the acceleration appears to be delayed and the data do not yet exist which allows determining what actually triggers it. It is hypothesised that this delay confers a lot of metabolic flexibility by controlling generation time. We compared the DEB model parameters for this species with those of another holoplanktonic gelatinous zooplankton species (Pelagia noctiluca). After accounting for differences in water content, the comparison shows just how fundamentally different the two energy allocation strategies are. P. noctiluca has an extremely high reserve capacity, low turnover times of reserve compounds and high resistance to shrinking. M. leidyi adopts the opposite strategy: it has a low reserve capacity, high turnover rates of reserve compounds and fast shrinking.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-10-05
    Description: Total organic carbon (TOC) content of marine sediments represents residual carbon, originally derived from terrestrial and marine sources, which has survived seafloor and shallow subseafloor diagenesis. Ultimately, its preservation below the sulfate reduction zone in marine sediments drives methanogenesis. Within the gas hydrate stability zone (GHSZ), methane production along continental margins can supersaturate pore fluids and lead to the formation of gas hydrate. In this paper we examine the inventory and sources of TOC in sediments collected from four regions within the GHSZ along the Indian continental margins. The recovered sediments vary in age from Oligocene to recent. Mean TOC abundance is greatest in the Krishna-Godavari (K-G) Basin and decreases progressively to the Mahanadi basin, Andaman wedge, and Kerala-Konkan (K-K) Basin. This decrease in TOC is matched by a progressive increase in biogenic CaCO3 and increasing distance from terrestrial sources of organic matter and lithogenic materials. Organic carbon sources inferred from C/N and delta C-13(TOC) range from terrestrial (K-G Basin) to mixed marine and terrestrial (Mahanadi Basin), to marine dominant (Andaman wedge and K-K Basin). In the K-G Basin, variation in the bulk delta C-13(TOC) is consistent with changes in C-3 and C-4 vegetation driven by monsoon variability on glacial-interglacial timescales, whereas in the Mahanadi Basin a shift in the delta C-13(TOC) likely reflects the onset of C-4 plant deposition in the Late Miocene. A large shift the delta C-13(TOC) in the K-K basin is consistent with a change from C-3 to C-4 dominated plants during the middle Miocene. We observe a close relationship between TOC content and gas hydrate saturation, but consider the role of sedimentation rates on the preservation of TOC in the zone of methanogenesis and advective flow of methane from depth. Although TOC contents are sufficient for in situ methanogenesis at all the sites where gas hydrates were observed or inferred from proxy data, seismic, borehole log, pressure core, and gas composition data coupled with relatively high observed gas hydrate saturations suggest that advective gas transport may also play a role in the saturation of methane and the formation of gas hydrates in these regions. Although TOC content may be a first order indicator for gas hydrate potential, the structural and stratigraphic geologic environment along a margin will most likely dictate where the greatest gas hydrate saturations will occur.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-03-20
    Description: Though primarily driven by insolation changes associated with well-known variations in Earth's astronomical parameters, the response of the climate system during interglacials includes a diversity of feedbacks involving the atmosphere, ocean, sea ice, vegetation and land ice. A thorough multi-model-data comparison is essential to assess the ability of climate models to resolve interglacial temperature trends and to help in understanding the recorded climatic signal and the underlying climate dynamics. We present the first multi-model-data comparison of transient millennial-scale temperature changes through two intervals of the Present Interglacial (PIG; 8-1.2 ka) and the Last Interglacial (LIG; 123-116.2 ka) periods. We include temperature trends simulated by 9 different climate models, alkenone-based temperature reconstructions from 117 globally distributed locations (about 45% of them within the LIG) and 12 ice-core-based temperature trends from Greenland and Antarctica (50% of them within the LIG). The definitions of these specific interglacial intervals enable a consistent inter-comparison of the two intervals because both are characterised by minor changes in atmospheric greenhouse gas concentrations and more importantly by insolation trends that show clear similarities. Our analysis shows that in general the reconstructed PIG and LIG Northern Hemisphere mid-to-high latitude cooling compares well with multi-model, mean-temperature trends for the warmest months and that these cooling trends reflect a linear response to the warmest-month insolation decrease over the interglacial intervals. The most notable exception is the strong LIG cooling trend reconstructed from Greenland ice cores that is not simulated by any of the models. A striking model-data mismatch is found for both the PIG and the LIG over large parts of the mid-to-high latitudes of the Southern Hemisphere where the data depicts negative temperature trends that are not in agreement with near zero trends in the simulations. In this area, the positive local summer insolation trend is counteracted in climate models by an enhancement of the Southern Ocean summer sea-ice cover and/or an increase in Southern Ocean upwelling. If the general picture emerging from reconstructions is realistic, then the model-data mismatch in mid and high Southern Hemisphere latitudes implies that none of the models is able to resolve the correct balance of these feedbacks, or, alternatively, that interglacial Southern Hemisphere temperature trends are driven by mechanisms which are not included in the transient simulations, such as changes in the Antarctic ice sheet or meltwater-induced changes in the overturning circulation
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-09-22
    Description: We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (−0.049 * T) (r2 = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9 °C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios. The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model. The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the KdLi/Ca partition coefficient relative to KdMg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-01-11
    Description: A key challenge in oceanography is to capture and quantify processes that happen on short time scales, seasonal changes and inter-annual variations. To address this problem the P&O European Ferries Ltd. Ship MV Pride of Bilbao was fitted with a FerryBox from 2002 to 2010 and data returned to NOC in real time providing near continuous measurements between UK (Portsmouth) and Spain (Bilbao) of temperature, salinity, chlorophyll-fluorescence and oxygen. Additional monthly samples were collected on manned crossings. Over 6000 samples were analysed for nitrate (nitrate and nitrite) concentrations. The timing of nitrate concentration increases (with winter mixing) and decreases (with the spring bloom) are different on and off shelf and in autumn nitrate concentrations remain high on the shelf. Off shelf in the Bay of Biscay, the mixed layer depth assessed using Argo floats, was found to vary from 212 m in relatively mild winters (such as 2007/2008) to 476 m in cold winters (2009/2010). Years with deeper mixing were associated with an increase in nitrate concentrations in the surface waters (~3 μmol l−1) and the increased vertical nutrient supply resulted in higher productivity the following spring. Bloom progression could be seen through the increase in oxygen anomaly and decrease in nitrate concentrations off shelf prior to changes further north on the shelf and phytoplankton growth was initiated as shoaling begins. The full dataset demonstrates that ships of opportunity, particularly ferries with consistently repeated routes, can deliver high quality in situ measurements over large time and space scales that currently cannot be delivered in any other way.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-09-23
    Description: Highlights • Climate progression in the Balearic basin is examined between 140 and 100 ka. • A number of MIS 5e intra-interglacial cooling events is recognized. • MIS 5e climate phasing in the Western Mediterranean resembles the one in the Nordic Seas. • Foraminiferal abundances are strongly tied to a water circulation regime. • The timing of ORL deposition during MIS 5e resembles that of during the Holocene. Abstract A multiproxy analysis based on planktic foraminiferal abundances, derived SSTs, and stable planktic isotopes measurements together with alkenone abundances and Uk′37 SSTs was performed on late MIS 6 to early MIS 5d sediment recovered from Site 975 (ODP Leg 161) in the South Balearic Islands Basin (Western Mediterranean) with emphasis on reconstructing the climate progression of the last interglacial period. A number of abrupt climate changes related to alternative influence of nutrient rich northern and oligotrophic southern water masses was revealed. Heinrich event 11 and cooling events C27, C26, C25, C24, and C23, which have been previously described in the North Atlantic, were recognized. However, in comparison to the eastern North Atlantic mid-latitude region, events C27 and C26 at Site 975 seem to be significantly more pronounced. Together with evidence of a two-phase climate optimum with maximum SSTs reached during its later phase, this implies a close similarity in climate dynamics between the Western Mediterranean and the Nordic seas. We propose that postglacial effects in the Nordic seas had an influence on the western Mediterranean climate via atmospheric circulation and that these effects competed with the insolation force.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-07-02
    Description: Marine sponge-associated actinomycetes represent an exciting new resource for the identification of new and novel natural products . Previously, we have reported the isolation and structural elucidation of actinosporins A (1) and B (2) from Actinokineospora sp. strain EG49 isolated from the marine sponge Spheciospongia vagabunda. Herein, by employing different fermentation conditions on the same microorganism, we report on the isolation and antioxidant activity of structurally related metabolites, actinosporins C (3) and D (4). The antioxidant potential of actinosporins C and D was demonstrated using the ferric reducing antioxidant power (FRAP) assay. Additionally, at 1.25 μM, actinosporins C and D showed a significant antioxidant and protective capacity from the genomic damage induced by hydrogen peroxide in the human promyelocytic (HL-60) cell line.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-07-02
    Description: Microluside A [4 (19-para-hydroxy benzoyloxy-O-β-d-cellobiosyl), 5 (30-para-hydroxy benzoyloxy-O-β-d-glucopyranosyl) xanthone (1)] is a unique O-glycosylated disubstituted xanthone isolated from the broth culture of Micrococcus sp. EG45 cultivated from the Red Sea sponge Spheciospongia vagabunda. The structure of microluside A was determined by 1D- and 2D-NMR techniques as well as high resolution tandem mass spectrometry. The antimicrobial activity evaluation showed that 1 exhibited antibacterial potential against Enterococcus faecalis JH212 and Staphylococcus aureus NCTC 8325 with MIC values of 10 and 13 μM, respectively.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-10-13
    Description: Highlights • Seismic imaging of gas hydrate deposits in the Mahanadi Basin shows strong linkages to channel/levee structures. • Gas hydrate occurs only in discrete layers, stratigraphically bound. • Gas hydrate saturation was determined successfully from log and core data. • Saturation estimates show overall low values of up to 10% in discrete layers. Abstract Gas hydrate was recovered in the Mahanadi Basin along the eastern continental margin of India during the India National Gas Hydrate Program (NGHP) Expedition-01 in 2006. Infrared imaging of recovered core confirmed gas hydrate occurs predominantly in discrete layers. Pore-water chemistry, electrical resistivity and acoustic velocity down-hole logs were used to estimate gas hydrate saturations at three of the sites in the Mahanadi Basin: Sites NGHP-01-08, -09, and -19. Gas hydrate saturation estimated from pore-water chloride concentrations shows values up to ∼10% of the pore space at ∼200 m below seafloor just above the base of the gas hydrate stability zone (BGHSZ). Gas hydrate saturations estimated from electrical resistivity and acoustic velocity logs using standard relations and modeling approaches are comparable to each other and saturations are ∼10–15% of the pore space. Seismic reflection data were also analyzed for the evidence of gas hydrate, and a bottom-simulating reflector (BSR) was imaged along the seismic profiles in the study area. The depth of the BSR is varying from ∼200 m to ∼300 m below seafloor depending on water depth in the Mahanadi Basin. The occurrence of gas hydrate was observed to be associated with deep-water channel and levee complexes (especially at Site NGHP-01-19) based on the regional seismic data. But the cored/logged section at each site lacked any significant sand fraction, which does not allow for higher gas hydrate saturations. As identified from seismic time-slice data, all sites drilled in the Mahanadi Basin are within the steeper slope region of the channel system and any sand bypassed this region. Significant sand deposition would occur further down slope where typical fan-type deposits can be inferred from the seismic data and thus higher accumulations of gas hydrate would be expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-10-13
    Description: Highlights • Regional difference in Vp and Vs are related to grain-size distribution. • New algorithm to derive gas hydrate concentration from Vp and Vs is introduced. • Sediments from northern Cascadia are similar to Arctic gas hydrate settings. • New empirical relationships for shear-wave velocities are defined. Abstract Shear wave velocity data have been acquired at several marine gas hydrate drilling expeditions, including the India National Gas Hydrate Program Expedition 1 (NGHP-01), the Ocean Drilling Program (ODP) Leg 204, and Integrated Ocean Drilling Program (IODP) Expedition 311 (X311). In this study we use data from these marine drilling expeditions to develop an understanding of general grain-size control on the P- and S-wave properties of sediments. A clear difference in the downhole trends of P-wave (Vp) and S-wave (Vs) velocity and the Vp/Vs ratio from all three marine regions was observed: the northern Cascadia margin (IODP X311) shows the highest P-wave and S-wave velocity values overall and those from the India margin (Expedition NGHP-01) are the lowest. The southern Cascadia margin (ODP Leg 204) appears to have similar low P-wave and S-wave velocity values as seen off India. S-wave velocity values increase relative to the sites off India, but they are not as high as those seen on the northern Cascadia margin. Such regional differences can be explained by the amount of silt/sand (or lack thereof) occurring at these sites, with northern Cascadia being the region of the highest silt/sand occurrences. This grain-size control on P-wave and S-wave velocity and associated mineral composition differences is amplified when compared to the Arctic permafrost environments, where gas hydrate predominantly occurs in sand- and silt-dominated formations. Using a cross-plot of gamma ray values versus the Vp/Vs ratio, we compare the marine gas hydrate occurrences in these regions: offshore eastern India margin, offshore Cascadia margin, the Ignik-Sikumi site in Alaska, and the Mallik 5L-38 site in the Mackenzie Delta. The log-data from the Arctic permafrost regions show a strongly linear Vp–Vs relationship, similar to the previously defined empirical relationships by Greenberg and Castagna (1992). P- and S-wave velocity data from the India margin and ODP Leg 204 deviate strongly from these linear trends, whereas data from IODP X311 plot closer to the trend of the Arctic data sets and previously published relationships. Three new linear relationships for different grain size marine sediment hosts are suggested: a) mud-dominated (Mahanadi Basin, ODP Leg 204 & NGHP-01-17): Vs = 1.5854 × Vp − 2.1649 b) silty-mud (KG Basin): Vs = 0.8105 × Vp − 1.0223 c) silty-sand (IODP X311): Vs = 0.5316 × Vp − 0.4916 We investigate the relationship of gas hydrate saturation determined from electrical resistivity on the Vp/Vs ratio and found that the sand-dominated Arctic hosts show a clearly decreasing trend of Vp/Vs ratio with gas hydrate saturation. Though limited due to lower overall GH saturations, a similar trend is seen for sites from IODP X311 and at the ash-dominated NGHP-01-17 sediment in the Andaman Sea. Gas hydrate that occurs predominantly in fractured clay hosts show a different trend where the Vp/Vs ratio is much higher than at sand-dominated sites and remains constant or increases slightly with increasing gas hydrate saturation. This trend may be the result of anisotropy in fracture-dominated systems, where P- and S-wave velocities appear higher and Archie-based saturations of gas hydrate are overestimated. Gas hydrate concentrations were also estimated in these three marine settings and at Arctic sites using an effective medium model, combining P- and S-wave velocities as equally weighted constraints on the calculation. The effective medium approach generally overestimates S-wave velocity in high-porosity, clay-dominated sediments, but can be accurately used in sand-rich formations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-10-21
    Description: Highlights: • The central uplift of the Manicouagan impact structure has been dated by (U–Th)/He • A (U–Th)/He central age (207.1 ± 6.4 Ma, 2 standard error, n = 40) has been determined • This age reflects the rapid uplift, cooling and closure of He in ~ 1 Gyr-old titanites • This correlates with the previously determined U–Pb impact-melt age of 214 ± 1 Ma • Our new approach enables dating complex impact structures that lack impact melt rocks Abstract Forty titanite grain fragments from 9 central uplift samples of metamorphosed anorthosite from the Manicouagan impact structure were dated by the (U–Th)/He technique. A (U–Th)/He central age of 207.1 ± 6.4 Ma (2 standard error (SE), n = 40) has been determined. With 4 outlier ages removed the central age is refined to 208.9 ± 5.1 Ma (2 SE). Both of these ages are within error of the previously determined U–Pb zircon age of 214 ± 1 Ma (2σ) derived from the impact melt. Manicouagan's central uplift formed due to rapid elevation from ~ 7–10 km depth as part of the modification stage of the impact process, which has facilitated the dating of its emplacement due to resulting rapid exhumation and cooling and closure of the (U–Th)/He system in titanite. Correlation with the previous U–Pb zircon 214 ± 1 Ma impact melt crystallization age indicates that the (U–Th)/He titanite dating technique offers a new approach to dating complex impact structures in the absence of viable melt sheets, or other melt products. The youngest ca. 195 Ma (U–Th)/He dates preserved in some titanite fragments are synchronous with Early Jurassic, rift-induced lithospheric thinning and associated igneous activity that defines the Central Atlantic Magmatic Province (CAMP). The (U–Th)/He titanite data from Manicouagan indicate that the influence of this regional event may extend west of the previously proposed limit of CAMP activity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-01-11
    Description: Gas hydrate resource assessments that indicate enormous global volumes of gas present within hydrate accumulations have been one of the primary driving forces behind the growing interest in gas hydrates. Gas hydrate volumetric estimates in recent years have focused on documenting the geologic parameters in the “gas hydrate petroleum system” that control the occurrence of gas hydrates in nature. The primary goals of this report are to review our present understanding of the geologic controls on the occurrence of gas hydrate in the offshore of India and to document the application of the petroleum system approach to the study of gas hydrates. National Gas Hydrate Program of India executed the National Gas Hydrate Program Expedition 01 (NGHP-01) in 2006 in four areas located on the eastern and western margins of the Indian Peninsula and in the Andaman Sea. These areas have experienced very different tectonic and depositional histories. The peninsular margins are passive continental margins resulting from a series of rifting episodes during the breakup and dispersion of Gondwanaland to form the present Indian Ocean. The Andaman Sea is bounded on its western side by a convergent margin where the Indian plate lithosphere is being subducted beneath southeast Asia. NGHP-01 drilled, logged, and/or cored 15 sites (31 holes) in the Krishna–Godavari Basin, 4 sites (5 holes) in the Mahanadi Basin, 1 site (2 holes) in the Andaman Sea, and 1 site (1 hole) in the Kerala–Konkan Basin. Holes were drilled using standard drilling methods for the purpose of logging-while-drilling and dedicated wireline logging; as well as through the use of a variety of standard coring systems and specialized pressure coring systems. NGHP-01 yielded evidence of gas hydrate from downhole log and core data obtained from all the sites in the Krishna–Godavari Basin, the Mahanadi Basin, and in the Andaman Sea. The site drilled in the Kerala–Konkan Basin during NGHP-01 did not yield any evidence of gas hydrate. Most of the downhole log-inferred gas hydrate and core-recovered gas hydrate were characterized as either fracture-filling in clay-dominated sediments or as pore-filling or grain-displacement particles disseminated in both fine- and coarse-grained sediments. Geochemical analyses of gases obtained from sediment cores recovered during NGHP-01 indicated that the gas in most all of the hydrates in the offshore of India is derived from microbial sources; only one site in the Andaman Sea exhibited limited evidence of a thermogenic gas source. The gas hydrate petroleum system concept has been used to effectively characterize the geologic controls on the occurrence of gas hydrates in the offshore of India.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-01-04
    Description: The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna–Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna–Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins. The primary goal of NGHP-01 was to conduct scientific ocean drilling/coring, logging, and analytical activities to assess the geologic occurrence, regional context, and characteristics of gas hydrate deposits along the continental margins of India. This was done in order to meet the long-term goal of exploiting gas hydrate as a potential energy resource in a cost effective and safe manner. During its 113.5-day voyage, the D/V JOIDES Resolution cored and/or drilled 39 holes at 21 sites (1 site in Kerala–Konkan, 15 sites in Krishna–Godavari, 4 sites in Mahanadi, and 1 site in the Andaman deep offshore area), penetrated more than 9250 m of sedimentary section, and recovered nearly 2850 m of core. Twelve holes were logged with logging-while-drilling (LWD) tools and an additional 13 holes were wireline logged. The science team utilized extensive on-board laboratory facilities to examine and prepare preliminary reports on the physical properties, geochemistry, and sedimentology of all the data collected prior to the end of the expedition. Samples were also analyzed in additional post-expedition shore-based studies conducted in leading laboratories around the world. One of the specific objectives of this expedition was to test gas hydrate formation models and constrain model parameters, especially those that account for the formation of concentrated gas hydrate accumulations. The necessary data for characterizing the occurrence of in situ gas hydrate, such as interstitial water chlorinities, core-derived gas chemistry, physical and sedimentological properties, thermal images of the recovered cores, and downhole measured logging data (LWD and/or conventional wireline log data), were obtained from most of the drill sites established during NGHP-01. Almost all of the drill sites yielded evidence for the occurrence of gas hydrate; however, the inferred in situ concentration of gas hydrate varied substantially from site to site. For the most part, the interpretation of downhole logging data, core thermal images, interstitial water analyses, and pressure core images from the sites drilled during NGHP-01 indicate that the occurrence of concentrated gas hydrate is mostly associated with the presence of fractures in the sediments, and in some limited cases, by coarser grained (mostly sand-rich) sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-03-12
    Description: The Fram Strait is the main gateway for water, heat and sea-ice exchanges between the Arctic Ocean and the North Atlantic. The complex physical environment results in a highly variable primary production in space and time. Previous regional studies have defined key bottom-up (ice cover and stratification from melt water controlling the light availability, and wind mixing and water transport affecting the supply of nutrients) and top-down processes (heterotrophic grazing). In this study, in situ field data, remote sensing and modeling techniques were combined to investigate in detail the influence of melting sea-ice and ocean properties on the development of phytoplankton blooms in the Fram Strait region for the years 1998–2009. Satellite-retrieved chlorophyll-a concentrations from temporarily ice-free zones were validated with contextual field data. These were then integrated per month on a grid size of 20 × 20 km, resulting in 10 grids/fields. Factors tested for their influence on spatial and temporal variation of chlorophyll-a were: sea-ice concentration from satellite and sea-ice thickness, ocean stratification, water temperature and salinity time-series simulated by the ice-ocean model NAOSIM. The time series analysis for those ten ice-free fields showed a regional separation according to different physical processes affecting phytoplankton distribution. At the marginal ice zone the melting sea-ice was promoting phytoplankton growth by stratifying the water column and potentially seeding phytoplankton communities. In this zone, the highest mean chlorophyll concentration averaged for the productive season (April–August) of 0.8 mgC/m3 was observed. In the open ocean the phytoplankton variability was correlated highest to stratification formed by solar heating of the upper ocean layers. Coastal zone around Svalbard showed processes associated with the presence of coastal ice were rather suppressing than promoting the phytoplankton growth. During the twelve years of observations, chlorophyll concentrations significantly increased in the southern part of the Fram Strait, associated with an increase in sea surface temperature and a decrease in Svalbard coastal ice. Highlights • We used combination of satellite, simulated and in situ data for 1998–2009. • Stratification from sea-ice melt resulted in largest CHL at the marginal ice zone. • Stratification caused by solar warming promoted open ocean blooms. • Late retreat of Svalbard shelf ice delayed coastal blooms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Asian Earth Sciences, 79 . pp. 358-365.
    Publication Date: 2015-10-13
    Description: Highlights • Gas hydrate reported from the Andaman Sea, India after coring and drilling. • Geothermal modeling of base of gas hydrate stability zone. • Gas hydrate stability thickness map of Andaman Sea. • Gas hydrate saturation using rock physics modeling. • Seismic attributes (i.e. reflection strength and instantaneous frequency etc.). Abstract Wide-spread bottom simulating reflectors (BSRs) are observed along available multichannel seismic profiles covering an area of about 290 km2 in the Andaman Sea. The seismic data shows that the BSR occurs at places where water depth exceeds 1000 m, and is identified by cross-cutting relationships with the dipping reflectors. The BSR that represents the base of gas hydrate stability field can be used to infer the gas hydrate stability thickness, which ranges between ∼518 m to ∼861 m depending on water depths. In situ measurement at site 17 during the Indian National Gas Hydrate Program (NGHP) Expedition-01 shows very low geothermal gradient 19 ± 2 °C/km. A conductive model was used to determine geothermal gradients from BSRs, which is calculated and varying between 10 °C/km to 40 °C/km. The low geothermal gradient is responsible for the deepest BSR or gas hydrate stability zone (GHSZ) in the Andaman region and in the world. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-07-03
    Description: Monitoring of the water column in the vicinity of offshore Carbon Capture and Storage (CCS) sites is needed to ensure site integrity and to protect the surrounding marine ecosystem. In this regard, the use of continuous, autonomous systems is considered greatly advantageous due to the costs and limitations of periodic, ship-based sampling campaigns. While various geochemical monitoring tools have been developed their elevated costs and complexities mean that typically only one unit can be deployed at a time, yielding single point temporal data but no spatial data. To address this the authors have developed low-cost pCO2 sensors (GasPro-pCO2) that are small, robust, stable, and which have a low power consumption, characteristics which allow for the deployment of numerous units to monitor the spatial-temporal distribution of pCO2, temperature, and water pressure in surface water environments. The present article details the results of three field deployments at the natural, CO2-leaking site near Panarea, Island. While the first consisted of 6 probes placed on the sea floor for a 2.5 month period, the other two involved the deployment of 20 GasPro units along a transect through the water column in the vicinity of active CO2 seeps over 2 – 4 days. Results show both transport and mixing processes and highlight the dynamic nature of the leakage-induced marine geochemical anomalies. Implications for monitoring programs as well as potential impacts are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-07-03
    Description: Although CO2 capture and storage in deep, offshore reservoirs is a proven technology, as illustrated by over 15 years of operation of the Sleipner site in the Norwegian North Sea, potential leakage from such sites into the overlying water column remains a concern for some stakeholders. Therefore, we are obliged to carefully assess our ability to predict and monitor the migration, fate, and potential ecosystem impact of any leaked CO2. The release of bubbles from the sea floor, their upward movement, and their dissolution into the surrounding water controls the initial boundary conditions, and thus an understanding of the behavior of CO2 bubbles is critical to address such issues related to monitoring and risk assessment. The present study describes results from an in situ experiment conducted in 12 m deep marine water near the extinct volcanic island of Panarea (Italy). Bubbles of a controlled size were created using natural CO2 released from the sea floor, and their evolution during ascent in the water column was monitored via both video and chemical measurements. The obtained results were modelled and a good fit was obtained, showing the potential of the model as a predictive tool. These preliminary results and an assessment of the difficulties encountered are examined and will be used to improve experimental design for the subsequent phase of this research.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-07-24
    Description: Highlights • The complex geodynamic structure of the area is reflected in the wide range of compositions of the emitted fluids. • High salinity waters with hydrocarbon gases and a purely crustal He component were collected from deep wells. • Hyperalkaline waters with CH4- and H2-dominated gases are found in the ophiolite complex. • Shallow meteoric groundwaters in the southern part of the basin show a prevailing atmospheric component for dissolved gases. • A significant mantle component (He and C) is found in the dissolved gases of the northeastern sites. Abstract We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of the DSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (from boreholes deeper than 1000 m) have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-09-24
    Description: Highlights: • Cold-water coral mound formation is mainly influenced by the baffling of fine grained material within a coral framework. • Mass wasting appears to be an important mound progradation process. • Even heavily reworked sediments contain valuable information on the original mound aggradation processes. Abstract: An unconformity-bound glacial sequence (135 cm thick) of a coral-bearing sediment core collected from the flank of a cold-water coral mound in the Banda Mound Province off Mauritania was analysed. In order to study the relation between coral framework growth and its filling by hemipelagic sediments, U-series dates obtained from the cold-water coral species Lophelia pertusa were compared to 14C dates of planktonic foraminifera of the surrounding matrix sediments. The coral ages, ranging from 45.1 to 32.3 ka BP, exhibit no clear depositional trend, while on the other hand the 14C dates of the matrix sediment provide ages within a much narrower time window of 〈3000 yrs (34.6–31.8 cal ka BP), corresponding to the latest phase of the coral growth period. In addition, high-resolution computer tomography data revealed a subdivision of the investigated sediment package into three distinct parts, defined by the portion and fragmentation of corals and associated macrofauna as well as in the density of the matrix sediments. Grain size spectra obtained on the matrix sediments show a homogeneous pattern throughout the core sediment package, with minor variations. These features are interpreted as indicators of redeposition. Based on the observed structures and the dating results, the sediments were interpreted as deposits of a mass wasting event, namely a debris flow. During this event, the sediment unit must have been entirely mixed; resulting in averaging of the foraminifera ages from the whole unit and giving randomly distributed coral ages. In this context, for the first time mass wasting is proposed to be a substantial process of mound progradation by exporting material from the mound top to the flanks. Hence, it may not only be an erosional feature but also widening the base of the mound, thus allowing further vertical mound growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-08-22
    Description: Highlights: • Development/evaluation of a ‘needle trap device’ (NTD) method for the analysis of VOC in seawater. • First field application of the NTD method in a Norwegian Fjord during a CO2 enrichment study. • Identification and quantification of DMS, isoprene and α-pinene under various pCO2 levels. • In field NTD GC-MS and P&T GC-FPD method comparison for the DMS datasets (r2 = 0.8). Abstract: A novel analytical method using newly developed needle trap devices (NTDs) and a gas chromatograph–mass spectrometer (GC–MS) system was developed. It has been applied for the first time on seawater samples to quantify marine volatile organic compounds (VOCs) relevant to atmospheric chemistry and climate. By purging gases from small water volumes (10 ml) onto sealable NTDs and then desorbing them thermally within the GC injection port, an effective analysis of a wide range of VOCs (isoprene to α-pinene) was achieved within 23 min. Good repeatability (RSDs 〈 16 %), linearity (r2 = 0.96–0.99) and limits of detection in the range of pM were obtained for all examined compounds. Following laboratory validation, the NTD method was applied in a mesocosm field study in a Norwegian Fjord. Nine individual mesocosm ecosystems under different CO2 regimes were examined. Dimethyl sulfide (DMS), isoprene and monoterpenes were identified and quantified in mesocosm seawater. The DMS measurements are compared with parallel measurements provided by an independent P&T GC–FPD system showing good correlation, r2 = 0.8. Our study indicates that the NTD method can be used successfully in place of the traditionally used extraction techniques (P&T, SPME) in marine environments to extend the suite of species typically measured and improve detection limits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-05-24
    Description: Kalsilite-bearing igneous rocks are extremely rare,most known examples are volcanic. The few previously recorded kalsilite-bearing plutonic rocks are all Phanerozoic and mostly limited to the small ultrapotassic massifs of the Baikal–Stanovoi Rift in the Siberian Craton, the Greenland Batbjerg Massif, and the Kola Peninsula Khibiny Complex. We have found that the Archean to Proterozoic transition in thewestern Reguibat Rise of theWest African Craton is marked by several small massifs predominantly composed of kalsilite syenites, i.e., synnyrites. The largest massif is Awsard, a deep-seated intrusive body mainly composed of 2.46 Ga synnyrites and K-rich nepheline syenites with mantle-like Sr and Nd (whole-rock) and O (zircon) isotope composition. Apart from some superficial resemblance to the Baikal–Stanovoi synnyritiferous complexes, Awsard has no known equivalent in the geological record. It is the oldest, the deepest and the largest known occurrence of synnyrites. Awsard comprises solely felsic syenites with εNd(t) notably more primitive than their Siberian counterparts. The synnyrites contain kalsilite and rare nepheline as primary phases with no leucite or leucite pseudomorphs. Kalsilite and nepheline form large discrete grains that, in places, are accompanied by spectacular Ks–Or or Ne–Or symplectites. The symplectites are magmatic, generated by simultaneous crystallization of the two phases and the imbalance between the growth rate of the feldspar and the diffusivity of silica and alkalis in the melt. To explain why Awsard lacks mafic rocks and associated carbonatites, typical of other synnyrite massifs, we propose that ascending water-poor (H2O b 0.65 wt.%) mafic ultrapotassic magmas solidified at a pressure of 10–16 kbar underneath the already stabilized Archean crust of the region. In these conditions leucite began to crystallize when the temperature dropped to around 1100 °C. As a result of their low density, leucite crystals floated and formed a cap at the top of the intrusion. Then, the chamber was replenished with awater-rich andmore sodic ultrapotassicmagma that originated in the samemetasomatized mantle-source region. After prolonged fractional crystallization this second magma released an aqueous vapor phase that migrated upwards and melted the leucite cap thus producing a low-density hydrous magma of leucite-like, synnyritic, composition. This leucite-like magma, and the late residual melts from the second pulse that replenished the chamber, ascended and intruded the already cratonized lower crust of the western Reguibat Rise. There, the magmas crystallized outside the leucite stability field to produce the synnyrites and the nepheline syenites, respectively. There is no evidence that the metasomatic refertilization of the mantle required to produce the initial ultrapotassic mafic magmas was related to subduction fluids. On the contrary, it seems to have been caused by incompatible-element enriched hydrous fluids released from delaminated lower crustal fragments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Encyclopedia of Meat Sciences. , ed. by Divine, C. and Dikeman, M. Elsevier, Amsterdam, The Netherlands, pp. 395-404. 2.ed. ISBN 978-0-12-384734-8
    Publication Date: 2016-06-27
    Description: Yeasts and molds are important microorganisms related to human welfare, safety, and food resources. They contribute greatly to the food industry in areas such as winemaking, single-cell protein production, brewing, baking, vitamin production, etc. However, under certain conditions they can act as potential spoilage organisms in food, especially in processed, preserved, and refrigerated food. Enumeration and identification of yeasts and molds from foods are of great importance in understanding the value of these organisms in various food systems as well as their role in spoilage. Knowledge of how certain yeasts and molds colonize meat products and of their effects on the meat products is essential in order to prevent economic losses during spoilage or to maximize desirable fermentation of certain cured meat products by yeasts and molds. Occasionally, some pathogenic yeasts and molds might occur in meat and meat products that may pose food safety issues.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-09-28
    Description: Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last InterglacialeGlacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic DansgaardeOeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (d18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of DansgaardeOeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-06-09
    Description: Highlights: • Noelaerhabdaceae mean coccolith weight increases during Termination II. • Coccolith assemblage and the degree of coccolith calcification control mean weight. • Causes for the weight increase are different in sub-arctic and tropical settings. • Terminations I and II show opposite patterns in coccolith weight changes. • Rising CO2 during deglaciations has no uniform effect on coccolith weight. Abstract: Glacial to interglacial environmental changes have a strong impact on coccolithophore assemblage composition. At the same time, glacial terminations are characterised by an increase in atmospheric CO2 concentration. In order to determine how these two processes influence the calcite production of coccolithophores, we compared coccolith weight estimates obtained with the automated coccolith recognition system SYRACO with SEM assemblage counts covering the penultimate glacial Termination (T II) from two sediment cores in the North Atlantic Ocean. At the temperate Rockall Plateau (ODP Site 980), mean coccolith weight peaks around Heinrich event 11. This is paralleled by a shift within the coccolith assemblage related to the changes of the oceanic frontal system during Termination II. In the tropical Florida Strait, far from the influences of frontal zones, mean Noelaerhabdaceae coccolith weight doubles during Termination II. This is partly due to an assemblage shift towards larger and heavier calcifying morphotypes, but mainly an effect of increasing coccolithophore calcification. This increase is exactly mirroring the rise in atmospheric CO2, contradicting previous findings from Termination I. Reconstructions of DIC, alkalinity and calcite saturation at the Florida Strait during Termination II produce higher estimates of these parameters compared to previous studies for which coccolith weight estimates are available, and therefore a change of the carbonate system is the most likely cause for the coccolithophore calcification increase during atmospheric CO2 rise. Our results illustrate that even during rising atmospheric CO2 the conditions of the seawater carbonate system can be favourable for coccolithophore calcification. The total CaCO3 production of a coccolithophore assemblage under increasing CO2 therefore depends on regional seawater carbonate system characteristics and the local assemblage composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-06-14
    Description: Glacial environments may provide an important but poorly constrained source of potentially bioavailable iron and manganese phases to the coastal ocean in high-latitude regions. Little is known about the fate and biogeochemical cycling of glacially derived iron and manganese in the coastal marine realm. Sediment and porewater samples were collected along transects from the fjord mouths to the tidewater glaciers at the fjord heads in Smeerenburgfjorden, Kongsfjorden, and Van Keulenfjorden along Western Svalbard. Solid-phase iron and manganese speciation, determined by sequential chemical extraction, could be linked to the compositions of the local bedrock and hydrological/weathering conditions below the local glaciers. The concentration and sulfur isotope composition of chromium reducible sulfur (CRS) in Kongs- and Van Keulenfjorden sediments largely reflect the delivery rate and isotope composition of detrital pyrite originating from adjacent glaciers. The varying input of reducible iron and manganese oxide phases and the input of organic matter of varying reactivity control the pathways of organic carbon mineralization in the sediments of the three fjords. High reducible iron and manganese oxide concentrations and elevated metal accumulation rates coupled to low input of “fresh” organic matter lead to a strong expression of dissimilatory metal oxide reduction evidenced in very high porewater iron (up to 800 lM) and manganese (up to 210 lM) concentrations in Kongsfjorden and Van Keulenfjorden. Sediment reworking by the benthic macrofauna and physical sediment resuspension via iceberg calving may be additional factors that promote extensive benthic iron and manganese cycling in these fjords. On-going benthic recycling of glacially derived dissolved iron into overlying seawater, where partial reoxidation and deposition occurs, facilitates the transport of iron across the fjords and potentially into adjacent continental shelf waters. Such iron-dominated fjord sediments are likely to provide significant fluxes of potentially bioavailable iron to coastal waters and beyond. By contrast, low delivery of reducible iron (oxyhydr)oxide phases and elevated organic carbon mineralization rates driven by elevated input of “fresh” marine organic matter allow organoclastic sulfate reduction to dominate carbon remineralization at the outer Smeerenburgfjorden sites, which may limit iron fluxes to the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-09-23
    Description: Highlights: • Geochemical data from high-T leucogranites imply pure crustal melting. • New U–Pb monazite ages constrain intrusion time close to peak metamorphism. • Updated Sr–Nd–Pb isotope data imply metasedimentary sources. Two suites of leucogranites were emplaced at 508 ± 5.9 Ma in the Okombahe District of the Damara belt (Namibia) synchronous with the peak of regional high-temperature metamorphism. The Sr (87Sr/86Srinit: 0.707 to 0.711), Nd (εNdinit: − 4.5 to − 6.6), and Pb isotopic (206Pb/204Pb: 18.51–19.13; 207Pb/204Pb: 15.63–15.69; 208Pb/204Pb: 38.08–38.66) compositions indicate that these peraluminous S-type granites were derived from mid- to lower-crustal rocks, which are slightly different to the metapelitic rocks into which they intruded. Since the leucogranites are unfractionated and show no evidence for assimilation or contamination, they constrain the temperature and pressure conditions of their formation. Calculated Zr and LREE saturation temperatures of ca. 850 °C indicate high-temperature crustal melts. High Rb/Sr and low Sr/Ba ratios are consistent with biotite dehydration melting of pelitic source rocks. Qz–Ab–Or systematics reveal that melting and segregation for the least fractionated samples occurred at ca. 7 kbar corresponding to a mid-crustal level of ca. 26 km. However, there is no evidence for a mantle component that could have served as a local heat source for crustal melting. Therefore, the hot felsic magmas that formed close to the time of peak metamorphism are the result of long-lasting high temperature regional metamorphic conditions and intra-crustal collision.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-09-23
    Description: Highlights: • Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime • MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere • Continental insulation flow transferred HIMU mantle into the oceanic mantle New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2017-07-19
    Description: Highlights: • We used indoor mesocosms to test the impact of warming on plankton communities. • Different stages of phytoplankton bloom were analysed. • Increased temperature and zooplankton grazing had similar effects on phytoplankton. • Warming and increased zooplankton density decreased phytoplankton richness. • Warming and increased zooplankton density increased phytoplankton evenness. Recent climate warming is expected to affect phytoplankton biomass and diversity in marine ecosystems. Temperature can act directly on phytoplankton (e.g. rendering physiological processes) or indirectly due to changes in zooplankton grazing activity. We tested experimentally the impact of increased temperature on natural phytoplankton and zooplankton communities using indoor mesocosms and combined the results from different experimental years applying a meta-analytic approach. We divided our analysis into three bloom phases to define the strength of temperature and zooplankton impacts on phytoplankton in different stages of bloom development. Within the constraints of an experiment, our results suggest that increased temperature and zooplankton grazing have similar effects on phytoplankton diversity, which are most apparent in the post-bloom phase, when zooplankton abundances reach the highest values. Moreover, we observed changes in zooplankton composition in response to warming and initial conditions, which can additionally affect phytoplankton diversity, because changing feeding preferences of zooplankton can affect phytoplankton community structure. We conclude that phytoplankton diversity is indirectly affected by temperature in the post-bloom phase through changing zooplankton composition and grazing activities. Before and during the bloom, however, these effects seem to be overruled by temperature enhanced bottom-up processes such as phytoplankton nutrient uptake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-09-23
    Description: Highlights: • Phase II of the Coordinated Ocean-ice Reference Experiments (CORE-II) is introduced. • Solutions from CORE-II simulations from eighteen participating models are presented. • Mean states in the North Atlantic with a focus on AMOC are examined. • The North Atlantic solutions differ substantially among the models. • Many factors, including parameterization choices, contribute to these differences. Simulation characteristics from eighteen global ocean–sea-ice coupled models are presented with a focus on the mean Atlantic meridional overturning circulation (AMOC) and other related fields in the North Atlantic. These experiments use inter-annually varying atmospheric forcing data sets for the 60-year period from 1948 to 2007 and are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The protocol for conducting such CORE-II experiments is summarized. Despite using the same atmospheric forcing, the solutions show significant differences. As most models also differ from available observations, biases in the Labrador Sea region in upper-ocean potential temperature and salinity distributions, mixed layer depths, and sea-ice cover are identified as contributors to differences in AMOC. These differences in the solutions do not suggest an obvious grouping of the models based on their ocean model lineage, their vertical coordinate representations, or surface salinity restoring strengths. Thus, the solution differences among the models are attributed primarily to use of different subgrid scale parameterizations and parameter choices as well as to differences in vertical and horizontal grid resolutions in the ocean models. Use of a wide variety of sea-ice models with diverse snow and sea-ice albedo treatments also contributes to these differences. Based on the diagnostics considered, the majority of the models appear suitable for use in studies involving the North Atlantic, but some models require dedicated development effort.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2017-06-23
    Description: The western Woodlark Basin lies within a gold-rich metallogenic province. This area is characterized by detachment faults that record ongoing extension and act as major pathways for the circulation of hydrothermal fluids. Dredging from the flanks of a submarine ridge southeast of Cheshire Seamount, western Woodlark Basin retrieved hydrothermally altered monomictic to polymictic crackle, mosaic and chaotic breccias with at least 30% clasts N2 mmin diameter. The precursor rocks are andesitic to rhyolitic in composition, but have been intensely hydrothermally altered, with about 90% of the volcanic glass replaced by secondaryminerals. The breccias show five generations of quartz growth, with the first being related to magmatic processes and the remaining four to alteration stages including silicification, chloritization, illitization, sericitization, albitization, and sulfidation. Needle-like crystals ofmordenite (zeolite)withmultiple growth centers growon the fourth generation of quartz. Notable textural variants in the breccias are vesicles, perlitic cracks, and zoned alteration halos that mantle the rims of clasts. Electron microprobe analyses on chlorite from breccia samples have identified clinochlore as the main chlorite type and indicate a formation temperature in the range of 210–304 °C. This and the elevated Au–As–Ag–Hg–Zn–Pb–Sb contents of a mineralized sample indicate hydrothermal alteration temperatures N200 °C suggesting that these breccias may represent the upflow zone of a hydrothermal system and highlight the potential for seafloor massive sulfides in the area. The breccias show elevated contents of immobile trace elements and LREE as well as a depletion in Ta and Nb suggesting that the precursor rocks were formed in a rift-related suprasubduction environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-05-07
    Description: Highlights: • We combine high-resolution ocean models with population genetics • Variation in wind-driven ocean currents mediates the collapse of A. anguilla • Female eels are philopatric within the Sargasso Sea, while males maintain gene flow • We present first evidence of the role of ocean currents in shaping species’ evolution Summary: Worldwide, exploited marine fish stocks are under threat of collapse [1]. Although the drivers behind such collapses are diverse, it is becoming evident that failure to consider evolutionary processes in fisheries management can have drastic consequences on a species’ long-term viability [2]. The European eel (Anguilla anguilla; Linnaeus, 1758) is no exception: not only does the steep decline in recruitment observed in the 1980s [ 3 and 4] remain largely unexplained, the punctual detection of genetic structure also raises questions regarding the existence of a single panmictic population [ 5, 6 and 7]. With its extended Transatlantic dispersal, pinpointing the role of ocean dynamics is crucial to understand both the population structure and the widespread decline of this species. Hence, we combined dispersal simulations using a half century of high-resolution ocean model data with population genetics tools. We show that regional atmospherically driven ocean current variations in the Sargasso Sea were the major driver of the onset of the sharp decline in eel recruitment in the beginning of the 1980s. The simulations combined with genotyping of natural coastal eel populations furthermore suggest that unexpected evidence of coastal genetic differentiation is consistent with cryptic female philopatric behavior within the Sargasso Sea. Such results demonstrate the key constraint of the variable oceanic environment on the European eel population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-09-23
    Description: The Atlantis II Deep is a brine-filled depression on the slowly spreading Red Sea rift axis. It is by far the largest deposit of hydrothermally precipitated metals on the present ocean floor and the only known modern deposit that is analogous to laminated Fe-rich chemical sediments, such as banded iron formation (BIF). The brine pool at the bottom of the Atlantis II Deep creates an environment where most of the hydrothermally sourced elements can be dispersed and deposited over an area of ∼60 km2. We analyzed the rare earth element concentrations in 100 small-volume samples from 9 cores in different parts of the Atlantis II Deep to better understand the origins of different types of metalliferous sediments (detrital, proximal hydrothermal and distal hydrothermal). Our results agree with earlier studies based on larger bulk samples that show the composition of the major depositional units is related to major changes in the location and intensity of hydrothermal activity and the amount of hydrothermal versus background sedimentation. In this paper, we address the origins of chemically distinct laminae (down to sub-millimeter) that correspond to ∼annual deposition. REE patterns clearly reflect 3 different sources (e.g., detrital, scavenging, direct hydrothermal input). Detrital REE that are delivered to the Deep from outside account for most of the REE in the sediments of the Atlantis II Deep, similar to BIF, and are unaffected by fractionation due to hydrothermal processes during deposition and diagenesis. Fe- and Mn-(oxy)hydroxides that form at the anoxic–oxic boundary scavenge REE from the brine pool as they settle. The Fe-(oxy)hydroxides contain a larger proportion of REE from seawater than any other sediment-type and also scavenge REE from pore waters after deposition. In contrast, the Mn-(oxy)hydroxides dissolve before deposition and thus function as transporting agents between seawater and the brine. However, there is little evidence for direct seawater influence in the REE geochemistry of the sediments (e.g., Y/Ho ratio). Non-ferrous sulfides form proximal to the hydrothermal vent source and inherit an hydrothermal REE pattern. The total REE content of the presently forming Fe-(oxy)hydroxides is very low due to limited input of REE into the brine. The largest proportion of non-detrital REE appears to have been deposited early in the history of the basin from an initial brine pool that was relatively enriched in REE, followed by a change in REE chemistry in later sediments. Similar abrupt changes in the REE chemistry of ancient chemical sediments may record similar processes, including changes in local basin evolution and input of REE from different sources.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-06-26
    Description: Highlights: • A full-scale 5 year experimental study of ecosystem responses to increased nutrients. • Concentrations of DIN and DIP did not respond positively to increased nutrient input. • Concentrations of PON and POP and phytoplankton biomass responded positively. • PON is suggested as credible indicator for chemical and ecological state. • A general scientific concept for managing nutrient input to coastal waters is presented. Abstract: The objective of this study was to quantify chemical and biological responses to an experimentally increased nutrient input to an open coastal planktonic ecosystem and to contribute to a scientific concept and credible indicators for managing nutrient supply to coastal waters. Data were derived in a 5 year fertilisation experiment of a tidal driven coastal lagoon at the outer coast off Central Norway (63°36’ N, 9°33’ E), with a surface area of 275.000 m2, volume of 5.5 mill m3, mean depth of 22 m and a water exchange rate of 0.19 day- 1. The lagoon was fertilised in the summer season 1998 and 1999, while summer seasons 1996-97 and 2000 and inflowing water were used as unfertilised references. Most measured chemical and biological variables showed linear responses with an increasing loading rate of inorganic N and P (LN and LP, respectively). PON, POP and POC (〈 200 μm) responded significantly (P 〈 0.05) as did chlorophyll a and phytoplankton C. DIN and DIP remained, however, constant and independent of LN and LP, respectively (P 〉 0.05) as did heterotrophic biomass (P 〉 0.05). We evaluate the response variables assuming a stepwise incorporation process of nutrients in the planktonic ecosystem and how that will interact with biological response times and water dilution rates. We suggest that PON is a credible indicator of both chemical and ecological states of the planktonic ecosystem and that natural background and upper critical concentrations are 46 and 88 mg PON m- 3, respectively. The study was supported by data from mesocosms. We discuss the scientific relevance of our suggestions, how results can be extrapolated to a broader geographical scale, and we propose a science-based concept for the management of nutrient emission to open coastal waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-09-23
    Description: Dissolved rare earth element (REE) concentrations and Nd isotope compositions were measured for surface waters and full water column profiles of the Gulf of Alaska (GoA), and compared to water mass properties and circulation in order to better understand the mechanisms controlling the input and transport of REEs in the ocean. The REEs display a typical open-ocean range of concentrations (i.e., La: 12-66 pM; Lu: 0.2-2.5 pM) and depth distributions (i.e., surface ocean depletion and enrichment with water depth). Nd isotope signatures are highly radiogenic, as expected for the North Pacific margin (ranging from -3.8 to +0.2 epsilon Nd). The most radiogenic values were found in the coastal waters but also in the cores of eddies, indicating efficient export of REEs from the margins and across the mixed layer. This is the first time that distinct Nd isotope distributions in near surface waters can be directly assigned to offshore eddy transport. A distinct mid-depth (similar to 2200 m) Nd isotope signal was found that most likely reflects advection of a water mass that formed through past down-welling in the Northern Pacific. Subsurface Nd isotope compositions appear to behave conservatively and can be explained through a REE distribution model proposed here. This model is based on multivariate analysis of the REEs and invokes two distinct "pools" of dissolved REEs: a "passive pool" complexed by carbonate ions, and a "bio-reactive pool" that is microbially manipulated. The latter "pool" is only significant in the upper water column and most likely reflects the indirect effects of microbial cycling of iron. Our model of the open ocean REE distribution contributes to explaining the conservative nature of Nd isotopes and provides a mechanism linking surface ocean and pore water REE dynamics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Elsevier
    In:  Food Chemistry, 142 . pp. 48-60.
    Publication Date: 2014-12-05
    Description: Highlights: • The bioactive potential of primary metabolites from marine mussels is reviewed. • The focus is on proteins, lipids, and carbohydrates from Mytilus and Perna species. • Commercially available dietary mussel oil supplements are discussed. • Information on purification techniques for metabolites of interest is provided. • An overview on harmful mussel biotoxins produced by microalgae is given. The consumption of marine mussels as popular seafood has increased steadily over the past decades. Awareness of mussel derived molecules, that promote health, has contributed to extensive research efforts in that field. This review highlights the bioactive potential of mussel components from species of the genus Mytilus (e.g. M. edulis) and Perna (e.g. P. canaliculus). In particular, the bioactivity related to three major chemical classes of mussel primary metabolites, i.e. proteins, lipids, and carbohydrates, is evaluated. Within the group of proteins the focus is mainly on mussel peptides e.g. those obtained by bio-transformation processes, such as fermentation. In addition, mussel lipids, comprising polyunsaturated fatty acids (PUFAs), are discussed as compounds that are well known for prevention and treatment of rheumatoid arthritis (RA). Within the third group of carbohydrates, mussel polysaccharides are investigated. Furthermore, the importance of monitoring the mussel as food material in respect to contaminations with natural toxins produced by microalgae is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 395 . pp. 136-148.
    Publication Date: 2019-09-23
    Description: Highlights • High-resolution AUV bathymetry is used to identify hydrothermal sulfides on the seafloor. • 1.2 Mt of massive sulfide is identified along 24 km of mid-ocean ridge length. • Massive sulfide accumulated at a rate of ∼400 t/yr. • Efficiency of sulfide deposition is ∼5% of total mobilized metals and reduced sulfur. • Current global seafloor sulfide estimates likely underestimate amount present by about a factor of four. Abstract Hydrothermal sulfide deposits that form on the seafloor are often located by the detection of hydrothermal plumes in the water column, followed by exploration with deep-towed cameras, side-scan sonar imaging, and finally by visual surveys using remotely-operated vehicle or occupied submersible. Hydrothermal plume detection, however, is ineffective for finding hydrothermally-inactive sulfide deposits, which may represent a significant amount of the total sulfide accumulation on the seafloor, even in hydrothermally active settings. Here, we present results from recent high-resolution, autonomous underwater vehicle-based mapping of the hydrothermally-active Endeavour Segment of the Juan de Fuca Ridge, in the Northeast Pacific Ocean. Analysis of the ridge bathymetry resulted in the location of 581 individual sulfide deposits along 24 km of ridge length. Hydrothermal deposits were distinguished from volcanic and tectonic features based on the characteristics of their surface morphology, such as shape and slope angles. Volume calculations for each deposit results in a total volume of 372,500 m3 of hydrothermal sulfide–sulfate–silica material, for an equivalent mass of ∼1.2 Mt of hydrothermal material on the seafloor within the ridge's axial valley, assuming a density of 3.1 g/cm3. Much of this total volume is from previously undocumented inactive deposits outside the main active vent fields. Based on minimum ages of sulfide deposition, the deposits accumulated at a maximum rate of ∼400 t/yr, with a depositional efficiency (proportion of hydrothermal material that accumulates on the seafloor to the total amount hydrothermally mobilized and transported to the seafloor) of ∼5%. The calculated sulfide tonnage represents a four-fold increase over previous sulfide estimates for the Endeavour Segment that were based largely on accumulations from within the active fields. These results suggest that recent global seafloor sulfide resource estimates, which were based mostly on the sizes and distribution of hydrothermally-active deposits, may be similarly underestimating the amount of sulfide along the global submarine neovolcanic zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2017-09-28
    Description: Dinoflagellate blooms of the genus Dinophysis occur regularly in the coastal Arabian Sea. By producing toxins, which may accumulate in marine bivalves, they impose threat to human health. Using time-series data on environmental variables (e.g., nutrients, sea surface temperature and salinity) and concurrent Dinophysis abundances for the surface waters along the coast of the southeastern Arabian Sea during the period 1990–2010, we investigate whether potential climate change signals play a role in driving blooms of Dinophysis spp. A logistic Generalized Linear Model was adopted to test the effect of environmental variables on Dinophysis abundances over a range of threshold values (102–105 cells m−3) for blooms. Some of the extreme events occurred during the pre-monsoon (March–May) periods. Model validation suggested a threshold of 105 cells m−3 to be better than other thresholds in examining the Dinophysis abundances, and the variation in this threshold is explained by sea surface temperature, salinity, dissolved inorganic nitrogen to phosphorus ratio and total suspended solids (turbidity). Fate of the Dinophysis blooms in the coastal Arabian Sea for different climate change scenarios is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-09-23
    Description: We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3−, NO2−, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 μM) and increased to 125 μM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (−10.3 mmol O2 m−2 d−1) and decreased quasi-exponentially with water depth to −3.2 mmol O2 m−2 d−1. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N m−2 d−1. Overall, the sediments acted as net sink for DIN. Observed increases in δ15NNO3 and δ18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0‰ (15εapp) and 14.1‰ (18εapp). Measurements of δ15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2−. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2−. The principal findings were that (i) net benthic 14N/15N fractionation (εDEN) was 12.9 ± 1.7‰, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2− (−22 ± 1.9‰), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported εDEN for fine-grained sediments are much lower (4–8‰). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater–seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-06-19
    Description: Higher latitude oceanic and climatic reconstructions are needed to distinguish natural climate variability from anthropogenic warming in regions projected to experience significant increases in temperature during this century. Clathromorphum nereostra turn is a long-lived coralline alga abundant along the Aleutian archipelago that records seasonal to centennial fluctuations in seawater temperatures in its high-Mg calcite skeleton. Thus, C. nereostratum is an important proxy archive to reconstruct past seawater temperature variability in this data-poor subarctic region. Here, we measured magnesium to calcium ratios (Mg/Ca) by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) along the growth axis in six live-collected specimens from three islands in the Aleutian archipelago to assess Mg/Ca reproducibility and to calibrate algal Mg/Ca against modern gridded sea surface temperature (SST) data products. The master Mg/Ca SST transfer function, determined by averaging the algal Mg/Ca SST from each island (n = 6), resulted in a reconstruction error of +/-0.45 degrees C, a 31-46% reduction in error compared to the reconstruction error for a single alga. The master algal-SST record interpolated to monthly and annual resolution significantly varied with gridded SST data products (r(2) = 0.98, p 〈 0.0001, n = 517 and r(2) = .27, p 〈 0.0003, n = 44, respectively) for the period from 1960 to 2003. Therefore, coralline algal Mg/Ca-derived SST reconstructions record absolute changes in past SST variability in the Aleutian archipelago. The transfer functions developed here can be applied to Mg/Ca records generated from long-lived specimens of C. nereostra turn to reconstruct northern North Pacific and Bering Sea SST variability for the past several hundred years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Reference Module in Earth Systems and Environmental Sciences. Elsevier, Amsterdam, pp. 1-11. ISBN 978-0-12-409548-9
    Publication Date: 2014-05-26
    Description: Hydrothermal fluid forms as seawater are modified through interactions with heat and the earth's crust. These fluids emanate back into ocean water at hydrothermal vents on the seafloor. A major goal of the study of hydrothermal chemistry is to better constrain the impact that hydrothermal emissions have on the chemistry of the broader ocean, and how this chemistry differs between the varied vents found around the world's oceans. Here, processes and factors affecting the chemistry of hydrothermal fluid at high-temperature black smoker vents and the surrounding lower temperature diffuse flow zones are discussed. Chemical reactions that occur at vents are also considered, including organic synthesis and the formation of metal sulfides. The relationship between metals, sulfide, depth, spreading rate, and type of host system is explored through existing data. Because of the ongoing nature of this review, figures will be updated as more hydrothermal data are collected. This will provide both a basic introduction to hydrothermal chemistry and a data-driven review of the chemistry of high-temperature hydrothermal vents.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-07-31
    Description: Highlights: • We report the results of a Scottish large group workshop on energy technologies. • There is strong public support for renewable energy and mixed opinions towards CCS. • The workshop was successful in initiating discussion around climate change and energy technologies. • Issues of trust, uncertainty, costs, benefits, values and emotions all inform public perceptions. • Need to take seriously the full range of factors that inform perceptions. Abstract: This paper presents the results of a large group process conducted in Edinburgh, Scotland investigating public perceptions of climate change and low-carbon energy technologies, specifically carbon dioxide capture and storage (CCS). The quantitative and qualitative results reported show that the participants were broadly supportive of efforts to reduce carbon dioxide emissions, and that there is an expressed preference for renewable energy technologies to be employed to achieve this. CCS was considered in detail during the research due to its climate mitigation potential; results show that the workshop participants were cautious about its deployment. The paper discusses a number of interrelated factors which appear to influence perceptions of CCS; factors such as the perceived costs and benefits of the technology, and people's personal values and trust in others all impacted upon participants’ attitudes towards the technology. The paper thus argues for the need to provide the public with broad-based, balanced and trustworthy information when discussing CCS, and to take seriously the full range of factors that influence public perceptions of low-carbon technologies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-09-23
    Description: Highlights: • Global mean sea level simulated in interannual CORE simulations. • Regional sea level patterns simulated in interannual CORE simulations. • Theoretical foundation for analysis of global mean sea level and regional patterns. Abstract: We provide an assessment of sea level simulated in a suite of global ocean-sea ice models using the interannual CORE atmospheric state to determine surface ocean boundary buoyancy and momentum fluxes. These CORE-II simulations are compared amongst themselves as well as to observation-based estimates. We focus on the final 15 years of the simulations (1993–2007), as this is a period where the CORE-II atmospheric state is well sampled, and it allows us to compare sea level related fields to both satellite and in situ analyses. The ensemble mean of the CORE-II simulations broadly agree with various global and regional observation-based analyses during this period, though with the global mean thermosteric sea level rise biased low relative to observation-based analyses. The simulations reveal a positive trend in dynamic sea level in the west Pacific and negative trend in the east, with this trend arising from wind shifts and regional changes in upper 700 m ocean heat content. The models also exhibit a thermosteric sea level rise in the subpolar North Atlantic associated with a transition around 1995/1996 of the North Atlantic Oscillation to its negative phase, and the advection of warm subtropical waters into the subpolar gyre. Sea level trends are predominantly associated with steric trends, with thermosteric effects generally far larger than halosteric effects, except in the Arctic and North Atlantic. There is a general anti-correlation between thermosteric and halosteric effects for much of the World Ocean, associated with density compensated changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-09-13
    Description: Highlights • Geochemical data from high-T granodiorites and granites imply lower crustal amphibolite melting. • New U-Pb zircon ages imply syn-orogenic intrusion • New Sr-Nd-Pb isotope data imply ancient crustal sources and constrain AFC processes Abstract: The Gawib pluton (Damara Belt, Namibia) consists of two main intrusive rock types; magnesian, calc-alkaline, mostly metaluminous hornblende- and titanite-bearing granodiorites and magnesian to ferroan, metaluminous to slightly peraluminous calc-alkaline granites. Uranium-Pb zircon data obtained on the granodiorites gave concordant ages of 548.5 ± 5.6 Ma indicating that the pluton belongs to the early syn-orogenic magmatism in the Damara orogen. Major and trace element variations indicate that fractional crystallization was the major rock-forming mechanism for the granodiorites. In the absence of high-precision geochronological data, the granites may represent more advanced fractionation products of the granodiorites although distinct Ba-Sr-Rb relationships preclude a direct derivation of the granites from the exposed granodiorites. If the granites originated by extensive fractional crystallization from similar granodiorites, they can only be derived from high-Ba, high-Sr, low-Rb granodiorites. Crustal contamination was also important in the petrogenesis of both rock types (granodiorites: ε Nd(init.): -7 to -13; 87Sr/86Sr(init.): 0.708-0.713; granites: ε Nd(init): -14 to -18; 87Sr/86Sr(init.): 0.712-0.726). In contrast to the granodiorites, the granites show more radiogenic 87Sr/86Sr ratios and less radiogenic ε Nd values indicating different contaminants for both rock types. ε Nd vs. MgO relationships imply some genetic link to isotopically unevolved quartz diorites similar to those observed at the Palmental complex. This pluton, however, is located c. 80 km NE from the Gawib pluton and probably cannot be viewed as the direct source of the Gawib granodiorites. If such a relationship is allowed, the granodiorites must be viewed as hybrid rocks containing a juvenile component because they were derived from unevolved quartz diorites by fractional crystallization. In addition, AFC processe have also played a role implying that the granodiorites contain also a reprocessed crustal component. Alternatively, comparison with experimentally derived melts imply that the granodiorites are generated by dehydration melting of a mafic, amphibole-bearing lower crustal source. Chemical parameters of the granodiorites compared to experimental results indicate high temperatures of c. 1040 °C. Zirconium saturation temperatures obtained on the most primitive samples gave c. 830 °C whereas apatite saturation temperatures obtained on the same samples give temperatures of c. 960-980 °C; the latter seems to be a more reliable temperature estimate. Interpretation of geochemical and isotope data from the complex suggest that the early synorogenic Pan-African igneous activity in this part of the Damara Belt was a high-temperature intra-crustal event. In contrast to igneous processes along active continental margins that produce also intermediate plutons with calc-alkaline affinities, this igneous event was not a major crust-forming episode and the granodiorites represent mostly reprocessed crustal material.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-10-20
    Description: Genome-wide transcription analysis between related species occurring in overlapping ranges can provide insights into the molecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera marina and Nanozostera noltii, are found in marine coastal environments throughout the northern hemisphere. Z. marina is often dominant in subtidal environments and subjected to fewer temperature extremes compared to the predominately intertidal and more stress-tolerant N. noltii. We exposed plants of both species to a realistic heat wave scenario in a common-stress-garden experiment. Using RNA-seq (~ 7 million reads/library), four Z. marina and four N. noltii libraries were compared representing northern (Denmark) and southern (Italy) locations within the co-occurring range of the species' European distribution. A total of 8977 expressed genes were identified, of which 78 were directly related to heat stress. As predicted, both species were negatively affected by the heat wave, but showed markedly different molecular responses. In Z. marina the heat response was similar across locations in response to the heatwave at 26 °C, with a complex response in functions related to protein folding, synthesis of ribosomal chloroplast proteins, proteins involved in cell wall modification and heat shock proteins (HSPs). In N. noltii the heat response markedly differed between locations, while HSP genes were not induced in either population. Our results suggest that as coastal seawater temperatures increase, Z. marina will disappear along its southern most ranges, whereas N. noltii will continue to move north. As a consequence, sub- and intertidal habitat partitioning may weaken in more northern regions because the higher thermal tolerance of N. noltii provides a competitive advantage in both habitats. Although previous studies have focused on HSPs, the present study clearly demonstrates that a broader examination of stress related genes is necessary.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 92 . pp. 1-8.
    Publication Date: 2016-09-15
    Description: Research campaigns over the last decade have yielded a growing stream of data that highlight the dynamic nature of Arctic cryosphere and climate change over a range of time scales. As a consequence, rather than seeing the Arctic as a near static environment in which large scale changes occur slowly, we now view the Arctic as a system that is typified by frequent, large and abrupt changes. The traditional focus on end members in the system - glacial versus interglacial periods - has been replaced by a new interest in understanding the patterns and causes of such dynamic change. Instead of interpreting changes almost exclusively as near linear responses to external forcing (e.g. orbitally-forced climate change), research is now concentrated on the importance of strong feedback mechanisms that in our palaeo-archives often border on chaotic behaviour. The last decade of research has revealed the importance of on-off switching of ice streams, strong feedbacks between sea level and ice sheets, spatial and temporal changes in ice shelves and perennial sea ice, as well as alterations in ice sheet dynamics caused by shifting centres of mass in multi-dome ice sheets. Recent advances in dating techniques and modelling have improved our understanding of leads and lags that exist in different Arctic systems, on their interactions and the driving mechanisms of change. Future Arctic research challenges include further emphases on rapid transitions and untangling the feedback mechanisms as well as the time scales they operate on.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-09-23
    Description: "Deep-sea" cephalopods are here defined as cephalopods that spend a significant part of their life cycles outside the euphotic zone. In this chapter, the state of knowledge in several aspects of deep-sea cephalopod research are summarized, including information sources for these animals, diversity and general biogeography and life cycles, including reproduction. Recommendations are made for addressing some of the remaining knowledge deficiencies using a variety of traditional and more recently developed methods. The types of oceanic gear that are suitable for collecting cephalopod specimens and images are reviewed. Many groups of deep-sea cephalopods require taxonomic reviews, ideally based on both morphological and molecular characters. Museum collections play a vital role in these revisions, and novel (molecular) techniques may facilitate new use of old museum specimens. Fundamental life-cycle parameters remain unknown for many species; techniques developed for neritic species that could potentially be applied to deep-sea cephalopods are discussed. Reproductive tactics and strategies in deep-sea cephalopods are very diverse and call for comparative evolutionary and experimental studies, but even in the twenty-first century, mature individuals are still unknown for many species. New insights into diet and trophic position have begun to reveal a more diverse range of feeding strategies than the typically voracious predatory lifestyle known for many cephalopods. Regular standardized deep-sea cephalopod surveys are necessary to provide insight into temporal changes in oceanic cephalopod populations and to forecast, verify and monitor the impacts of global marine changes and human impacts on these populations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-06
    Description: Little is known about how organisms might respond to multiple climate stressors and this lack of knowledge limits our ability to manage coastal ecosystems under contemporary climate change. Ecological models provide managers and decision makers with greater certainty that the systems affected by their decisions are accurately represented. In this study Boosted Regression Trees modelling was used to relate the cover of submerged aquatic vegetation to the abiotic environment in the brackish Baltic Sea. The analyses showed that the majority of the studied submerged aquatic species are most sensitive to changes in water temperature, current velocity and winter ice scour. Surprisingly, water salinity, turbidity and eutrophication have little impact on the distributional pattern of the studied biota. Both small and large scale environmental variability contributes to the variability of submerged aquatic vegetation. When modelling species distribution under the projected influences of climate change, all of the studied submerged aquatic species appear to be very resilient to a broad range of environmental perturbation and biomass gains are expected when seawater temperature increases. This is mainly because vegetation develops faster in spring and has a longer growing season under the projected climate change scenario.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2017-10-05
    Description: Ultraviolet-B-induced (UVB, 280-315 nm) accumulation of cyclobutane pyrimidine dimers (CPDs) and deactivation of photosystem II (PS II) was quantified in two intertidal green macroalgae, Ulva clathrata and Rhizoclonium riparium. The species were chosen due to their shared habitats but contrasting UVB screening potentials. In the non-screening U. clathrata CPDs accumulated and PS II activity declined as a linear function of applied UVB irradiance. In R. riparium UVB-induced damage was significantly lower than in U. clathrata, demonstrating an efficient UVB protection of DNA and PS II by screening. Based on the UVB irradiance reaching the chloroplasts, both species showed an identical intrinsic sensitivity of PS II towards UVB, but DNA lesions accumulated slower in U. clathrata. While repair of CPDs was similar in both species, U. clathrata was capable of restoring its PS II function decidedly faster than R. riparium. In R. riparium efficient screening may represent an adaptation to its high light habitat, whereas in U. clathrata high repair rates of PS II appear to be important to survive natural UVB exposure. The role of shading of the nucleus by the large chloroplasts in U. clathrata is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-09-21
    Description: In the Arctic Seas, the West Spitsbergen continental margin represents a prominent methane seep area. In this area, free gas formation and gas ebullition as a consequence of hydrate dissociation due to global warming are currently under debate. Recent studies revealed shallow gas accumulation and ebullition of methane into the water column at more than 250 sites in an area of 665 km2. We conducted a detailed study of a subregion of this area, which covers an active gas ebullition area of 175 km2 characterized by 10 gas flares reaching from the seafloor at~245 m up to 50 m water depth to identify the fate of the released gas due to dissolution of methane from gas bubbles and subsequent mixing, transport and microbial oxidation. The oceanographic data indicated a salinity-controlled pycnocline situated ~20 m above the seafloor. A high resolution sampling program at the pycnocline at the active gas ebullition flare area revealed that the methane concentration gradient is strongly controlled by the pycnocline. While high methane concentrations of up to 524 nmol L−1 were measured below the pycnocline, low methane concentrations of less than 20 nmol L−1 were observed in the water column above. Variations in the δ13CCH4 values point to a 13C depleted methane source (~−60‰ VPDB) being mainly mixed with a background values of the ambient water (~−37.5‰ VPDB). A gas bubble dissolution model indicates that ~80% of the methane released from gas bubbles into the ambient water takes place below the pycnocline. This dissolved methane will be laterally transported with the current northwards and most likely microbially oxidized in between 50 and 100 days, since microbial CH4 oxidation rates of 0.78 nmol d−1 were measured. Above the pycnocline, methane concentrations decrease to local background concentration of ~10 nmol L−1. Our results suggest that the methane dissolved from gas bubbles is efficiently trapped below the pycnocline and thus limits the methane concentration in surface water and the air–sea exchange during summer stratification. During winter the lateral stratification breaks down and fractions of the bottom water enriched in methane may be vertically mixed and thus be potentially an additional source for atmospheric methane.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-09-23
    Description: Highlights: • We investigated in vitro responses of stickleback leukocytes to parasite antigens. • In vitro responses decreased from generalist to specialist parasites. • Responses decreased from Gasterosteusaculeatus not infecting to infecting parasites. • Leukocyte response was increased with parasite prevalence in the natural habitat. • Immunogenicity of antigens was increased with parasite prevalence as well. Helminth parasites of teleost fish have evolved strategies to evade and manipulate the immune responses of their hosts. Responsiveness of fish host immunity to helminth antigens may therefore vary depending on the degree of host-parasite counter-adaptation. Generalist parasites, infective for a number of host species, might be unable to adapt optimally to the immune system of a certain host species, while specialist parasites might display high levels of adaptation to a particular host species. The degree of adaptations may further differ between sympatric and allopatric host-parasite combinations. Here, we test these hypotheses by in vitro exposure of head kidney leukocytes from three-spined sticklebacks (Gasterosteus aculeatus) to antigens from parasites with a broad fish host range (Diplostomum pseudospathaceum, Triaenophorus nodulosus), a specific fish parasite of cyprinids (Ligula intestinalis) and parasites highly specific only to a single fish species as second intermediate host (Schistocephalus pungitii, which does not infect G. aculeatus, and Schistocephalus solidus, infecting G. aculeatus). In vitro responses of stickleback leukocytes to S. solidus antigens from six European populations, with S. solidus prevalence from 〈1% to 66% were tested in a fully crossed experimental design. Leukocyte cultures were analysed by means of flow cytometry and a chemiluminescence assay to quantify respiratory burst activity. We detected decreasing magnitudes of in vitro responses to antigens from generalist to specialist parasites and among specialists, from parasites that do not infect G. aculeatus to a G. aculeatus-infecting species. Generalist parasites seem to maintain their ability to infect different host species at the costs of relatively higher immunogenicity compared to specialist parasites. In a comparison of sympatric and allopatric combinations of stickleback leukocytes and antigens from S. solidus, magnitudes of in vitro responses were dependent on the prevalence of the parasite in the population of origin, rather than on sympatry. Antigens from Norwegian (prevalence 30–50%) and Spanish (40–66%) S. solidus induced generally higher in vitro responses compared to S. solidus from two German (〈1%) populations. Likewise, leukocytes from stickleback populations with a high S. solidus prevalence showed higher in vitro responses to S. solidus antigens compared to populations with low S. solidus prevalence. This suggests a rather low degree of local adaptation in S. solidus populations, which might be due to high gene flow among populations because of their extremely mobile final hosts, fish-eating birds.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Elsevier
    In:  Remote Sensing of Environment, 140 . pp. 294-305.
    Publication Date: 2016-05-24
    Description: Near-surface signatures of suspended sediment concentration (SSC) related to submerged bed forms displayed in visible band data gathered by space-borne imaging sensors are described. Detailed Acoustic Doppler Current Profiler (ADCP) data of vertical current velocity component, echo intensity, modulation of SSC and related oceanographic and meteorological observations in a tidal inlet of the North Sea have been analyzed. To understand the associated hydrodynamics of the optical imaging mechanism theoretical considerations based on the Navier–Stokes and sediment continuity equations have been carried out. As a first approximation these theoretical results explain signatures of enhanced SSC of in situ measurements and analyzed space-borne images. Strong currents flowing over steep bottom topography are able to stir up the sediments to form both a general continuum of SSC and localized pulses of higher SSC in the vicinity of the causative bed feature itself. The “strain rate” equivalent to the current gradient is an important parameter describing near water surface oceanographic and meteorological phenomena in the visible and microwave part of the electromagnetic spectrum observed by shore- and ship-based as well as air- and space-borne remote sensing systems. Significant disagreements between theoretical results of the “strain rate” generated by the surface current and in situ observations at the crests of submerged ridges and sand waves were identified. Possible explanations could be: first, the current velocity may not be barotropic near the crests of such bed forms and second, mass conservation may not only be maintained through an acceleration or deceleration of the flow. This implies that active up- and downwelling effects of the three-dimensional current field can also play a significant role for hydrodynamic interaction between current and underwater bed forms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2017-06-19
    Description: The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation–reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77–102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm−3 d−1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm−3 d−1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the role of microbial activity in the deep subsurface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-11-23
    Description: Here, the pelagic carbonate system and the δ13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2 +). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC (δ13C ≈ − 10 ± 1‰ vs. VPDB), and enhanced concentrations of NH4+, Mn2 +, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2017-07-19
    Description: Highlights: • Incubation experiments showed an omnivore feeding of Calanus finmarchicus. • Ciliates were positively selected by C. finmarchicus at varying food concentrations. • The degree of omnivory depended on the proportion of ciliates available. Abstract: The feeding selectivity of Calanus finmarchicus was studied by carrying out three incubation experiments; two experiments with natural seawater sampled during spring bloom (Exp. 1) and post-bloom conditions (Exp. 2) and a third experiment with cultured dinoflagellates and ciliates (Exp. 3). In the first two experiments a gradient in ciliate concentration was created to investigate the potential for prey density dependent selective feeding of C. finmarchicus. Results of microplankton counts indicated C. finmarchicus to be omnivorous. Diatoms contributed chiefly to the diet during spring bloom conditions. Despite the high microphytoplankton biomass during the spring bloom (Exp. 1), ciliates were selected positively by C. finmarchicus when the ciliate biomass exceeded 6.5 μg C L− 1. A selection in favor of large conic ciliates such as Laboea sp. and Strombidium conicum was indicated by positive selectivity indices. Ciliates were throughout positively selected by C. finmarchicus during Exp. 2, and selectivity indices indicated a negative selection of diatoms. The results from Exp. 3 showed that C. finmarchicus has the ability to switch from dinoflagellates to ciliates as sole food source, even if the dinoflagellate was offered in surplus. This suggests that other factors, such as nutrition may be of significance for the feeding selectivity of C. finmarchicus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-09-23
    Description: Highlights: • Activity of Arctic bacterioplankton in summer is regulated by concentration and composition of organic matter. • Bacterial production in Fram Strait is significantly related to concentrations of total amino acids. • Bacterioplankton in Polar Water show enhanced enzymatic hydrolysis of combined carbohydrates compared to Atlantic Water. Abstract The bacterial turnover of organic matter was investigated in Fram Strait at 79°N. Both Atlantic Water (AW) inflow and exported Polar Water (PW) were sampled along a transect from Spitsbergen to the eastern Greenland shelf during a late successional stage of the main annual phytoplankton bloom in summer. AW showed higher concentrations of amino acids than PW, while organic matter in PW was enriched in combined carbohydrates. Bacterial growth and degradation activity in AW and PW were related to compositional differences of organic matter. Bacterial production and leucine-aminopeptidase along the transect were significantly correlated with concentrations of amino acids. Activity ratios between the extracellular enzymes β-glucosidase and leucine-aminopeptidase indicate the hydrolysis potential for polysaccharides relative to proteins. Along the transect, these ratios showed a higher hydrolysis potential for polysaccharides relative to proteins in PW than in AW, thus reflecting the differences in organic matter composition between the water masses. Q10 values for bacterial production ranged from 2.4 (± 0.8) to 6.0 (± 6.8), while those for extracellular enzymes showed a broader range of 1.5 (± 0.5) to 23.3 (± 11.8). Our results show that in addition to low seawater temperature also organic matter availability contributes to the regulation of bacterial growth and enzymatic activity in the Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-09-23
    Description: Highlights: • The Giant Gjallar Vent is still active in terms of fluid migration and faulting. • The Base Pleistocene Unconformity acts as a seal to upward fluid migration. • Seal bypass in at least one location leads to a new phase of fluid venting. The Giant Gjallar Vent (GGV), located in the Vøring Basin off mid-Norway, is one of the largest (~ 5 × 3 km) vent systems in the North Atlantic. The vent represents a reactivated former hydrothermal system that formed at about 56 Ma. It is fed by two pipes of 440 m and 480 m diameter that extend from the Lower Eocene section up to the Base Pleistocene Unconformity (BPU). Previous studies based on 3D seismic data differ in their interpretations of the present activity of the GGV, describing the system as buried and as reactivated in the Upper Pliocene. We present a new interpretation of the GGV’s reactivation, using high-resolution 2D seismic and Parasound data. Despite the absence of geochemical and hydroacoustic indications for fluid escape into the water column, the GGV appears to be active because of various seismic anomalies which we interpret to indicate the presence of free gas in the subsurface. The anomalies are confined to the Kai Formation beneath the BPU and the overlying Naust Formation, which are interpreted to act as a seal to upward fluid migration. The seal is breached by focused fluid migration at one location where an up to 100 m wide chimney-like anomaly extends from the BPU up to the seafloor. We propose that further overpressure build-up in response to sediment loading and continued gas ascent beneath the BPU will eventually lead to large-scale seal bypass, starting a new phase of venting at the GGV.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-09-23
    Description: Highlights • The Red Sea Rift (RSR) comprises the typical terrain of slow MOR axes seen elsewhere. • Submarine salt glaciers occur extensively along the RSR and blanket parts of the RSR. • Inter-trough zones are not continental, but oceanic crust covered by evaporite flows. • We see a global mechanism for spreading initiation and no need for a “multi node” model. • We see prospects for large mineral deposits at passive margins that host evaporites. Abstract The transition from continental rifting to seafloor spreading is presently occurring at only a few places on Earth, such as the Red Sea or the Woodlark Basin. Competing theories for how spreading begins (either by quasi-instantaneous formation of a whole spreading segment or by initiation of spreading at multiple discrete “nodes” separated by thinned continental lithosphere) have been put forward. The major evidence for the nodes theory comes from the Red Sea and geophysical surveys carried out there in the “multi-deeps region” during the 1970's and 1980's. We present new high-resolution multibeam bathymetric information over the same region, which, when combined with acoustic backscatter data, seafloor sampling and magmatic geochemical information appears to provide no support for the nodes model. We show that, although the discrete deeps undoubtedly exist, they are not separated from one another by tectonic boundaries but rather represent “windows” onto a continuous spreading axis which is locally inundated and masked by massive slumping of sediments and evaporites from the rift flanks. The geophysical data that was previously used to support the presence of continental crust between the “nodes” can be equally well explained by processes related to the sedimentary blanketing and sub-sedimentary hydrothermal alteration. A single, “quasi-instantaneous segment formation” model would appear to be all that is required to explain observations from present-day rifting/spreading transitions globally.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 86 . pp. 82-93.
    Publication Date: 2017-08-17
    Description: Highlights: • We present results from a current meter array and hydrographic observations on the eastern flank of Reykjanes Ridge, Iceland Basin. • The June 2000–August 2002 average volume transport for the Iceland Scotland Overflow Water (ISOW) plume is 3.8±0.6 Sv. • Our flux estimate compares favorably with historical observations and recent model results. • Downstream drainage of ISOW through Charlie–Gibbs Fracture Zone only accounts for 60% of our ISOW transport estimate • Periods of stronger flow coincide with a higher fraction of ambient water in the ISOW plume. Abstract: Here we present results from a combined moored current meter/hydrography array deployed within the Iceland Scotland Overflow Water (ISOW) plume on the eastern flank of Reykjanes Ridge approximately 1000 km downstream of Faroe Bank Channel (FBC) between June 2000 and August 2002. Based on the array measurements during this period the ISOW plume exhibited a time mean volume transport of 3.8±0.6 Sv (standard error, 1 Sv=106 m3/s). The transport estimate favorably compares with other recent estimates obtained by different methods, confirming that the fate of the ISOW plume downstream of the array is far from being fully understood. Historical observations show that drainage of ISOW through Charlie–Gibbs Fracture Zone (CGFZ) only amounts to 60% of our upstream transport estimate. To date, no reliable transport estimates of the fractions of ISOW recirculating within the Iceland Basin or being drained through fracture zones other than CGFZ do exist. Our observed 2-years-long transport time series show pronounced subseasonal variability with a standard deviation of 1.3 Sv. Simultaneous hydrographic observations reveal, that temporal changes in the strength of the flow go along with changes in the water mass properties. Periods of stronger flow within the ISOW plume coincide with a reduction in salinity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2017-06-23
    Description: The Kairei hydrothermal field was the first confirmed active submarine hydrothermal system on the Central Indian Ridge. It has been suggested to be related to mafic as well as ultramafic host rocks based on vent fluid composition and the presence of ultramafic rocks in its vicinity. In this study, detailed geochemical and mineralogical analyses have been carried out on the hydrothermal precipitates from the Kairei vent field in order to investigate the possible presence of indications for an ultramafic substrate at this vent site. The studied samples included fragments of sulfide chimneys, massive sulfides and talc-bearing and silicified breccias. Three mineralization stages were identified: (1) a high-temperature stage consisting largely of chalcopyrite, isocubanite, and pyrite; (2) a medium to low temperature stage characterized by the mineral assemblages of sphalerite and pyrite; and (3) a weathering stage characterized by secondary Cu-sulfides (bornite, digenite, covellite and idaite), Fe-oxihydroxides, Opal-A, and Cu-chloride (paratacamite and atacamite). The sulfide geochemistry is characterized by high concentrations of Cu and Zn (Cu + Zn up to 29.3 wt.%, n = 17) and Au (mean 5.28 ppm, n = 17), which is comparable to results from seafloor massive sulfides collected from ultramafic-hosted sites in the Atlantic Ocean, but differs from those of typical mafic-hosted deposits. The high concentrations of Cu and Au at the Kairei hydrothermal field could be an indication for the involvement of ultramafic rocks in the subseafloor. Ultramafic-hosted, Au-rich sulfide deposits may not be restricted to the Atlantic Ocean and may be common along all slow- and intermediate-spreading ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2017-09-12
    Description: Shatsky Rise, an early Cretaceous igneous oceanic plateau in the NWPacific, comprises characteristics that could be attributed to either formation by shallow, plate tectonic-controlled processes or to an origin by a mantle plume(head). The plateauwas drilled during Integrated Ocean Drilling Program(IODP) Expedition 324. Complementary to a recent trace element study (Sano et al., 2012) this work presents Nd, Pb and Hf isotope data of recovered lava samples cored from the three major volcanic edifices of the Shatsky Rise. Whereas lavas from the oldest edifice yield fairly uniform compositions, awider isotopic spread is found for lavas erupted on the younger parts of the plateau, suggesting that the Shatsky magma source became more heterogeneous with time. At least three isotopically distinct components can be identified in the magma source: 1) a volumetrically and spatially most common, moderately depleted component of similar composition to modern East Pacific Ridge basalt but with low 3He/4He, 2) an isotopically very depleted component which could represent local, early Cretaceous (entrained) depleted upper mantle, and 3) an isotopically enriched component, indicating the presence of (recycled) continental material in the magma source. The majority of analyzed Shatsky lavas, however, possess Nd–Hf–Pb isotope compositions consistent with a derivation from an early depleted, non-chondritic reservoir. By comparing these results with petrological and trace element data of mafic volcanic rock samples from all three massifs (Tamu, Ori, Shirshov), we discuss the origin of Shatsky Rise magmatism and evaluate the possible involvement of a mantle plume (head).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2017-03-13
    Description: Highlights • We map out the 3D extent of gas hydrate stability beneath two methane seep sites. • Focused fluid flow has sustained large-scale gas hydrate instability. • The two seeps likely have the same deep fluid source, despite shallow differences. • Fault networks influenced the initiation of advective flow through the hydrate system. • Ongoing flow towards the seeps is likely sustained by networks of hydrofractures. Abstract Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to View the MathML source∼60 mWm−2 and View the MathML source∼70 mWm−2 beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-07-21
    Description: Highlights • First long-term experiments on effects of high pCO2 and temperature on Calanus spp. • CO2 concentration of 3000 μatm had no effect on the copepods performance. • Temperature of 10 °C induced sublethal stress in diapausing C. hyperboreus females. • Synergistic effects of temperature and CO2 on body carbon were found at 5 °C. Abstract The sensitivity of copepods to ocean acidification (OA) and warming may increase with time, however, studies 〉10 days and on synergistic effects are rare. We therefore incubated late copepodites and females of two dominant Arctic species, Calanus glacialis and Calanushyperboreus, at 0 °C at 390 and 3000 μatm pCO2 for several months in fall/winter 2010. Respiration rates, body mass and mortality in both species and life stages did not change with pCO2. To detect synergistic effects, in 2011 C. hyperboreus females were kept at different pCO2 and temperatures (0, 5, 10 °C). Incubation at 10 °C induced sublethal stress, which might have overruled effects of pCO2. At 5 °C and 3000 μatm, body carbon was significantly lowest indicating a synergistic effect. The copepods, thus, can tolerate pCO2 predicted for a future ocean, but in combination with increasing temperatures they could be sensitive to OA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-09-23
    Description: We have retrieved radiogenic hafnium (Hf) isotope compositions (ɛHf) from authigenic Fe–Mn oxyhydroxides of deep northwest Atlantic sediments deposited over the past 26 ka to investigate the oceanic evidence of changes in dissolved weathering inputs from NE America during the last deglaciation. The extraction of seawater-derived Hf isotopic compositions from Fe–Mn oxyhydroxides is not a standard procedure. Comparisons between the Al/Hf ratios and Hf isotopic compositions of the chemically extracted authigenic phase on the one hand, and those of the corresponding detrital fractions on the other, provide evidence that the composition of past seawater has been reliably obtained for most sampled depths with our leaching procedures. This is endorsed most strongly by data for a sediment core from 4250 m water depth at the deeper Blake Ridge, for which consistent replicates were produced throughout. The Hf isotopic composition of the most recent sample in this core also closely matches that of nearby present day central North Atlantic seawater. Comparison with previously published seawater Nd and Pb isotope compositions obtained on the same cores shows that both Hf and Pb were released incongruently during incipient chemical weathering, but responded differently to the deglacial retreat of the Laurentide Ice Sheet. Hafnium was released more congruently during peak glacial conditions of the Last Glacial Maximum (LGM) and changed to typical incongruent interglacial ɛHf signatures either during or shortly after the LGM. This indicates that some zircon-derived Hf was released to seawater during the LGM. Conversely, there is no clear evidence for an increase in the influence of weathering of Lu-rich mineral phases during deglaciation, possibly since relatively unradiogenic Hf contributions from feldspar weathering were superimposed. While the authigenic Pb isotope signal in the same marine sediment samples traced peak chemical weathering rates on continental North America during the transition to the Holocene a similar incongruent excursion is notably absent in the Hf isotope record. The early change towards more radiogenic ɛHf in relation to the LGM may provide direct evidence for the transition from a cold-based to a warm-based Laurentide Ice Sheet on the Atlantic sector of North America.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2016-09-15
    Description: We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (δ13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (∼3.3–2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3–8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-10
    Description: Highlights: • Mooring observations show the East Greenland Spill Jet to be ubiquitous. • It is fed by classical DSOW in Denmark Strait, shelf water, and Irminger Sea water. • Its transport is similar to the classical DSOW plume. • It is the origin of a large fraction of the water in the Labrador Sea Water density range. Abstract: The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean׳s role in climate.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-01-21
    Description: Highlights: • The first Nd isotopic data on the lateritic surface cover (Cover Horizon) of western Equatorial Africa. • Clearly different Nd isotopic signatures between the Cover Horizon and underlying basement. • A consistent model attributing the Cover Horizon to the settling of aeolian particles derived from the Namib desert. Abstract: Surficial formations in Gabon, as well as in other places of western Central Africa include a ubiquitous, homogeneous and 1–3 m-thick clayey to sandy lateritic surface cover known as the ‘Cover Horizon’. From 14C radiometric dating it has been concluded that the emplacement of this unit was correlative with a major environmental crisis which affected Central Africa c. 3000–2000 years ago. 10Be and Nd-isotopic analyses have been performed to provide new constraints on the age and origin of this layer. Six samples from two depth profiles investigated for 10Be exhibit an almost constant concentration consistent with a very recent deposition age. Nd-isotopic analyses performed on the silt to clay fraction of eleven samples from widely spaced locations over Gabon attest for mildly radiogenic signatures (εNd = −23 to −17) in ten of them, and a slightly radiogenic signature (εNd = −9) in one sample. TDM model ages range from 1.6 to 2.6 Ga, and a perfect discrimination is observed between the Nd-isotopic signature of the Cover Horizon and that of the underlying Congo Craton. This makes an aeolian origin as the most probable for the Cover Horizon. The average εNd (c. −20) is however rather unusual for aeolian sediments or aerosols. A possible source of particles is therefore tested by considering the present-day atmospheric flux over Gabon and adjacent regions. Combined atmospheric modeling and Nd-isotopes leads to the conclusion that the fine fraction of the Cover Horizon could have originated from the northern part of the Namib desert.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-01-05
    Description: The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and refraction data were acquired in 2009; two dip-profiles which were extended by land stations, and one tie-profile parallel to the strike of the Møre–Trøndelag Fault Complex. The modeling of the wide-angle seismic data was performed with a combined inversion and forward modeling approach and validated with a 3D-density model. Modeling of the geophysical data indicates the presence of a 12–15 km thick accumulation of sedimentary rocks in the Møre Basin. The modeling of the strike profile located closer to land shows a decrease in crustal velocity from north to south. Near the coast we observe an intra-crustal reflector under the Trøndelag Platform, but not under the Slørebotn Sub-basin. Furthermore, two lower crustal high-velocity bodies are modeled, one located near the Møre Marginal High and one beneath the Slørebotn Sub-basin. While the outer lower crustal body is modeled with a density allowing an interpretation as magmatic underplating, the inner body has a density close to mantle density which might suggest an origin as an eclogized body, formed by metamorphosis of lower crustal gabbro during the Caledonian orogeny. The difference in velocity and extent of the lower crustal bodies seems to be controlled by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-09-23
    Description: The petrophysical properties of fine-grained marine sediments to a large extent depend on the microstructure and crystallographic preferred orientations (CPOs). In this contribution we show that Rietveld-based synchrotron texture analysis is a new and valuable tool to quantify textures of water-saturated fine-grained phyllosilicate-rich sediments, and assess the effects of compaction and tectonic deformation. We studied the CPO of compositionally almost homogeneous silty clay drillcore samples from the Nankai Accretionary Prism slope and the incoming Philippine Sea plate, offshore SW Japan. Basal planes of phyllosilicates show bedding-parallel alignment increasing with drillhole depth, thus reflecting progressive burial and compaction. In some samples calcite and albite display a CPO due to crystallographically controlled non-isometric grain shapes, or nannofossil tests. Consolidated-undrained experimental deformation of a suite of thirteen samples from the prism slope shows that the CPOs of phyllosilicate and calcite basal planes develop normal to the experimental shortening axis. There is at least a qualitative relation between CPO intensity and strain magnitude. Scanning electron micrographs show concurrent evolution of preferred orientations of micropores and detrital illite flakes normal to axial shortening. This indicates that the microfabrics are sensitive strain gauges, and contribute to anisotropic physical properties along with the CPO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-09-23
    Description: Highlights: • North Atlantic sea surface temperature exhibits high decadal predictability potential. • Model bias hinders exploiting the decadal predictability potential. • An innovative method was developed to overcome some of the bias problem. • North Atlantic sea surface temperature will stay anomalously warm until about 2030. Abstract: The Atlantic Meridional Overturning Circulation (AMOC), a major current system in the Atlantic Ocean, is thought to be an important driver of climate variability, both regionally and globally and on a large range of time scales from decadal to centennial and even longer. Measurements to monitor the AMOC strength have only started in 2004, which is too short to investigate its link to long-term climate variability. Here the surface heat flux-driven part of the AMOC during 1900–2010 is reconstructed from the history of the North Atlantic Oscillation, the most energetic mode of internal atmospheric variability in the Atlantic sector. The decadal variations of the AMOC obtained in that way are shown to precede the observed decadal variations in basin-wide North Atlantic sea surface temperature (SST), known as the Atlantic Multidecadal Oscillation (AMO) which strongly impacts societally important quantities such as Atlantic hurricane activity and Sahel rainfall. The future evolution of the AMO is forecast using the AMOC reconstructed up to 2010. The present warm phase of the AMO is predicted to continue until the end of the next decade, but with a negative tendency.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-09-23
    Description: We review progress in Baltic Sea physical oceanography (including sea ice and atmosphere–land interactions) and Baltic Sea modelling, focusing on research related to BALTEX Phase II and other relevant work during the 2003–2014 period. The major advances achieved in this period are: • Meteorological databases are now available to the research community, partly as station data, with a growing number of freely available gridded datasets on decadal and centennial time scales. The free availability of meteorological datasets supports the development of more accurate forcing functions for Baltic Sea models. • In the last decade, oceanographic data have become much more accessible and new important measurement platforms, such as FerryBoxes and satellites, have provided better temporally and spatially resolved observations. • Our understanding of how large-scale atmospheric circulation affects the Baltic Sea climate, particularly in winter, has improved. Internal variability is strong illustrating the dominant stochastic behaviour of the atmosphere. • The heat and water cycles of the Baltic Sea are better understood. • The importance of surface waves in air–sea interaction is better understood, and Stokes drift and Langmuir circulation have been identified as likely playing an important role in surface water mixing in sea water. • We better understand sea ice dynamics and thermodynamics in the coastal zone where sea ice interaction between land and sea is crucial. • The Baltic Sea’s various straits and sills are of increasing interest in seeking to understand water exchange and mixing. • There has been increased research into the Baltic Sea coastal zone, particularly into upwelling, in the past decade. • Modelling of the Baltic Sea–North Sea system, including the development of coupled land–sea–atmosphere models, has improved. Despite marked progress in Baltic Sea research over the last decade, several gaps remain in our knowledge and understanding. The current understanding of salinity changes is limited, and future projections of salinity evolution are uncertain. In addition, modelling of the hydrological cycle in atmospheric climate models is severely biased. More detailed investigations of regional precipitation and evaporation patterns (including runoff), atmospheric variability, highly saline water inflows, exchange between sub-basins, circulation, and especially turbulent mixing are still needed. Furthermore, more highly resolved oceanographic models are necessary. In addition, models that incorporate more advanced carbon cycle and ecosystem descriptions and improved description of water–sediment interactions are needed. There is also a need for new climate projections and simulations with improved atmospheric and oceanographic coupled model systems. These and other research challenges are addressed by the recently formed Baltic Earth research programme, the successor of the BALTEX programme, which ended in 2013. Baltic Earth will treat anthropogenic changes and impacts together with their natural drivers. Baltic Earth will serve as a network for earth system sciences in the region, following in the BALTEX tradition but in a wider context.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-09-23
    Description: Sediment core MSM5/5-712 from the West Spitsbergen continental margin has been investigated at high resolution for its seawater-derived neodymium (Nd) and lead (Pb) isotope compositions stored in ferromanganese oxyhydroxide coatings of the sediment particles to reconstruct Holocene changes in the sources and mixing of bottom waters passing the site. The radiogenic isotope data are used in combination with a multitude of proxy indicators for the climatic and oceanographic development of the eastern Fram Strait during the past 8500 years. To calibrate the downcore data, seawater and core top samples from the area were analysed for their radiogenic isotope compositions. Core top leachates reveal relatively high (more radiogenic) Nd isotope compositions between εNd −9.7 and −9.1, which are higher than present-day seawater εNd in eastern Fram Strait (−12.6 to −10.5) and indicate that the seawater values have only been established very recently. The core top data agree well with the downcore signatures within the uppermost 40 cm of the sediment core (εNd −9.1 to −8.8) indicating a reduced inflow of waters from the Nordic Seas, concurrent with cool conditions and a south-eastward shift of the marginal ice zone after ca 2.8 cal ka BP (Late Holocene). High sea-ice abundances in eastern Fram Strait are coeval with the well-known Neoglacial trend in the northern North Atlantic region. In contrast, warmer conditions of the late Early to Mid-Holocene were accompanied by lower (less radiogenic) εNd signatures of the bottom waters indicating an increased admixture from the Nordic Seas (−10.6 to −10.1). A shift to significantly more radiogenic εNd signatures of the detrital material also occurred at 3 cal ka BP and was accompanied by a marked increase in supply of fine-grained ice-rafted material (IRF) from the Arctic Ocean to the core site. The most likely source areas for this radiogenic material are the shallow Arctic shelves, in particular the Kara Sea shelf. The evolution of the Pb isotope compositions of past seawater was dominated by local signatures characterized by high 208, 207, 206Pb/204Pb values during the warm Early and Mid-Holocene periods related to enhanced chemical weathering on Svalbard and high glacial and riverine input derived from young granitic (more radiogenic) material to the West Spitsbergen margin. At 3 cal ka BP both detrital and seawater Pb isotope data changed towards more Kara Sea-like signatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-07-19
    Description: The Red Sea features a natural environmental gradient characterized by increasing water temperature, nutrient and chlorophyll a concentrations from North to South. The aim of this study was to assess the relationships between ecohydrography, particulate organic matter (POM) and coral reef biota that are poorly understood by means of carbon (δ13C) and nitrogen (δ15N) stable isotopes. Herbivorous, planktivorous and carnivorous fishes, zooplankton, soft corals (Alcyonidae), and bivalves (Tridacna squamosa)were a priori defined as biota guilds. Environmental samples (nutrients, chlorophyll a), oceanographic data (salinity, temperature), POMand biotawere collected at eight coral reefs between 28°31′ N and 16°31′ N. Isotopic niches of guilds separated in δ13C and δ15N isotopic niche spaces and were significantly correlated with environmental factors at latitudinal scale. Dietary end member contributionswere estimated using the Bayesian isotope mixingmodel SIAR. POMand zooplankton 15N enrichment suggested influences by urban run-off in the industrialized central region of the Red Sea. Both δ15N and their relative trophic positions (RTPs) tend to increase southwards, but urban runoff offsets the natural environmental gradient in the central region of the Red Sea toward higher δ15N and RTPs. The present study reveals that consumer δ13C and δ15N in Red Sea coral reefs are influenced primarily by the latitudinal environmental gradient and localized urban runoff. This study illustrates the importance of ecohydrography when interpreting trophic relationships from stable isotopes in Red Sea coral reefs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Elsevier
    In:  Trends in Ecology and Evolution, 29 (2). pp. 117-125.
    Publication Date: 2019-01-24
    Description: Highlights: • We summarize tools for assessing evolutionary potential under ocean acidification. • We review studies of past adaptation, genetic variation, and experimental evolution. • We highlight progress and challenges and recommend future research directions. • Longer-term experiments that focus on fitness-related responses are recommended. Ocean acidification poses a global threat to biodiversity, yet species might have the capacity to adapt through evolutionary change. Here we summarize tools available to determine species’ capacity for evolutionary adaptation to future ocean change and review the progress made to date with respect to ocean acidification. We focus on two key approaches: measuring standing genetic variation within populations and experimental evolution. We highlight benefits and challenges of each approach and recommend future research directions for understanding the modulating role of evolution in a changing ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-09-23
    Description: Highlights: • Open-access online scholarly biodiversity databases are threatened by a lack of funding and institutional support. • Strategic approaches to aid sustainability are summarised. • Issues include database coverage, quality, uniqueness; clarity of Intellectual Property Rights, ownership and governance. • Long-term support from institutions and scientists is easier for high-quality, comprehensive, prestigious global databases. • Larger multi-partner governed databases are more sustainable; i.e. ‘bigger (multi-partner) databases are better’. Abstract: Scientists should ensure that high quality research information is readily available on the Internet so society is not dependant on less authoritative sources. Many scientific projects and initiatives publish information on species and biodiversity on the World Wide Web without users needing to pay for it. However, these resources often stagnate when project funding expired. Based on a large pool of experiences worldwide, this article discusses what measures will help such data resources develop beyond the project lifetime. Biodiversity data, just as data in many other disciplines, are often not generated automatically by machines or sensors. Data on for example species are based on human observations and interpretation. This requires continuous data curation to keep these up to date. Creators of online biodiversity databases should consider whether they have the resources to make their database of such value that other scientists and/or institutions would continue to finance its existence. To that end, it may be prudent to engage such partners in the development of the resource from an early stage. Managers of existing biodiversity databases should reflect on the factors being important for sustainability. These include the extent, scope, quality and uniqueness of database content; track record of development; support from scientists; support from institutions, and clarity of Intellectual Property Rights. Science funders should give special attention to the development of scholarly databases with expert-validated content. The science community has to appreciate the efforts of scientists in contributing to open-access databases, including by citing these resources in the Reference lists of publications that use them. Science culture must thus adapt its practices to support online databases as scholarly publications. To sustain such databases, we recommend they should (a) become integrated into larger collaborative databases or information systems with a consequently larger user community and pool of funding opportunities, and (b) be owned and curated by a science organisation, society, or institution with a suitable mandate. Good governance and proactive communication with contributors is important to maintain the team enthusiasm that launched the resource. Experience shows that ‘bigger is better’ in terms of database size because the resource will have more content, more potential and known uses and users of its content, more contributors, be more prestigious to contribute to, and have more funding options. Furthermore, most successful biodiversity databases are managed by a partnership of individuals and organisations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-12-17
    Description: The geological storage of carbon dioxide (CO2) offers notable potential, as part of larger carbon dioxide capture and storage (CCS) processes, to be a significant climate change mitigation technology. This paper challenges the argument often put forward that, due to the greater distances from centres of population, it will be ‘easier’ to garner public and stakeholder support for offshore CO2 storage than onshore. Based on the results of research interviews carried out with stakeholders and informed publics in Scotland, challenges for public and stakeholder acceptance of sub-seabed CO2 storage that may require further policy attention are identified. Whilst existing policy for sub-seabed CO2 storage is cognisant of the need for societal engagement, it may be the case that these regulations may need further reinforcement to ensure future developments are able to address social acceptability issues as fully as possible. The value of taking into account social as well as physical characteristics at the site selection phase, the need for mechanisms to take seriously stakeholder conceptions of uncertainty, and the importance of extending social engagement beyond risk communication are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2017-06-19
    Description: More than 90% of the global ocean dissolved organic carbon (DOC) is refractory, has an average age of 4,000–6,000 years and a lifespan from months to millennia. The fraction of dissolved organic matter (DOM) that is resistant to degradation is a long-term buffer in the global carbon cycle but its chemical composition, structure, and biochemical formation and degradation mechanisms are still unresolved. We have compiled the most comprehensive molecular data set of 197 Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses from solid-phase extracted marine DOM covering two major oceans, the Atlantic sector of the Southern Ocean and the East Atlantic Ocean (ranging from 50° N to 70° S). Molecular trends and radiocarbon dating of 34 DOM samples (comprising Δ14C values from -229 to -495‰) were combined to model an integrated degradation rate for bulk DOC resulting in a predicted age of 〉24 ka for the most persistent DOM fraction. First order kinetic degradation rates for 1,557 mass peaks indicate that numerous DOM molecules cycle on timescales much longer than the turnover of the bulk DOC pool (estimated residence times of 〉100 ka) and the range of validity of radiocarbon dating. Changes in elemental composition were determined by assigning molecular formulae to the detected mass peaks. The combination of residence times with molecular information enabled modelling of the average elemental composition of the slowest degrading fraction of the DOM pool. In our dataset, a group of 361 molecular formulae represented the most stable composition in the oceanic environment (“island of stability”). These most persistent compounds encompass only a narrow range of the elemental ratios H/C (average of 1.17 ± 0.13), and O/C (average of 0.52 ± 0.10) and molecular masses (360 ± 28 and 497 ± 51 Da). In the Weddell Sea DOC concentrations in the surface waters were low (46.3 ± 3.3 μM) while the organic radiocarbon was significantly more depleted than that of the East Atlantic, indicating average surface water DOM ages of 4,920 ± 180 a. These results are in accordance with a highly degraded DOM in the Weddell Sea surface water as also shown by the molecular degradation index IDEG obtained from FT-ICR MS data. Further, we identified 339 molecular formulae which probably contribute to an increased DOC concentration in the Southern Ocean and potentially reflect an accumulation or enhanced sequestration of refractory DOC in the Weddell Sea. These results will contribute to a better understanding of the persistent nature of marine DOM and its role as an oceanic carbon buffer in a changing climate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-01-09
    Description: Highlights: • mx expression was stable or slightly up-regulated in carp after β-glucan treatment. • Poly(I:C) markedly increased mx expression in samples from β-glucan fed fish. • Two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. • β-Glucan-supplemented diets increased the transcript levels of both tlr3 genes. We have previously observed that in common carp (Cyprinus carpio), administration of β-glucan (MacroGard®) as feed additive leads to a lower expression of pro-inflammatory cytokines suggesting that this immunostimulant may be preventing an acute and potentially dangerous response to infection, particularly in the gut. However, in general, mechanisms to detect and eliminate pathogens must also be induced in order to achieve an efficient clearance of the infection. Protection against viral diseases acquired through β-glucan-supplemented feed has been extensively reported for several experimental models in fish but the underlining mechanisms are still unknown. Thus, in order to better characterize the antiviral action induced by β-glucans in fish, MacroGard® was administered daily to common carp in the form of supplemented commercial food pellets. Carp were fed for a period of 25 days prior to intra-peritoneal injection with polyinosinic:polycytidylic acid (poly(I:C)), a well-known double-stranded RNA mimic that triggers a type-I interferon (IFN) response. Subsequently, a set of immune related genes, including mx, were analysed by real-time PCR on liver, spleen, head kidney and mid gut tissues. Results obtained confirmed that treatment with β-glucan alone generally down-regulated the mRNA expression of selected cytokines when compared to untreated fish, while mx gene expression remained stable or was slightly up-regulated. Injection with poly(I:C) induced a similar down-regulated gene expression pattern for cytokines in samples from β-glucan fed fish. In contrast, poly(I:C) injection markedly increased mx gene expression in samples from β-glucan fed fish but hardly in samples from fish fed control feed. In an attempt to explain the high induction of mx, we studied Toll-like receptor 3 (TLR3) gene expression in these carp. TLR3 is a prototypical pattern recognition receptor considered important for the binding of viral double-stranded RNA and triggering of a type-I IFN response. Through genome data mining, two sequences for carp tlr3 were retrieved (tlr3.1 and tlr3.2) and characterized. Constitutive gene expression of both tlr3.1 and tlr3.2 was detected by real-time PCR in cDNA of all analysed carp organs. Strikingly, 25 days after β-glucan feeding, very high levels of tlr3.1 gene expression were observed in all analysed organs, with the exception of the liver. Our data suggest that β-glucan-mediated protection against viral diseases could be due to an increased Tlr3-mediated recognition of ligands, resulting in an increased antiviral activity of Mx.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2017-07-19
    Description: Highlights: • Spring and autumn copepod assemblages are depicted in the northeast South China Sea. • Copepod assemblages are partially driven by temperature in the SCS. • S. subtenuis and A. negligens are indicative of the South China Sea central gyre. • We provide a synoptic picture of the copepod community structure in the SCS We investigated the influence of permanent oceanographic features in structuring copepod assemblages in the northern South China Sea during the inter-monsoon transition periods, spring and autumn. A total of 25 families, 48 genera and 88 species, were recorded, as well as a decrease in species richness along with the seasonal temperature decrease. We show that copepod assemblages are influenced by quasi-permanent oceanographic conditions governing the Northeastern South China Sea, i.e. China Coastal Current and the Kuroshio Current intrusion. This study provides a synoptic picture of the seasonal changes in the community structure of copepods during spring and autumn in the northern South China Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-08-05
    Description: Cold-water coral (CWC) settlement in northern Norway is strongly related to the outlet-glaciers of the Fennoscandian Ice-sheet, and dating of known CWC structures show clearly post-glacial ages. Two gravity cores (POS391 559/2,277 cm long and POS391 559/3,282 cm long) were recovered on a CWC reef in the area of Lopphavet, northern Norway. Detailed investigations on lithology (sediment structures and composition), micropaleontology (foraminifera and ostracoda) and AMS 14C dating on the epibenthic foraminifera Discanomalina coronata were performed on the two cores. Phosphorus analyses were performed only on core POS391 559/3. Results indicate that the whole core POS391 559/2 is representative of a CWC reef environment. The base of the core is dated at 10,600±120 cal. yr BP, thus representing one of the oldest ages of a Norwegian coral reef. Core POS391 559/3 documents the passage from a proximal glacier environment characterized by fine silty sediments with intercalation of several dropstone layers to a CWC ecosystem. The transition from the glacial to the interglacial stage is dated as old as 10,725±205 cal. yr BP, whereas the base of the core is dated to an age of 15,300±550 cal. yr BP. Diversity of benthic foraminifera is higher within the CWC, especially in the intervals containing coral framework. Five clusters are identified based on the Bray–Curtis Similarity Term Analyses and the interpretation of data shows that they are related to different ecological settings, e.g., fluctuations of the sea-ice cover; influence of the warmer and more saline Atlantic water masses; transitional to a fully interglacial environment; well oxygenated, nutrient-rich and high current setting being conducive to CWC. Ostracod assemblages show that these crustaceans may be also used to characterize sedimentary facies on CWC reefs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-04-23
    Description: In addition to ocean acidification due to a gradual anthropogenic CO2 uptake, strong seasonal variations in the carbonate system occur in the Arctic Ocean as a result of physical and biological processes. Understanding this seasonal variability is critical for predicting the onset of calcium carbonate mineral (Ω) undersaturation with increasing atmospheric CO2 concentrations. However, these variations are currently poorly understood because of a lack of winter data due to the challenging field conditions in this season. Here we report observations over an annual cycle of the carbonate system of surface waters in the Atlantic gateway to the Arctic Ocean, covering the region between Svalbard and mainland Norway. Dissolved inorganic carbon (DIC) concentrations ranged from 2137–2148 μmol kg− 1 in winter to 1986–2094 μmol kg− 1 in summer, and total alkalinity (TA) concentrations between 2312–2341 μmol kg− 1 in winter and 2199–2317 μmol kg− 1 in summer. This resulted in an increase in TA:DIC ratios from 1.077–1.090 in winter to 1.106–1.112 in summer, mainly due to the biological uptake of CO2 during spring and summer. Similarly, a significant seasonal variability was observed in Ω (0.4–0.9), with lowest saturation states in winter (Ωaragonite ~ 1.8–2.1) and highest in spring and summer (Ωaragonite ≈ 2.4). Analysis of the biogeochemical and physical processes that impact aragonite saturation states (Ωar) showed biological production to be the most important factor driving seasonal variability in Ωar in this area, accounting for 45–70% of the difference between winter and summer values. Future changes in these processes may alter the seasonal cycle of the carbonate system in both amplitude and timing, and further observations are required to determine the progress of ocean acidification in the Atlantic waters entering the Arctic Ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-09-23
    Description: The ocean regulates the global climate, provides humans with natural resources such as food, materials, important substances, and energy, and is essential for international trade and recreational and cultural activities. Together with human development and economic growth, free access to, and availability of, ocean resources and services have exerted strong pressure on marine systems, ranging from overfishing, increasing resource extraction, and alteration of coastal zones to various types of thoughtless pollution. Both economic theory and many case studies suggest that there is no “tragedy of the commons” but a “tragedy of open access”. With high likeliness, structures of open access are non-sustainable. International cooperation and effective governance are required to protect the marine environment and promote the sustainable use of marine resources in such a way that due account can be taken of the environmental values of current generations and the needs of future generations. For this purpose, developing and agreeing on one Sustainable Development Goal (SDG) specifically for the Ocean and Coasts could prove to be an essential element. The new SDGs will build upon the Millennium Development Goals (MDGs) and replace them by 2015. Ensuring environmental sustainability in a general sense is one of the eight MDGs but the ocean is not explicitly addressed. Furthermore, the creation of a comprehensive underlying set of ocean sustainability targets and effective indicators developed within a global Future Ocean Spatial Planning (FOSP) process would help in assessing the current status of marine systems, diagnosing ongoing trends, and providing information for inclusive, forward-looking, and sustainable ocean governance
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2017-03-06
    Description: Highlights: • Nd and Hf are released from sediments to the water column in the Amundsen Sea Embayment. • Seawater Nd and Hf isotope compositions show opposed trends close to the Marie Byrd Seamounts. • AABW is isotopically distinct in Nd between the Atlantic and the Pacific sectors. • Hf isotope variations occur between the sectors, but not with depth in each sector. Abstract: Neodymium and hafnium isotopes and elemental concentrations (Sm, Nd, Hf, Zr) have been measured in three water column profiles south of the Antarctic Circumpolar Current in, and to the east of the Ross Sea, in conjunction with five bottom water samples from the Amundsen Sea Embayment. Neodymium and hafnium both appear to be released from sediments in the Embayment. In the case of Nd, this is reflected in radiogenic isotope compositions (εNdεNd up to −5.4) and highly elevated concentrations (up to 41 pmol/kg). Hafnium isotopes, on the other hand, are only very slightly altered relative to the open ocean sites, and boundary release is most prominently indicated by elevated concentrations (〉1 pmol/kg versus ∼0.7 pmol/kg). There is also a local input of both Hf and Nd at the Marie Byrd Seamounts, which leads to Nd isotope compositions as radiogenic as −3.1, and hafnium shifted to less radiogenic compositions in local bottom water. A compilation of the new data with literature data reveals a consistent view of the influence of Antarctica on the Nd isotope composition in Lower Circumpolar Deep Water (LCDW) and Antarctic Bottom Water (AABW). Sector specific Nd addition shifts AABW formed in the Atlantic sector to less radiogenic isotope compositions (average εNd=−9εNd=−9) relative to LCDW (average εNd=−8.4εNd=−8.4), whereas AABW in the Pacific sector is shifted to more radiogenic values (average εNd=−7εNd=−7). The evolution towards more radiogenic εNdεNd with depth in LCDW in the Pacific sector is likely to reflect admixture of AABW but, in addition, is also controlled by boundary exchange with the slope as observed at the Marie Byrd Seamounts. Hafnium isotopes are relatively homogeneous in the data set, ranging between εHf=+2εHf=+2 and +3.8 for most samples, excluding less radiogenic compositions in deep waters close to the Marie Byrd Seamounts. The Hf isotope composition in the Pacific sector is, however, slightly less radiogenic than in the Atlantic, corresponding to an average of +3 relative to an average of +3.8. This probably reflects unradiogenic Hf inputs from Antarctica to the Pacific sector, which are vertically homogenized by reversible scavenging. The Hf isotope heterogeneity in LCDW between both sectors is likely to indicate a shorter seawater residence time for Hf than for Nd, which is consistent with the dissolved – particulate phase partitioning of both elements.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 85 . pp. 80-87.
    Publication Date: 2021-04-23
    Description: Highlights • Meridional pattern in surface DOC in Atlantic Ocean. • POC mineralization determines AOU in equatorial Atlantic. • DOC utilization determines AOU in Atlantic subtropical gyres. Abstract Dissolved organic carbon (DOC) distributions along two Atlantic Meridional Transects conducted in 2005 in the region between 47°N and 34°S showed clear latitudinal patterns. The DOC concentrations in the epipelagic zone (0–100 m) were the highest (70–90 µM) in tropical and subtropical waters with stable mixed layers, and lowest (50–55 µM) at the poleward extremities of the transects due to deep convective mixing supplying low DOC waters to the surface. A decrease in DOC occurred with depth, and lowest DOC concentrations (41–45 µM) in the 100–300 m depth range were observed in the equatorial region due to upwelling of low DOC waters. A strong relationship between DOC and AOU was observed in the σ–t 26–26.5 isopycnal layer which underlies the euphotic zone and outcrops at the poleward extremities of the North and South Atlantic Subtropical Gyres (NASG and SASG) in the region ventilating the thermocline waters. Our observations reveal significant north–south variability in the DOC–AOU relationship. The gradient of the relationship suggests that 52% of the AOU in the σ–t 26–26.5 density range was driven by DOC degradation in the NASG and 36% in the SASG, with the remainder due to the remineralisation of sinking particulate material. We assess possible causes for the greater contribution of DOC remineralisation in the NASG compared to the SASG.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...