ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 58A (2014): 99-116, doi:10.1016/j.marpetgeo.2014.04.009.
    Description: In addition to well established properties that control the presence or absence of the hydrate stability zone, such as pressure, temperature, and salinity, additional parameters appear to influence the concentration of gas hydrate in host sediments. The stratigraphic record at Site 17A in the Andaman Sea, eastern Indian Ocean, illustrates the need to better understand the role pore-scale phenomena play in the distribution and presence of marine gas hydrates in a variety of subsurface settings. In this paper we integrate field-generated datasets with newly acquired sedimentology, physical property, imaging and geochemical data with mineral saturation and ion activity products of key mineral phases such as amorphous silica and calcite, to document the presence and nature of secondary precipitates that contributed to anomalous porosity preservation at Site 17A in the Andaman Sea. This study demonstrates the importance of grain-scale subsurface heterogeneities in controlling the occurrence and distribution of concentrated gas hydrate accumulations in marine sediments, and document the importance that increased permeability and enhanced porosity play in supporting gas concentrations sufficient to support gas hydrate formation. The grain scale relationships between porosity, permeability, and gas hydrate saturation documented at Site 17A likely offer insights into what may control the occurrence and distribution of gas hydrate in other sedimentary settings.
    Description: The financial support for the NGHP01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL.
    Keywords: Porosity ; Permeability ; Grain size ; Indian Ocean ; Gas hydrate ; Saturation ; Volcanic ash ; Carbonate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 7 (2016): 10284, doi:10.1038/ncomms10284.
    Description: Marine algae are instrumental in carbon cycling and atmospheric carbon dioxide (CO2) regulation. One group, coccolithophores, uses carbon to photosynthesize and to calcify, covering their cells with chalk platelets (coccoliths). How ocean acidification influences coccolithophore calcification is strongly debated, and the effects of carbonate chemistry changes in the geological past are poorly understood. This paper relates degree of coccolith calcification to cellular calcification, and presents the first records of size-normalized coccolith thickness spanning the last 14 Myr from tropical oceans. Degree of calcification was highest in the low-pH, high-CO2 Miocene ocean, but decreased significantly between 6 and 4 Myr ago. Based on this and concurrent trends in a new alkenone εp record, we propose that decreasing CO2 partly drove the observed trend via reduced cellular bicarbonate allocation to calcification. This trend reversed in the late Pleistocene despite low CO2, suggesting an additional regulator of calcification such as alkalinity.
    Description: Funding for this research was provided by the European Research Council under grant UE-09-ERC-2009-STG-240222-PACE (HMS), the Principado de Asturias under award FC-13-COF13-044 (HMS) and a French ANR infrastructure project EMBRC-France (IP).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 125 (2015): 50-60, doi:10.1016/j.quascirev.2015.06.009.
    Description: In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.
    Description: The work of C.Z. was supported by the ANR MONOPOL.
    Keywords: Indian summer monsoon ; Core Monsoon Zone ; Pollen assemblage ; Holocene ; Heinrich Stadial 2 ; Last interglacial-glacial transition
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, J. E., Phillips, S. C., Clyde, W. C., Giosan, L., & Torres, M. E. Isolating detrital and diagenetic signals in magnetic susceptibility records from methane-bearing marine sediments. Geochemistry Geophysics Geosystems, 22(9), (2021): e2021GC009867, https://doi.org/10.1029/2021GC009867.
    Description: Volume-dependent magnetic susceptibility (κ) is commonly used for paleoenvironmental reconstructions in both terrestrial and marine sedimentary environments where it reflects a mixed signal between primary deposition and secondary diagenesis. In the marine environment, κ is strongly influenced by the abundance of ferrimagnetic minerals regulated by sediment transport processes. Post-depositional alteration by H2S, however, can dissolve titanomagnetite, releasing reactive Fe that promotes pyritization and subsequently decreases κ. Here, we provide a new approach for isolating the detrital signal in κ and identifying intervals of diagenetic alteration of κ driven by organoclastic sulfate reduction (OSR) and the anaerobic oxidation of methane (AOM) in methane-bearing marine sediments offshore India. Using the correlation of a heavy mineral proxy from X-ray fluorescence data (Zr/Rb) and κ in unaltered sediments, we predict the primary detrital κ signal and identify intervals of decreased κ, which correspond to increased total sulfur content. Our approach is a rapid, high-resolution method that can identify overprinted κ resulting from pyritization of titanomagnetite due to H2S production in marine sediments. In addition, total organic carbon, total sulfur, and authigenic carbonate δ13C measurements indicate that both OSR and AOM can drive the observed κ loss, but AOM drives the greatest decreases in κ. Overall, our approach can enhance paleoenvironmental reconstructions and provide insight into paleo-positions of the sulfate-methane transition zone, past enhancements of OSR or paleo-methane seepage, and the role of detrital iron oxide minerals on the marine sediment sulfur sink, with consequences influencing the development of chemosynthetic biological communities at methane seeps.
    Description: This research was supported by the American Chemical Society-Petroleum Research Fund Award #53006-ND8 and U.S. Department of Energy Grant #DE-FE0010120.
    Keywords: Magnetic susceptibility ; Pyritization ; Anaerobic oxidation of methane (AOM) ; Organoclastic sulfate reduction (OSR) ; Marine sediment diagenesis ; Methane seep chemosynthetic fauna
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johnson, J. E., MacLeod, D. R., Phillips, S. C., Phillips, M. P., & Divins, D. L. Primary deposition and early diagenetic effects on the high saturation accumulation of gas hydrate in a silt dominated reservoir in the Gulf of Mexico. Marine Geology, 444, (2022): 106718, https://doi.org/10.1016/j.margeo.2021.106718.
    Description: On continental margins, high saturation gas hydrate systems (〉60% pore volume) are common in canyon and channel environments within the gas hydrate stability zone, where reservoirs are dominated by coarse-grained, high porosity sand deposits. Recent studies, including the results presented here, suggest that rapidly deposited, silt-dominated channel-levee environments can also host high saturation gas hydrate accumulations. Here we present several sedimentological data sets, including sediment composition, biostratigraphic age from calcareous nannofossils, grain size, total organic carbon (TOC), C/N elemental ratio, δ13C-TOC, CaCO3, total sulfur (TS), and δ34S-TS from sediments collected with pressure cores from a gas hydrate rich, turbidite channel-levee system in the Gulf of Mexico during the 2017 UT-GOM2-1 Hydrate Pressure Coring Expedition. Our results indicate the reservoir is composed of three main lithofacies, which have distinct sediment grain size distributions (type A-silty clay to clayey silt, type B-clayey silt, and type C-sandy silt to silty sand) that are characteristic of variable turbidity current energy regimes within a Pleistocene (〈 0.91 Ma) channel-levee environment. We document that the TOC in the sediments of the reservoir is terrestrial in origin and contained within the fine fraction of each lithofacies, while the CaCO3 fraction is composed of primarily reworked grains, including Cretaceous calcareous nannofossils, and part of the detrital load. The lack of biogenic grains within the finest grained sediment intervals throughout the reservoir suggests interevent hemipelagic sediments are not preserved, resulting in a reservoir sequence of silt dominated, stacked turbidites. We observe two zones of enhanced TS at the top and bottom of the reservoir that correspond with enriched bulk sediment δ34S, indicating stalled or slowly advancing paleo-sulfate-methane transition zone (SMTZ) positions likely driven by relative decreases in sedimentation rate. Despite these two diagenetic zones, the low abundance of diagenetic precipitates throughout the reservoir allowed the primary porosity to remain largely intact, thus better preserving primary porosity for subsequent pore-filling gas hydrate. In canyon, channel, and levee environments, early diagenesis may be regulated via sedimentation rates, where high rates result in rapid progression through the SMTZ and minimal diagenetic mineralization and low rates result in the stalling of the SMTZ, enhancing diagenetic mineralization. Here, we observed some enhanced pyritization to implicate potential sedimentation rate changes, but not enough to consume primary porosity, resulting in a high saturation gas hydrate reservoir. These results emphasize the important implications of sedimentary processes, sedimentation rates, and early diagenesis on the distribution of gas hydrate in marine sediments along continental margins.
    Description: This research and the UT-GOM2-1Hydrate Pressure Coring Expedition was supported by the U.S. Department of Energy (DOE) through Project # DE-FE0023919 “Deepwater Methane Hydrate Characterization and Scientific Assessment”. Graduate Teaching Assistant support and additional research funds for co-author MacLeod were provided through the UNH Dept. of Earth Sciences and the Jonathan W. Herndon Scholarship. Co-author Phillips was supported by funding from the U.S. Geological Survey's Coastal and Marine Hazards and Resources Program and DOE Interagency Agreement89243320SFE000013.
    Keywords: Methane hydrate ; Channel levee ; Turbidites ; Anaerobic oxidation of methane
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 505–521, doi:10.1002/2014GC005586.
    Description: The Late Quaternary variability of the South Asian (or Indian) monsoon has been linked with glacial-interglacial and millennial scale climatic changes but past rainfall intensity in the river catchments draining into the Andaman Sea remains poorly constrained. Here we use radiogenic Sr, Nd, and Pb isotope compositions of the detrital clay-size fraction and clay mineral assemblages obtained from sediment core NGHP Site 17 in the Andaman Sea to reconstruct the variability of the South Asian monsoon during the past 60 kyr. Over this time interval εNd values changed little, generally oscillating between −7.3 and −5.3 and the Pb isotope signatures are essentially invariable, which is in contrast to a record located further northeast in the Andaman Sea. This indicates that the source of the detrital clays did not change significantly during the last glacial and deglaciation suggesting the monsoon was spatially stable. The most likely source region is the Irrawaddy river catchment including the Indo-Burman Ranges with a possible minor contribution from the Andaman Islands. High smectite/(illite + chlorite) ratios (up to 14), as well as low 87Sr/86Sr ratios (0.711) for the Holocene period indicate enhanced chemical weathering and a stronger South Asian monsoon compared to marine oxygen isotope stages 2 and 3. Short, smectite-poor intervals exhibit markedly radiogenic Sr isotope compositions and document weakening of the South Asian monsoon, which may have been linked to short-term northern Atlantic climate variability on millennial time scales.
    Description: Part of this work was funded by German Science Foundation (DFG), grant HA5751/3-1.
    Description: 2015-08-24
    Keywords: Marine sediments ; Clay minerals ; Radiogenic isotopes ; Andaman Sea ; South Asian monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth Surface Dynamics 5 (2017): 781-789, doi:10.5194/esurf-5-781-2017.
    Description: Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.
    Description: This study was supported by grants from Woods Hole Oceanographic Institution, the National Science Foundation (OCE-0841736 and OCE-0623766) and Swiss National Science Foundation (“CAPS LOCK” 200021-140850 and “CAPS-LOCK2” 200021-163162).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L03704, doi:10.1029/2011GL050722.
    Description: Spanning a latitudinal range typical for deserts, the Indian peninsula is fertile instead and sustains over a billion people through monsoonal rains. Despite the strong link between climate and society, our knowledge of the long-term monsoon variability is incomplete over the Indian subcontinent. Here we reconstruct the Holocene paleoclimate in the core monsoon zone (CMZ) of the Indian peninsula using a sediment core recovered offshore from the mouth of Godavari River. Carbon isotopes of sedimentary leaf waxes provide an integrated and regionally extensive record of the flora in the CMZ and document a gradual increase in aridity-adapted vegetation from ~4,000 until 1,700 years ago followed by the persistence of aridity-adapted plants after that. The oxygen isotopic composition of planktonic foraminifer Globigerinoides ruber detects unprecedented high salinity events in the Bay of Bengal over the last 3,000 years, and especially after 1,700 years ago, which suggest that the CMZ aridification intensified in the late Holocene through a series of sub-millennial dry episodes. Cultural changes occurred across the Indian subcontinent as the climate became more arid after ~4,000 years. Sedentary agriculture took hold in the drying central and south India, while the urban Harappan civilization collapsed in the already arid Indus basin. The establishment of a more variable hydroclimate over the last ca. 1,700 years may have led to the rapid proliferation of water-conservation technology in south India.
    Description: This study was supported by grants from the National Science Foundation (OCE-0841736 and OCE- 0623766) and Woods Hole Oceanographic Institution.
    Description: 2012-08-14
    Keywords: Bay of Bengal ; Core Monsoon Zone ; Monsoon ; Neolithic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gale, A. S., Little, C. T. S., Johnson, J. E., & Giosan, L. A new neolepadid cirripede from a Pleistocene cold seep, Krishna-Godavari Basin, offshore India. Acta Palaeontologica Polonica, 65(2), (2020): 351-362, doi:10.4202/app.00705.2019.
    Description: alves of a thoracican cirripede belonging to a new species of the Neolepadidae, Ashinkailepas indica Gale sp. nov. are described from a Late Pleistocene cold seep (52.6 ka), cored in the Krishna-Godavari Basin, offshore from the eastern coast of India. This constitutes the first fossil record of the genus, and its first occurrence in the Indian Ocean. Other fossil records of the Neolepadidae (here elevated to full family status) are discussed, and it is concluded that only Stipilepas molerensis from the Eocene of Denmark, is correctly referred to the family. Cladistic analysis of the Neolepadidae supports a basal position for Ashinkailepas, as deduced independently from molecular studies, and the Lower Cretaceous brachylepadid genus Pedupycnolepas is identified as sister taxon to Neolepadidae. Neolepadids are not Mesozoic relics as claimed, preserved in association with the highly specialised environments of cold seeps and hydrothermal vents, but are rather an early Cenozoic offshoot from the clade which also gave rise to the sessile cirripedes.
    Description: We would like to thank Claire Mellish (NHMUK) for assistance with registration of the material in the NHMUK. We would like to thank John Buckeridge (RMIT, Melbourne, Australia) and an anonymous reviewer for their most useful comments. We greatly appreciate the efforts of the NGHP-01 shipboard scientific party for the collection and initial interpretation of these cores. The authors wish to thank those that contributed to the success of the National Gas Hydrate Program Expedition 01 (NGHP-01). NGHP-01 was planned and managed through collaboration between the Directorate General of Hydrocarbons (DGH) under the Ministry of Petroleum and Natural Gas (India), the US Geological Survey (USGS), and the Consortium for Scientific Methane Hydrate Investigations (CSMHI) led by Overseas Drilling Limited (ODL) and FUGRO McClelland Marine Geosciences (FUGRO). The platform for the drilling operation was the research drill ship JOIDES Resolution, operated by ODL. Much of the drilling/coring equipment used was provided by the Integrated Ocean Drilling Program (IODP) through a loan agreement with the US National Science Foundation. Wireline pressure coring systems and supporting laboratories were provided by IODP/Texas A&M University (TAMU), FUGRO, USGS, US Department of Energy (USDOE) and HYACINTH/GeoTek. Downhole logging operational and technical support was provided by Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The financial support for the NGHP-01, from the Oil Industry Development Board, Oil and Natural Gas Corporation Ltd., GAIL (India) Ltd. and Oil India Ltd. is gratefully acknowledged. We also acknowledge the support extended by all the participating organizations of the NGHP: MoP&NG, DGH, ONGC, GAIL, OIL, NIO, NIOT, and RIL.
    Keywords: Cirripedia ; Thoracica ; Neolepadidae ; cold seep ; Pleistocene ; Indian Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 31 (2003), S. 555-577 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Notes: Abstract We present preliminary evidence for a ~10,000-year earthquake record from two major fault systems based on sediment cores collected along the continental margins of western North America. New stratigraphic evidence from Cascadia demonstrates that 13 earthquakes ruptured the entire margin from Vancouver Island to at least the California border since the eruption of the Mazama ash 7700 years ago. The 13 events above this prominent stratigraphic marker have an average repeat time of 600 years, and the youngest event ~300 years ago coincides with the coastal record. We also extend the record of past earthquakes to the base of the Holocene (at least 9800 years ago), during which 18 events correlate along the same region. The sequence of Holocene events in Cascadia appears to contain a repeating pattern of events, a tantalizing first look at what may be the long-term behavior of a major fault system. The northern California margin cores show a cyclic record of turbidite beds that may represent Holocene earthquakes on the northern segment of the San Andreas Fault. Preliminary results are in reasonably good agreement with onshore paleoseismic data that indicate an age for the penultimate event in the mid-1600s at several sites and the most likely age for the third event of ~AD 1300.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...