ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Weitere Quellen  (5.201)
  • Life Sciences (General)  (2.804)
  • Spacecraft Design, Testing and Performance  (1.512)
  • FID-GEO-DE-7
  • 2015-2019  (1.932)
  • 2000-2004  (3.160)
  • 1960-1964  (109)
Sammlung
  • Weitere Quellen  (5.201)
Datenquelle
Sprache
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-06-29
    Beschreibung: The Compass Final Report: Europa Tunnelbot, is a summary of three Compass concurrent engineering team designs for penetrating the ice of Europa and reaching the ocean, while sampling for biomarkers and communicating back to the surface. These conceptual designs, while providing complete conceptual layouts for these penetrators, or 'Tunnelbots' along with the associated communication 'Repeaters' primarily focused on the power and thermal systems needed for these devices. Trades for these systems will provide advantages and challenges for each option. These results will be used to guide power technology development.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NASA/TP—2019-220054 , E-19649 , GRC-E-DAA-TN61831
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-03
    Beschreibung: The 2010 Decadal survey failed to issue any recommendations on diversity and inclusion.Astro2020 cannot make the same mistake. Findings can be ignored by funding agencies;recommendations cannot. In the past decade, multiple groups have assembled detailed actionplans to fix a broken climate within our profession. Astro2020 should play a key role, bysynthesizing this work to produce actionable recommendations to support diversity andinclusion and stop harassment within our profession.
    Schlagwort(e): Life Sciences (General)
    Materialart: GSFC-E-DAA-TN70895
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-01
    Beschreibung: In 2012 during the entry, descent, and landing of the Mars Science Laboratory (MSL), the MSL Entry, Descent, and Landing Instrumentation (MEDLI) sensor suite was collecting in-flight heatshield pressure and temperature data. The data collected by the MEDLI instruments has since been used for reconstruction of vehicle aerodynamics, atmospheric conditions, aerothermal heating, and Thermal Protection System (TPS) performance as well as material response model validation and refinement. The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite for the Mars 2020 heatshield and backshell is being designed to expand on the measurements and knowledge gained from MEDLI. Similar to MEDLI, MEDLI2 will measure the pressure and temperature of the heatshield. MEDLI2 will additionally measure the temperature, pressure, total heat flux, and radiative heat flux on the backshell.Since the backshell instrumentation is new to MEDLI2, Do No Harm (DNH) testing was conducted on instrumented backshell TPS (SLA-561V) panels. The panels consisted of four pressure port holes, one Mars Entry Atmospheric Data System (MEADS) pressure port plug, one MEDLI2 Integrated Sensor Plug (MISP) thermal plug, and one heat flux sensor. DNH testing was conducted to ensure the performance of the TPS was not degraded due to sensor integration and to characterize any TPS performance changes. The testing consisted of environmental testing vibration, shock, thermal vacuum (TVAC) cycling and bounding aerothermal (arc jet) testing. During arc jet testing, the heat flux sensors embedded in the SLA-561V panels exhibited an unexpected temporary reduction in the heat flux sensor temperature and response. After review of the test results, it was determined that this unexpected response was confined to the two heat flux sensors that experienced the greatest thermal shock condition. This condition consisted of a liquid nitrogen (LN2) bath that induced temperatures of approximately -190C, and then a transition (thermal shock) to an arc jet test at a heat rate of approximately 21 W/cm2. Both heat flux sensors that were exposed to this thermal shock experienced a blister in the thermal coating during the arc jet test.Two heat flux sensor thermal shock test series were performed to investigate the cause of the blistering and subsequent energy release. In these tests, the heat flux sensor was first cold soaked in either a dry ice or LN2 bath to induce temperatures of approximately -78C or -190C, respectively. Then the sensors were thermally shocked using two propane torches with a heat rate of either approximately 8 W/cm2 or 21 W/cm2. The key findings indicated that there is a correlation between thermal shock and the blistering observed in the DNH test series, and that the cause appeared to be rooted in the heat flux sensor epoxy that encapsulates the sensor thermopile.Since the heat flux sensors are required to measure heat fluxes up to 15 W/cm2 during the Mars 2020 entry, a third test series was designed to determine if blistering is an issue at this maximum expected flight heat flux. Results from all three thermal shock test series and a discussion about whether or not blistering of the heat flux sensor thermal coating could be an issue for the Mars 2020 mission will be presented.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN70038 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-20
    Beschreibung: For a variety of medical and scientific reasons, human bones can be exposed to ionizing radiation. At relatively high doses (30,0005,000 Gy), ex vivo ionizing radiation is commonly used to sterilize bone allografts. However, ionizing radiation in these applications has been shown to increase risk of fracture clinically and decrease bone quality. Previously, we observed a significant decrease in compressive static strength and fatigue life of ex vivo whole bones exposed to x-ray radiation at 17,000 Gy and above; no changes in compressive mechanical properties were observed for radiation doses of 1,000 Gy and below. The gap in doses between no mechanical change (1,000 Gy) and significant mechanical degradation (17,000 Gy) is large, and it is unclear at what dose mechanical integrity begins to diminish in whole bones, and if its effects differ in response to static versus cyclic mechanical loading. This is a major clinical concern, as trabecular and cortical bone allografts are commonly used in structural, load-bearing applications. To gain insight into the effect of ionizing radiation from 1,000-17,000 Gy, we conducted an ex vivo radiation study on the static and fatigue mechanical properties of the vertebral whole bone. Our objectives were to: (1) quantify the effect of exposure to ex vivo ionizing radiation on the mechanical integrity (compressive static and fatigue) of whole bones; and (2) evaluate, if there are observed differences in mechanics, if they differ in magnitude for static versus cyclic properties. The results of this study will give insight into the need for changes in protocols for bone allograft radiation sterilization procedures.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN63229 , Orthopaedic Research Society Annual Meeting; Feb 02, 2019 - Feb 05, 2019; Austin, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-20
    Beschreibung: Seeker is an automated extravehicular free-flying inspector CubeSat designed and built in-house at the Johnson Space Center (JSC). As a Class 1E project funded by the International Space Station (ISS) Program, Seeker had a streamlined process to flight certification, but the vehicle had to be designed, developed, tested, and delivered within approximately one year after authority to pro-ceed (ATP) and within a $1.8 million budget. These constraints necessitated an expedited Guidance, Navigation, and Control (GNC) development schedule, development began with a navigation sensor trade study using Linear Covariance (LinCov) analysis and a rapid sensor downselection process, resulting in the use of commercial off-the-shelf (COTS) sensors which could be procured quickly and subjected to in-house environmental testing to qualify them for flight. A neural network was used to enable a COTS camera to provide bearing measurements for visual navigation. The GNC flight software (FSW) algorithms utilized lean development practices and leveraged the Core Flight Software (CFS) architecture to rapidly develop the GNC system, tune the system parameters, and verify performance in simulation. This pace was anchored by several Hardware-Software Integration (HSI) milestones, which forced the Seeker GNC team to develop the interfaces both between hardware and software and between the GNC domains early in the project and to enable a timely delivery.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AAS 19-065 , JSC-E-DAA-TN64897 , AAS Guidance and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-20
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: MSFC-E-DAA-TN64437 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-07-19
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7384 , International Association for the Advancement of Space Safety (IAASS) Conference; May 15, 2019 - May 17, 2019; El Segundo, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-07-20
    Beschreibung: OuroboroSat (also known as MRMSS: the Modular Rapidly Manufactured Spacecraft System) is a modular instrumentation platform consisting of multiple 3 inch (7.5 centimeter) square printed circuit boards that are mechanically and electrically connected to one another in order to produce a fully- functioning payload facility system. Each OuroboroSat module consists of a microcontroller, a battery, conditioning and monitoring circuitry for the battery, optional space for solar panels, and an expansion area where an experimental payload or specialized functionality (such as wireless communication submodules) can be attached.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NASA FS-2015-07-05-ARC , ARC-E-DAA-TN25947
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-07-17
    Beschreibung: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft nonmetallic programmatic requirements. Now mandated by NASA STD-6016A, Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments, with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers, must meet the offgassing requirements in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7, beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967, in which tests were performed in mostly oxygen atmospheres. It progresses through Skylab, Space Shuttle, International Space Station nonmetals testing, and acceptance requirements with milder test environments. This review of the history of Test 7 presents the reader with a perspective on the development and changes undergone since inception to the present. Related NASA standard tests (some now former, discontinued, combined, or supplemental) including Test 6, Odor Assessment, Test 16, Determination of Offgassed Products from Assembled Articles, and Test 12, Total Spacecraft Cabin Offgassing, are discussed in context
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ICES-2019-504 , JSC-E-DAA-TN68279 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-07-20
    Beschreibung: The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and, with itsseven science instruments, has made numerous contributions to our understandingof the moon. LRO is in an elliptical, polar lunar orbit and nominally maintainsa nadir orientation. There are frequent slews off nadir to observe various sciencetargets. LRO attitude control system (ACS) has two star trackers and a gyro forattitude estimation in an extended Kalman filter (EKF) and four reaction wheelsused in a proportional-integral-derivative (PID) controller. LRO is equipped withthrusters for orbit adjustments and momentum management. In early 2018, thegyro was powered off following a fairly rapid decline in the laser intensity on theX axis. Without the gyro, the EKF has been disabled. Attitude is provided by asingle star tracker and a coarse rate estimate is computed by a back differencingof the star tracker quaternions. Slews have also been disabled. A new rate estimationapproach makes use of a complementary filter, combining the quaterniondifferentiated rates and the integrated PID limited control torque (with reactionwheel drag and feedforward torque removed). The filtered rate estimate replacesthe MIMU rate in the EKF, resulting in minimal flight software changes. The paperwill cover the preparation and testing of the new gyroless algorithm, both inground simulations and inflight.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN65164 , AAS Annual Guidance and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2019-07-20
    Beschreibung: This is our annual "station report" of activities related to controlled environment research to the North Central Education Research Activity (NCERA-101) committee. The committee is sponsored the USDA National Institute for Food and Agriculture (NIFA). Kennedy Space Center has participated in this committee for over 30 years.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN67356 , 2019 NCERA-101 Annual Meeting; Apr 14, 2019 - Apr 19, 2019; Vaudreuil-Dorion, Quebec; Canada
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2019-07-20
    Beschreibung: The Orion European Service Module - Structural Test Article (E-STA) underwent sine vibration testing in 2016 using the Mechanical Vibration Facility (MVF) multi-axis shaker system at NASA Glenn Research Centers (GRC) Plum Brook Station (PBS) Space Power Facility (SPF). The main objective was to verify the structural integrity of the European Service Module (ESM) under sine sweep dynamic qualification vibration testing. A secondary objective was to perform a fixed-base modal survey, while E-STA was still mounted to MVF, in order to achieve a test correlate the finite element model (FEM). To facilitate the E-STA system level correlation effort, a building block test approach was implemented. Modal tests were performed on two major subassemblies, the crew module/launch abort structure (CM/LAS) and the crew module adapter (CMA) mass simulators. These subassembly FEMs were individually correlated and then integrated into the E-STA FEM prior to the start of the E-STA sine vibration test. This paper summarizes the modal testing and model correlation efforts of both of these subassemblies and how the building block approach assisted in the overall correlation of the E-STA FEM. This paper will also cover modeling practices that should be avoided, recommended instrumentation positioning on complex structures, and the importance of the FEM geometrically matching CAD in sufficient detail in order to adequately replicate internal load paths. The goal of this paper is to inform the reader of the hard earned lessons learned and pitfalls to avoid when applying a building block test approach.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GRC-E-DAA-TN61845 , International Modal Analysis Conference (IMAC); Jan 28, 2019 - Jan 31, 2019; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 13
    Publikationsdatum: 2019-07-20
    Beschreibung: Advances in Entry Systems Technologies -- Continuing the Ames' Innovation Heritage" will provide an overview of recent accomplishments in the areas of entry systems, TPS materials, arcjet testing, etc.Hypervelocity Entry is a Hard Problem !Use of atmospheric drag is the most efficient way to slow down. Protection fromthe entry heating demands comprehensive understanding of the hypervelocity,reacting flow (aero-thermodynamics), and selection, design, testing and verificationof the integrated entry system, especially thermal protection system.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN65551 , Owl Feather Society; Feb 19, 2019; Mountain View, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 14
    Publikationsdatum: 2019-07-20
    Beschreibung: Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. Forty thin film polymer and pyrolytic graphite samples, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the ISS for nearly four years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2) mission. The purpose of the MISSE 2 PEACE Polymers experiment was to determine the atomic oxygen (AO) erosion yield (E(sub y), volume loss per incident oxygen atom) of a wide variety of polymers exposed to the LEO space environment. The Ey values were determined based on mass loss measurements. Because many polymeric materials are hygroscopic, the pre-flight and post-flight mass measurements were obtained using dehydrated samples. To maximize the accuracy of the mass measurements, obtaining dehydration data for each of the polymers was desired to ensure that the samples were fully dehydrated before weighing. A comparison of dehydration and rehydration data showed that rehydration data mirrors dehydration data, and is easier and more reliable to obtain. Tests were also conducted to see if multiple samples could be dehydrated and weighed sequentially. Rehydration curves of 43 polymers and pyrolytic graphite were obtained. This information was used to determine the best pre-flight, and post-flight, mass measurement procedures for the MISSE 2 PEACE Polymers experiment, and for subsequent NASA Glenn Research Center MISSE polymer flight experiments.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NASA/TM-2019-220063 , E-19653 , GRC-E-DAA-TN64510
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 15
    Publikationsdatum: 2019-07-19
    Beschreibung: Spacecraft charging can occur when a spacecraft vehicle is subject to space plasma environments and varying sunlit conditions. The trajectory of the spacecraft will determine the specific impinging environment while the spacecraft geometry and material properties determine the susceptibility to various charging issues. In general, spacecraft charging is separated into two categories, surface charging (~〈100 keV) and internal charging (~〉100keV).
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7357 , Applied Space Environments Conference; May 13, 2019 - May 17, 2019; Los Angeles, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 16
    Publikationsdatum: 2019-07-19
    Beschreibung: Planetary entry vehicles employ ablative TPS materials to shield the aeroshell from entry aeroheating environments. To ensure mission success, it must be demonstrated that the heat shield system, including local features such as seams, does not fail at conditions that are suitably margined beyond those expected in flight. Furthermore, its thermal response must be predictable, with acceptable fidelity, by computational tools used in heat shield design. Mission assurance is accomplished through a combination of ground testing and material response modelling. A material's robustness to failure is verified through arcjet testing while its thermal response is predicted by analytical tools that are verified against experimental data. Due to limitations in flight-like ground testing capability and lack of validated high-fidelity computational models, qualification of heat shield materials is often achieved by piecing together evidence from multiple ground tests and analytical simulations, none of which fully bound the flight conditions and vehicle configuration. Extreme heating environments (〉2000 W/sq. cm heat flux and 〉2 atm pressure), experienced during entries at Venus, Saturn and Ice Giants, further stretch the current testing and modelling capabilities for applicable TPS materials. Fully-dense Carbon Phenolic was the material of choice for these applications; however, since heritage raw materials are no longer available, future uses of re-created Carbon Phenolic will require re-qualification. To address this sustainability challenge, NASA is developing a new dual-layer material based on 3D weaving technology called Heat shield for Extreme Entry Environments (HEEET). Regardless of TPS material, extreme environments pose additional certification challenges beyond what has been typical in recent NASA missions. Scope of this presentation: This presentation will give an overview of challenges faced in verifying TPS performance at extreme heating conditions. Examples include: (1) Bounding aeroheating parameters (heat flux, pressure, shear and enthalpy) in ground facilities. How to certify TPS if environments can't be bounded or aeroheating parameters can't be simultaneously achieved. (2) Higher uncertainties in ground test environments (facility calibration and analytical predictions) at extreme conditions. (3) Testing in flows similar to planetary atmosphere composition (H2/He for Gas and Ice Giants). (4) Test sample size limitations for qualifying seam designs. (5) Lack of computational tools capable of simulating all significant aspects of TPS performance (including initiation and propagation of failures). This presentation will provide recommendations on how the EDL community can address these challenges and mitigate some of the risks involved in flying TPS materials at extreme conditions. Examples include: (1) Dedicated activity to understanding TPS failure modes. Develop computational tools capable of modelling fluid interaction with material's thermostructural response. Validate these tools through failure testing. A better understanding of failure mechanisms may eliminate the need to fully bound all aeroheating parameters in ground testing. (2) Enhancements to current testing facilities to simulate flight-like ablation mechanism (ex. testing in Nitrogen at Ames Interaction Heating Facility to limit oxidation in favor of more sublimation). (3) Improved characterization of test conditions with new diagnostic methods and determination of environment uncertainty through rigorous statistical analysis of available data. (4) Design margin policies that are directly tied to uncertainties in ground test environments and modelling fidelity
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN66398 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 17
    Publikationsdatum: 2019-07-20
    Beschreibung: Vibration testing spaceflight hardware is a vital, but time consuming and expensive endeavor. Traditionally modal tests are performed at the component, subassembly, or system level, preferably free-free with mass loaded interfaces or fixed base on a seismic mass to identify the fundamental structural dynamic (modal) characteristics. Vibration tests are then traditionally performed on single-axis slip tables at qualification levels that envelope the maximum predicted flight environment plus 3 dB and workmanship in order to verify the spaceflight hardware can survive its flight environment. These two tests currently require two significantly different test setups, facilities, and ultimately reconfiguration of the spaceflight hardware. The vision of this research is to show how traditional fixed-base modal testing can be accomplished using vibration qualification testing facilities, which not only streamlines testing and reduces test costs, but also opens up the possibility of performing modal testing to untraditionally high excitation levels that provide for test-correlated finite element models to be more representative of the spaceflight hardware's response in a flight environment. This paper documents the first steps towards this vision, which is the comparison of modal parameters identified from a traditional fixed-based modal test performed on a modal floor and those obtained by utilizing a fixed based correction method with a large single-axis electrodynamic shaker driving a slip table supplemented with additional small portable shakers driving on the slip table and test article. To show robustness of this approach, the test article chosen is a simple linear weldment, whose mass, size, and modal parameters couple well with the dynamics of the shaker/slip table. This paper will show that all dynamics due to the shaker/slip table were successfully removed resulting in true fixed-base modal parameters, including modal damping, being successfully extracted from a traditional style base-shake vibration test setup.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GRC-E-DAA-TN61795 , International Modal Analysis Conference (IMAC); Jan 28, 2019 - Jan 31, 2019; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 18
    Publikationsdatum: 2019-07-20
    Beschreibung: Space structures are one of the most critical components for any spacecraft, as they must provide the maximum amount of livable volume with the minimum amount of mass. Deployable structures can be used to gain additional space that would not normally fit under a launch vehicle shroud. This expansion capability allows it to be packed in a small launch volume for launch, and deploy into its fully open volume once in space. Inflatable, deployable structures in particular, have been investigated by NASA since the early 1950s and used in a number of spaceflight applications. Inflatable satellites, booms, and antennas can be used in low-Earth orbit applications. Inflatable heatshields, decelerators, and airbags can be used for entry, descent and landing applications. Inflatable habitats, airlocks, and space stations can be used for in-space living spaces and surface exploration missions. Inflatable blimps and rovers can be used for advanced missions to other worlds. These applications are just a few of the possible uses for inflatable structures that will continued to be studied as we look to expand our presence throughout the solar system.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN66192 , SPIE Smart Structures + Nondestructive Evaluation 2019; Mar 03, 2019 - Mar 07, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 19
    Publikationsdatum: 2019-07-20
    Beschreibung: Plans call for human cislunar operations and lunar surface access, to prepare for eventual Mars missions. NASA will also develop new opportunities in lunar orbit that provide the foundation and act as a gateway for human exploration deeper into the solar system. Current human spaceflight is complex and requires as many as fifty people to support the International Space Station (ISS) Mission Control Center (MCC) in Houston, Texas. These flight controllers in the front and back rooms of the MCC, serve as an extra pair of eyes overseeing the numerous station systems. Deep space missions - to the moon, Mars, and beyond - will be more complex and place challenging mission constraints on the crew. As the round-trip communication delays increase in deep space exploration, more on-board systems autonomy and functionality will be needed to maintain and control the vehicle. These mission constraints will change the Earth-based ground control approach and will demand efficient and effective human-computer interfaces (HCI) to control a highly complex vehicle or habitat system. All of this necessitates a different approach to designing and developing spacecraft and habitats. In the beginning of new human spaceflight programs, focus is typically on launch vehicle and uncrewed spacecraft design and development. The reasoning behind this focus to enable flight testing of an integrated launch vehicle and spacecraft system to ensure it will be safe enough to allow humans on board. This is an essential process for new spacecraft, however, the practical effect is a lack of funding for the spacecrafts human interfaces development. It can be many years before the human interface development begins, putting it late in the spacecraft lifecycle, when almost all other spacecraft systems and subsystems are already in place. This forces the usage of existing and proven technologies for the HCI interfaces. We posit that putting the human first in a spacecraft design process will yield a more effective spacecraft for exploration and long duration missions. NASA Human Research Program (HRP) has identified inadequate HCI as a risk for future missions. New tools and procedures to aid the crew in operating a complex spacecraft will be required. This paper discusses ongoing activities in the development of the next generation HCI components and systems, and a new approach toward human interfaces for spacecraft.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN58776 , IEEE Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 20
    Publikationsdatum: 2019-07-20
    Beschreibung: Astronauts on a mission to Mars will require several vehicles working together to get to Mars orbit, descend to the surface of Mars, support them while theyre there, and return them to Earth. The Mars Ascent Vehicle (MAV) transports the crew off the surface of Mars to a waiting Earth return vehicle in Mars orbit and is a particularly influential part of the mission architecture because it sets performance requirements for the lander and in-space transportation vehicles. With this in mind, efforts have been made to minimize the MAV mass, and its impact on the other vehicles. A minimal mass MAV design using methane and in situ generated oxygen propellants was presented in 2015. Since that time, refinements have been made in most subsystems to incorporate findings from ongoing research into key technologies, improved understanding of environments and further analysis of design options. This paper presents an overview of the current MAV reference design used in NASAs human Mars mission studies, and includes a description of the operations, configuration, subsystem design, and a vehicle mass summary.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: MSFC-E-DAA-TN62438 , IEEE Aerospace Conference; Mar 02, 2019 - Mar 09, 2019; Big Sky, MT; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 21
    Publikationsdatum: 2019-07-26
    Beschreibung: NASA's Determination of Offgassed Products (Test 7) from materials and assembled articles for spaceflight has evolved since the Apollo program for over 50 years to meet various habitable spacecraft non-metallic programmatic requirements. Now mandated by NASA-STD-6016B Standard Materials and Processes Requirements for Spacecraft, all nonmetallic materials used in habitable flight compartments,with the exception of ceramics, metal oxides, inorganic glasses, and materials used in sealed containers must meet the offgassing requirements of in NASA-STD-6001B Test 7. This manuscript presents the history of Test 7 beginning with the Apollo spacecraft nonmetallic materials selection guidelines and test requirements in 1967
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN70224 , International Conference on Environmental Systems (ICES 2019); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 22
    Publikationsdatum: 2019-07-20
    Beschreibung: Over the past 50 years, great advances have been achieved in both analytical modal analysis (i.e. finite element models and analysis) and experimental modal analysis (i.e. modal testing) in aerospace and other fields. With the advent of more powerful computers, higher performance instrumentation and data acquisition systems, and powerful linear modal extraction tools, analysts and test engineers have a breadth and depth of technical resources only dreamed of by our predecessors. However, some observed recent trends indicate that hard lessons learned are being forgotten or ignored, and possibly fundamental concepts are not being understood. These trends have the potential of leading to the degradation of the quality of and confidence in both analytical and test results. These trends are a making of our own doing, and directly related to having ever more powerful computers, programmatic budgetary pressures to limit analysis and testing, and technical capital loss due to the retirement of the senior component of a bimodal workforce. This paper endeavors to highlight some of the most important lessons learned, common pitfalls to hopefully avoid, and potential steps that may be taken to help reverse this trend.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GRC-E-DAA-TN62051 , International Modal Analysis Conference (IMAC); Jan 28, 2019 - Jan 31, 2019; Orlando, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 23
    Publikationsdatum: 2019-07-20
    Beschreibung: The Photon Sieve (PS) team at NASA Langley Research Center (LaRC) began receiving support for the development and characterization of PS devices through the NASA Internal Research & Development Program (IRAD) in 2015. The project involves ascertaining the imaging characteristics of various PS devices. These devices hold the potential to significantly reduce mission costs and improve imaging quality by replacing traditional reflector telescopes. The photon sieve essentially acts as a lens to diffract light to a concentrated point on the focal plane like a Fresnel Zone Plate (FZP). PSs have the potential to focus light to a very small spot which is not limited by the width of the outermost zone as for the FZP and offers a promising solution for high resolution imaging. In the fields of astronomy, remote sensing, and other applications that require imaging of distant objects both on the ground and in the sky, it is often necessary to perform post-process filtering in order to separate noise signals that arise from multiple scattering events near the collection optic. The PS exhibits a novel filtering technique that rejects the unwanted noise without the need for time consuming post processing of the images. This project leverages key Langley resources to design, manufacture, and characterize a series of photon sieve specimens. After a prototype was developed and characterized in the Langley ISO5 optical cleanroom and laboratory, outside testing was conducted via the capture of images of the moon by using a telescopic setup. This next goal of the project is to design and develop a telescope and image capture system as a drone-based instrument payload. The vehicle utilized for the initial demonstration was a NASA hive model 1200 XE-8 research Unmanned Aerial Vehicle (UAV), capable of handling a 20-pound maximum payload with a 25-minute flight time. This NASA Technical Memorandum (NASA-TM) introduces preliminary results obtained using a PS-based imaging system on the UAV. The next version of the telescope structure will be designed around diffractive optical components and commercially available camera electronics to create a lightweight payload.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: NASA/TM?2019-220252 , L-20999 , NF1676L-32418
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 24
    Publikationsdatum: 2019-07-20
    Beschreibung: Inflatable space structures have the potential to significantly reduce the required launch volume of large crewed pressure vessels for space exploration missions. Mass savings can also be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Inflatable softgoods structures have been investigated since the late 1950's, and several major development programs at NASA and in industry have helped advance the state-of-the-art in this technology area. This paper discusses the design, analysis, structural testing, and potential applications for inflatable softgoods structures. In particular, this paper will discuss the design of the multi-layer softgoods shell (inner layer, bladder, structural restraint layer, micrometeoroid orbital debris protection layers, thermal insulation layers, and atomic oxygen layer (for low earth orbit) and the results of material and module-level testing that has been conducted over the past two decades at NASA. Finally, the current utilization of expandable spacecraft structures is discussed, as well as potential future applications including airlocks and habitats on the Lunar Orbital Platform-Gateway, and the surface of the Moon and Mars.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN63766 , AIAA Science and Technology Forum and Exposition; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 25
    Publikationsdatum: 2019-07-20
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M18-7140 , AIAA Science and Technology (SciTech) Forum; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 26
    Publikationsdatum: 2019-07-20
    Beschreibung: Microsecond sparks and the resulting plume of hot gas/plasma were examined against a parametric pressure-distance matrix. Schlieren imaging is used to capture the spatial and temporal location of spark discharge exhaust for two milliseconds. Low pressure and larger gap widths created the largest size and intensity signal for the spark-affected plumes. Experimental exit-plume velocities trend well with analytic predictions using a mean pressure between the chamber and atmospheric conditions. Due to the quadratic relation of the annulus area and gap width, larger gap width velocities are more accurately represented by analytic predictions using atmospheric pressure as the larger exit area restricts the flow less. The same pressure adjustment, when applied to breakdown voltages, improves data alignment with Paschens Curve.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M18-7126 , AIAA Science and Technology Forum (AIAA SciTech 2019); Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 27
    Publikationsdatum: 2019-07-20
    Beschreibung: This paper describes a new operational capability for fast attitude maneuvering that is being developed for the Lunar Reconnaissance Orbiter (LRO). The LRO hosts seven scientific instruments. For some instruments, it is necessary to per-form large off-nadir slews to collect scientific data. The accessibility of off-nadir science targets has been limited by slew rates and/or occultation, thermal and power constraints along the standard slew path. The new fast maneuver (FastMan) algorithm employs a slew path that autonomously avoids constraint violations while simultaneously minimizing the slew time. The FastMan algo-rithm will open regions of observation that were not previously feasible and improve the overall science return for LRO's extended mission. The design of an example fast maneuver for LRO's Lunar Orbiter Laser Altimeter that reduc-es the slew time by nearly 40% is presented. Pre-flight, ground-test, end-to-end tests are also presented to demonstrate the readiness of FastMan. This pioneer-ing work is extensible and has potential to improve the science data collection return of other NASA spacecraft, especially those observatories in extended mission phases where new applications are proposed to expand their utility.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AAS 19-053 , GSFC-E-DAA-TN65209 , Annual AAS Guidance, Navigation, and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 28
    Publikationsdatum: 2019-07-25
    Beschreibung: NASA's Project Mercury began as a response to the cold war with the Soviet Union and had a number of goals: to place a manned spacecraft in orbital flight around the earth; to investigate man's performance capabilities and his ability to function in the environment of space and to recover the man and the spacecraft safely. One aspect of preflight testing included the use of an altitude chamber to test each capsule and allow the astronauts to engage in simulated missions within a vacuum environment. Flash forward to 1985. The Biomedical Operations and Research Office at Kennedy Space Center proposed to use the chamber for an unusual mission under what was known as the Controlled Ecological Life Support Systems (CELSS)Breadboard Project. During 1985 into 1987, the chamber was converted to an environmentally-controlled, hydroponic plant growth chamber termed the "Biomass Production Chamber" and operated through late 2001.
    Schlagwort(e): Life Sciences (General)
    Materialart: ICES-2019-106 , KSC-E-DAA-TN65242 , KSC-E-DAA-TN67829 , International Conference on Environmental Systems (ICES 2019) ; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 29
    Publikationsdatum: 2019-07-13
    Beschreibung: Cyanobacterial and Harmful Algal Blooms (CyanoHABs) are a growing concern in coastal and inland waters. But, spectral interference from multiple constituents in optically complex waters can hamper application of remote sensing using traditional image processing methods. The Kent State University (KSU) spectral decomposition method can be applied to multispectral and hyperspectral remote sensing images (e.g. HICO and the NASA Glenn HSI2) to partition and identify signals related to cyanobacteria, algae, pigment degradation products and suspended sediment in each pixel. Fundamental to the use of remote sensing data is the ability to extract independent signals from correlated hyperspectral VNIR data cubes. The Kent State University varimax-rotated, principal component analysis method (VPCA) is important to integrate into the SBG VNIR mission concept because it provides greater specificity, a software-based SNR boost relative to hardware performance, and can assist with Cal/Val, Modeling and Applications. We present examples of the hyperspectral application of the KSU VPCA method with relevance to SBG. The information extracted by VPCA can be validated spectrally or spatially with laboratory and/or in situ sensors, which capture spatial or time series of information at discrete points within remote sensing images. Comparisons show hyperspectral sensors extract more components than multispectral ones, but more independent information can be extracted from multispectral sensors by VPCA than traditional band ratio approaches. The spectral decomposition method is capable of enhancing the signal to noise ratio (SNR) of the NASA Glenn, second-generation hyperspectral imager by a factor of 7x to 20x, with a spectral reproducibility of 3%. The spectral decomposition method, when compared against existing remote sensing monitoring methods exhibits both greater specificity and a lower detection limit. The method has been validated with multispectral images in Lake Erie to quantify the Microcystis CyanoHAB and from the Indian River Lagoon, Florida to quantify the Brown Tide resulting from A. lagunesnsis. Field operations in the Western Basin of Lake Erie were conducted using a bbe Fluoroprobe to collect vertical profiles and horizontal tows along a transect from the Toledo to the Detroit Lighthouse during coincident satellite overpasses. Extraction of pixel values from the MODIS Aqua sensor yields agreement between in situ field and lab-based measures of cyanobacterial, cryptophyte, diatoms and green algae, suspended sediment and pigment degradation products with R2〉0.8.
    Schlagwort(e): Life Sciences (General)
    Materialart: MSFC-E-DAA-TN68717 , Surface Biology and Geology (SBG) Community Workshop; Jun 12, 2019 - Jun 14, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 30
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: This PowerPoint presentation will discuss a new small spacecraft architecture which takes advantage of ESPA Class rideshare opportunities.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN69419 , Annual Small Payload Rideshare Symposium; Jun 04, 2019 - Jun 06, 2019; Chantilly, VA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 31
    Publikationsdatum: 2019-07-13
    Beschreibung: Airdrop testing of parachutes is a complicated endeavor that requires the custom design and certification of many critical components. The most direct path to certifying a component is to perform full scale testing with margin over the maximum loads expected to be seen in operation. However, other constraints often preclude the opportunity to perform full scale testing. In this paper, we present a case study where a problem arises in a joint that had been certified with a full scale test. There was no time or budget available to repeat the full scale testing after a redesign of the joint. Instead, we present a method of testing each failure mode at the component level to support a certification by analysis approach. The analysis itself was not complicated, but tradeoffs had to be made between different failure modes to arrive at the optimal design. The same approach was also applied back to the original joint to confirm that the failure mode that was not seen in full scale testing would have been caught by the proposed analysis. In the end, the new design was certified by analysis and worked without issue for the final six airdrop tests that used this joint.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN68390 , AIAA Aviation Forum; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 32
    Publikationsdatum: 2019-07-13
    Beschreibung: The Orion Capsule Parachute System (CPAS) project has completed qualification testing. Throughout the airdrop test program, CPAS employed a number of test techniques, including Low Velocity Air Drop (LVAD), single parachute darts, subscale parachute airdrop, and full scale capsule and dart airdrop tests. This paper will discuss the advantages and disadvantages for each type of test technique, the challenges encountered, and the lessons learned. Special attention will be given to the issues and solutions required to perform airdrop test extraction at 35,000 feet above mean sea level (MSL).
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN68677 , AIAA Aviation and Aeronautics Forum (Aviation 2019); Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 33
    Publikationsdatum: 2019-07-13
    Beschreibung: Inertial acceleration and a change in head orientation with respect to gravity are sensed by mechanosensitive receptors in the inner ear otolith organs. These structures consist of calcium carbonate grains called otoconia that mechanically load the hair cell bundles and distribute the tangential shear force during movement, and changes in their density can alter hair cell sensitivity. A possible adaptive response to a chronic gravity change is a change in weight-lending otoconia. Another mechanism is a modification of the strength and number of synapses coupling the hair cells to nerve afferents that convey the signals into the brain. Here, we present the results obtained in 2 species exposed both to G (microgravity) and hyper-gravity (HG). Adult toadfish, Opsanus tau, were exposed to G (microgravity) in 2 shuttle missions and to 1.12-2.24G (force of gravity) [resultant] centrifugation for 1-32 days; readaptation was studied following 1-8 days after return to 1G. Results show a biphasic pattern in response to 2.24G: initial hypersensitivity, similar to that observed after G (microgravity) exposure, followed by transition to a significant decrease at 16-32 days. Recovery from HG exposure is approximately 4-8 days. Two major pieces of information are still needed: vertebrate hair cell response to altered gravity and impact of longer duration exposures on sensory plasticity. To address the latter we applied electron microscopic techniques to image otoconia mass obtained from 1) mice subjected to 91-days of G (microgravity) in the Mouse Drawer System (MDS) flown on International Space Station, 2) mice subjected to 91-days of 1.24G centrifugation on ground, and 3) mice flown on 2 shuttle missions. Images from MDS mice indicate a clear restructuring of individual otoconia, suggesting deposition to the outer shell. Images from their HG ground counterparts indicate the converse - an ablation of the otoconia mass. For 13-day exposures to G (microgravity) mice otoconia appear normal. Despite the permanence of gravity in evolution the animal senses exposure to a novel, non-1G, environment and adaptive mechanisms are initiated - in the short term compensation is likely confined to the peripheral sensory receptors, the brain or both. For longer exposures structural modifications of the otolith mass may also result.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN67866 , Annual International Society for Gravitational Physiology Meeting (ISGP 2019); May 26, 2019 - May 31, 2019; Nagoya; Japan
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 34
    Publikationsdatum: 2019-07-13
    Beschreibung: This paper presents the first set of experimental results from Laser Enhanced Arc-Jet Facility (LEAF-Lite) tests that were conducted shortly after the radiative LEAF-Lite system was added to the 60-MW Interaction Heating Facility at NASA Ames Research Center. Results were gathered to characterize the new radiative and combined heating capabilities as well as the convective heating resulting from the new IHF nozzle that was required for combined heating operations. Tests were ultimately conducted at several combinations of radiative and convective heating prompted by the need to understand the effect of combined heating on the Orion heatshield material prior to pursuing combined heating tests of the more complex block architecture.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN62912 , Joint Thermophysics and Heat Transfer Conference; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 35
    Publikationsdatum: 2019-07-13
    Beschreibung: The processed and prepackaged spaceflight food system is a critical human support system for manned space flights. As missions extend longer and farther from Earth over the next 20 years, strategies to stabilize the nutritional and sensory quality of food must be identified. For a mission to Mars, the space foods themselves must maintain quality for up to 5 years to align with cargo prepositioning scenarios. Optimizing the food system to achieve a 5year shelf life mitigates the risk of an inadequate food system during extended missions. Because previous attempts to determine a singular pathway to a 5year shelf life for food were unsuccessful, this investigation combines several approaches, based on science, technological advancement, and past empirical evidence, to determine their potential to extend the shelf life of the prepackaged food system for long duration missions. This study may identify food processing, packaging, and storage technologies that will be required for exploration missions and the extent that they must be implemented to achieve a 5year shelf life for the entire food system.
    Schlagwort(e): Life Sciences (General)
    Materialart: JSC-E-DAA-TN68683 , Institute of Food Technologists; Jun 02, 2019 - Jun 05, 2019; New Orleans, LA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 36
    Publikationsdatum: 2019-07-13
    Beschreibung: This is a short presentation as part of a discussion panel on feeding Mars at the Humans to Mars summit. All slides are from previous presentations but they have been updated and organized into the shorter format.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN68537 , The Humans to Mars Summit 2019; May 14, 2019 - May 16, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 37
    Publikationsdatum: 2019-07-13
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7301 , The Space Astrophysics Landscape for the 2020s and Beyond; Apr 01, 2019 - Apr 03, 2019; Potomac, MD; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 38
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-13
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN67952 , Inter-Agency Space Debris Coordination Committee (IADC); May 07, 2019 - May 10, 2019; Rome; Italy
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 39
    Publikationsdatum: 2019-07-17
    Beschreibung: NASA's GeneLab includes an open-access repository of some 200 plus omics datasets generated by biological experiments relevant to spaceflight (including simulated cosmic radiation and microgravity). In order to maximize the intelligibility of these data, particularly for users with limited bioinformatics knowledge, GeneLab is now transforming the data in the repository into actual biological and physiological knowledge of the genetic and proteomic signatures found in these samples. This processed data is being derived by establishing standard data analysis workflows vetted by 114 scientists who are members of the four GeneLab Analysis Working Groups (Animal AWG, Plant AWG, Microbe AWG, Multi-Omics AWG). AWG members from institutes spanning the U.S. and four other countries participate on a voluntary basis. The AWGs meet monthly to discuss data mining, compare results and interpretations, and test forthcoming releases of the GeneLab Data Systems (GLDS). GLDS version 3.0 has been available to the general public since October 1st 2018, and has been providing a professional state-of-the-art bioinformatics platform for everyone in the space biology community to upload their data into a space biology omics data commons, to process their data with vetted standard workflows and to compare to existing analyses. The user interface for the platform is being designed to be accessible to a broad variety of users including those with limited bioinformatics experience, including high school and college students who can use it to learn about omics data analysis and space biology. As such, Genelab will constitute a powerful general public outreach capability of NASA and the Space Biology community at large. Data mining of the GeneLab database by the AWG has already started generating very interesting findings, including reports linking specific spaceflight conditions such as radiation, microgravity or carbon dioxide levels to molecular changes seen across various species. In this presentation, we will report on the current and future objectives for GeneLab, and review recent studies reported by the various AWGs relating molecular changes observed in various animal models and tissue with microgravity, radiation, circadian rhythm, hydration and carbon dioxide conditions.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN65542 , American Association for the Advancement of Science Annual Meeting (AAAS 2019); Feb 14, 2019 - Feb 17, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 40
    Publikationsdatum: 2019-07-17
    Beschreibung: Crops for space life support systems and in particular, early supplemental food production systems must be able to fit into the confined volume of space craft or space habitats. For example, spaceflight plant chambers such as Svet, Lada, Astroculture, BPS, and Veggie provided approximately 15-40 cm of growing height for plant shoots. Six cultivars each of tomato and pepper were selected for initial study based on their advertised dwarf growth and high yields. Plants were grown in 10-cm pots with solid potting medium and controlled-release fertilizer to simulate the rooting constraints that might be faced in space environments. Lighting was provided by fluorescent lamps (~300 umol m(exp -1) s(exp -1) and a 16 h light / 8 h dark photoperiod. Cultivars were then down selected to three each for pepper (cvs. Red Skin, Pompeii, and Fruit Basket) and tomato (cvs. Red Robin, Mohamed, and Sweet n' Neat). In all cases (pepper and tomato), the plants grew to an approximate height of 20 cm and produced between 200 and 300 g fruit fresh mass per plant. In previous hydroponic studies with unrestricted root growth, Fruit Basket pepper and Red Robin tomato produced much larger plants with taller shoots. The findings suggest that high value, nutritious crops like tomato and pepper could be grown within small volumes of space habitats, but horticultural issues, such as rooting volume could be important in controlling plant size.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN63663 , International Conference on Environmental Systems - ICES 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 41
    Publikationsdatum: 2019-07-17
    Beschreibung: Gravity is an omnipresent force on Earth, and all living organisms have evolved under the influence of constant gravity. Mechanical forces generated by gravity are potent modulators of stem cell based tissue regenerative mechanisms, inducing cell fate decisions and tissue specific commitment. A novel mechanical unloading investigation assessed the formation, morphology, and gene expression of embryoid bodies (EB), a transitory cell model of early differentiation. After 15 days of spaceflight, the mechanotransduction-null EB cells showed upregulated proliferative mechanisms while differentiation cues were silenced.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN62941 , ISSCR International Symposia; Sep 26, 2019 - Sep 27, 2019; Seoul; Korea, Republic of
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 42
    Publikationsdatum: 2019-07-18
    Beschreibung: Entry, descent, and landing (EDL) has been identified as a core area of investment in NASA's Strategic Technology Investment Plan (NASA STIP). STIP lists the space technologies needed to help achieve NASA's science, technology, and exploration goals across the agency. Within the EDL core area, deployable hypersonic decelerators, also known as deployable entry vehicles (DEVs), have been identified as an area of investment, due to its potential to revolutionize payload delivery methods to Earth and other planets. These vehicles, which can deploy their heat shields or alter their shape before entry, exploit an increased and more effective drag ratio by using less mass than traditional blunt body vehicles with rigid aeroshells. DEVs like Adaptive Deployable Entry and Placement Technology (ADEPT) and Hypersonic Inflatable Aerodynamic Decelerator (HIAD) have demonstrated the capability of transporting the equivalent science payloads of blunt body rigid aeroshells, while using a significantly smaller diameter when stowed within a launch vehicle. While DEVs' increased energy dissipation for less mass is an attractive feature, their ability to contract and expand would require advancements in the current state-of-the-art guidance and control (G&C) architectures used by traditional rigid vehicles. Pterodactyl, a project funded by NASA's Space Technology Mission Directorate (STMD), aims to provide feasible integrated G&C solutions for DEVs, complete with optimized vehicle designs and packaging analyses. Structural and aerodynamic analyses for the explored control systems suggested a need for a bank angle guidance algorithm, a heritage guidance approach that has been used in many entry precision targeting vehicles, as well as an additional need for the development of a non-bank angle guidance. For this reason, Pterodactyl will consider four different G&C configurations during its design phase: i) a reaction control system for bank (sigma) control, ii) a mass movement system for angle of attack (alpha) sideslip (beta) control, iii) flaps for alpha - beta control, and iv) flaps for sigma control. To increase the applicability of each proposed integrated G&C architecture, an 11 km/s lunar return demonstration mission is selected to stress the developed technology capability. The Lifting Nano-ADEPT (LNA) vehicle is chosen as the DEV to demonstrate the integrated solutions. This paper will detail the trajectory design for a lunar return mission, using the validated bank control guidance algorithm Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) and a newly developed guidance algorithm: FNPEG Uncoupled Range Control (URC). FNPEG-URC diverges from traditional bank angle guidances by producing alpha and beta commands to thereby decouple downrange and crossrange control. This presentation will discuss the development and overall performance of FNPEG and FNPEG-URC for each of the four G&C configurations. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing site while abiding by trajectory constraints in the face of dispersions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: JSC-E-DAA-TN70528 , International Planetary Probe Workshop (IPPW); Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 43
    Publikationsdatum: 2019-07-30
    Beschreibung: Biomechanical data collection and modeling has applications to the field of human factors. Specifically, motion data can be used to determine the operational volume necessary for performing a task. The operational volume assessment can be performed in order to determine how much volume is needed to perform the task or if task performance can be contained and adequately performed within an allocated volume. Motion and external force data, along with computational modeling techniques, can be used to estimate the internal loading produced during performance of a task. Internal loading estimates can be used to determine if an adequate stimulus is generated for maintenance of musculoskeletal health and also for comparison to injury thresholds to determine injury risk during task performance.
    Schlagwort(e): Life Sciences (General)
    Materialart: GRC-E-DAA-TN70020 , Human Factors Community of Practice Webinar; Jun 18, 2019; Online
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 44
    Publikationsdatum: 2019-07-27
    Beschreibung: Several dwarf tomato and pepper varieties were evaluated under ISS-simulated growth conditions (22C, 50% RH, 1500 ppm CO2, and 300 mol m(exp -2) s(exp -1) of light for 16 h per day) with the goal of selecting those with the best growth, nutrition, and organoleptic potential for use in a pick and eat salad crop system on ISS and future exploration flights. Testing included six cultivars of tomato (Red Robin, Scarlet Sweet N Neat, Tiny Tim, Mohamed, Patio Princess, and Tumbler) and six cultivars of pepper (Red Skin, Fruit Basket, Cajun Belle, Chablis, Sweet Pickle, and Pompeii). Plants were grown to an age sufficient to produce fruit (70 to 106 days for tomato and 109 days for pepper). Tomato fruits were harvested when they showed full red color, beginning ca. 70-days age and then at weekly intervals thereafter, while peppers were grown until numerous fruits showed color and all fruits (green and colored) were harvested once at the end of the test. Plant sizes, yields, and nutritional attributes were measured and used to down-select to three cultivars for each species. In particular, we were interested in cultivars that were short (dwarf) but still produced high yields. Nutritional data included elemental (Ca, Mg, Fe, and K) composition, vitamin K, phenolics, lycopene, anthocyanin, lutein, and zeaxanthin. The three down-selected cultivars for each species were evaluated for sensory attributes, including overall acceptability, appearance, color intensity aroma, flavor and texture. The combined data were compared and given weighting factors to rank the cultivars as potential candidates for testing in space. For tomato, the ranking was 1) cv. Mohamed, 2) cv. Red Robin, and 3) cv. Sweet N Neat. For pepper, the ranking was 1) cv. Pompeii, 2) cv. Red Skin, and 3) cv. Fruit Basket. These rankings are somewhat subjective but provide a good starting point for conducting higher fidelity testing with these crops (e.g., testing with LED lighting similar to the Veggie plant unit), and ultimately conducting flight experiments.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN68404 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 45
    Publikationsdatum: 2019-07-27
    Beschreibung: On September 12th 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range (WSMR), New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, test execution, and test conclusions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN70404 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 46
    Publikationsdatum: 2019-07-27
    Beschreibung: Several cultivars of dwarf tomatoes and dwarf peppers were studied as possible candidate for space crops. Results showed the tomato cvs. Red Robin, Mohamed, and Sweet 'N' Neat produced the greatest yields, while pepper cvs. Pompeii, Red Skin, and Fruit Basket produced the greatest yields. The tomato and pepper cultivars were also analyzed by taste panels for organoleptic attributes, and all the cultivars were found to be acceptable by the taste panelists.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN70274 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 47
    Publikationsdatum: 2019-07-27
    Beschreibung: The Large Ultraviolet/Optical/Infrared (LUVOIR) Surveyor is one of four large strategic mission concept studies commissioned by NASA for the 2020 Decadal Survey in Astronomy and Astrophysics. Slated for launch to the second Lagrange point (L2) in the mid-to-late 2030s, LUVOIR seeks to directly image habitable exoplanets around sun-like stars, characterize their atmospheric and surface composition, and search for biosignatures, as well as study a large array of astrophysics goals including galaxy formation and evolution. Two observatory architectures are currently being considered which bound the trade-off between cost, risk, and scientific return: a 15-meter diameter segmented aperture primary mirror in a three-mirror anastigmat configuration, and an 8-meter diameter unobscured segmented aperture design. To achieve its science objectives, both architectures require milli-Kelvin level thermal stability over the optics, structural components, and interfaces to attain picometer wavefront RMS stability. A 270 Kelvin operational temperature was chosen to balance the ability to perform science in the near-infrared band and the desire to maintain the structure at a temperature with favorable material properties and lower contamination accumulation. This paper will focus on the system-level thermal designs of both LUVOIR observatory architectures. It will detail the various thermal control methods used in each of the major components - the optical telescope assembly, the spacecraft bus, the sunshade, and the suite of accompanying instruments - as well as provide a comprehensive overview of the analysis and justification for each design decision. It will additionally discuss any critical thermal challenges faced by the engineering team should either architecture be prioritized by the Astro2020 Decadal Survey process to proceed as the next large strategic mission for development.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN70503 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 48
    Publikationsdatum: 2019-07-27
    Beschreibung: Planetary entry vehicles employ ablative TPS materials to shield the aeroshell from entry aeroheating environments. To ensure mission success, it must be demonstrated that the heatshield system, including local features such as seams, does not fail at conditions that are suitably margined beyond those expected in flight. Furthermore, its thermal response must be predictable, with acceptable fidelity, by computational tools used in heatshield design. Mission assurance is accomplished through a combination of ground testing and material response modelling. A material's robustness to failure is verified through arcjet testing while its thermal response is predicted by analytical tools that are verified against experimental data. Due to limitations in flight-like ground testing capability and lack of validated high-fidelity computational models, qualification of heatshield materials is often achieved by piecing together evidence from multiple ground tests and analytical simulations, none of which fully bound the flight conditions and vehicle configuration. Extreme heating environments (〉2000 W/cm2 heat flux and 〉2 atm pressure), experienced during entries at Venus, Saturn and Ice Giants, further stretch the current testing and modelling capabilities for applicable TPS materials. Fully-dense Carbon Phenolic was the material of choice for these applications; however, since heritage raw materials are no longer available, future uses of re-created Carbon Phenolic will require re-qualification. To address this sustainability challenge, NASA is developing a new dual-layer material based on 3D weaving technology called Heatshield for Extreme Entry Environments (HEEET) [1]. Regardless of TPS material, extreme environments pose additional certification challenges beyond what has been typical in recent NASA missions.Scope of this presentation: This presentation will give an overview of challenges faced in verifying TPS performance at extreme heating conditions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN70580 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 49
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-24
    Beschreibung: This is a lightning talk at the inaugural SNOW meeting. The objective is to solicit input and feedback on white papers for the upcoming decadal survey.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN72537 , The Outer Planets Assessment Group (OPAG)/Subsurface Needs for Ocean Worlds Meeting (SNOW); Aug 19, 2019 - Aug 21, 2019; Boulder, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 50
    Publikationsdatum: 2019-08-24
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: GRC-E-DAA-TN71177 , International Conference on Environmental Systems (ICES); Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 51
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-16
    Beschreibung: The capability of future X-ray telescopes depends on the quality of their Point Spread Function (PSF) and the size of their field of view. Traditional designs, such as Wolter, and Wolter-Schwarzschild telescopes are stigmatic on the optical axis but their PSF degrades rapidly off-axis. At the optimal focal surface, their PSFs can be significantly improved. We present a simple optimization process for Wolter (W), Wolter-Schwarzschild (WS) and Hyperboloid-Hyperboloid (HH) telescopes that substantially improves the off-axis PSF for either narrow or wide field of view applications. In this paper, we will compare the optical performance of conventional and optimized W-, WS-, and HH-telescopes for a wide range of telescope diameters that can be used to build up future x-ray telescopes.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN70843-2 , SPIE Optics + Photonics; Aug 11, 2019 - Aug 15, 2019; San Diego, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 52
    Publikationsdatum: 2019-08-16
    Beschreibung: Supplemental safe food production has been an essential goal of NASA to meet the nutritional needs of astronauts on the International Space Station (ISS) as well as for future long duration missions to the moon and beyond. Food crops grown in space experience different environmental conditions than plants grown on Earth (i.e. microgravity and spaceflight physical sciences impacts). To test the growth methods and effects of the space environment, red romaine lettuce Lactuca sativa cv. 'Outredgeous', was grown in Veggie plant growth chambers on the ISS. Microbiological food safety of the plants grown on the ISS was determined by heterotrophic plate counts to assess total microbial load for bacteria and fungi as well as screening for specific pathogens and isolate identification. Molecular characterization was completed using Next Generation Sequencing (NGS) to provide valuable information on the taxonomic composition and community structure of the plant microbiome. Chemical analyses of plant tissue were conducted to understand spaceflight-induced changes in key elements in the space diet, phenolics, anthocyanin levels, and Oxygen radical absorbance capacity (ORAC), a measure of antioxidant capacity. Three growth tests of red romaine lettuce were completed on ISS, VEG-01A, VEG-01B, and VEG-03A. Plants were harvested using two harvest methods, either a single terminal harvest (after 33 days) or cut-and-come-again repetitive harvesting (64 days total growth). Ground controls were grown simultaneously with a delay to accommodate condition monitoring and replication. A comparison of the plant tissue returned to Earth showed leaves from the second grow-out had significantly higher bacterial counts than the preceding or subsequent growth test or any of the ground controls. Fungal counts were significantly higher on the final cut-and-come-again harvest of the third grow out. None of the potential foodborne pathogens that were screened for were detected. Bacterial and fungal isolate identification and community characterization indicated similar diversity between VEG-01A and VEG-01B growth tests, however, there appeared to be subtle differences in diversity and distribution among the three growth tests. Chemical analysis of plant tissue revealed significant variation in a few elemental data, but variation in levels of phenolics, anthocyanins, and ORAC was not significantly different. This study indicated that leafy vegetable crops could safely provide an edible supplement to astronauts' diet, and our analysis provided baseline data for continual operation of the Veggie plant growth units on ISS. This research was funded by NASA's space biology program.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN66205
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 53
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-07-10
    Beschreibung: The vestibulospinal system provides the spinal motor circuits controlling head/neck and limb movements and body posture with rapid reflex adjustments to maintain equilibrium and stability and with a continuous essential excitatory drive, called tonus, to enhance reactive responses to perturbations that force the animal off normal posture. The sensory signals to these reflex circuits originate from hair cells in the inner ear of otolith structures, namely the utricle and saccule, that transduce inertial acceleration and orientation of the head with respect to gravity and in the three orthogonally arranged semicircular canals that transduce angular head rotation. The principal vestibulospinal pathways are 1) the medial vestibulospinal tract that descends in the ventromedial funiculus and innervates inter- and motoneurons located mainly in lamina VII, VIII, and dorsomedial IX throughout the cervical segments; and 2) the lateral vestibulospinal tracts that course in the lateral to ventrolateral funiculi and are distinguished by two divisions: i) a cervical-projecting tract that overlaps many of the targets of medial vestibulospinal tract neurons including the motoneurons in ventromedial IX and also contributes to reflex control of shoulder and forelimb (arm) muscles; and ii) a lumbosacral-projecting tract that provides a rapid input to maintain stable posture and reflex control of the lower body. A striking observation in understanding the functional organization of this sensory-motor system is both that the driving sensory input can be dynamically modified by the behavioral context in which the sensation is made and that it remains able to quickly respond to an external force during self-generated head movements. The structural basis for vestibulospinal inputs to spinal motor control circuits in quadrupeds and bipeds rely in part on the animal's need for coordination between fore- and hind-limb reflex movements. Understanding the sensory-to-motor transformations in the diverse species rely on the correlations of the conserved and unique species behavior, morphology and physiologic function.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN64976
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 54
    Publikationsdatum: 2019-08-13
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: MSFC-E-DAA-TN69552 , Surface Biology Geology Community Workshop; Jun 12, 2019 - Jun 14, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 55
    Publikationsdatum: 2019-08-13
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: MSFC-E-DAA-TN69270 , 2019 CYGNSS Science Team Meeting; Jun 05, 2019 - Jun 07, 2019; Ann Arbor, MI; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 56
    Publikationsdatum: 2019-08-13
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: MSFC-E-DAA-TN69557 , Surface Biology Geology Community Workshop; Jun 12, 2019 - Jun 14, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 57
    Publikationsdatum: 2019-08-13
    Beschreibung: Orbit insertion operations that require large V maneuvers using conventional propulsive technologies are mass inefficient and challenging to package within SmallSat form factors such as the popular CubeSat. Aeroassist technologies offer an alternative approach for V maneuvers and could revolutionize the use of SmallSats for exploration missions and increase the science return while reducing costs for orbital or entry missions to Mars, Venus and return to Earth. Aeroassist refers to the use of an atmosphere to accomplish a transportation system function using techniques such as aerobraking, aerocapture, aeroentry, and aerogravity assist. Aeroassist technologies are power efficient and tolerant to the radiation and thermal environment encountered in deep space, and can be integrated around or within SmallSat geometries. This presentation will discuss various Aeroassist technologies including conventional rigid aeroshells, inflatable decelerators, mechanically deployable decelerators and other drag devices and control methods that should be considered by Small Satellite mission design teams.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN68228 , Interplanetary Small Satellite Conference; Apr 29, 2019 - Apr 30, 2019; San Luis Obispo, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 58
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN67858 , Visualization Working Group (VWG) Workshop; Apr 22, 2019 - Apr 23, 2019; Cambridge, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 59
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: The ability to predict cancer risk associated with exposure to low doses of high-LET ionizing radiation (IR) remains a challenge. Epidemiological methods lack the sensitivity and power to provide detailed risk estimates for cancer and ignore individual variance in IR sensitivity. We have hypothesized that DNA repair capacity can be used as a marker to evaluate and differentiate individual radiation sensitivity. More specifically, this work is based on the concept that the combined time-dose dependence of radiation-induced foci (RIF) of p53-binding protein 1 (53BP1) following low-LET exposure contains sufficient information to infer sensitivity to any other LET. Our hypothesis was tested in 15 different mouse strains as well as in primary human immune cells. We first approached individual ionizing radiation sensitivity in a mouse model by culturing primary skin fibroblasts extracted from 76 mice of 15 different genetic backgrounds and exposing them to HZE particles and X-rays. This work is one of the most extensive studies on the kinetics and possible genetic underpinnings of radiation-induced DNA damage and repair. Our results is in agreement with a DNA repair model we previously postulated, where nearby DNA double strand breaks (DSB) in the nucleus are brought together for more efficient repair, leading to RIF clustering. Such mechanism was evidenced by a specific dose and LET dependence of RIF numbers. Briefly, RIF quantification after low-LET X-ray exposure showed an asymptotic saturation for doses between 1 Gy and 4 Gy 4 hours post-irradiation across all 15 strains. The clustering of DSB across all strains also led to more RIF/Gy for lower LET (X-ray and 350 MeV/n Ar) than for higher LET (600 MeV/n Fe) 4 hours post-exposure. Considering the fact that the number of DSB/Gy should be independent of LET, our data suggest there are more DSB in individual RIF as the LET increases. RIF numbers for 24 and 48 hours post-exposure led to the inverse trend, with more remaining RIF/Gy for higher LET (by 600 MeV/n Fe). This result suggests cells have more difficulty resolving RIF from higher LET as they the number DSB/RIF increases. Note that for most conditions, the variance of RIF/Gy was small within individual animals of the same strain and large between strains, suggesting a strong genetics component. Furthermore, we present our preliminary data from an ongoing study on human genetic associations with IR sensitivity. To address the human variability in responses to HZE particle irradiation in a maximally comprehensive manner, we are in the process of collecting and isolating primary blood mononuclear cells from 768 healthy subjects of European descent, 18-75 years of age, 50/50 male/female distribution. We have analyzed 53BP1+ RIF formation as well as oxidative stress and cell death in primary cells from 192 subjects in response to the same HZE particles as used in mice: 600 MeV/n Fe, 350 MeV/n Ar and 350 MeV/n Si, 1.1 and 3 particles/100m2, 4 and 24 hours after irradiation. We will next complete the quantification of HZE particle-induced DNA and cellular damage in the remaining subjects and compare it to their responses to low-LET irradiation. Finally, we will perform GWAS analysis to identify human genomic associations with IR sensitivity and potential targets for biomarker development.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN64372 , ARC-E-DAA-TN64373 , 2019 NASA Human Research Program Investigators Workshop; Jan 22, 2019 - Jan 25, 2019; Galveston, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 60
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-23
    Beschreibung: This presentation is an overview of Heatshield for Extreme Entry Environment Technology (HEEET) providing the motivation, implementation (2014-2019), documentation, final assessment, and mission infusion.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN69092
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 61
    Publikationsdatum: 2019-08-17
    Beschreibung: The purpose of this NCRP commentary is to provide the current state of knowledge on the effects of ionizing radiation on the immune system and on latent herpes virus reactivation to the scientific community and government agencies. Its purpose is to better understand radiation-induced latent virus reactivation, which is possibly an underestimated consequence of ionizing radiation exposure. This activity should involve the radiation research community (academia, industry and regulatory agencies) and government agencies (NASA, DOD, CDC).
    Schlagwort(e): Life Sciences (General)
    Materialart: JSC-E-DAA-TN71505 , National Council on Radiation Protection and Measurements; Jul 26, 2019; Bethesda, MD; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 62
    Publikationsdatum: 2019-08-16
    Beschreibung: During the late summer, the author sailed to the Antarctic South Shetland Islands to survey the microorganisms living in marine (tidal pools) and freshwater (moss saturated with snow melt) environmental niches. Equipped with a microscope to take video of samples within hours of collection to capture a pristine condition, the authors found a dense and diverse ecology that included species with unique patterns of locomotion. Capturing the organism's movement expedited identification, but it also showed the dynamic way each organism's mobility fit together like a puzzle to create a complex ecosystem.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN69380-1 , AbSciCon 2019; Jun 24, 2019 - Jun 28, 2019; Bellevue, WA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 63
    Publikationsdatum: 2019-08-13
    Beschreibung: This presentation will be an introduction and overview of space crop production needs, goals, and challenges in the areas of robotics and automation for the workshop Aug. 6-7, 2019 at Kennedy Space Center. This presentation will be used to start the workshop and set the direction.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN71877 , Kennedy Space Center Autonomy and Robotics Workshop in support of Space Crop Production; Aug 06, 2019; Cocoa Beach, FL; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 64
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: Small launch vehicles are governed by the same physics as large launch vehicles of course, but due to their small size, some aspects and sensitivities become more important and others less. This paper shows semi-empirical correlations to quantify dry mass fraction for both stage and whole vehicle optimization: mass fraction due to density, mass fraction due to thrust-to-weight, and mass fraction due to size reduction. For single-stage optimizations, a stage performance requirement can be met by a locus of mass fraction vs. specific impulse. Based on the above correlations, this alone can recommend a solid or liquid rocket for a stage. Rocket designs of similar technology levels are compared, focusing on where stages become less mass-efficient as they get smaller. The Mars Ascent Vehicle is shown to exemplify a trade between a two-stage solids vehicle and a one- or two-stage liquids vehicle.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7395 , JANNAF Propulsion Meeting (JPM); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Programmatic and Industrial Base (PIB); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Airbreathing Propulsion Subcommittee (APS); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Combustion Subcommittee (CS); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Exhaust Plume and Signatures Subcommittee (EPSS); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 65
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-13
    Beschreibung: Small launch vehicles are governed by the same physics as large launch vehicles of course, but due to their small size, some aspects and sensitivities become more important and others less. This paper shows semi-empirical correlations to quantify dry mass fraction for both stage and whole vehicle optimization: mass fraction due to density, mass fraction due to thrust-to-weight, and mass fraction due to size reduction. For single-stage optimizations, a stage performance requirement can be met by a locus of mass fraction vs. specific impulse. Based on the above correlations, this alone can recommend a solid or liquid rocket for a stage. Rocket designs of similar technology levels are compared, focusing on where stages become less mass-efficient as they get smaller. The Mars Ascent Vehicle is shown to exemplify a trade between a two-stage solids vehicle and a one- or two-stage liquids vehicle.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7426 , Airbreathing Propulsion Subcommittee (APS); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Exhaust Plume and Signatures Subcommittee (EPSS); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Combustion Subcommittee (CS); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|Programmatic and Industrial Base (PIB); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States|JANNAF Propulsion Meeting (JPM); Jun 03, 2019 - Jun 07, 2019; Dayton, OH; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 66
    Publikationsdatum: 2019-08-13
    Beschreibung: No abstract available
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN65372 , Joint CSA/ESA/JAXA/NASA Increments 59 and 60 Science Symposium; Feb 12, 2019 - Feb 14, 2019; Web-Based
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 67
    Publikationsdatum: 2019-08-27
    Beschreibung: The Bi-sat Observations of the Lunar Atmosphere above Swirls (BOLAS) is a NASA planetary CubeSat mission concept in low lunar orbit. The BOLAS lower CubeSat is at a 90 km altitude above the lunar surface during spiraling down from the Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) to the Moon. Without phase change material (PCM), the worst hot case temperature prediction for the Command and Data Handling (C&DH) exceeds the 61C maximum operating limit, and those for the Iris solid state power amplifier (SSPA) and transponder exceed the 50C maximum operating limit. Miniature n-Tricosane PCM packs on the Iris SSPA and transponder, and miniature n-Hexacosane PCM packs on the C&DH are used to store thermal energy in sunlight and release it in the eclipse. With paraffin PCM, all the temperatures are within the maximum operating limits.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN66521 , 2019 AIAA Propulsion and Energy Forum; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 68
    Publikationsdatum: 2019-08-27
    Beschreibung: Microporous black polytetrafluoroethylene (PTFE) flexible thin sheets are successfully flown as solar diffusers on NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft. They serve as multilayer insulation (MLI) blanket outer covers for the arm of the Touch And Go Sample Acquisition Mechanism (TAGSAM), the sunshade of the OSIRIS-REx Camera Suite (OCAMS) PolyCam imager, and the motor riser of the OCAMS SamCam imager. Additionally, microporous white PTFE flexible thin sheets are successfully flown as a MLI blanket outer cover with a low ratio of absorptance to emittance for the Regolith X-ray Imaging Spectrometer (REXIS). For ground testing, microporous black and white PTFE flexible thin sheets were successfully used as optical targets of the Touch And Go Camera System (TAGCAMS) NavCam imagers in the flight system thermal vacuum test.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN66475 , AIAA Propulsion and Energy Forum and Exposition; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 69
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-30
    Beschreibung: This course will cover an overview of the Entry Systems and Technology Division (TS) at NASA Ames Research Center (ARC) and descriptions of the extensive arc jet testing complex managed within the branch. After a quick look at the Earth and Planetary Entry projects supported by TS, along with the inventions and software developed within the division, a description of the entry environments to which thermal protection systems (TPS) are exposed will be discussed. The question of "How do we insure TPS survival?" will be answered with descriptions of the various test facilities across the agency and beyond and their applicability. The Ames Arc Jet Complex will then be described, starting with how an arc heater works, adding in the associated infrastructure required to run an arc heater, and the capabilities of each of the test tunnels. Finally, examples of TPS test articles will round out the course.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN72018 , Thermal & Fluids Analysis Workshop (TFAWS) 2019; Aug 26, 2019 - Aug 30, 2019; Newport News, VA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 70
    Publikationsdatum: 2019-08-30
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: MSFC-E-DAA-TN72146 , SPIE Optics + Photonics ; Aug 11, 2019 - Aug 15, 2019; San Diego, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 71
    Publikationsdatum: 2019-08-28
    Beschreibung: A fast-tracked multifaceted approach that integrated NASA, industry, and academia was successfully executed to advance the novel concept of radiation pressure by means of a thin diffractive film. This pioneering new approach to light sailing was found to offer advantages over reflective sails - especially for missions that include close orbits or a close fly-by of the sun.The research effort included experiments, numerical modeling, and an "incubator meeting" that brought together over 35 researchers and stakeholders to uncover some of the most feasible means of advancing both the TRL and mission capabilities of diffractive sailcraft. One of the outcomes of the incubator meeting was to focus this Phase I research on a solar polar orbiter mission for heliophysics experiments. NASA decadal surveys and other reports have repeatedly pointed out that scientists have only a paucity of information about the sun beyond the ecliptic plane. The TRL has been advanced from 1 to 3 during this Phase I research with the help of experiments that have verified the predicted force and mechanical control afforded by diffractive sails. Knowledge gained from the experiments and numerical models was not only disseminated in peer reviewed publications and conferences, but it also resulted in a patent disclosure.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: HQ-E-DAA-TN67924
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 72
    Publikationsdatum: 2019-08-28
    Beschreibung: NASA PROGRAMMATIC CHALLENGE: Locate hidden water ice in the darkest, coldest places on the moon using dozens of simple, autonomous robots. CONCEPTUAL SOLUTION: Use multiple small, autonomous bots to search for hidden water ice in permanently shadowed regions of the surface of the moon. Bots will locate and tag hidden water ice for follow up missions.Technical Basis for proposed solution: use of emerging and maturing technologies - MEMS, Cubesats, Sensor nets, integrated devices will minimize cost risk and maximize return. Benefits: Cricket will enable human exploration through in-situ resource utilization: Cricket will demonstrate a distributed constellation to achieve a key NASA goal of novel uses of commercially available technologies. Cricket will reignite public interest in lunar exploration through a sustained human, and robotic, presence on the moon. Technical Approach: The cricket constellation has three members: the "queen"; the "hive" and the "cricket" foragers. The queen transports the hive an its crickets to the moon. The hive lands on the surface and disperses the crickets (there may be more than one species of cricket). The crickets then use the hive as a communications and recharging hub. Each cricket hosts algorithms that allow it to explore its surroundings and monitor its power state - something like a lunar Roomba - and return for recharging. If they are lost due to power or surface condition problems, replacements can carry out the hive tasks. The two most successful types of bio-inspired algorithms (BIAs) are evolutionary algorithms and swarm-based algorithms which are inspired by the natural evolution and collective behavior in animals.The evolution of the idea is summarized in Table 1 and Figure 1. NIAC context: This system integrates key elements from other NIAC efforts; it uses them and extends them into a meaningful whole
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: HQ-E-DAA-TN65120
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 73
    Publikationsdatum: 2019-08-31
    Beschreibung: Toughened Unipiece Fibrous Reinforced Oxidation-resistant Composite (TUFROC) is a tiled Thermal Protection System (TPS) suitable for reusable entry heating at 2900+ F and with single use potential up to at least 3600 F. TUFROC was initially developed for NASA's X-37 project and ultimately resulted in use on the Air Force X-37B as the wing leading edge (WLE) of the vehicle. TUFROC has similar high temperature capability compared with carbon/carbon, but is manufactured at an order of magnitude lower cost & faster schedule.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN71391 , 2019 Hypersonic Technology & Systems Conference (HTSC); Aug 26, 2019 - Aug 29, 2019; Springfield, VA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 74
    Publikationsdatum: 2019-08-28
    Beschreibung: The Steam Propelled Autonomous Retrieval Robot (SPARROW) for Ocean Worlds was a Phase I mission concept study funded under the NASA NIAC program. This report represents the findings of that study and recommendations for future work. SPARROW, envisioned as a soccer ball-sized payload to a primary lander mission, is a propulsively hopping robot for the exploration of Europa's rugged, icy surface. A multi-thruster, passively gimballed robot within a protective, spherical shell, SPARROW is able to freely rotate, self-right, and tumble over chaotic terrains. Europa's abundant surface ice would be harvested as an in situ propellant source. The principal objective of SPARROW is to increase the science return of a Europa landed asset by enabling access to distal, spatially distributed geologic units. The design of mobility systems for Europa is challenging, due in part to its almost entirely unconstrained surface topography and strength. Images returned by Voyager and Galileo yielded resolutions on the order of hundreds of meters per pixel, with localized regions reaching 6 meters per pixelstill far larger than a typical rover. A key benefit of SPARROW's hopping, impact-tolerant design, is that it eliminates the need for a priori information regarding terrain topography and surface strength; no surface reaction forces are required for motion. In this context, SPARROW is believed to be entirely terrain agnostic. In this report we detail the results of three study objectives: i) to quantify the energy required to collect surface ice, change its phase, and maintain propellant temperature, ii) to identify control and estimation strategies that enable SPARROW to successfully reach, and return from, regions of scientific interest, and iii) to characterize the impact of SPARROW's range on likely science return. Five water-based propellant architectures are presented alongside their mass, power, and volume requirements. Monte Carlo simulations of SPARROW hopping and tumbling over 1 km of glacial ice are summarized, characterizing SPARROW's sensitivity to uncertainty in: initial pose, thrust profile, and vehicle-terrain interaction. A science traceability matrix is presented, which details the effect of sortie range on three science goals: constraining Europa's evolutionary morphology, assessing sub-surface ocean habitability, and searching for life and/or biosignatures.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: HQ-E-DAA-TN67928
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 75
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-09-18
    Beschreibung: The Gateway Program (GW) System Requirements Document (SRD) is approved for the public domain to support NASA's Lunar Gateway Program. The main intent of these documents is to define top level functional and performance requirements for the systems that facilitate cooperative deep space exploration endeavors and execute lunar missions. The SRD defines NASA requirements for the procurement and development of the GW mission. The Gateway Program is a collaboration of US government, international partners and commercial providers. The Gateway SRD are expected to be used by all parties in development of the Gateway Program elements. For effective development and integration of the Gateway vehicle, all involved entities must use, and have awareness of, these high level program requirements to flow down to their respective developmental responsibilities so all Gateway elements will be operable as an entity. The Gateway SRD represents the requirements that are necessary for the Gateway mission. NASA has determined there is benefit to U.S. and foreign spacecraft developers to approve this information for the public domain because all the parties/participants need a common understanding of the requirements and the parameters under which they operate (size, shape, form fit and function). This will allow systems built by various nations and commercial entities to attach and function together properly and safely in the hostile environment of space.The Gateway SRD provides information regarding the current requirements for Gateway elements. Specifically, the Gateway SRD provide an overview of expected features and capabilities and requirements for safe integration of elements within the Gateway program. The SRD contains top-level functional and performance descriptions of the Gateway and definition of the interfaces limited to the scope necessary for integration purposes between Gateway elements. The documents do NOT contain detailed design information or any specifics of hardware or software implementation. The data approved for release does not include: manufacturing drawings, detailed interface control and design data, software code, detailed CAD models, structural or thermal models of the system, avionics or avionics box, board, or cable manufacturing information.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: DSG-RQMT-001 , JSC-E-DAA-TN71173
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 76
    Publikationsdatum: 2019-09-12
    Beschreibung: In this paper, we investigate the static stability of a deployable entry vehicle called the Lifting Nano-ADEPT and design a control system to follow bank angle, angle-of-attack, and sideslip guidance commands. The control design, based on linear quadratic regulator optimal techniques, utilizes aerodynamic control surfaces to track angle-of-attack, sideslip angle, and bank angle commands. We demonstrate, using a nonlinear simulation environment, that the controller is able to accurately track step commands that may come from a guidance algorithm.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: AAS 19-919 , ARC-E-DAA-TN73019 , AAS/AIAA Astrodynamics Specialist Conference; Aug 11, 2019 - Aug 15, 2019; Portland, ME; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 77
    Publikationsdatum: 2019-09-10
    Beschreibung: NASA GeneLab is an open-access repository for omics datasets generated by biological experiments conducted in space or ground experiments relevant to spaceflight (e.g. simulated cosmic radiation, simulated microgravity, bed rest studies). The GeneLab Data Systems (GLDS) version 4.0 will be available on October 1st 2019, and will provide a state-of-the-art bioinformatics platform for the space biology and radiation communities to upload their data into an omics data commons, to process their data with vetted standard workflows and to compare with existing analyses. Started in 2015 as a repository designed to archive omics data from space experiments, GeneLab has expanded its scope to all ionizing radiation omics experiments conducted on the ground and has put considerable effort in providing carefully characterized radiation metadata on all datasets. GeneLab is also providing processed data derived from the raw data covering a large spectrum of omics (genome, epigenome, transcriptome, epitranscriptome, proteome, metabolome) to help users explore important questions: 1) Which genes or proteins are expressed differently in space for various living organisms? 2) What specific DNA mutations or epigenetic changes happen in space or after exposure to ionizing radiation? and 3) How does genetics affect these responses? Processed data available on GeneLab are derived by standard data analysis workflows vetted by hundreds of scientists who volunteered to join one of the four GeneLab Analysis Working Groups (Animal AWG, Plant AWG, Microbe AWG, Multi-Omics AWG). In this presentation, we will discuss how to bridge the gap between irradiation studies performed on earth and biological experiments conducted in space since the early 1990's. We will discuss how radiation dosimetry was estimated for datasets derived from samples collected during the Space Shuttle era on the International Space Station and on other orbiting platforms. Finally, we will address future strategies regarding dose monitoring in future missions into space, inter-agency efforts to unify data under one umbrella, and knowledge dissemination across the radiation research community and the space biology community.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN72713 , Workshop on Radiation Monitoring on the ISS; Sep 03, 2019 - Sep 05, 2019; Athens; Greece
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 78
    Publikationsdatum: 2019-09-06
    Beschreibung: Maintaining the cabin atmospheres pressure, composition, and quality within specified parameters is a necessity for successful crewed space exploration missions. A properly maintained environment minimizes health impacts on the occupants and maximizes their comfort. The challenge is to accomplish this outcome economically. The insight gained during the International Space Stations (ISS) operational lifetime is driving toward more challenging cabin atmospheric quality standards for future exploration missions. At the same time, the metabolic loads are increasing to accommodate a broader crew body size range and more rigorous exercise protocols to mitigate health effects associated with long duration microgravity exposure. Compounding this situation is new process equipment for handling trash and waste that may vent contaminants into the cabin. The limits placed on the cabin atmospheric quality parameters combined with the contaminant load define the design space for the atmosphere revitalization (AR) subsystem technologies to be deployed aboard the spacecraft. The impacts of changes to cabin atmospheric quality standards and contamination loads are evaluated and implications to future crewed exploration missions are explored.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7378 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 79
    Publikationsdatum: 2019-10-31
    Beschreibung: Due to the high number of systems in a space mission architecture and to their complex interactions, identifying risk and critical operational dependencies is not obvious. Traditional systems engineering methodology and risk assessment does not capture the impact of interactions between systems nor the cascading effects of disruptions. Based on these considerations, the Systems Operational Dependency Analysis methodology was developed for use by systems analysts and decision makers. This methodology utilizes a parametric model of interdependencies between systems to quantify the direct and indirect impact of system disruptions on other systems, as well as identify root causes. The results are effective at providing decision support for prioritizing technology investment based on risk reduction associated with potential system disruptions. Expanding on research presented at IAC 2018 and based on a collaboration with NASA Marshall Space Flight Center, this paper applies the Systems Operational Dependency Analysis methodology to NASA Lunar Gateway in collaboration with NASAs lunar exploration plans. The paper presents a hierarchical representation of the interdependencies between a Gateway habitats systems and subsystems, demonstrates quantification of the impact of disruption, and assesses the criticality of the constituent systems and subsystems.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: MSFC-E-DAA-TN74200 , International Astronautical Congress (IAC) 2019; Oct 21, 2019 - Oct 25, 2019; Washington, D.C.; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 80
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-08-10
    Beschreibung: On September 12th 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for Nano-ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range, New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, hardware development campaign, test execution, and test conclusions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN68914 , AIAA Aviation and Aeronautics Forum (Aviation 2019); Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 81
    Publikationsdatum: 2019-10-26
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN74548 , International Astronautical Congress 2019; Oct 21, 2019 - Oct 25, 2019; Washington, D.C.; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 82
    Publikationsdatum: 2019-10-26
    Beschreibung: Apollo was designed to carry astronauts safely back from the Moon at return speeds exceeding 11 km/s and requireddevelopment of a new ablative thermal protection system (TPS) to protect the capsule from entry heating. Mercuryand Gemini, that preceded Apollo, were focused on Earth orbiting system demonstration and lessons learned fromthem were used in Apollo. The ablative material and associated system development for Lunar return conditionsrequired considerable ground and flight testing. Mars Viking Lander missions required a new lighter weight ablatoras entry heating was benign compared to Apollo. Pioneer-Venus and Galileo Probe missions required a new and morecapable ablator than Apollo. After two decades, Mars Pathfinder followed by Mars Exploration Rover missions,smaller than Viking but more demanding, were able to use Viking ablative TPS. At the same time, advances in manufacturing and materials technology led to development of innovative lightweight ablators. These new ablators enabled Stardust and Genesis Sample Return Missions. Around the turn of this century, NASA decided on a scaled-upversion of the Apollo capsule for human exploration of Moon and Mars and the ablative heat shield to protect the CrewExploration Vehicle ended up being the Apollo ablative TPS. The Artemis 1 mission is currently fitted with tiledsystem, different than Orion EFT-1 but with the Apollo ablative material as a result of lessons learned. NASA iscurrently planning on sample return missions from Mars, and this will require robust ablative TPS that can providehigher reliability than any other past mission. There are still unexplored high scientific value destinations in the solarsystem. In situ exploration of Uranus, Neptune, Saturn and sample return missions with return speed much higher thanStardust will require ablators capable of withstanding extreme entry that are also efficient. New ablative TPS havebeen developed in anticipation of these future missions. This paper is intended to tell the story of these ablators,illustrated through examples. We see the use of flight proven ablators was sometimes a risky proposition and newablators perceived to be higher risk have proved otherwise. The history of ablators illustrates the challenges eachmission had to address, either through the use of flight proven or new ablative TPS, to be successful.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN74395 , International Astronautical Congress; Oct 21, 2019 - Oct 25, 2019; Washington, D. C.; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 83
    Publikationsdatum: 2019-10-25
    Beschreibung: Molecular biosignatures are key targets for current, proposed, and future life detection missions. With the high accuracy and low limit of detection (LOD) that new and future instruments will require, decontamination of life detection hardware is necessary to prevent false positives. Lipids are a molecular biosignature of interest, as they are ubiquitous to all life as we know it, can survive unaltered in the geologic record for longer than any other biomolecule (i.e. billions of years), and form through both biotic and abiotic processes. Lipids display origin-diagnostic molecular patterns that can reveal biotic or abiotic synthesis, so finding them and ascertaining their molecular features is important for potentially detecting evidence of life elsewhere. Traditional methods of decontamination, or contamination control (CC), primarily clean hardware through fabrication in sterile (cleanroom) environments, killing microbes, and removing/flushing contaminants off instrument and spacecraft components. However, research suggests that some standard cleaning methods are either unlikely to remove lipid contaminants or are incompatible with life detection instrument materials. To solve this problem, I propose to find, test, and verify a decontamination method that thoroughly cleans instruments by destroying lipid molecules, but is simultaneously compatible with major materials used in these instruments. I will study the effects of traditional CC methods (including Dry Heat Microbial Reduction and Vapor phase Hydrogen Peroxide) and experimental CC methods (Electron Beam Irradiation) on lipid molecules for application to life detection instrumentation. I will then develop a CC plan for a novel lipid detector (ExCALiBR, Extractor for Chemical Analysis of Lipid Biomarkers in Regolith) searching for lipids in either soil or icy world scenarios. This plan will uphold planetary protection regulation requirements and validate experimental analyses of in-situ life detection tests.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN72311 , Young Scientist Program Night of Science; Aug 15, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 84
    Publikationsdatum: 2019-10-25
    Beschreibung: When Apollo was designed to carry astronauts safely back from the Moon, at return speeds exceeding 11 km/s, it required development of a new lightweight ablative material to protect the capsule and crew from the intense heat of entry. Soon after the Apollo program, successful Mars Viking Lander missions employed a different and much lighter ablator in more benign entry conditions. On the other hand, the Pioneer-Venus and Galileo Probe missions that followed required yet another ablative system, to manage the extreme heating at those destinations, which was like flying a ballistic missile nose tip into a thermonuclear explosion. NASA had to invent a new heat-shield concept based on the rocket nozzle and ballistic missile ablative materials. In the mid 1990's, as the Science focus returned to Mars, advances in manufacturing, testing and materials technology led to innovative lightweight ablators that enabled comet and asteroid sample return missions and facilitated large lander missions such as MSL and Mars 2020. NASA's current plans for robotic and human exploration of the Moon, Mars and beyond introduce different constraints and new expectations for ablators. Human missions to Moon and Mars, sample return missions from Mars, and exploration of Uranus and Neptune, the two planets we are yet to explore, will require ablators that can withstand extreme environments, with verifiable robustness, and with raw materials and manufacturing approaches that are sustainable in the longer term. This talk will review the history of ablators as well as current ablative TPS development that addresses the requirements for future missions to Moon, Mars and beyond.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN66988 , International Astronautical Congress; Oct 21, 2019 - Oct 25, 2019; Washington, D. C. ; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 85
    Publikationsdatum: 2019-10-25
    Beschreibung: The upcoming Lunar IceCube (LIC) mission will deliver a 6U CubeSat to a low lunar orbit via a ride-share opportunity during NASAs Artemis 1 mission. This presents a challenging trajectory design scenario, as the vast change in energy required to transfer from the initial deployment state to the destination orbit is compounded by the limitations of the LICs low-thrust engine. This investigation addresses these challenges by developing a trajectory design framework that utilizes dynamical structures available in the Bicircular Restricted Four-Body Problem (BCR4BP) along with a robust direct collocation algorithm. Maps are created that expedite the selection of invariant manifold paths from a periodic staging orbit in the BCR4BP that offer favorable connections between the LIC transfer phases. Initial guesses assembled from these maps are passed to a direct collocation algorithm that corrects them in the BCR4BP while including the variable low-thrust acceleration of the spacecraft engine. Results indicate that the ordered motion provided by the BCR4BP and the robustness of direct collocation combine to offer an efficient and adaptable framework for designing a baseline trajectory for the LIC mission.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN73884-2 , International Astronautical Congress; Oct 21, 2019 - Oct 25, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 86
    Publikationsdatum: 2019-10-25
    Beschreibung: The upcoming Lunar IceCube (LIC) mission will deliver a 6U CubeSat to a low lunar orbit via a ride-share opportunity during NASAs Artemis 1 mission. This presents a challenging trajectory design scenario, as the vast change in energy required to transfer from the initial deployment state to the destination orbit is compounded by the limitations of the LICs low-thrust engine. This investigation addresses these challenges by developing a trajectory design framework that utilizes dynamical structures available in the Bicircular Restricted Four-Body Problem (BCR4BP) along with a robust direct collocation algorithm. Maps are created that expedite the selection of invariant manifold paths from a periodic staging orbit in the BCR4BP that offer favorable connections between the LIC transfer phases. Initial guesses assembled from these maps are passed to a direct collocation algorithm that corrects them in the BCR4BP while including the variable low-thrust acceleration of the spacecraft engine. Results indicate that the ordered motion provided by the BCR4BP and the robustness of direct collocation combine to offer an efficient and adaptable framework for designing a baseline trajectory for the LIC mission.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN73884-1 , International Astronautical Congress; Oct 21, 2019 - Oct 25, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 87
    Publikationsdatum: 2019-10-25
    Beschreibung: Analytic expressions for spacecraft attitude and rate estimation performance of an attitude estimation filter in terms of sensor specifications are useful tools for spacecraft design. Farrenkopf (1978) famously found analytic expressions for steady-state pre-update and post-update attitude and gyro bias estimate error variances for an attitude estimation filter for a single-axis spacecraft with a Rate Output Gyro (ROG). Markley and Reynolds (2000) extended the analysis for a Rate-Integrating Gyro (RIG) with angle white noise. These expressions allow for the rapid evaluation of system performance during preliminary mission design phases. One contribution of this paper is the analytic calculation of the steady-state pre-update and post-update angular rate estimate uncertainty for both the ROG and RIG cases. The primary contribution of this paper is the extension of the results for both the ROG and the RIG cases to the situation of an attitude sensor outage. This situation arises frequently in practice; for example when a star sensors field of view is occluded, when a star sensors readings are unreliable during a thruster burn that vibrates the spacecraft, or during star sensor outages due to radiation upsets. Analytic expressions for the attitude estimate uncertainty, gyro bias estimate uncertainty, and angular rate estimate uncertainty are given in terms of the attitude sensor outage interval, the star tracker measurement noise, and gyro noise parameters. Validity of the analytic results is demonstrated via Monte Carlo simulation.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GSFC-E-DAA-TN74144-2 , International Astronautical Congress; Oct 21, 2019 - Oct 25, 2019; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 88
    Publikationsdatum: 2019-10-24
    Beschreibung: Missions to the surface of Venus have had limitedlife due to the extreme environmental conditions. Theshort life has limited the science that is achievable,and there are gaps in some science, such asseismology, which is enabled by long life. This worksummarizes technical advances that are preparing usfor long-duration (weeks to months) Venus surfacemissions.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: GRC-E-DAA-TN72962 , EPSC-DPS (Europlanet Society and AAS Division for Planetary Sciences) Joint Meeting 2019; Sep 15, 2019 - Sep 20, 2019; Geneva; Switzerland
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 89
    Publikationsdatum: 2019-09-21
    Beschreibung: On October 2016, a capsule known as Schiaparelli, part of the European Space Agency (ESA) ExoMars mission, entered the Martian atmosphere. Measurements taken during the Schiaparelli descent will be used to validate computational models used to design the thermal protection system (TPS) of future Mars missions. One of the unique features of Schiaparelli entry was the possibility of a major dust storm occurring during the entry. Major dust storms are unpredictable but more likely during the Northern Autumn timeframe. In 2001, for example, regional dust storms merged into a global dust storm that blanketed much of the planet. Even though Schiaparelli did not enter during a major dust storm, future Mars missions will have to account for the possibility of dust erosion (depending on the time of year) when estimating the thickness of the TPS. Because weight is always a critical factor in designing entry vehicles, accurate assessment of dust erosion is necessary to avoid over-design of the TPS. This study will present computational results of heatshield erosion due to dust particle impacts on the Schiaparelli capsule if it had encountered a dust storm during entry.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: ARC-E-DAA-TN70170 , Ablation Workshop; Sep 16, 2019 - Sep 17, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 90
    facet.materialart.
    Unbekannt
    In:  CASI
    Publikationsdatum: 2019-09-10
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: MSFC-E-DAA-TN71879 , Hinode-13/IPELS 2019 Science Working Group Meeting; Sep 02, 2019 - Sep 06, 2019; Tokyo; Japan
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 91
    Publikationsdatum: 2019-09-07
    Beschreibung: No abstract available
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7589 , AIAA Propulsion Energy Forum; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 92
    Publikationsdatum: 2019-09-07
    Beschreibung: A solid propulsion system design is being considered for a conceptual Mars Ascent Vehicle (MAV) as part of a potential robotic Mars Sample Return campaign. A Preliminary Architecture Assessment for a MAV is being conducted at Marshall Space Flight Center. Experts from all relevant areas are involved in a rapid design and analysis cycle to define a MAV vehicle utilizing solid propulsion. The design presented here is the solid motor propulsion concept result of the study. Whereas solid motors have been used on Mars missions in the past during descent, none have been required to reside on the surface for a period of time prior to functioning. This difference will expose the MAV to relatively extreme temperatures. Other challenges exist in designing a solid propulsion system for MAV including performance interactions with other vehicle inert masses and minimizing orbit dispersions. These considerations were examined and a preliminary CAD model of the motors was created. Along with additional pertinent inputs from other disciplines, a solid propulsion vehicle concept for the MAV is described.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7535 , AIAA Propulsion and Energy Forum; Aug 19, 2019 - Aug 22, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 93
    Publikationsdatum: 2019-09-06
    Beschreibung: The many known health risks currently associated with space travel include increased risk of cardiovascular disease, cancer, central nervous system related diseases, muscle degeneration, and changes with host-gut microbiome interactions that can have profound impact with these and other health risks. The majority of the risk from space travel stem of the two components of the space environment which are microgravity and radiation. Two specific systemic effects have been uncovered by us to impact the body as a whole due to the space environment. One factor is related from our earlier work (Beheshti et al, PLOS One, 2018), we predicted that there is a systemic component of the host that causes general increased health risks due to spaceflight driven by a circulating microRNA (miRNA) signature consisting of 13 miRNAs that directly regulates both p53 and TGF1. MiRNAs are small non-coding RNA molecules with a negative and post-transcriptional regulation on gene expression) are increasingly recognized as major systemic regulators of responses to stressors, including microgravity, oxidative stress, and DNA damage. In addition, due to the size and stability of miRNAs, it is known that miRNAs can circulate throughout the body and have been found in the majority of the bodily fluids including blood, urine, saliva, and tears. Here, we start to dissect the actual impact of this miRNA signature on both the radiation and microgravity components and prove that this miRNA signature actually exists in the circulation of a host. The other systemic factor we uncovered was the impact the mitochondria on the whole body due to spaceflight. We hypothesize that spaceflight may promote a physiologic response driven by systemic mitochondria pathways leading to metabolic disorder stemming from the liver and directly impacting other organs and tissues. A systems biology method was implemented utilizing GeneLab datasets that involved in vitro experiments performed at the low Earth orbit, in vivo experiments involving mice flown to space, and finally human physiological data from astronauts. A comprehensive multi-omics approach was implemented which involved correlating transcriptomic analysis with proteomics, metabolomics, and methylation analysis. This approach led us to confirm our hypothesis that a systemic mitochondrial driven response is responsible for increasing potential health risk and is conserved from the in vitro studies, to the in vivo studies, and finally confirmed in astronauts.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN72640
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 94
    Publikationsdatum: 2019-09-05
    Beschreibung: The Near Earth Asteroid Scout flight mission is set to launch on the maiden voyage of the Space Launch System as a secondary payload. The spacecraft will be jettisoned in cis-lunar space and embark on an ambitious 2.5 year mission to image an asteroid. The spacecraft is uniquely equipped with an 85m2 solar sail as the main propulsion system. The monolithic sail system is designed to package within a 6U volume for launch and then deploy during flight. The NEA Scout team has presented in the past to the International Symposium on Solar Sailing topics related to the engineering development unit and design efforts to achieve flight hardware build. This paper will focus on the lessons learned from building and testing the NEA Scout flight system. Focus will be on the mechanical, software, and electrical interfaces as well as preparation for subsystem environmental tests, including thermal vacuum. Due to the unique design of the spacecraft, the solar sail subsystem was required to be located in the center of the spacecraft. This requirement lead to design challenges such as designing and accommodating critical cable harnesses to run through the center of the sail subsystem, packaging and deployment design of the sail subsystem, and integrated testing efforts through an avionics test bed to verify and validate a complete system architecture.
    Schlagwort(e): Spacecraft Design, Testing and Performance
    Materialart: M19-7531 , International Symposium on Solar Sailing (ISSS 2019); Jul 30, 2019 - Aug 02, 2019; Aachen; Germany
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 95
    Publikationsdatum: 2019-11-28
    Beschreibung: Space crop production will be important in future long duration exploration missions to supplement the packaged diet with fresh bioactive nutrients. Plant care and the addition of fresh veggies to the diet may also have a role in astronaut well-being. Pick-and-eat salad crops are the best candidates for this near-term supplementation since they require minimal processing or preparation to add to meals. While light quality can strongly influence plant responses on Earth, the impacts of light quality on plant growth and composition in spaceflight remain unclear. The VEG-04 experiment uses two Veggie plant growth chambers on the International Space Station to simultaneously test different red: blue light ratios on the growth of Mizuna mustard, a leafy green salad crop. In addition to plant health and yield, the composition of key nutrients is assessed. Astronauts conduct on-board organoleptic evaluation of the fresh produce. Microbial food safety of returned produce is examined, and a Hazard Analysis Critical Control Point (HACCP) plan has been developed for this crop. VEG-04 consists of two experiments, one lasting 28 days with a single harvest, and the second lasting 56 days, with three cut-and-come-again harvests. These different scenarios provide an opportunity to test two production concepts, examine different fertilizers, monitor microbial changes over time for this crop, and assess potential impacts of interacting with plants on crew behavioral health and performance in spaceflight operations. In ground testing, plant growth was not significantly different across the different light treatments, however nutrient composition did differ significantly. Flight test results will be compared with ground data. This research was co-funded by NASA's Human Research Program and Space Biology in the ILSRA 2015 NRA call.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN75352 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 96
    Publikationsdatum: 2019-11-28
    Beschreibung: The impact of spaceflight on immune function is undoubtedly a critical focus in the area of space biology and human health research. Heat shock proteins (Hsp) are an evolutionarily conserved family of proteins that are expressed in response to cellular and physiological stressors, experienced during radiation exposure, confinement, circadian rhythm disruption, and altered gravity (hypergravity experienced at launch/landing and microgravity experienced in-flight). In particular, Hsp70 aids in the folding of proteins, facilitates the movement of proteins across the membranes during signal transductions and can stimulate innate immunity. Since Hsp70 is induced during cellular stress, and can act as a stimulator for innate immunity, we sought to address how a loss of Hsp70 affects immunity, under the stress-inducing model of acute and chronic hypergravity. Moreover, the effects of gravity as a continuum on the induction of Hsps and key immune genes were also assessed to determine if increased cellular stress, via increased gravity (g)-force, contributes to immune dysfunctions. For this, wildtype (W1118) and Hsp70 deficient (Hsp70null) Drosophila melanogaster were subjected to simulated hypergravity at increasing levels of g-force (1.2g, 3g, and 5g) for acute (1hr) and chronic (7-day) timepoints and were compared to 0g 'non-hypergravity' controls. Following simulation, whole bodies were sex-segregated, RNA was isolated and quantitative (q)PCR was performed to determine differential immune gene expression profiles. Further, functional output of hemocytes were assessed by a phagocytosis assay. Collectively, these studies evaluated the effects of Hsp70 in the context of immunity during acute and chronic hypergravity. Indeed, relevance for this work can directly translate to acute effects of launch/landing gravitational forces upon liftoff (~1.7g) and entry (~3.4g) that astronauts experience. In addition, the effects of chronic cellular stress is directly relevant to the immune health of astronauts on long duration missions, as well. Thus, as we approach the goal of returning to the Moon and landing the first humans on Mars, an evaluation of gravity as a continuum and the stress-inducing effects of altered gravity experienced during spaceflight on astronaut immunity and health are necessary.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN75613 , American Society for Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 97
    Publikationsdatum: 2019-11-28
    Beschreibung: Extra-terrestrial colonization is of growing interest to space agencies and private entities, emphasizing the importance of research on reproduction and development in the absence of Earth's 1G. Maternal stressors can modify offspring development, exerting significant lifespan and crossgenerational changes through prenatal programming. The space environment is stressful, therefore exposure to altered gravity during pregnancy may impact later life outcomes in offspring. In ground-based studies, we exposed pregnant rats to continuous +G (above Earth gravity), and observed overweight and elevated anxiety in adult male (but not female) offspring, common phenotypes associated with prenatal maternal stress. Here we hypothesize that exposure to increased gravity during pregnancy elicits changes in the expression of stress-related genes in placenta that may mediate emergence of later life outcomes. While the placenta transports maternal factors to the fetus and produces endogenous fetal hormones, stress-induced changes at the placental-uterine interface may also alter communication between mother and fetus, facilitating prenatal transmission of unfavorable later life outcomes and cross-generational epigenetic alterations. Maternal stress elevates maternal glucocorticoids however placental 11b-hydroxysteroid dehydrogenase type 2 (HSD11B2) buffers fetal exposure by converting cortisol/corticosterone into inactive metabolites. Maternal stress during pregnancy down-regulates this enzyme and can induce epigenetic changes in placental and fetal tissues accounting for heightened adult HPA reactivity. Past studies have shown a placenta-specific increase in DNA methyltransferase (DNMT3a) mRNA in stressed mothers, an effect with implications for genome-wide epigenetic changes that may account for diverse phenotypic outcomes following maternal stress. Here we exposed groups of pregnant rats to one of five gravity loads (1, 1.5, 1.75 and 2G) and analyzed placental samples during late gestation. We predicted a systematic dose-response relationship between gravity load and the expression of the HSD11B2 and DNMT3 genes, thereby linking maternal exposure to altered gravity during pregancy with maternal stress.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN75635 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 98
    Publikationsdatum: 2019-11-28
    Beschreibung: Spaceflight has several detrimental effects on the physiology of astronauts, many of which are recapitulated in rodent models. We analyzed liver transcriptomic and proteomic data from three mouse spaceflight experiments flown aboard the International Space Station (Rodent Research-1 NASA (RR-1 NASA), Rodent Research-1 CASIS (RR-1 CASIS), Rodent Research-3 (RR-3)), and one mouse experiment flown on the Space Shuttle (Commercial Biomedical Testing Module-3 (CBTM-3) aboard STS-135). Despite the differences in genetic background and time of exposure to microgravity it was shown through Oil Red staining and histology that increased lipid accumulation was occurring in the liver of all mice flown in space compared to the ground controls. This led to further pursue the existing GeneLab datasets related to liver omics data from these mice. We were able to discover key conserved pathways across all the mice independent of the flight conditions that were related to increased lipid metabolism, fatty acid metabolism, both lipid and fatty acid processing, lipid catabolic processing, and lipid localization. In addition, key upstream regulators were predicted to be commonly regulated across all conditions which include ESR1, GCG, and NR1I2 being inhibited and INS being activated. Interestingly, estrogen receptor alpha (ESR1) expression has been known to be heavily involved with lipoprotein metabolism. In addition, insulin (INS) is the primary driver for fat metabolism and increased INS has been associated with increased fatty acids in the liver. Through additional proteomic analysis we were able to identify the majority of the key proteins related to lipids for both the RR-1 and RR-3 rodents were being up-regulated in the livers when comparing flight to ground controls. This additional confirmation of the lipid associated activity also showed that the lipid related proteins are heavily involved with lipid metabolism, cholesterol binding, and cholesterol metabolism. Lastly, the analysis also revealed that the circadian clock related pathways in the liver are commonly being increased across all space flight conditions which has also been reported in the literature to potentially cause increased liver damage. The combination of the very strong lipid uptake in the liver and the transcriptomic/proteomic signatures (including the circadian clock pathways) following spaceflight are consistent with early onset of liver disease. Taken together, these data indicate that, activation of lipotoxic pathways could persist during longer duration spaceflight which might result in the development of liver disease
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN69351 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 99
    Publikationsdatum: 2019-11-27
    Beschreibung: In-situ food production is a necessary step for human exploration of the solar system and requires a deep understanding of plant growth in reduced gravity environments. In particular, the lack of buoyancy-driven convection changes the gas exchange at the leaf surface, which decreases photosynthesis and transpiration rates, and ultimately biomass production. To understand the intricate relations between physical, chemical, and biochemical processes, the following methodology combines the development of a mechanistic model of plant growth in reduced gravity environments, computational fluid dynamics (CFD) simulations, and experiments in different time frames.The model presented here is a coupled mass and energy balance using the single round leaf assumption, including gravity as an entry parameter, and the leaf surface temperature as an output variable. Measures of the leaf surface temperature using infra-red cameras allow for a computation of the transpiration rate. This approach was followed to design a parabolic flight experiment, which performed 7 flights, and enabled data collection for model validation in different gravity and ventilation settings on a short time frame. Current measures of carbon assimilation and transpiration rate at the leaf and canopy level using an infra-red gas analyzer (Li-6800) in 1g lab conditions on several species will enable a validation on longer time frames and further calibration of the model. CFD studies both on the parabolic flight and on the lab experimental set-up allow the precise assessment of ventilation above the canopy and plants' leaves.Ultimately, this work will provide recommendations for the design of future plant growth hardware, especially on the lowest adequate ventilation for optimal plant growth in reduced gravity environments, as well as assessing biomass and oxygen production rates on planetary surfaces and space stations. This work was funded by CNES, CNRS, Clermont Auvergne Metropole, and NASA Space Biology through NASA postdoctoral program / USRA.
    Schlagwort(e): Life Sciences (General)
    Materialart: KSC-E-DAA-TN75252 , Annual Meeting of the American Society of Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 100
    Publikationsdatum: 2019-11-28
    Beschreibung: Research on human acclimation to spaceflight, including the recent NASA's Twin Study, reports complex effects of the spaceflight environment on health, with both acute and prolonged changes in multiple tissues. Spaceflight includes multiple factors such as microgravity, ionizing radiation, physiological stress, and disrupted circadian rhythms, that have been shown to contribute to pathophysiological responses that target immunity, bone and muscle integrity, cardiovascular and nervous systems. In this study, we used a well-established spaceflight model organism, Drosophila melanogaster, to assess spaceflight-associated changes on the nervous system. With 75% disease gene orthology to humans, short generation time, large sample size and ease of genetic, neuronal and behavioral studies, Drosophila is an excellent model to study nervous system dysfunction. Here, we present results from MVP-Fly-01 spaceflight mission that was launched on SpaceX CRS-14. The MVP hardware (developed by Techshot) used in this mission enabled us to have an in-flight 1g centrifuge, to distinguish the changes resulting from gravity versus those induced by other environmental factors associated with spaceflight. We observe behavioral impairments (p〈0.001) and synaptic deficits, including decreased synaptic connections (p〈0.05), in 3rd instar larvae which were developed in space. Furthermore, space-grown microgravity adults show a decrease in neuronal (p〈0.05) and dendritic field (p〈0.01) in adult brains coupled with an increased number of apoptotic cells (p〈0.001) compared to in-flight 1g controls, suggesting increased neuronal loss under spaceflight conditions. In summary, we observe that altered gravity leads to gross neurological deficits. To better understand the long-term effects of spaceflight on the nervous system, longitudinal and multigenerational changes were also identified. This study will help elucidate the different approaches to prevent nervous system dysfunction in astronauts during spaceflight, while also contributing to a better understanding of the pathways that are related to some CNS disorders on Earth.
    Schlagwort(e): Life Sciences (General)
    Materialart: ARC-E-DAA-TN69440 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...