ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-06-28
    Description: Defects that develop in welds during the fabrication process are frequently manifested as embedded flaws from lack of fusion or lack of penetration. Fracture analyses of welded structures must be able to assess the effect of such defects on the structural integrity of weldments; however, the transferability of R-curves measured in laboratory specimens to defective structural welds has not been fully examined. In the current study, the fracture behavior of an overmatched butt weld containing a simulated buried, lack-of-penetration defect is studied. A specimen designed to simulate pressure vessel butt welds is considered; namely, a center crack panel specimen, of 1.25 inch by 1.25 inch cross section, loaded in tension. The stress-relieved double-V weld has a yield strength 50% higher than that of the plate material, and displays upper shelf fracture behavior at room temperature. Specimens are precracked, loaded monotonically while load-CMOD measurements are made, then stopped and heat tinted to mark the extent of ductile crack growth. These measurements are compared to predictions made using finite element analysis of the specimens using the fracture mechanics code Warp3D, which models void growth using the Gurson-Tvergaard dilitant plasticity formulation within fixed sized computational cells ahead of the crack front. Calibrating data for the finite element analyses, namely cell size and initial material porosities are obtained by matching computational predictions to experimental results from tests of welded compact tension specimens. The R-curves measured in compact tension specimens are compared to those obtained from multi-specimen weld tests, and conclusions as to the transferability of R-curves is discussed.
    Keywords: Structural Mechanics
    Type: NASA-TM-112826 , NAS 1.15:112826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. A key aspect of the project has been the development of the manufacturing and integration processes/procedures necessary to build a heat shield utilizing the HEEET 3D-woven material. This has culminated in the building of a 1meter diameter Engineering Test Unit (ETU) representative of what would be used for a Saturn probe. This presentation will provide an overview of the manufacturing and integration processes utilized to build the ETU, with a focus on the seam design. The seam design represented the most challenging aspect of the HEEET development, given the aerothermal and structural requirements it needs to meet.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN53179 , National Space & Missile Materials Symposium (NSMMS); Jun 25, 2018 - Jun 28, 2018; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: The objective of the Heatshield for Extreme Entry Environment Technology (HEEET) projects is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. Destinations that have extreme entry environments with heat fluxes up to 5000 watts per square centimeter and pressures up to 5 atmospheres, entry environments that NASA has not flown since Pioneer-Venus and Galileo. The scope of the project is broad and can be split into roughly four areas, Manufacturing/Integration, Structural Testing and Analysis, Thermal Testing and Analysis and Documentation. Manufactruing/Integration covers from raw materials, piece part fabrication to final integration on a 1-meter base diameter 45-degree sphere cone Engineering Test Unit (ETU). A key aspect of the project was to transfer as much of the manufacturing technology to industry in preparation to support future mission infusion. The forming, infusion and machining approaches were transferred to Fiber Materials Inc. and FMI then fabricated the piece parts from which the ETU was manufactured. The base 3D-woven material consists of a dual layer weave with a high density outer layer to manage recession in the system and a lower density, lower thermal conductivity inner layer to manage the heat load. At the start of the project it was understood that due to weaving limitations the heat shield was going to be manufactured from a series of tiles. And it was recognized that the development of a seam solution that met the structural and thermal requirements of the system was going to be the most challenging aspect of the project. It was also recognized that the seam design would drive the final integration approach and therefore the integration of the ETU was kept in-house within NASA. A final seam concept has been successfully developed and implemented on the ETU and will be discussed. The structural testing and analysis covers from characterization of the different layers of the infused material as functions of weave direction and temperature, to sub-component level testing such as 4-pt bend testing at sub-ambient and elevated temperature. ETU test results are used to validate the structural models developed using the element and sub-component level tests. Given the seam has to perform both structurally and aerothermally during entry a novel 4-pt bend test fixture was developed allowing articles to be tested while the front surface is heated with a laser. These tests are intended to establish the system's structural capability during entry. A broad range of aerothermal tests (arcjet tests) are being performed to develop material response models for predicting the required TPS thickness to meet a mission's needs and to evaluate failure modes. These tests establish the capability of the system and assure robustness of the system during entry. The final aspect of the project is to develop a comprehensive Design and Data Book such that a future mission will have the information necessary to adopt the technology. This presentation will provide an overview and status of the project and describe the status of the tehnology maturation level for the inner and outer planet as well as earth entry sample return missions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN57451 , Annual International Planetary Probe Workshop (IPPW 2018); Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Adaptable Deployable Entry and Placement Technology (ADEPT) Sounding Rocket One (SR-1) fight test will be the first sub-orbital flight of Nano-ADEPT. Nano-ADEPT is a deployable heatshield for secondary payload missions desiring to re-enter the Earth's atmosphere or deliver small science payloads to Mars or Venus. Two units have been built and tested in preparation of launch: one designated the "Spare" unit and one the "Flight" unit. The general development approach has been to perform all procedures on the Spare prior to performing them on Flight. This approach has served the project well, allowing for procedures to be rapidly developed and tested on spare hardware where mistakes are less consequential. Conversely, when schedule constraints have come up, the approach has allowed the project to rapidly pivot to an approach where Flight drives the critical path rather than Spare. This approach has enabled relatively rapid development of Flight where technical risk is balanced with schedule realism. This presentation will describe the various tests that have been performed on Nano-ADEPT Spare and Flight units to prepare for the sub-orbital flight. The purpose is to communicate the development approach we took for this low-cost, moderate-risk flight test and hopefully engage the EDL community in a wider discussion of risk-balanced approaches toward flight hardware development of secondary payload atmospheric entry systems.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN57437 , International Planetary Probe Workshop; Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-27
    Description: On September 12th 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range (WSMR), New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, test execution, and test conclusions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70404 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: On September 12th, 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for Nano-ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range, New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, hardware development campaign, test execution, and test conclusions.
    Keywords: Launch Vehicles and Launch Operations
    Type: ARC-E-DAA-TN68889 , AIAA Aviation and Aeronautics Forum (Aviation 2019); Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-13
    Description: The Heatshield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD (Space Technology Mission Directorate) and SMD (Science Mission Directorate) co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASA's high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI (Principal Investigator) managed mission cost (PIMMC) for investigations utilizing the Heatshield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ARC-E-DAA-TN32543 , New Frontiers Technology Workshop; Jun 01, 2016; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-09
    Description: Starting in 2013 and completing in 2019, the Heatshield for Extreme Entry Environment Technology (HEEET) project has been working to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations with extreme entry environments such as Venus, Saturn, Uranus, Neptune and high-speed sample return missions to Earth. A key aspect of the project has been the building and testing of a 1-meter base diameter Engineering Test Unit (ETU) representative of what could be used for a Saturn probe. This paper provides a high-level overview of the HEEET project including manufacturing and testing of the ETU for structural model verification, establish system capability and verify manufacturing workmanship.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN69963 , Materials Science and Technology 2019 (MS&T19); Sep 29, 2019 - Oct 03, 2019; Portland, Oregon; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Heat shield for Extreme Entry Environment Technology (HEEET) Project is a NASA STMD and SMD co-funded effort. The goal is to develop and mission infuse a new ablative Thermal Protection System that can withstand extreme entry. It is targeted to support NASAs high priority missions, as defined in the latest decadal survey, to destinations such as Venus and Saturn in-situ robotic science missions. Entry into these planetary atmospheres results in extreme heating. The entry peak heat-flux and associated pressure are estimated to be between one and two orders of magnitude higher than those experienced by Mars Science Laboratory or Lunar return missions. In the recent New Frontiers community announcement NASA has indicated that it is considering providing an increase to the PI managed mission cost (PIMMC) for investigations utilizing the Heat Shield for Extreme Entry Environment Technology (HEEET) and in addition, NASA is considering limiting the risk assessment to only their accommodation on the spacecraft and the mission environment. The HEEET ablative TPS utilizes 3D weaving technology to manufacture a dual layer material architecture. The 3-D weaving allows for flat panels to be woven. The dual layer consists of a top layer designed to withstand the extreme external environment while the inner or insulating layer by design, is designed to achieve low thermal conductivity, and it keeps the heat from conducting towards the structure underneath. Both arc jet testing combined with material properties have been used to develop thermal response models that allows for comparison of performance with heritage carbon phenolic. A 50 mass efficiency is achieved by the dual layer construct compared to carbon phenolic for a broad range of missions both to Saturn and Venus. The 3-D woven flat preforms are molded to achieve the shape as they are compliant and then resin infusion with curing forms a rigid panels. These panels are then bonded on to the aeroshell structure. Gaps exist between the panels and these gaps have to be filled with seams. The seam material then has to be bonded on to adjacent panels and also to the structure. The heat-shield assembly is shown in Figure 1. One of the significant challenges we have overcome recently is the design, development and testing of the seam. HEEET material development and the seam concept development have utilized some of the unique test capabilities available in the US. The various test facilities utilized in thermal testing along with the entry environment for Saturn and Venus missions are shown in Figure 2. The HEEET project is currently in its 3rd year of a four-year development. Figure 3 illustrates the key accomplishments to date and the challenges yet to be overcome before the technology is ready for mission infusion. This proposed presentation will cover both progress that has been made in the HEEET project and also the challenges to be overcome that is highlighted in Figure 3. Objective of the HEEET project is to mature the system in time to support the next New Frontiers opportunity and we believe we are well along the way to mission infuse HEEET.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN32870 , International Planetary Probe Workshop (IPPW-13); Jun 13, 2016 - Jun 17, 2016; Laurel, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...