ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN8193 , AIAA Aerodynamic Decelerator Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.
    Keywords: Astrodynamics
    Type: ARC-E-DAA-TN28881 , 2016 IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper provides a summary of the structural architecture assessments conducted and a recommendation for an affordable high performance composite structural concept to use on the next generation heavy-lift launch vehicle, the Space Launch System (SLS). The Structural Concepts Element of the Advanced Composites Technology (ACT) project and its follow on the Lightweight Spacecraft Structures and Materials (LSSM) project was tasked with evaluating a number of composite construction technologies for specific Ares V components: the Payload Shroud, the Interstage, and the Core Stage Intertank. Team studies strived to address the structural challenges, risks and needs for each of these vehicle components. Leveraging off of this work, the subsequent Composites for Exploration (CoEx) effort is focused on providing a composite structural concept to support the Payload Fairing for SLS. This paper documents the evaluation and down selection of composite construction technologies and evolution to the SLS Payload Fairing. Development of the evaluation criteria (also referred to as Figures of Merit or FOMs), their relative importance, and association to vehicle requirements are presented. A summary of the evaluation results, and a recommendation of the composite concept to baseline in the Composites for Exploration (CoEx) project is presented. The recommendation for the SLS Fairing is a Honeycomb Sandwich architecture based primarily on affordability and performance with two promising alternatives, Hat stiffened and Fiber Reinforced Foam (FRF) identified for eventual program block upgrade.
    Keywords: Spacecraft Design, Testing and Performance
    Type: E-18094 , Society for the Advancement of Material and Process Engineering (SAMPE) conference; May 21, 2012 - May 24, 2012; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (~40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN5858 , 22nd AIAA Aerodynamic Decelerator Systems Technology; Sep 05, 2012; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Achieving minimal launch volume and mass are always important for space missions, especially for deep space manned missions where the costs required to transport mass to the destination are high and volume in the payload shroud is limited. Pressure vessels are used for many purposes in space missions including habitats, airlocks, and tank farms for fuel or processed resources. A lucrative approach to minimize launch volume is to construct the pressure vessels from soft goods so that they can be compactly packaged for launch and then inflated en route or at the final destination. In addition, there is the potential to reduce system mass because the packaged pressure vessels are inherently robust to launch loads and do not need to be modified from their in-service configuration to survive the launch environment. A novel concept is presented herein, in which sealable openings or hatches into the pressure vessels can also be fabricated from soft goods. To accomplish this, the structural shape is designed to have large regions where one principal stress is near zero. The pressure vessel is also required to have an elongated geometry for applications such as airlocks.
    Keywords: Structural Mechanics
    Type: NASA/TM-2016-219331 , L-20730 , NF1676L-24908
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN5853 , 22nd AIAA Aerodynamic Decelerator Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Adaptable Deployable Entry and Placement Technology (ADEPT) Sounding Rocket One (SR-1) fight test will be the first sub-orbital flight of Nano-ADEPT. Nano-ADEPT is a deployable heatshield for secondary payload missions desiring to re-enter the Earth's atmosphere or deliver small science payloads to Mars or Venus. Two units have been built and tested in preparation of launch: one designated the "Spare" unit and one the "Flight" unit. The general development approach has been to perform all procedures on the Spare prior to performing them on Flight. This approach has served the project well, allowing for procedures to be rapidly developed and tested on spare hardware where mistakes are less consequential. Conversely, when schedule constraints have come up, the approach has allowed the project to rapidly pivot to an approach where Flight drives the critical path rather than Spare. This approach has enabled relatively rapid development of Flight where technical risk is balanced with schedule realism. This presentation will describe the various tests that have been performed on Nano-ADEPT Spare and Flight units to prepare for the sub-orbital flight. The purpose is to communicate the development approach we took for this low-cost, moderate-risk flight test and hopefully engage the EDL community in a wider discussion of risk-balanced approaches toward flight hardware development of secondary payload atmospheric entry systems.
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN57437 , International Planetary Probe Workshop; Jun 11, 2018 - Jun 15, 2018; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-27
    Description: On September 12th 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range (WSMR), New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, test execution, and test conclusions.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70404 , International Planetary Probe Workshop; Jul 08, 2019 - Jul 12, 2019; Oxford, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: On September 12th, 2018, a sounding rocket flight test was conducted on a mechanically-deployed atmospheric entry system known as the Adaptable Deployable Entry and Placement Technology (ADEPT). The purpose of the Sounding Rocket One (SR-1) test was to gather critical flight data for evaluating the vehicle's in-space deployment performance and supersonic stability. This flight test was a major milestone in a technology development campaign for Nano-ADEPT: the application of ADEPT for small secondary payloads. The test was conducted above White Sands Missile Range, New Mexico on a SpaceLoft XL rocket manufactured by UP Aerospace. This paper describes the system components, hardware development campaign, test execution, and test conclusions.
    Keywords: Launch Vehicles and Launch Operations
    Type: ARC-E-DAA-TN68889 , AIAA Aviation and Aeronautics Forum (Aviation 2019); Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-26
    Description: Venus is one of the important planetary destinations for scientific exploration, but: The combination of extreme entry environment coupled with extreme surface conditions have made mission planning and proposal efforts very challenging. We present an alternate, game-changing approach (ADEPT) where a novel entry system architecture enables more benign entry conditions and this allows for greater flexibility and lower risk in mission design
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN6611 , 10th Meeting of the Venus Exploration Analysis Group; Nov 14, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...