ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-22
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN30693 , International Symposium on Light in Horticulture; May 22, 2016 - May 26, 2016; East Lansing, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-20
    Description: This is our annual "station report" of activities related to controlled environment research to the North Central Education Research Activity (NCERA-101) committee. The committee is sponsored the USDA National Institute for Food and Agriculture (NIFA). Kennedy Space Center has participated in this committee for over 30 years.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN67356 , 2019 NCERA-101 Annual Meeting; Apr 14, 2019 - Apr 19, 2019; Vaudreuil-Dorion, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-236
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Growing plants in space will be an essential part of sustaining astronauts during long-range missions. During the summer of 2017, three female NASA interns, have been engaged in research relevant to food production in space, and will present their projects to an all female program known as Girls in STEM camp. Ayla Grandpre, a senior from Rocky Mountain College, has performed data mining and analysis of crop growth results gathered through Fairchild Botanical Gardens program, Growing Beyond Earth. Ninety plants were downselected to three for testing in controlled environment chambers at KSC. Ayla has also managed an experiment testing a modified hydroponics known as PONDS, to grow mizuna mustard greens and red robin cherry tomatoes. Emma Boehm, a senior from the University of Minnesota, has investigated methods to sterilize seeds and analyzed the most common microbial communities on seed surfaces. She has tested a bleach fuming method and an ethanol treatment. Emma has also tested Tokyo bekana Chinese cabbage seeds from four commercial seed vendors to identity differences in germination and growth variability. Lastly, Payton Barnwell, a junior from Florida Polytechnic University has shown that light recipes provided by LEDs can alter the growth and nutrition of 'Outredgeous' lettuce, Chinese cabbage, and Mizuna. The results of her light quality experiments will provide light recipe recommendations for space crops that grown in the Advanced Plant Habitat currently aboard the International Space Station.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN45542 , Girls in STEM Camp; Aug 04, 2017; Kennedy Space Center, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This is our annual report to the NCERA-101 meeting on the past year's activities related to controlled environment monitoring, operations and testing.
    Keywords: Life Sciences (General); Space Sciences (General)
    Type: KSC-E-DAA-TN40875 , North Central Extension & Research Activity-101 Annual Meeting (NCERA-101); Apr 09, 2017 - Apr 12, 2017; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Recently, USDA ARS researchers genetically modified plums for rapid breeding work and noticed the plants could flower and develop fruit rapidly on relatively small plants. We have tested several of these genetically modified (GM) plums in plant chambers to assess their potential as a space crop. We have been able to clone these genetic lines using cuttings that are rooted using growth regulating compounds. Results showed that the GM plums indeed flower and fruit on small plants in controlled environments similar to what might be used in space, but they require cross-pollination with pollen from a standard plum. Analysis of stomatal conductance and leaf transpiration showed that water use went up in the light period, as expected, and but that GM types typically showed higher conductance than a standard plum. Analysis of tissue showed that fruit could be a good source of potassium and phenolic compounds, which could be beneficial as a bone loss countermeasure (Smith et al., 2014). These findings are all promising for using dwarf GM plums as a supplemental food for space, but further horticultural testing is needed before they are ready.
    Keywords: Man/System Technology and Life Support; Life Sciences (General)
    Type: KSC-E-DAA-TN38592 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017) Annual Meeting; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Growing plants in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, light-emitting diodes (LEDs) are becoming superior because of their efficiency, longevity, small size, safety, and wavelength versatility. Isolating the effects of certain wavelengths on plant growth when combined with white light is attracting attention. To optimize crop production/quality in space, this study has aimed to configure novel light recipes for the Advanced Plant Habitat currently aboard the International Space Station (ISS). By using white light as a background to maintain normal growth, the addition of monochromatic wavelengths provides a clearer understanding of how each part of the visible spectrum affects plant growth. By growing Outredgeous lettuce under six treatments of White (W) LEDs, W + blue (B), W+ green (G), W + red (R), W + far red (FR), and RGB + FR LEDs with ratios similar to natural sunlight, this investigation has assessed differences in biomass, morphology, chlorophyll, and the synthesis of key phytonutrients. The potential for Outredgeous to produce anthocyanin, lutein, potassium, magnesium, and iron is paramount to maintaining astronaut health. The crop responses to each treatment have been evaluated and the optimal LED combination for both plant yield and nutrient content will be presented.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN48736 , Annual American Society for Gravitational and Space Research Meeting; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...