ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-07-13
    Description: Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.
    Keywords: Man/System Technology and Life Support
    Type: KSC-E-DAA-TN13955 , International Conference on Environmental Systems (ICES); Jul 13, 2014 - Jul 17, 2014; Tuscon, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Veggie system focuses on growing fresh produce that can be harvested and consumed by astronauts. The microbial colonies in each Veggie experiment are evaluated to determine the safety level of the produce and then differences between flight and ground samples. The identifications of the microbial species can detail risks or benefits to astronaut and plant health. Each Veggie ground or flight experiment includes six plants grown from seeds that are glued into wicks in Teflon pillows filled with clay arcillite and fertilizer. Fungal colonies were isolated from seed wicks, growth media, and lettuce (cv. 'Outredgeous') roots grown in VEG-01B pillows on ISS and in corresponding ground control pillows grown in controlled growth chambers. The colonies were sorted by morphology and identified using MicroSeq(TM) 500 16s rDNA Bacterial Identification System and BIOLOG GEN III MicroPlate(TM). Health risks for each fungal identification were then assessed using literature sources. The goal was to identify all the colonies isolated from flight and ground control VEG-01B plants, roots, and rooting medium and compare the resulting identifications.
    Keywords: Life Sciences (General); Man/System Technology and Life Support
    Type: KSC-E-DAA-TN45618
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: This is our annual "station report" of activities related to controlled environment research to the North Central Education Research Activity (NCERA-101) committee. The committee is sponsored the USDA National Institute for Food and Agriculture (NIFA). Kennedy Space Center has participated in this committee for over 30 years.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN67356 , 2019 NCERA-101 Annual Meeting; Apr 14, 2019 - Apr 19, 2019; Vaudreuil-Dorion, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: New technologies will be needed as mankind moves towards exploration of cislunar space, the Moon and Mars. Although many advances in our understanding of the effects of spaceflight on plant growth have been achieved in the last 40 years, spaceflight plant growth systems have been primarily designed to support space biology studies. Recently, the need for a sustainable and robust food system for future missions beyond Low Earth Orbit (LEO) has identified gaps in current technologies for food production. The goal is to develop safe and sustainable food production systems with reduced resupply mass and crew time compared to current systems.
    Keywords: Exobiology
    Type: KSC-E-DAA-TN69060 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-27
    Description: Several dwarf tomato and pepper varieties were evaluated under ISS-simulated growth conditions (22C, 50% RH, 1500 ppm CO2, and 300 mol m(exp -2) s(exp -1) of light for 16 h per day) with the goal of selecting those with the best growth, nutrition, and organoleptic potential for use in a pick and eat salad crop system on ISS and future exploration flights. Testing included six cultivars of tomato (Red Robin, Scarlet Sweet N Neat, Tiny Tim, Mohamed, Patio Princess, and Tumbler) and six cultivars of pepper (Red Skin, Fruit Basket, Cajun Belle, Chablis, Sweet Pickle, and Pompeii). Plants were grown to an age sufficient to produce fruit (70 to 106 days for tomato and 109 days for pepper). Tomato fruits were harvested when they showed full red color, beginning ca. 70-days age and then at weekly intervals thereafter, while peppers were grown until numerous fruits showed color and all fruits (green and colored) were harvested once at the end of the test. Plant sizes, yields, and nutritional attributes were measured and used to down-select to three cultivars for each species. In particular, we were interested in cultivars that were short (dwarf) but still produced high yields. Nutritional data included elemental (Ca, Mg, Fe, and K) composition, vitamin K, phenolics, lycopene, anthocyanin, lutein, and zeaxanthin. The three down-selected cultivars for each species were evaluated for sensory attributes, including overall acceptability, appearance, color intensity aroma, flavor and texture. The combined data were compared and given weighting factors to rank the cultivars as potential candidates for testing in space. For tomato, the ranking was 1) cv. Mohamed, 2) cv. Red Robin, and 3) cv. Sweet N Neat. For pepper, the ranking was 1) cv. Pompeii, 2) cv. Red Skin, and 3) cv. Fruit Basket. These rankings are somewhat subjective but provide a good starting point for conducting higher fidelity testing with these crops (e.g., testing with LED lighting similar to the Veggie plant unit), and ultimately conducting flight experiments.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN68404 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-16
    Description: Supplemental safe food production has been an essential goal of NASA to meet the nutritional needs of astronauts on the International Space Station (ISS) as well as for future long duration missions to the moon and beyond. Food crops grown in space experience different environmental conditions than plants grown on Earth (i.e. microgravity and spaceflight physical sciences impacts). To test the growth methods and effects of the space environment, red romaine lettuce Lactuca sativa cv. 'Outredgeous', was grown in Veggie plant growth chambers on the ISS. Microbiological food safety of the plants grown on the ISS was determined by heterotrophic plate counts to assess total microbial load for bacteria and fungi as well as screening for specific pathogens and isolate identification. Molecular characterization was completed using Next Generation Sequencing (NGS) to provide valuable information on the taxonomic composition and community structure of the plant microbiome. Chemical analyses of plant tissue were conducted to understand spaceflight-induced changes in key elements in the space diet, phenolics, anthocyanin levels, and Oxygen radical absorbance capacity (ORAC), a measure of antioxidant capacity. Three growth tests of red romaine lettuce were completed on ISS, VEG-01A, VEG-01B, and VEG-03A. Plants were harvested using two harvest methods, either a single terminal harvest (after 33 days) or cut-and-come-again repetitive harvesting (64 days total growth). Ground controls were grown simultaneously with a delay to accommodate condition monitoring and replication. A comparison of the plant tissue returned to Earth showed leaves from the second grow-out had significantly higher bacterial counts than the preceding or subsequent growth test or any of the ground controls. Fungal counts were significantly higher on the final cut-and-come-again harvest of the third grow out. None of the potential foodborne pathogens that were screened for were detected. Bacterial and fungal isolate identification and community characterization indicated similar diversity between VEG-01A and VEG-01B growth tests, however, there appeared to be subtle differences in diversity and distribution among the three growth tests. Chemical analysis of plant tissue revealed significant variation in a few elemental data, but variation in levels of phenolics, anthocyanins, and ORAC was not significantly different. This study indicated that leafy vegetable crops could safely provide an edible supplement to astronauts' diet, and our analysis provided baseline data for continual operation of the Veggie plant growth units on ISS. This research was funded by NASA's space biology program.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN66205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-28
    Description: Space crop production will be important in future long duration exploration missions to supplement the packaged diet with fresh bioactive nutrients. Plant care and the addition of fresh veggies to the diet may also have a role in astronaut well-being. Pick-and-eat salad crops are the best candidates for this near-term supplementation since they require minimal processing or preparation to add to meals. While light quality can strongly influence plant responses on Earth, the impacts of light quality on plant growth and composition in spaceflight remain unclear. The VEG-04 experiment uses two Veggie plant growth chambers on the International Space Station to simultaneously test different red: blue light ratios on the growth of Mizuna mustard, a leafy green salad crop. In addition to plant health and yield, the composition of key nutrients is assessed. Astronauts conduct on-board organoleptic evaluation of the fresh produce. Microbial food safety of returned produce is examined, and a Hazard Analysis Critical Control Point (HACCP) plan has been developed for this crop. VEG-04 consists of two experiments, one lasting 28 days with a single harvest, and the second lasting 56 days, with three cut-and-come-again harvests. These different scenarios provide an opportunity to test two production concepts, examine different fertilizers, monitor microbial changes over time for this crop, and assess potential impacts of interacting with plants on crew behavioral health and performance in spaceflight operations. In ground testing, plant growth was not significantly different across the different light treatments, however nutrient composition did differ significantly. Flight test results will be compared with ground data. This research was co-funded by NASA's Human Research Program and Space Biology in the ILSRA 2015 NRA call.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN75352 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-27
    Description: Plant associated microbiomes, the rhizosphere and phyllosphere, are composed of communities of bacteria and fungi that may be mutualistic or pathogenic. These communities have the potential to influence plant health and development and can affect plant growth. Crop plants are being investigated as a fresh and safe supplement to astronauts diet and it is critical to understand and characterize these microbial communities. Multi-species crops, Mizuna mustard (Brassica rapa var japonica), Outredgeous red romaine lettuce (Lactuca sativa), and Waldmans Green lettuce (Lactuca sativa) were grown in two Veggie units on the International Space Station (ISS) for three grow outs in various combinations of plant types. Upon harvest, plant and pillow samples were frozen and returned to Earth for analysis. Bacterial and fungal community analyses for plant leaf and root, as well as pillow components, wick and media, were completed using next generation sequencing with the goal of surveying the composition of the entire community and identifying any potential pathogens. Bacteria were identified using the 16S rRNA gene whereas, fungi were identified with the internal transcribed spacer (ITS). The community composition for these three crops was compared between crop types and between plant tissue types. It is vital to mission success for the short term and long term to add nutritious, safe to eat vegetables providing a supplement to the crew members dietary requirements as well as to develop planning for deep space missions as we reach for the moon and on to Mars. Veggie technology validation tests were supported by NASAs Space Biology Program.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN69674 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Membrane-aerated biofilm reactors (MABRs) have been studied for a number of years as an alternate approach for treating wastewater streams during space exploration. While the technology provides a promising pre-treatment for lowering organic carbon and nitrogen content without the need for harsh stabilization chemicals, several challenges must be addressed before adoption of the technology in future missions. One challenge is the transportation of bioreactors containing intact, active biofilms as a means for rapid start-up on the International Space Station or beyond. Similarly, there could be a need for placing these biological systems into a dormant state for extended periods when the system is not in use, along with the ability for rapid restart. Previous studies indicated that there was little influence of storage condition (4 or 25 C, with or without bulk fluid) on recovery of bioreactors with immature biofilms (48 days old), but that an extensive recovery time was required (20+ days). Bioreactors with fully established biofilms (13 months) were able to recover from a 7-month dormancy within 4 days (approximately 1 residence). Further dormancy and recovery testing is presented here that examines the role of biofilm age on recovery requirements, repeated dormancy cycle capabilities, and effects of long-duration dormancy cycles (8-9 months) on HFMB systems. Another challenge that must be addressed is the possibility of antibiotics entering the wastewater stream. Currently, for most laboratory tests of biological water processors, donors providing urine may not contribute to the study when taking antibiotics because the effects on the system are yet uncharacterized. A simulated urinary tract infection event, where an opportunistic, pathogenic organism, E. coli, was introduced to the HFMBs followed by dosing with an antibiotic, ciprofloxacin, was completed to study the effect of the antibiotic on reactor performance and to also examine the development of antibiotic-resistant communities within the system.
    Keywords: Man/System Technology and Life Support
    Type: ICES-2016-229 , KSC-E-DAA-TN30830 , International Conference on Environmental Systems; Jul 10, 2016 - Jul 14, 2016; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...