ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: The vestibulospinal system provides the spinal motor circuits controlling head/neck and limb movements and body posture with rapid reflex adjustments to maintain equilibrium and stability and with a continuous essential excitatory drive, called tonus, to enhance reactive responses to perturbations that force the animal off normal posture. The sensory signals to these reflex circuits originate from hair cells in the inner ear of otolith structures, namely the utricle and saccule, that transduce inertial acceleration and orientation of the head with respect to gravity and in the three orthogonally arranged semicircular canals that transduce angular head rotation. The principal vestibulospinal pathways are 1) the medial vestibulospinal tract that descends in the ventromedial funiculus and innervates inter- and motoneurons located mainly in lamina VII, VIII, and dorsomedial IX throughout the cervical segments; and 2) the lateral vestibulospinal tracts that course in the lateral to ventrolateral funiculi and are distinguished by two divisions: i) a cervical-projecting tract that overlaps many of the targets of medial vestibulospinal tract neurons including the motoneurons in ventromedial IX and also contributes to reflex control of shoulder and forelimb (arm) muscles; and ii) a lumbosacral-projecting tract that provides a rapid input to maintain stable posture and reflex control of the lower body. A striking observation in understanding the functional organization of this sensory-motor system is both that the driving sensory input can be dynamically modified by the behavioral context in which the sensation is made and that it remains able to quickly respond to an external force during self-generated head movements. The structural basis for vestibulospinal inputs to spinal motor control circuits in quadrupeds and bipeds rely in part on the animal's need for coordination between fore- and hind-limb reflex movements. Understanding the sensory-to-motor transformations in the diverse species rely on the correlations of the conserved and unique species behavior, morphology and physiologic function.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN64976
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...