ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (99,454)
  • Springer Nature  (64,289)
  • Oxford University Press  (24,366)
  • American Meteorological Society  (10,733)
  • American Geophysical Union (AGU)
  • 2020-2024  (959)
  • 1980-1984  (42,579)
  • 1950-1954  (19,927)
  • 1945-1949  (18,293)
  • 1925-1929
Collection
Publisher
Years
Year
Journal
  • 1
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(17), ISSN: 0094-8276
    Publication Date: 2023-09-08
    Description: We quantify sea ice concentration (SIC) changes related to synoptic cyclones separately for each month of the year in the Greenland, Barents and Kara Seas for 1979–2018. We find that these SIC changes can be statistically significant throughout the year. However, their strength varies from region to region and month to month, and their sign strongly depends on the considered time scale (before/during vs. after cyclone passages). Our results show that the annual cycle of cyclone impacts on SIC is related to varying cyclone intensity and traversed sea ice conditions. We further show that significant changes in these cyclone impacts have manifested in the last 40 years, with the strongest changes occurring in October and November. For these months, SIC decreases before/during cyclones have more than doubled in magnitude in the Barents and Kara Seas, while SIC increases following cyclones have weakened (intensified) in the Barents Sea (Kara Sea).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Ecology & Evolution, Springer Nature, 7(7), pp. 994-1001, ISSN: 2397-334X
    Publication Date: 2023-09-21
    Description: The discrepancy between global loss and local constant species richness has led to debates over data quality, systematic biases in monitoring programmes and the adequacy of species richness to capture changes in biodiversity. We show that, more fundamentally, null expectations of stable richness can be wrong, despite independent yet equal colonization and extinction. We analysed fish and bird time series and found an overall richness increase. This increase reflects a systematic bias towards an earlier detection of colonizations than extinctions. To understand how much this bias influences richness trends, we simulated time series using a neutral model controlling for equilibrium richness and temporal autocorrelation (that is, no trend expected). These simulated time series showed significant changes in richness, highlighting the effect of temporal autocorrelation on the expected baseline for species richness changes. The finite nature of time series, the long persistence of declining populations and the potential strong dispersal limitation probably lead to richness changes when changing conditions promote compositional turnover. Temporal analyses of richness should incorporate this bias by considering appropriate neutral baselines for richness changes. Absence of richness trends over time, as previously reported, can actually reflect a negative deviation from the positive biodiversity trend expected by default.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(23), ISSN: 0094-8276
    Publication Date: 2023-09-19
    Description: The strong cooling during the Last Glacial Maximum (LGM, 21 ka BP) provides a rigorous test of climate models' ability to simulate past and future climate changes. We force an atmospheric general circulation model with two recent global LGM sea surface temperature (SST) reconstructions, one suggesting a weak and the other a more pronounced cooling, and compare the simulated land surface temperatures (LSTs) to reconstructed data. Our results do not confirm either SST reconstruction. The cold SST data set leads to good agreement between simulated and observed LSTs at low latitudes, but is systematically too cold at mid-latitudes. The opposite is true for the warm SST data set. Differences between the simulated LSTs are caused by varying land surface albedos, which is lower for the warmer SST reconstruction. The inconsistency between reconstructed and simulated climate points to a potentially significant bias in the proxy reconstructions and/or the climate sensitivity of current climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-22
    Description: Thresholds and tipping points are frequently used concepts to address the risks of global change pressures and their mitigation. It is tempting to also consider them to understand biodiversity change and design measures to ensure biotic integrity. Here, we argue that thresholds and tipping points do not work well in the context of biodiversity change for conceptual, ethical, and empirical reasons. Defining a threshold for biodiversity change (a maximum tolerable degree of turnover or loss) neglects that ecosystem multifunctionality often relies on the complete entangled web of species interactions and invokes the ethical issue of declaring some biodiversity dispensable. Alternatively defining a threshold for pressures on biodiversity might seem more straightforward as it addresses the causes of biodiversity change. However, most biodiversity change appears to be gradual and accumulating over time rather than reflecting a disproportionate change when transgressing a pressure threshold. Moreover, biodiversity change is not in synchrony with environmental change, but massively delayed through inertia inflicted by population dynamics and demography. In consequence, formulating environmental management targets as preventing the transgression of thresholds is less useful in the context of biodiversity change, as such thresholds neither capture how biodiversity responds to anthropogenic pressures nor how it links to ecosystem functioning. Instead, addressing biodiversity change requires reflecting the spatiotemporal complexity of altered local community dynamics and temporal turnover in composition leading to shifts in distributional ranges and species interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Ecology & Evolution, Springer Nature, 6(12), pp. 1871-1880, ISSN: 2397-334X
    Publication Date: 2023-09-22
    Description: Biodiversity is expected to change in response to future global warming. However, it is difficult to predict how species will track the ongoing climate change. Here we use the fossil record of planktonic foraminifera to assess how biodiversity responded to climate change with a magnitude comparable to future anthropogenic warming. We compiled time series of planktonic foraminifera assemblages, covering the time from the last ice age across the deglaciation to the current warm period. Planktonic foraminifera assemblages shifted immediately when temperature began to rise at the end of the last ice age and continued to change until approximately 5,000 years ago, even though global temperature remained relatively stable during the last 11,000 years. The biotic response was largest in the mid latitudes and dominated by range expansion, which resulted in the emergence of new assemblages without analogues in the glacial ocean. Our results indicate that the plankton response to global warming was spatially heterogeneous and did not track temperature change uniformly over the past 24,000 years. Climate change led to the establishment of new assemblages and possibly new ecological interactions, which suggests that current anthropogenic warming may lead to new, different plankton community composition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Reviews of Geophysics, American Geophysical Union (AGU), 61(3), ISSN: 8755-1209
    Publication Date: 2023-10-09
    Description: Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(22), ISSN: 0094-8276
    Publication Date: 2023-11-25
    Description: Given the role played by the historical and extensive coverage of sea ice concentration (SIC) observations in reconstructing the long‐term variability of Antarctic sea ice, and the limited attention given to model‐dependent parameters in current sea ice data assimilation studies, this study focuses on enhancing the performance of the Data Assimilation System for the Southern Ocean in assimilating SIC through optimizing the localization and observation error estimate, and two assimilation experiments were conducted from 1979 to 2018. By comparing the results with the sea ice extent of the Southern Ocean and the sea ice thickness in the Weddell Sea, it becomes evident that the experiment with optimizations outperforms that without optimizations due to achieving more reasonable error estimates. Investigating uncertainties of the sea ice volume anomaly modeling reveals the importance of the sea ice‐ocean interaction in the SIC assimilation, implying the necessity of assimilating more oceanic and sea‐ice observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Microbiome, Springer Nature, ISSN: 2049-2618
    Publication Date: 2023-11-25
    Description: Background The RCA (Roseobacter clade affiliated) cluster belongs to the family Roseobacteracea and represents a major Roseobacter lineage in temperate to polar oceans. Despite its prevalence and abundance, only a few genomes and one described species, Planktomarina temperata, exist. To gain more insights into our limited understanding of this cluster and its taxonomic and functional diversity and biogeography, we screened metagenomic datasets from the global oceans and reconstructed metagenome-assembled genomes (MAG) affiliated to this cluster. Results The total of 82 MAGs, plus five genomes of isolates, reveal an unexpected diversity and novel insights into the genomic features, the functional diversity, and greatly refined biogeographic patterns of the RCA cluster. This cluster is subdivided into three genera: Planktomarina, Pseudoplanktomarina, and the most deeply branching Candidatus Paraplanktomarina. Six of the eight Planktomarina species have larger genome sizes (2.44–3.12 Mbp) and higher G + C contents (46.36–53.70%) than the four Pseudoplanktomarina species (2.26–2.72 Mbp, 42.22–43.72 G + C%). Cand. Paraplanktomarina is represented only by one species with a genome size of 2.40 Mbp and a G + C content of 45.85%. Three novel species of the genera Planktomarina and Pseudoplanktomarina are validly described according to the SeqCode nomenclature for prokaryotic genomes. Aerobic anoxygenic photosynthesis (AAP) is encoded in three Planktomarina species. Unexpectedly, proteorhodopsin (PR) is encoded in the other Planktomarina and all Pseudoplanktomarina species, suggesting that this light-driven proton pump is the most important mode of acquiring complementary energy of the RCA cluster. The Pseudoplanktomarina species exhibit differences in functional traits compared to Planktomarina species and adaptations to more resource-limited conditions. An assessment of the global biogeography of the different species greatly expands the range of occurrence and shows that the different species exhibit distinct biogeographic patterns. They partially reflect the genomic features of the species. Conclusions Our detailed MAG-based analyses shed new light on the diversification, environmental adaptation, and global biogeography of a major lineage of pelagic bacteria. The taxonomic delineation and validation by the SeqCode nomenclature of prominent genera and species of the RCA cluster may be a promising way for a refined taxonomic identification of major prokaryotic lineages and sublineages in marine and other prokaryotic communities assessed by metagenomics approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-26
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: Relative location of microearthquakes that occurred at Mt Pollino (Italy) from 2011 to 2013 have been analyzed with the aim of a detailed imaging of the geometry of active faults. We identified 27 clusters composed of a number of earthquakes from 9 to 33, with local magnitude in the range 0.6–2.7. The relative location shows that the distribution of hypocentres in each cluster is characterized by extension from few tens of meters to at most 350 m. For each cluster the hypocentre distribution was fitted by a plane to infer the fault orientation, and results were compared with the fault plane solutions corresponding to the focal mechanism of earthquakes of the same cluster. The comparison shows a good agreement in most of the cases. The relative location analysis, generally applied to earthquakes with similar waveform, has been improved to permit also the relative location of earthquakes characterized by not similar signals. To achieve this purpose a modified procedure that overcome the condition of very similar waveforms has been applied to estimate the time delay between first pulses of the master events. The relative location of master events of all clusters shows a precise imaging of the relative position of all analysed sources and allows also to follow with high accuracy the evolution in time of the seismic swarm within the selected periods. The hypocentre position of master events and the nearly parallel fitting planes of any clusters suggest that most of the analyzed earthquakes were produced by different patches of the same fault. The final results depict a main fault plane characterized by NW–SE strike, dip of about 35–45° and depth between 4.5 and 6.5 km b.s.l. Focal mechanisms, used also to evaluate the local stress field, are mostly of normal type with few strike slip solutions for the shallowest events. This result is in good agreement with the local tectonic stress regime that is characterized by predominant NE–SW transtension, as inferred from structural, seismological and geophysical data.
    Description: Published
    Description: 637–648
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Persistence, memory, correlations, clustering, Spatial analysis, Crustal imaging, Earthquake source observations, Seismicity and tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-10-26
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved
    Description: The application of a physics-based earthquake simulator to Central Italy allowed the compilation of a synthetic seismic catalogue spanning 100 000 yr, containing more than 300 000 M ≥ 4.0 simulated earthquakes, without the limitations that real catalogues suffer in terms of completeness, homogeneity and time duration. The seismogenic model upon which we applied the simulator code was derived from version 3.2.1 of the Database of Individual Seismogenic Sources (DISS; http://diss.rm.ingv.it/diss/), selecting, and modifying where appropriate, all the fault systems that are recognized in the portion of Central Italy considered in this study, with a total of 54 faults. Besides tectonic stress loading and static stress transfer as in the previous versions, the physical model on which the latest version of our simulation algorithm is based also includes the Rate and State constitutive law that helps to reproduce Omori’s law. One further improvement in our code was also the introduction of trapezoidalshaped faults that perform better than known faults. The resulting synthetic seismic catalogue exhibits typical magnitude, space and time features which are comparable to those in real observations. These features include the total seismic moment rate, the earthquake magnitude distribution, and the short- and medium-term earthquake clustering. A typical aspect of the observed seismicity in Central Italy, aswell as across thewhole Italian landmass and elsewhere, is the occurrence of earthquake sequences characterized by multiple main shocks of similar magnitude. These sequences are different from the usual earthquake clusters and aftershock sequences, since they have at least two main shocks of similar magnitude. Therefore, special attentionwas devoted to verifyingwhether the simulated catalogue includes this notable aspect. For this purpose, we developed a computer code especially for this work to count the number of multiple events contained in a seismic catalogue under a quantitative definition. We found that the last version of the simulator code produces a slightly larger number of multiple events than the previous versions, but not as large as in the real catalogue. A possible reason for this drawback is the lack of components such as pore-pressure changes due to fluid-diffusion in the adopted physical model.
    Description: Published
    Description: 526–542
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Maritime Studies, Springer Nature, 21(3), pp. 327-338, ISSN: 1872-7859
    Publication Date: 2023-10-30
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉In spite of a proliferation of academic and policy-oriented interest in deep sea mining (DSM), this paper argues that two underlying questions remain underexplored. The first relates to 〈jats:italic〉what〈/jats:italic〉 exactly the seabed 〈jats:italic〉is〈/jats:italic〉; the second to 〈jats:italic〉who〈/jats:italic〉 the stakeholders 〈jats:italic〉are〈/jats:italic〉. It is argued that a greater interrogation of how the seabed is defined and understood, and a deeper consideration of how stakeholders are identified and the politics of their inclusion, is crucial to the enactment of policy and planning techniques. Through the analysis of current regulations to govern DSM in both national and international jurisdictions, this paper critically examines these seemingly banal but vital questions in different contexts. It is contended that most regulations are ‘fuzzy’ when it comes to addressing these questions, with the result that different understandings of the seabed and the implications of mining are ignored and that who stakeholders are and how they are defined causes many relevant voices to be unheard. It is argued, therefore, that it is imperative to address these often-overlooked questions directly in order to inform future seabed policy and governance.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-10-30
    Description: With a focus on oceans, we collaborated across ecological, social and legal disciplines to respond to the United Nations call for transformation in the ‘2030 Agenda for Sustainable Development’. We developed a set of 13 principles that strategically and critically connect transformative ocean research to transformative ocean governance (complementing the UN Decade for Ocean Science). We used a rigorous, iterative and transparent consensus-building approach to define the principles, which can interact in supporting, neutral or sometimes conflicting ways. We recommend that the principles could be applied as a comprehensive set and discuss how to learn from their interactions, particularly those that reveal hidden tensions. The principles can bring and keep together partnerships for innovative ocean action. This action must respond to the many calls to reform current ocean-use practices which are based on economic growth models that have perpetuated inequities and fuelled conflict and environmental decline.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-31
    Description: Since the Mesozoic, central and eastern European tectonics have been dominated by the closure of the Tethyan Ocean as the African and European plates collided. In the Miocene, the edge of the East European Craton and Moesian Platform were reworked in collision during the Carpathian orogeny and lithospheric extension formed the Pannonian Basin. To investigate the mantle deformation signatures associated with this complex collisional-extensional system, we carry out SKS splitting analysis at 123 broad-band seismic stations in the region. We compare our measurements with estimates of lithospheric thickness and recent seismic tomography models to test for correlation with mantle heterogeneities. Reviewing splitting delay times in light of xenolith measurements of anisotropy yields estimates of anisotropic layer thickness. Fast polarization directions are mostly NW–SE oriented across the seismically slow West Carpathians and Pannonian Basin and are independent of geological boundaries, absolute plate motion direction or an expected palaeo-slab roll-back path. Instead, they are systematically orthogonal to maximum stress directions, implying that the indenting Adria Plate, the leading deformational force in Central Europe, reset the upper-mantle mineral fabric in the past 5 Ma beneath the Pannonian Basin, overprinting the anisotropic signature of earlier tectonic events. Towards the east, fast polarization directions are perpendicular to steep gradients of lithospheric thickness and align along the edges of fast seismic anomalies beneath the Precambrian-aged Moesian Platform in the South Carpathians and the East European Craton, supporting the idea that craton roots exert a strong influence on the surrounding mantle flow. Within the Moesian Platform, SKS measurements become more variable with Fresnel zone arguments indicating a shallow fossil lithospheric source of anisotropy likely caused by older tectonic deformation frozen in the Precambrian. In the Southeast Carpathian corner, in the Vrancea Seismic Zone, a lithospheric fragment that sinks into the mantle is sandwiched between two slow anomalies, but smaller SKS delay times reveal weaker anisotropy occurs mainly to the NW side, consistent with asymmetric upwelling adjacent to a slab, slower mantle velocities and recent volcanism.
    Description: Published
    Description: 2105–2118
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismic anisotropy ; geodynamics ; Seismic anisotropy and geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Springer Nature, 16(8), pp. 2002-2014, ISSN: 1751-7362
    Publication Date: 2023-11-14
    Description: Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Springer Nature, 17(6), pp. 836-845, ISSN: 1751-7362
    Publication Date: 2023-11-14
    Description: Vitamin B12 (cobalamin, herein B12) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B12 is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B12 is provided by prototrophs to auxotrophs. In this study, 33 B12 prototrophic alphaproteobacterial strains were grown in co-culture with Thalassiosira pseudonana, a B12 auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B12. Among these strains, 18 were identified to share B12 with the diatom, while nine were identified to retain B12 and not support growth of the diatom. The other bacteria either shared B12 with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B12 measurements of B12-provider and B12-retainer strains confirmed that the cofactor could only be detected in the environment of the tested B12-provider strains. Intracellular B12 was measured by LC-MS and showed that the concentrations of the different B12-provider as well as B12-retainer strains differed substantially. Although B12 is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B12de novo cannot share the cofactor with their environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Springer Nature, 16(11), pp. 2599-2609, ISSN: 1751-7362
    Publication Date: 2023-11-14
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Biotin (vitamin B〈jats:sub〉7〈/jats:sub〉) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the 〈jats:italic〉bioB〈/jats:italic〉 gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely 〈jats:italic〉bioB〈/jats:italic〉 and thus can potentially overcome biotin auxotrophy. Many 〈jats:italic〉Actino〈/jats:italic〉- and 〈jats:italic〉Alphaproteobacteria〈/jats:italic〉 cannot synthesize biotin de novo, but some possess solely 〈jats:italic〉bioB〈/jats:italic〉, whereas the vast majority of 〈jats:italic〉Gammaproteobacteria〈/jats:italic〉 and 〈jats:italic〉Flavobacteriia〈/jats:italic〉 exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, 〈jats:italic〉Vibrio campbellii〈/jats:italic〉, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*10〈jats:sup〉6〈/jats:sup〉 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Springer Nature, 16(12), pp. 2653-2665, ISSN: 1751-7362
    Publication Date: 2023-11-14
    Description: Despite accumulating data on microbial biogeographic patterns in terrestrial and aquatic environments, we still lack a comprehensive understanding of how these patterns establish, in particular in ocean basins. Here we show the relative significance of the ecological mechanisms selection, dispersal and drift for shaping the composition of microbial communities in the Pacific Ocean over a transect of 12,400 km between subantarctic and subarctic regions. In the epipelagic, homogeneous selection contributes 50–60% and drift least to the three mechanism for the assembly of prokaryotic communities whereas in the upper mesopelagic, drift is relatively most important for the particle-associated subcommunities. Temperature is important for the relative significance of homogeneous selection and dispersal limitation for community assembly. The relative significance of both mechanisms was inverted with increasing temperature difference along the transect. For eukaryotes 〉8 µm, homogeneous selection is also the most important mechanisms at two epipelagic depths whereas at all other depths drift is predominant. As species interactions are essential for structuring microbial communities we further analyzed co-occurrence-based community metrics to assess biogeographic patterns over the transect. These interaction-adjusted indices explained much better variations in microbial community composition as a function of abiotic and biotic variables than compositional or phylogenetic distance measures like Bray–Curtis or UniFrac. Our analyses are important to better understand assembly processes of microbial communities in the upper layers of the largest ocean and how they adapt to effectively perform in global biogeochemical processes. Similar principles presumably act upon microbial community assembly in other ocean basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3The ISME Journal: Multidisciplinary Journal of Microbial Ecology, Springer Nature, 16(8), pp. 2002-2014, ISSN: 1751-7362
    Publication Date: 2023-11-14
    Description: Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-11-14
    Description: Microbial communities are major drivers of global elemental cycles in the oceans due to their high abundance and enormous taxonomic and functional diversity. Recent studies assessed microbial taxonomic and functional biogeography in global oceans but microbial functional biogeography remains poorly studied. Here we show that in the near-surface Atlantic and Southern Ocean between 62°S and 47°N microbial communities exhibit distinct taxonomic and functional adaptations to regional environmental conditions. Richness and diversity showed maxima around 40° latitude and intermediate temperatures, especially in functional genes (KEGG-orthologues, KOs) and gene profiles. A cluster analysis yielded three clusters of KOs but five clusters of genes differing in the abundance of genes involved in nutrient and energy acquisition. Gene profiles showed much higher distance-decay rates than KO and taxonomic profiles. Biotic factors were identified as highly influential in explaining the observed patterns in the functional profiles, whereas temperature and biogeographic province mainly explained the observed taxonomic patterns. Our results thus indicate fine-tuned genetic adaptions of microbial communities to regional biotic and environmental conditions in the Atlantic and Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 14(1), 15 p., pp. 6141-6141, ISSN: 2041-1723
    Publication Date: 2023-11-08
    Description: Major biogeographic features of the microbial seascape in the oceans have been established and their underlying ecological mechanisms in the (sub)tropical oceans and the Pacific Ocean identified. However, we still lack a unifying understanding of how prokaryotic communities and biogeographic patterns are affected by large-scale current systems in distinct ocean basins and how they are globally shaped in line with ecological mechanisms. Here we show that prokaryotic communities in the epipelagic Pacific and Atlantic Ocean, in the southern Indian Ocean, and the Mediterranean Sea are composed of modules of co-occurring taxa with similar environmental preferences. The relative partitioning of these modules varies along latitudinal and longitudinal gradients and are related to different hydrographic and biotic conditions. Homogeneous selection and dispersal limitation were identified as the major ecological mechanisms shaping these communities and their free-living (FL) and particle-associated (PA) fractions. Large-scale current systems govern the dispersal of prokaryotic modules leading to the highest diversity near subtropical fronts.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(21), ISSN: 0094-8276
    Publication Date: 2023-11-01
    Description: Molybdenum (Mo) is a trace element sensitive to oceanic redox conditions. The fidelity of sedimentary Mo as a paleoredox proxy of coeval seawater depends on the extent of Mo remobilization during postdepositional processes. Here we present the Mo content and isotope profiles for deep sediments from the Nankai Trough, Japan. The Mo signature suggests that these sediments have experienced extensive early diagenesis and hydrothermal alteration at depth. Iron (Fe)‐manganese (Mn) (oxyhydr)oxide alteration combined with Mo thiolation leads to a more than twenty‐fold enrichment of Mo within the sulfate reduction zone. Hydrothermal fluids and Mo adsorption onto Fe‐Mn (oxyhydr)oxides cause extremely negative Mo‐isotope values at the underthrust zone. These postdepositional Mo signals might be misinterpreted as expanded anoxia in the water column. Our findings highlight the importance of constraining postdepositional effects on Mo‐based proxies during paleoredox reconstruction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2023-12-19
    Description: As a contribution to the Regional Carbon Cycle Assessment and Processes phase 2 (RECCAP2) project, we present synthesized estimates of Arctic Ocean sea-air CO2 fluxes and their uncertainties from surface ocean pCO2-observation products, ocean biogeochemical hindcast and data assimilation models, and atmospheric inversions. For the period of 1985–2018, the Arctic Ocean was a net sink of CO2 of 116 ± 4 TgC yr−1 in the pCO2 products, 92 ± 30 TgC yr−1 in the models, and 91 ± 21 TgC yr−1 in the atmospheric inversions. The CO2 uptake peaks in late summer and early autumn, and is low in winter when sea ice inhibits sea-air fluxes. The long-term mean CO2 uptake in the Arctic Ocean is primarily caused by steady-state fluxes of natural carbon (70% ± 15%), and enhanced by the atmospheric CO2 increase (19% ± 5%) and climate change (11% ± 18%). The annual mean CO2 uptake increased from 1985 to 2018 at a rate of 31 ± 13 TgC yr−1 dec−1 in the pCO2 products, 10 ± 4 TgC yr−1 dec−1 in the models, and 32 ± 16 TgC yr−1 dec−1 in the atmospheric inversions. Moreover, 77% ± 38% of the trend in the net CO2 uptake over time is caused by climate change, primarily due to rapid sea ice loss in recent years. Furthermore, true uncertainties may be larger than the given ensemble standard deviations due to common structural biases across all individual estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Marine Biodiversity, Springer Nature, 53(6), pp. 72-72, ISSN: 1867-1616
    Publication Date: 2023-12-06
    Description: One of the key challenges in managing eutrophication in coastal marine ecosystems is the harmonized cross-border assessment of phytoplankton. Some general understanding of the consequences of shifting nutrient regimes can be derived from the detailed investigation of the phytoplankton community and its biodiversity. Here, we combined long-term monitoring datasets of German and Dutch coastal stations and amended these with additional information on species biomass. Across the integrated and harmonized dataset, we used multiple biodiversity descriptors to analyse temporal trends in the Wadden Sea phytoplankton. Biodiversity, measured as the number of species (S) and the effective number of species (ENS), has decreased in the Dutch stations over the last 20 years, while biomass has increased, indicating that fewer species are becoming more dominant in the system. However, biodiversity and biomass did not show substantial changes in the German stations. Although there were some differences in trends between countries, shifts in community composition and relative abundance were consistent across stations and time. We emphasise the importance of continuous and harmonized monitoring programmes and multi-metric approaches that can detect changes in the communities that are indicative of changes in the environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-11-21
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: On 24 August 2016 at 01:36 UTC a ML6.0 earthquake struck several villages in central Italy, among which Accumoli, Amatrice and Arquata del Tronto. The earthquake was recorded by about 350 seismic stations, causing 299 fatalities and damage with macroseismic intensities up to 11. The maximum acceleration was observed at Amatrice station (AMT) reaching 916 cm s–2 on E–W component, with epicentral distance of 15 km and Joyner and Boore distance to the fault surface (RJB) of less than a kilometre. Motivated by the high levels of observed ground motion and damage, we generate broad-band seismograms for engineering purposes by adopting a hybrid method. To infer the low frequency seismograms, we considered the kinematic slip model by Tinti et al . The high frequency seismograms were produced using a stochastic finite-fault model approach based on dynamic corner-frequency. Broadband synthetic time-series were therefore obtained by merging the low and high frequency seismograms. Simulated hybrid ground motions were compared both with the observed ground motions and the ground-motion prediction equations (GMPEs), to explore their performance and to retrieve the region-specific parameters endorsed for the simulations. In the near-fault area we observed that hybrid simulations have a higher capability to detect near source effects and to reproduce the source complexity than the use of GMPEs. Indeed, the general good consistency found between synthetic and observed ground motion (both in the time and frequency domain), suggests that the use of regional-specific source scaling and attenuation parameters together with the source complexity in hybrid simulations improves ground motion estimations. To include the site effect in stochastic simulations at selected stations, we tested the use of amplification curves derived from HVRSs (horizontal-to-vertical response spectra) and from HVSRs (horizontal-to-vertical spectral ratios) rather than the use of generic curves according to NTC18 Italian seismic design code. We generally found a further reduction of residuals between observed and simulated both in terms of time histories and spectra.
    Description: Published
    Description: 1753–1779
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-11-16
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved
    Description: This study describes a deep convolutional neural network (CNN) based technique for the prediction of intensity measurements (IMs) of ground shaking. The input data to the CNN model consists of multistation 3C broadband and accelerometric waveforms recorded during the 2016 Central Italy earthquake sequence for M $\ge$ 3.0. We find that the CNN is capable of predicting accurately the IMs at stations far from the epicenter and that have not yet recorded the maximum ground shaking when using a 10 s window starting at the earthquake origin time. The CNN IM predictions do not require previous knowledge of the earthquake source (location and magnitude). Comparison between the CNN model predictions and the predictions obtained with Bindi et al. (2011) GMPE (which require location and magnitude) has shown that the CNN model features similar error variance but smaller bias. Although the technique is not strictly designed for earthquake early warning, we found that it can provide useful estimates of ground motions within 15-20 sec after earthquake origin time depending on various setup elements (e.g., times for data transmission, computation, latencies). The technique has been tested on raw data without any initial data pre-selection in order to closely replicate real-time data streaming. When noise examples were included with the earthquake data, the CNN was found to be stable predicting accurately the ground shaking intensity corresponding to the noise amplitude.
    Description: Published
    Description: 1379–1389
    Description: 8T. Sismologia in tempo reale
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-11-16
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: In volcanoes, topography, shallow heterogeneity and even shallow morphology can substan- tially modify seismic coda signals. Coda waves are an essential tool to monitor eruption dynamics and model volcanic structures jointly and independently from velocity anomalies: it is thus fundamental to test their spatial sensitivity to seismic path effects. Here, we apply the Multiple Lapse Time Window Analysis (MLTWA) to measure the relative importance of scattering attenuation vs absorption at Mount St Helens volcano before its 2004 erup- tion. The results show the characteristic dominance of scattering attenuation in volcanoes at lower frequencies (3–6 Hz), while absorption is the primary attenuation mechanism at 12 and 18 Hz. Scattering attenuation is similar but seismic absorption is one order of magnitude lower than at open-conduit volcanoes, like Etna and Kilauea, a typical behaviour of a (rela- tively) cool magmatic plumbing system. Still, the seismic albedo (measuring the ratio between seismic energy emitted and received from the area) is anomalously high (0.95) at 3 Hz. A radiative-transfer forward model of far- and near-field envelopes confirms this is due to strong near-receiver scattering enhancing anomalous phases in the intermediate and late coda across the 1980 debris avalanche and central crater. Only above this frequency and in the far-field diffusion onsets at late lapse times. The scattering and absorption parameters derived from MLTWA are used as inputs to construct 2-D frequency-dependent bulk sensitivity kernels for the S-wave coda in the multiple-scattering (using the Energy Transport Equations—ETE) and diffusive (AD, independent of MLTWA results) regimes. At 12 Hz, high coda-attenuation anomalies characterize the eastern side of the volcano using both kernels, in spatial correla- tion with low-velocity anomalies from literature. At 3 Hz, the anomalous albedo, the forward modelling, and the results of the tomographic imaging confirm that shallow heterogeneity beneath the extended 1980 debris-avalanche and crater enhance anomalous intermediate and late coda phases, mapping shallow geological contrasts. We remark the effect this may have on coda-dependent source inversion and tomography, currently used across the world to image and monitor volcanoes. At Mount St Helens, higher frequencies and deep borehole data are necessary to reconstruct deep volcanic structures with coda waves.
    Description: Scottish Alliance for Geosciences Environment and Society and the Kleinman Grant for Volcano Research
    Description: Published
    Description: 169-188
    Description: 1T. Struttura della Terra
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: NorthAmerica ; Wave scattering and diffraction. ; Codawaves ; Seismicattenuation ; Seismic tomography ; Volcano seismology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-11-14
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: To evaluate the site response using both empirical approaches (e.g. standard spectral ratio, ground motion models (GMMs), generalized inversion techniques, etc.) and numerical 1-D/2-D analyses, the definition of the reference motion, that is the ground motion recorded at stations unaffected by site-effects due to topographic, stratigraphic or basin effects, is needed. The main objective of this work is to define a robust strategy to identify the seismic stations that can be considered as reference rock sites, using six proxies for the site response: three proxies are related to the analysis of geophysical and seismological data (the repeatable site term from the residual analysis, the resonance frequencies from horizontal-to-vertical spectral ratios on noise or earthquake signals, the average shear wave velocity in the first 30 m); the remaining ones concern geomorphological and installation features (outcropping rocks or stiff soils, flat topography and absence of interaction with structures). We introduce a weighting scheme to take into account the availability and the quality of the site information, as well as the fulfillment of the criterion associated to each proxy. We also introduce a hierarchical index, to take into account the relevance of the proposed proxies in the description of the site effects, and an acceptance threshold for reference rock sites identification. The procedure is applied on a very large data set, composed by accelerometric and velocimetric waveforms, recorded in Central Italy in the period 2008–2018. This data set is composed by more than 30 000 waveforms relative to 450 earthquakes in the magnitude range 3.2–6.5 and recorded by more than 450 stations. A total of 36 out of 133 candidate stations are identified as reference sites: the majority of them are installed on rock with flat topography, but this condition is not sufficient to guarantee the absence of amplifications, especially at high frequencies. Seismological analyses are necessary to exclude stations affected by resonances. We test the impact of using these sites by calibrating a GMMs. The results show that for reference rock sites the median predictions are reduced down to about 45 per cent at short periods in comparison to the generic rock motions.
    Description: Published
    Description: 2053–2067
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-11-14
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: We compile a data set of Rayleigh-wave phase velocities between pairs of stations, based on teleseismic events located on the same great circle as the two stations. We validate our observations against dispersion estimates based on ambient-noise cross correlations at the same station pairs. Discrepancies between the results of the two methods can in principle be explained by deviations in the wave propagation path between earthquake and receivers, due to lateral heterogeneity in the Earth’s structure, but the latter effect has, so far, not been precisely quantified nor corrected for. We implement an algorithm to measure the arrival angle of earthquake-generated surface waves and correct the dispersion measurements accordingly. Application to a data set from the Central-Western Mediterranean shows that the arrival-angle correction almost entirely accounts for the discrepancy in question, decreasing significantly the velocity bias for a wide range of periods.
    Description: Published
    Description: 1838–1844
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-11-16
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: Three dimensional attenuation images of Mt Etna volcano obtained by the analysis of Q-coda from local volcano-tectonic earthquakes are presented in this work. Seismic sources are confined inside the Etna structure with a maximum focal depth of 35 km below the sea level. The space distribution of the attenuation values was calculated by using 3-D weighting functions derived by the sensitivity kernels of Pacheco & Snieders and approximated by a polynomial interpolation, represented in the maps by using a backprojection method. Data were analyzed in four bands with central frequency placed at 1.5, 3, 6 and 12 Hz, respectively. We observed a frequency dependence of Q-coda with values that range from 55 at 1.5 Hz to 218 at 12 Hz. Q-coda space distribution in the Etna area shows almost uniformity in the average attenuation in the first 35 km below the surface. The images were derived with a resolution of 5 km. We observe as one of our main conclusions that Q-coda attenuation space anomalies are correlated with the areas of highest structural heterogeneities and are distributed along the well-known tectonic structures which characterize the crust in Mt Etna region. Previous and numerous velocity and attenuation images describing the structure of Mt Etna support our main conclusion: high Q-coda volumes almost coincide with the zones marked by high velocity and relative low total attenuation for direct waves.
    Description: Published
    Description: 544–558
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-11-29
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2020. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: On 24 January 2020 an Mw 6.8 earthquake occurred at 20:55 local time (17:55 UTC) in eastern Turkey, close to the town of Sivrice in the Elazığ province, causing widespread considerable seismic damage in buildings. In this study, we analyse the main features of the rupture process and the seismic ground shaking during the Elazığ earthquake. We first use Interferometric Synthetic Aperture Radar (InSAR) interferograms (Sentinel-1 satellites) to constrain the fault geometry and the coseismic slip distribution of the causative fault segment. Then, we utilize this information to analyse the ground motion characteristics of the main shock in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and spectral accelerations. The absence of seismic registrations in near-field for this earthquake imposes major constraints on the computation of seismic ground motion estimations in the study area. To do this, we have used a stochastic finite-fault simulation method to generate high-frequency ground motions synthetics for the Mw 6.8 Elazığ 2020 earthquake. Finally, we evaluate the potential state of stress of the unruptured portions of the causative fault segment as well as of adjacent segments, using the Coulomb stress failure function variations. Modelling of geodetic data shows that the 2020 Elazığ earthquake ruptured two major slip patches (for a total length of about 40 km) located along the Pütürge segment of the well-known left-lateral strike-slip East Anatolian Fault Zone (EAFZ), with up to 2.3 m of slip and an estimated geodetic moment of 1.70 × 1019 Nm (equivalent to a Mw 6.8). The position of the hypocentre supports the evidence of marked WSW rupture directivity during the main shock. In terms of ground motion characteristics, we observe that the high-frequency stochastic ground motion simulations have a good capability to reproduce the source complexity and capture the ground motion attenuation decay as a function of distance, up to the 200 km. We also demonstrate that the design spectra corresponding to 475 yr return period, provided by the new Turkish building code is not exceeded by the simulated seismograms in the epicentral area where there are no strong motion stations and no recordings available. Finally, based on the Coulomb stress distribution computation, we find that the Elazığ main shock increased the stress level of the westernmost part of the Pütürge fault and of the adjacent Palu segment and as a result of an off-fault lobe.
    Description: Published
    Description: 1054–1068
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-12-20
    Description: We assess the Southern Ocean CO2 uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) and pCO2-observation-based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-01-06
    Description: The seasonal cycle is the dominant mode of variability in the air-sea CO2 flux in most regions of the global ocean, yet discrepancies between different seasonality estimates are rather large. As part of the Regional Carbon Cycle Assessment and Processes Phase 2 project (RECCAP2), we synthesize surface ocean pCO2 and air-sea CO2 flux seasonality from models and observation-based estimates, focusing on both a present-day climatology and decadal changes between the 1980s and 2010s. Four main findings emerge: First, global ocean biogeochemistry models (GOBMs) and observation-based estimates (pCO2 products) of surface pCO2 seasonality disagree in amplitude and phase, primarily due to discrepancies in the seasonal variability in surface DIC. Second, the seasonal cycle in pCO2 has increased in amplitude over the last three decades in both pCO2 products and GOBMs. Third, decadal increases in pCO2 seasonal cycle amplitudes in subtropical biomes for both pCO2 products and GOBMs are driven by increasing DIC concentrations stemming from the uptake of anthropogenic CO2 (Cant). In subpolar and Southern Ocean biomes, however, the seasonality change for GOBMs is dominated by Cant invasion, whereas for pCO2 products an indeterminate combination of Cant invasion and climate change modulates the changes. Fourth, biome-aggregated decadal changes in the amplitude of pCO2 seasonal variability are largely detectable against both mapping uncertainty (reducible) and natural variability uncertainty (irreducible), but not at the gridpoint scale over much of the northern subpolar oceans and over the Southern Ocean, underscoring the importance of sustained high-quality seasonally resolved measurements over these regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2024-01-06
    Description: This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation-based products. The mean sea-air CO2 flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1 based on an ensemble of reconstructions of the history of sea surface pCO2 (pCO2 products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1 by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1 by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1 of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2 products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2-driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate-forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate-driven variability exceeding the CO2-forced variability by 2–3 times. These results suggest that anthropogenic CO2 dominates the ocean CO2 sink, while climate-driven variability is potentially large but highly uncertain and not consistently captured across different methods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Conservation Physiology, Oxford University Press, 9(1), ISSN: 2051-1434
    Publication Date: 2024-01-01
    Description: We studied the ontogeny of osmoregulation of the Asian shore crab Hemigrapsus sanguineus at an invaded area in the North Sea. H. sanguineus is native to Japan and China but has successfully invaded the Atlantic coast of North America and Europe. In the invaded areas, H. sanguineus is becoming a keystone species as driver of community structure and the adults compete with the shore crab Carcinus maenas. Strong osmoregulatory abilities may confer the potential to use and invade coastal areas already earlier in the life cycle. We reared larvae and first juveniles at 24°C in seawater from hatching to intermoult of each developmental stage (zoea I-V, megalopa, crab I). We exposed each stage to a range of salinities (0–39 ppt) for 24 h, and then we quantified haemolymph osmolality, using nano-osmometry. In addition, we quantified osmolality in field-collected adults after acclimation to the test salinities for 6 days. Larvae of H. sanguineus were able to hyper-osmoregulate at low salinities (15 and 20 ppt) over the complete larval development, although the capacity was reduced at the zoeal stage V; at higher salinities (25–39 ppt), all larval stages were osmoconformers. The capacity to slightly hypo-regulate at high salinity appeared in the first juvenile. Adults were able to hyper-osmoregulate at low salinities and hypo-regulate at concentrated seawater (39 ppt). H. sanguineus showed a strong capacity to osmoregulate as compared to its native competitor C. maenas, which only hyper-regulates at the first and last larval stages and does not hypo-regulate at the juvenile-adult stages. The capacity of H. sanguineus to osmoregulate over most of the life cycle should underpin the potential to invade empty niches in the coastal zone (characterized by low salinity and high temperatures). Osmoregulation abilities over the whole life cycle also constitute a strong competitive advantage over C. maenas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-12-27
    Description: This article has been accepted for publication in Geophysical Journal International ©:The Author(s) 2023. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Uploaded in accordance with the publisher's self-archiving policy. All rights reserved.
    Description: The south-eastern sector of the Mount Etna, Italy, is characterized by numerous active faults, in particular the Belpasso–Ognina lineament, the Tremestieri–San Gregorio–Acitrezza fault, the Trecastagni fault and the Fiandaca–Nizzeti fault including the Timpe Fault System. Their activity is the result of both volcanism and tectonics. Here, we analyse the ground deformation occurred from 2016 to 2019 across those active faults by using the GNSS data acquired at 22 permanent stations and 35 campaign points observed by the Etna Observatory (INGV) and by the University of Catania. We also use the time-series of line of sight displacement of permanent scatterers SENTINEL-1 A-DInSAR obtained by using the P-SBAS tool of the ESA GEP-TEP (Geohazards Thematic Exploitation Platform) service. We discriminate the contributions of the regional tectonic strain, the inflations, the deflations of the volcano and the gravitational sliding in order to analyse the deformation along the faults of the south-eastern flank of Etna. The shallow and destructive Mw = 4.9 earthquake of 2018 December 26 occurred within the studied area two days after a dyke intrusion, that propagated beneath the centre of the volcano accompanied by a short eruption. Both GNSS and InSAR time-series document well those events and allow to investigate the post-seismic sliding across the faults of south-eastern flank. We analyse the slow slip events (SSE) that are observed in the GNSS and InSAR time-series in the vicinity of the Acitrezza fault. We quantify and discuss the tectonic origin of the Belpasso–Ognina lineament that we interpreted as a tear fault.
    Description: Published
    Description: 664–682
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Keywords: Satellite geodesy ; Transient deformation ; Interferometry ; Fractures ; fault ; Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2024-01-02
    Description: Global biodiversity loss and mass extinction of species are two of the most critical environmental issues the world is currently facing, resulting in the disruption of various ecosystems central to environmental functions and human health. Microbiome-targeted interventions, such as probiotics and microbiome transplants, are emerging as potential options to reverse deterioration of biodiversity and increase the resilience of wildlife and ecosystems. However, the implementation of these interventions is urgently needed. We summarize the current concepts, bottlenecks and ethical aspects encompassing the careful and responsible management of ecosystem resources using the microbiome (termed microbiome stewardship) to rehabilitate organisms and ecosystem functions. We propose a real-world application framework to guide environmental and wildlife probiotic applications. This framework details steps that must be taken in the upscaling process while weighing risks against the high toll of inaction. In doing so, we draw parallels with other aspects of contemporary science moving swiftly in the face of urgent global challenges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-02-23
    Description: Comparing helicopter-borne surface temperature maps in winter and optical orthomosaics in summer from the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one-dimensional steady-state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold-based classification achieves a correct classification for 41% of the melt ponds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12),(2022): 3199-3219, https://doi.org/10.1175/jpo-d-22-0009.1.
    Description: The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed water-mass transformations are dominated by rough topography “hotspots,” where the bottom enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin bottom boundary layer (BBL). These water-mass transformations are significantly underestimated by one-dimensional (1D) sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this 1D boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downward diffusion of buoyancy is primarily balanced by upwelling along the sloping canyon sidewalls and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough’s stratification. We propose simple modifications to the 1D boundary layer model that approximate each of these three-dimensional effects. These results provide local dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the nonlocal coupling to the basin-scale circulation.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515, 1736109, and 2149080. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530.
    Description: 2023-05-18
    Keywords: Abyssal circulation ; Diapycnal mixing ; Meridional overturning circulation ; Topographic effects ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1091–1110, https://doi.org/10.1175/JPO-D-21-0068.1.
    Description: Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.
    Description: This work was funded by NSF Grant 1736217 and would not have been possible without the help of Kirk O’Donnell, James Bennett, Noel Pelland, and all contributors to Deepglider development. We additionally thank the captain crew of the R/V Atlantic Explorer and the BATS team at the Bermuda Institute of Ocean Sciences, particularly Rod Johnson, as well as Seakeepers International for their professionalism, capability, and generous assistance in deploying and recovering gliders.
    Keywords: North Atlantic Ocean ; Eddies ; Mesoscale processes ; Turbulence ; Energy transport ; In situ oceanic observations ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2023-03-15
    Description: Ground shaking, whether it is due to natural or induced earthquakes, has always been a matter of concern since it correlates with structural/non-structural damage and can culminate in human anxiety. Industrial activities such as water injection, gas sequestration and waste fluid disposals, promote induced seismicity and consequent ground shaking that can hinder ongoing activities. Therefore, keeping in mind the importance of timely evaluation of a seismic hazard and its mitigation for societal benefits, the present study proposes specifically designed ground-motion prediction equations (GMPEs) from induced earthquakes in the St. Gallen geothermal area, Switzerland. The data analysed in this study consist of 343 earthquakes with magnitude −1.17 ≤ ML, corr ≤ 3.5 and hypocentral distance between 4 and 15 km. The proposed study is one of the first to incorporate ground motions from negative magnitude earthquakes for the development of GMPEs. The GMPEs are inferred with a two-phase approach. In the first phase, a reference model is obtained by considering the effect of source and medium properties on the ground motion. In the second phase the final model is obtained by including a site/station effect. The comparison between the GMPEs obtained in the present study with GMPEs developed for the other induced seismicity environments highlights a mismatch that is ascribed to differences in regional seismic environment and local site conditions of the respective regions. This suggests that, when dealing with induced earthquakes, GMPEs specific for the study should be inferred and used for both monitoring purposes and seismic hazard analyses.
    Description: Published
    Description: 820–832
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2023-01-18
    Description: The 2020 update of the European Seismic Hazard Model (ESHM20) is the most recent seismic hazard model of the Euro-Mediterranean region. It was built upon unified and homogenized datasets including earthquake catalogues, active faults, ground motion recordings and state-of-the-art modelling components, i.e. earthquake rates forecast and regionally variable ground motion characteristic models. ESHM20 replaces the 2013 European Seismic Hazard Model (ESHM13), and it is the first regional model to provide two informative hazard maps for the next update of the European Seismic Design Code (CEN EC8). ESHM20 is also one of the key components of the first publicly available seismic risk model for Europe. This chapter provides a short summary of ESHM20 by highlighting its main features and describing some lessons learned during the model’s development.
    Description: Published
    Description: 3-25
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 4IT. Banche dati
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2023-06-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-06-02
    Description: Satellite observations covering the last four decades reveal an ocean warming pattern resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore been widely interpreted as a manifestation of natural climate variability. Here, we re-examine the observed warming pattern and find that the predominant warming over the subtropical oceans, while mild warming or even cooling over the subpolar ocean, is dynamically consistent with the convergence and divergence of surface water. By comparison of observations, paleo-reconstructions, and model simulations, we propose that the observed warming pattern is likely a short-term transient response to the increased CO2 forcing, which only emerges during the early stage of anthropogenic warming. On centennial to millennial timescales, the subpolar ocean warming is expected to exceed the temporally dominant warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-01-25
    Description: Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive datasets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, in-situ probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The datasets follow documented methods and quality assurance and are suited for studies on Arctic mixedphase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation applications. All datasets are freely available via the world data center PANGAEA.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-01-27
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1705-1730, https://doi.org/10.1175/jpo-d-21-0243.1.
    Description: Formation and evolution of barrier layers (BLs) and associated temperature inversions (TIs) were investigated using a 1-yr time series of oceanic and air–sea surface observations from three moorings deployed in the eastern Pacific fresh pool. BL thickness and TI amplitude showed a seasonality with maxima in boreal summer and autumn when BLs were persistently present. Mixed layer salinity (MLS) and mixed layer temperature (MLT) budgets were constructed to investigate the formation mechanism of BLs and TIs. The MLS budget showed that BLs were initially formed in response to horizontal advection of freshwater in boreal summer and then primarily maintained by precipitation. The MLT budget revealed that penetration of shortwave radiation through the mixed layer base is the dominant contributor to TI formation through subsurface warming. Geostrophic advection is a secondary contributor to TI formation through surface cooling. When the BL exists, the cooling effect from entrainment and the warming effect from detrainment are both significantly reduced. In addition, when the BL is associated with the presence of a TI, entrainment works to warm the mixed layer. The presence of BLs makes the shallower mixed layer more sensitive to surface heat and freshwater fluxes, acting to enhance the formation of TIs that increase the subsurface warming via shortwave penetration.
    Description: SK is supported by JSPS Overseas Research Fellowships. JS and SK are supported by NASA Grant 80NSSC18K1500. JTF and the mooring deployment were funded by NASA Grants NNX15AG20G and 80NSSC18K1494. DZ is supported by NASA Grant 80NSSC18K1499. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES) under NOAA Cooperative Agreement NA20OAR4320271, Contribution 2021-1152. This is PMEL Contribution 5268.
    Description: 2023-01-27
    Keywords: Ocean ; North Pacific Ocean ; Tropics ; Entrainment ; Oceanic mixed layer ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-02-07
    Description: Objective: To study the blood levels of selected trace elements (TE) in Multiple Sclerosis (MS) patients living in high-incidence cluster areas in the Etna volcano region. Methods: MS patients living in the province of Catania have been retrospectively enrolled among those followed by the Neurologic Clinic of the AOU Policlinico “G. Rodolico-San Marco” who had the disease onset between 2005 and 2020.Aserumsample was used for the determination of TE levels (As,Cd, Cr, Cu, Fe, Mg, Mn, Ni, Se, Zn). All the analyses have been conducted with an ICPMS with the standard addition technique, previous digestion of the samples with nitric acid. MS patients living the high incidence clusters were frequency matched with MS patients living outside the clusters. Comparisons of TE across the groups were conducted using the Mann-Whitney test. Results: A total of 86 (48 women; 55.8%) MS patients was recruited, with a mean age of 41.6±13.1 years, a mean disease duration of 2.0±2.6 years and a mean Expanded Disability Status Scale of 2.3±1.7. Of these patients, 40 belonged to high incidence clusters and 46 were outside the clusters. No differences were found in demographic characteristics between the groups. Concerning TE, we found a significant higher concentration of Mn in incluster patients (6.7±16.6 μg/L vs 2.5±5.9 μg/L). Discussion: Several environmental factors may modulate the pathogenesis of the disease, and among them TE play an important role. Our findings suggest that Manganese, which has several toxic effects, might contribute to the higher incidence of MS previously observed in a cluster of communalities in the south-eastern flank of the Etna volcano, where volcanic ashes rich in TE usually fall due to the prevailing winds. Conclusions: Exposition to high levels of Mn could be a cofactor in the pathogenesis of MS.
    Description: Published
    Description: Milano
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Keywords: Multiple Sclerosis ; Mt. Etna ; 05. General
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), ISSN: 2572-4517
    Publication Date: 2023-02-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-08-03
    Description: Dissimilatory iron reduction (DIR) is suggested to be one of the earliest forms of microbial respiration. It plays an important role in the biogeochemical cycling of iron in modern and ancient sediments. Since microbial iron cycling is typically accompanied by iron isotope fractionation, stable iron isotopes are used as tracer for biological activity. Here we present iron isotope data for dissolved and sequentially extracted sedimentary iron pools from deep and hot subseafloor sediments retrieved in the Nankai Trough off Japan. Dissolved iron (Fe(II)aq) is isotopically light throughout the ferruginous sediment interval but some samples have exceptionally light isotope values. Such light values have never been reported in natural marine environments and cannot be solely attributed to DIR. We show that the light isotope values are best explained by a Rayleigh distillation model where Fe(II)aq is continuously removed from the pore water by adsorption onto iron (oxyhydr)oxide surfaces. While the microbially mediated Fe(II)aq release has ceased due to an increase in temperature beyond the threshold of mesophilic microorganisms, the abiotic adsorptive Fe(II)aq removal continued, leading to uniquely light isotope values. These findings have important implications for the interpretation of dissolved iron isotope data especially in deep subseafloor sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-08-01
    Description: In the version of this article initially published, author Cora Hörstmann was wrongly listed with a second affiliation with the Department of Ecoscience–Applied Marine Ecology and Modelling, Aarhus University rather than the Mediterranean Institute of Oceanography (MIO), Marseille, France. Furthermore, references 83–97, now found in the Supplementary Tables caption, were wrongly cited in the Data Availability section. The errors have been corrected in the HTML and PDF versions of the article.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2023-08-01
    Description: Large amounts of atmospheric carbon can be exported and retained in the deep sea on millennial time scales, buffering global warming. However, while the Barents Sea is one of the most biologically productive areas of the Arctic Ocean, carbon retention times were thought to be short. Here we present observations, complemented by numerical model simulations, that revealed a deep and widespread lateral injection of approximately 2.33 kt C d−1 from the Barents Sea shelf to some 1,200 m of the Nansen Basin, driven by Barents Sea Bottom Water transport. With increasing distance from the outflow region, the plume expanded and penetrated into even deeper waters and the sediment. The seasonally fluctuating but continuous injection increases the carbon sequestration of the Barents Sea by 1/3 and feeds the deep sea community of the Nansen Basin. Our findings combined with those from other outflow regions of carbon-rich polar dense waters highlight the importance of lateral injection as a global carbon sink. Resolving uncertainties around negative feedbacks of global warming due to sea ice decline will necessitate observation of changes in bottom water formation and biological productivity at a resolution high enough to quantify future deep carbon injection.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-08-09
    Description: The Asian shore crab Hemigrapsus sanguineus has become invasive in North Europe and it co-occurs and competes with the native European shore crab Carcinus maenas. Both species develop through a feeding and dispersive larval phase characterised by several zoeal and a settling megalopa stage. Larvae of marine crabs are vulnerable to food limitation and warming has the potential to exacerbate the negative effects of food limitation on survival and growth. We quantified the combined effects of temperature and food limitation on larval performance (survival and growth) of H. sanguineus and we compared our results with those reported on performance of C. maenas larvae, under the same experimental design and methodology. Larvae from four females of H. sanguineus collected on Helgoland (North Sea) were experimentally reared from hatching to megalopa, at four temperatures (range 15–24 °C) and two food conditions (permanent vs. daily limited access to food). Larval survival of H. sanguineus was low at 15 °C and increased with temperature, in contrast to the high survival reported for C. maenas larvae in the range 15–24 °C. Food limitation reduced survival and body mass of H. sanguineus larvae at all temperatures, but without evidence of the exacerbating effect caused by high temperatures and reported for C. maenas. By contrast, high temperature (24 °C) mitigated the negative effect of food limitation on body mass on H. sanguineus larvae. Advantages of H. sanguineus over C. maenas appear especially under the increased temperatures expected from climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), 38, 22 p., pp. e2022PA004439-e2022PA004439, ISSN: 2572-4517
    Publication Date: 2023-08-30
    Description: Atmospheric carbon dioxide concentrations (pCO2) beyond ice core records have been reconstructed from δ11B derived from planktic foraminifera found in equatorial sediment cores. Here, I applied a carbon cycle model over the Plio-Pleistocene to evaluate the assumptions leading to these numbers. During glacials times, simulated atmospheric pCO2 was unequilibrated with pCO2 in the equatorial surface ocean by up to 35 ppm while the δ11B-based approaches assume unchanged (quasi)equilibrium between both. In the Pliocene, δ11B-based estimates of surface ocean pH are lower in the Pacific than in the Atlantic resulting in higher calculated pCO2. This offset in pH between ocean basins is not supported by models. To calculate pCO2 in surface waters out of the δ11B-based pH some assumptions on either total alkalinity or dissolved inorganic carbon are necessary. However, the assumed values of these under-constrained variables were according to my results partly inconsistent with chemically possible combinations within the marine carbonate system. The model results show glacial/interglacial variability in total alkalinity of the order of 100 μmol/kg, which is rarely applied to proxy reconstructions. Simulated atmospheric pCO2 is tightly (r2 〉 0.9) related to equatorial surface-ocean pH, which can be used for consistency checks. Long-term trends in volcanic CO2 outgassing and the strength of the continental weathering fluxes are still unconstrained, allowing for a wide range of possible atmospheric pCO2 across the Plio-Pleistocene. Nevertheless, this carbon cycle analysis suggests that reported atmospheric pCO2 above 500 ppm in the Pliocene might, for various reasons, need to be revised to smaller numbers.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(12), ISSN: 0094-8276
    Publication Date: 2023-09-01
    Description: Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 15(9), ISSN: 1942-2466
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Most viscous‐plastic sea ice models use the elliptical yield curve. This yield curve has a fundamental flaw: it excludes acute angles between deformation features at high resolution. Conceptually, the teardrop (TD) and parabolic lens (PL) yield curves offer an attractive alternative. These yield curves feature a non‐symmetrical shape, a Coulombic behavior for the low‐medium compressive stress, and a continuous transition to the ridging‐dominant mode, but their published formulation leads to negative or zero bulk and shear viscosities and, consequently, poor numerical convergence with stress states at times outside the yield curve. These issues are a consequence of the original assumption that the constitutive equations of the commonly used elliptical yield curve are also applicable to non‐symmetrical yield curves and yield curves with tensile strength. We derive a corrected formulation for the constitutive relations of the TD and PL yield curves. Results from simple uni‐axial loading experiments show that with the new formulation the numerical convergence of the solver improves and much smaller nonlinear residuals after a smaller number of total solver iterations can be reached, resulting in significant improvements in numerical efficiency and representation of the stress and deformation fields. The TD and PL yield curves lead to smaller angles of failure that better agree with observations. They are promising candidates to replace the elliptical yield curve in high‐resolution pan‐Arctic sea ice simulations.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, pp. 1-40, ISSN: 0894-8755
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉Tipping points in the Earth system describe critical thresholds beyond which a single component, part of the system, or the system as a whole changes from one stable state to another. In the present-day Southern Ocean, the Weddell Sea constitutes an important dense-water formation site, associated with efficient deep-ocean carbon and oxygen transfer and low ice-shelf basal melt rates. Here, a regime shift will occur when continental shelves are continuously flushed with warm, oxygen-poor offshore waters from intermediate depth, leading to less efficient deep-ocean carbon and oxygen transfer and higher ice-shelf basal melt rates. We use a global ocean–biogeochemistry model including ice-shelf cavities and an eddy-permitting grid in the southern Weddell Sea to address the susceptibility of this region to such a system change for four 21〈jats:sup〉st〈/jats:sup〉-century emission scenarios. Assessing the projected changes in shelf–open ocean density gradients, bottom-water properties, and on-shelf heat transport, our results indicate that the Weddell Sea undergoes a regime shift by 2100 in the highest-emission scenario SSP5-8.5, but not yet in the lower-emission scenarios. The regime shift is imminent by 2100 in the scenarios SSP3-7.0 and SSP2-4.5, but avoidable under the lowest-emission scenario SSP1-2.6. While shelf-bottom waters freshen and acidify everywhere, bottom waters in the Filchner Trough undergo accelerated warming and deoxygenation following the system change, with implications for local ecosystems and ice-shelf basal melt. Additionally, deep-ocean carbon and oxygen transfer decline, implying that the local changes ultimately affect ocean circulation, climate, and ecosystems globally.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Reviews Earth & Environment, Springer Nature, 4(2), pp. 119-134, ISSN: 2662-138X
    Publication Date: 2023-09-04
    Description: The ocean has absorbed 25 ± 2% of the total anthropogenic CO2 emissions from the early 1960s to the late 2010s, with rates more than tripling over this period and with a mean uptake of –2.7 ± 0.3 Pg C year–1 for the period 1990 through 2019. This growth of the ocean sink matches expectations based on the increase in atmospheric CO2, but research has shown that the sink is more variable than long assumed. In this Review, we discuss trends and variations in the ocean carbon sink. The sink stagnated during the 1990s with rates hovering around –2 Pg C year–1, but strengthened again after approximately 2000, taking up around –3 Pg C year–1 for 2010–2019. The most conspicuous changes in uptake occurred in the high latitudes, especially the Southern Ocean. These variations are caused by changes in weather and climate, but a volcanic eruption-induced reduction in the atmospheric CO2 growth rate and the associated global cooling contributed as well. Understanding the variability of the ocean carbon sink is crucial for policy making and projecting its future evolution, especially in the context of the UN Framework Convention on Climate Change stocktaking activities and the deployment of CO2 removal methods. This goal will require a global-level effort to sustain and expand the current observational networks and to better integrate these observations with models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-09-06
    Description: As calcareous foraminifera precipitate their shells from the surrounding water mass, they are the basis of most marine radiocarbon chronologies and paleo-proxies. Nevertheless, post-mortem alteration of shells, especially addition of authigenic calcite, impact proxy records. In the Arctic Ocean, authigenic calcite overgrowth on foraminifera has been attributed to hydrocarbon release, with a single report on 13C-enriched authigenic calcite, indicating a different carbon source. Here, we use comparative radiocarbon, carbon and oxygen isotope measurements to show that this 13C-enriched authigenic calcite impacts a large proportion of Holocene and the majority of last glacial planktonic foraminifera in the Arctic Basin. This authigenic precipitated calcite is 14C-depleted, so overgrowth results in invariably older 14C-ages. We show that, in comparison with published data, the true chronology of Arctic basin sediments can deviate by more than 10,000 years in critical parts of the last deglaciation and that stable oxygen and carbon isotopes, as likely all calcite-based proxy-records are affected with potential implications for paleoclimate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(4), ISSN: 0094-8276
    Publication Date: 2023-06-23
    Description: Climate change in the Arctic has substantial impacts on human life and ecosystems both within and beyond the Arctic. Our analysis of CMIP6 simulations shows that some climate models project much larger Arctic climate change than other models, including changes in sea ice, ocean mixed layer, air-sea heat flux, and surface air temperature in wintertime. In particular, dramatic enhancement of Arctic Ocean convection down to a few hundred meters is projected in these models but not in others. Interestingly, these models employ the same ocean model family (NEMO) while the choice of models for the atmosphere and sea ice varies. The magnitude of Arctic climate change is proportional to the strength of the increase in poleward ocean heat transport, which is considerably higher in this group of models. Establishing the plausibility of this group of models with high Arctic climate sensitivity to anthropogenic forcing is imperative given the implied ramifications.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 14(12), ISSN: 1942-2466
    Publication Date: 2023-06-23
    Description: A new version of the AWI Coupled Prediction System is developed based on the Alfred Wegener Institute Climate Model v3.0. Both the ocean and the atmosphere models are upgraded or replaced, reducing the computation time by a factor of 5 at a given resolution. This allowed us to increase the ensemble size from 12 to 30, maintaining a similar resolution in both model components. The online coupled data assimilation scheme now additionally utilizes sea-surface salinity and sea-level anomaly as well as temperature and salinity profile observations. Results from the data assimilation demonstrate that the sea-ice and ocean states are reasonably constrained. In particular, the temperature and salinity profile assimilation has mitigated systematic errors in the deeper ocean, although issues remain over polar regions where strong atmosphere-ocean-ice interaction occurs. One-year-long sea-ice forecasts initialized on 1 January, 1 April, 1 July and 1 October from 2003 to 2019 are described. To correct systematic forecast errors, sea-ice concentration from 2011 to 2019 is calibrated by trend-adjusted quantile mapping using the preceding forecasts from 2003 to 2010. The sea-ice edge raw forecast skill is within the range of operational global subseasonal-to-seasonal forecast systems, outperforming a climatological benchmark for about 2 weeks in the Arctic and about 3 weeks in the Antarctic. The calibration is much more effective in the Arctic: Calibrated sea-ice edge forecasts outperform climatology for about 45 days in the Arctic but only 27 days in the Antarctic. Both the raw and the calibrated forecast skill exhibit strong seasonal variations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2023-06-23
    Description: Sea ice leads play an important role in energy exchange between the ocean and atmosphere in polar regions, and therefore must be considered in weather and climate models. As sea ice leads are not explicitly resolved in such models, lead-averaged surface heat flux is of considerable interest for the parameterization of energy exchange. Measurements and numerical studies have established that the lead-averaged surface heat flux depends not only on meteorological parameters, but also on lead width. Nonetheless, few studies to date have investigated the dependency of surface heat flux on lead width. Most findings on that dependency are based on observations with lead widths smaller than a few hundred meters, but leads can have widths from a few meters to several kilometers. In this parameter study, we present the results of three series of large-eddy simulations of turbulent exchange processes above leads. We varied the lead width and air temperature, as well as the roughness length. As this study focused on conditions without background wind, ice-breeze circulation occurred, and was the main driver of the adjustment of surface heat flux. A previous large-eddy simulation study with uncommonly large roughness length found that lead-averaged surface heat flux exhibited a distinct maximum at lead widths of about 3 km, while our results show the largest heat fluxes for the smallest leads simulated (lead width of 50 m). At more realistic roughness lengths, we observed monotonously increasing heat fluxes with increasing lead width. Further, new scaling laws for the ice-breeze circulation are proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 35(23), pp. 7811-7831, ISSN: 0894-8755
    Publication Date: 2023-06-23
    Description: Numerical simulations allow us to gain a comprehensive understanding of the underlying mechanisms of past, present, and future climate changes. The mid-Holocene (MH) and the last interglacial (LIG) were the two most recent warm episodes of Earth’s climate history and are the focus of paleoclimate research. Here, we present results of MH and LIG simulations with two versions of the state-of-the-art Earth system model AWI-ESM. Most of the climate changes in MH and LIG compared to the preindustrial era are agreed upon by the two model versions, including 1) enhanced seasonality in surface temperature that is driven by the redistribution of seasonal insolation; 2) a northward shift of the intertropical convergence zone (ITCZ) and tropical rain belt; 3) a reduction in annual mean Arctic sea ice concentration; 4) weakening and northward displacement of the Northern Hemisphere Hadley circulation, which is related to the decrease and poleward shift of the temperature gradient from the subtropical to the equator in the Northern Hemisphere; 5) a westward shift of the Indo-Pacific Walker circulation due to anomalous warming over the Eurasia and North Africa during boreal summer; and 6) an expansion and intensification of Northern Hemisphere summer monsoon rainfall, with the latter being dominated by the dynamic component of moisture budget (i.e., the strengthening of wind circulation). However, the simulated responses of the Atlantic meridional overturning circulation (AMOC) in the two models yield different results for both the LIG and the MH. AMOC anomalies between the warm interglacial and preindustrial periods are associated with changes in North Atlantic westerly winds and stratification of the water column at the North Atlantic due to changes in ocean temperature, salinity, and density.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research - Oceans, American Geophysical Union (AGU), 128(3), ISSN: 2169-9275
    Publication Date: 2023-06-23
    Description: The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean-atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high-resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind-feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm-water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-07-25
    Description: The original version of the Description of Additional Supplementary Files associated with this Article contained errors in the legends of Supplementary Data 5–8 and omitted legends for the Source Data. The HTML has been updated to include a corrected version of the Description of Additional Supplementary Files; the original incorrect version of this file can be found as Supplementary Information associated with this Correction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-03-02
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(12), (2022): 3221–3240, https://doi.org/10.1175/jpo-d-22-0010.1.
    Description: Small-scale mixing drives the diabatic upwelling that closes the abyssal ocean overturning circulation. Indirect microstructure measurements of in situ turbulence suggest that mixing is bottom enhanced over rough topography, implying downwelling in the interior and stronger upwelling in a sloping bottom boundary layer. Tracer release experiments (TREs), in which inert tracers are purposefully released and their dispersion is surveyed over time, have been used to independently infer turbulent diffusivities—but typically provide estimates in excess of microstructure ones. In an attempt to reconcile these differences, Ruan and Ferrari derived exact tracer-weighted buoyancy moment diagnostics, which we here apply to quasi-realistic simulations. A tracer’s diapycnal displacement rate is exactly twice the tracer-averaged buoyancy velocity, itself a convolution of an asymmetric upwelling/downwelling dipole. The tracer’s diapycnal spreading rate, however, involves both the expected positive contribution from the tracer-averaged in situ diffusion as well as an additional nonlinear diapycnal distortion term, which is caused by correlations between buoyancy and the buoyancy velocity, and can be of either sign. Distortion is generally positive (stretching) due to bottom-enhanced mixing in the stratified interior but negative (contraction) near the bottom. Our simulations suggest that these two effects coincidentally cancel for the Brazil Basin Tracer Release Experiment, resulting in negligible net distortion. By contrast, near-bottom tracers experience leading-order distortion that varies in time. Errors in tracer moments due to realistically sparse sampling are generally small (〈20%), especially compared to the O(1) structural errors due to the omission of distortion effects in inverse models. These results suggest that TREs, although indispensable, should not be treated as “unambiguous” constraints on diapycnal mixing.
    Description: We acknowledge funding support from National Science Foundation Awards 1536515 and 1736109. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant 174530. This research is also supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by UCAR’s Cooperative Programs for the Advancement of Earth System Science (CPAESS) under Award NA18NWS4620043B.
    Description: 2023-05-18
    Keywords: Diapycnal mixing ; Diffusion ; Upwelling/downwelling ; Bottom currents/bottom water ; Tracers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2841–2852, https://doi.org/10.1175/jpo-d-22-0025.1.
    Description: Prediction of rapid intensification in tropical cyclones prior to landfall is a major societal issue. While air–sea interactions are clearly linked to storm intensity, the connections between the underlying thermal conditions over continental shelves and rapid intensification are limited. Here, an exceptional set of in situ and satellite data are used to identify spatial heterogeneity in sea surface temperatures across the inner core of Hurricane Sally (2020), a storm that rapidly intensified over the shelf. A leftward shift in the region of maximum cooling was observed as the hurricane transited from the open gulf to the shelf. This shift was generated, in part, by the surface heat flux in conjunction with the along- and across-shelf transport of heat from storm-generated coastal circulation. The spatial differences in the sea surface temperatures were large enough to potentially influence rapid intensification processes suggesting that coastal thermal features need to be accounted for to improve storm forecasting as well as to better understand how climate change will modify interactions between tropical cyclones and the coastal ocean.
    Description: This research was made possible by the NOAA RESTORE Science Program (NA17NOS4510101 and NA19NOS4510194) and the NASA Physical Oceanography program (80NSSC21K0553 and WBS 281945.02.25.04.67) and NOAA IOOS program via GCOOS (NA16NOS0120018). The authors declare that they have no competing interests.
    Keywords: Seas/gulfs/bays ; Atmosphere–ocean interaction ; Currents ; Tropical cyclones ; Buoy observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1797–1815, https://doi.org/10.1175/JPO-D-21-0288.1.
    Description: Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.
    Description: This study is supported by the National Science Foundation through Grant OCE-1634965.
    Keywords: Continental shelf/slope ; Channel flows ; Mesoscale processes ; In situ oceanic observations ; Satellite observations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-02-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hudson, A. R., Peters, D. P. C., Blair, J. M., Childers, D. L., Doran, P. T., Geil, K., Gooseff, M., Gross, K. L., Haddad, N. M., Pastore, M. A., Rudgers, J. A., Sala, O., Seabloom, E. W., & Shaver, G. Cross-site comparisons of dryland ecosystem response to climate change in the US long-term ecological research network. Bioscience, 72(9), (2022): 889–907, https://doi.org/10.1093/biosci/biab134.
    Description: Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.
    Description: Funding was provided by the USDA-ARS SCINet Big Data Project (grant no. 0500–00093–001–00-D), and the National Science Foundation US LTER Program to New Mexico State University for the Jornada Basin (grant no. DEB 20–25166), Kansas State University for the Konza Prairie (grant no. DEB 2025849), the Kellogg Biological Station (grant no. DEB 1832042), Cedar Creek Ecosystem Science Reserve (grants no. DEB-1234162 and no. DEB-1831944), ARC (grant no. DEB-1637459), MCM (grant no. OPP-1637708), CAP (grant no. DEB-1832016), and SEV (grant no. DEB-1655499). Support was also provided by the Minnesota Supercomputer Institute and the University of Minnesota, Michigan State University AgBioResearch.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Communications Earth & Environment, Springer Nature, 4(1), pp. 26-26, ISSN: 2662-4435
    Publication Date: 2023-02-20
    Description: In recent decades, Europe has experienced more frequent flood and drought events. However, little is known about the long-term, spatiotemporal hydroclimatic changes across Europe. Here we present a climate field reconstruction spanning the entire European continent based on tree-ring stable isotopes. A pronounced seasonal consistency in climate response across Europe leads to a unique, well-verified spatial field reconstruction of European summer hydroclimate back to AD 1600. We find three distinct phases of European hydroclimate variability as possible fingerprints of solar activity (coinciding with the Maunder Minimum and the end of the Little Ice Age) and pronounced decadal variability superimposed by a long-term drying trend from the mid-20th century. We show that the recent European summer drought (2015–2018) is highly unusual in a multi-century context and unprecedented for large parts of central and western Europe. The reconstruction provides further evidence of European summer droughts potentially being influenced by anthropogenic warming and draws attention to regional differences.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-02-17
    Description: Author Posting. © The Author(s), 2022. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 231(2),(2022): 1434–1445, https://doi.org/10.1093/gji/ggac257.
    Description: Makran subduction zone is very active with ∼38 mm yr−1 convergence rate and has experienced great earthquakes in the past. The latest great earthquake of 1945 Mw 8.1 event also triggered a large tsunami and led to ∼4000 casualties. However, due to incomplete historical seismicity records and poor modern instrumentation, earthquake mechanism, co-seismic slip and tsunami characteristics in Makran remain unclear. On 2017 February 17, an Mw 6.3 earthquake rattled offshore Pasni of Pakistan in the eastern Makran, marking the largest event after the 1945 Mw 8.1 earthquake with good geodetic and geophysical data coverage. We use a combination of seismicity, multibeam bathymetry, seismic profile, InSAR measurements and tide-gauge observation to investigate the seismogenic structure, co-seismic deformation, tsunami characteristics of this event and its implication for future major earthquakes. Our results indicate that (1) the earthquake occurred on the shallow-dipping (3°–4°) megathrust; (2) the megathrust co-seismically slipped 15 cm and caused ∼2–4 cm ground subsidence and uplift at Pasni; (3) our tsunami modelling reproduces the observed 5-cm-high small tsunami waveforms. The Pasni earthquake rupture largely overlaps the 1945 slip patch and disturbs the west and east megathrust segments that have not ruptured yet at least since 1765. With such stress perturbation and possible stress evolution effect from the 1945 earthquake, the unruptured patches may fail in the future. This study calls for more preparedness in mitigating earthquake and associated hazards in the eastern Makran.
    Description: his study is financially supported by the National Natural Science Foundation of China (Nos. 42076059, 41890813, 41976066 and 41976064), the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0205), Chinese Academy of Sciences (Nos. Y4SL021001, QYZDY-SSW-DQC005, 131551KYSB20200021, ISEE2021PY03, 133244KYSB20180029 and E1SL3C02), Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515020098) and China–Pakistan Joint Research Centre on Earth Sciences.
    Keywords: Tsunamis ; Earthquake dynamics ; Earthquake hazards ; Seismicity and tectonics ; Subduction zone processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-02-17
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(10), (2022): 1525–1539, https://doi.org/10.1175/jtech-d-21-0186.1.
    Description: The static and dynamic performances of the RBRargo3 are investigated using a combination of laboratory-based and in situ datasets from floats deployed as part of an Argo pilot program. Temperature and pressure measurements compare well to co-located reference data acquired from shipboard CTDs. Static accuracy of salinity measurements is significantly improved using 1) a time lag for temperature, 2) a quadratic pressure dependence, and 3) a unit-based calibration for each RBRargo3 over its full pressure range. Long-term deployments show no significant drift in the RBRargo3 accuracy. The dynamic response of the RBRargo3 demonstrates the presence of two different adjustment time scales: a long-term adjustment O(120) s, driven by the temperature difference between the interior of the conductivity cell and the water, and a short-term adjustment O(5–10) s, associated to the initial exchange of heat between the water and the inner ceramic. Corrections for these effects, including dependence on profiling speed, are developed.
    Keywords: Data processing/distribution ; In situ oceanic observations ; Profilers ; Oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 13(1), pp. 2593-2593, ISSN: 2045-2322
    Publication Date: 2023-03-07
    Description: Little is known about the biology of cold‑water corals (CWCs), let alone the reproduction and early life stages of these important deep‑sea foundation species. Through a three‑year aquarium experiment, we described the reproductive mode, larval release periodicity, planktonic stage, larval histology, metamorphosis and post‑larval development of the solitary scleractinian CWC Caryophyllia (Caryophyllia) huinayensis collected in Comau Fjord, Chilean Patagonia. We found that C. huinayensis is a brooder releasing 78.4 ± 65.9 (mean ± standard deviation [SD]) planula larvae throughout the year, a possible adaptation to low seasonality. Planulae had a length of 905 ± 114 μm and showed a well‑ developed gastrovascular system. After 8 ± 9.3 days (d), the larvae settled, underwent metamorphosis and developed the first set of tentacles after 2 ± 1.5 d. Skeletogenesis, zooplankton feeding and initiation of the fourth set of tentacles started 5 ± 2.1 d later, 21 ± 12.9 d, and 895 ± 45.9 d after settlement, respectively. Our study shows that the ontogenetic timing of C. huinayensis is comparable to that of some tropical corals, despite lacking zooxanthellae.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-03-07
    Description: Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-01-25
    Description: The Doldrums Megatransform System (~7–8°N, Mid-Atlantic Ridge) shows a complex architecture including four intra-transform ridge segments bounded by five active transform faults. Lower crustal rocks are exposed along the Doldrums and Vernadsky transform walls that bound the northernmost intra-transform ridge segment. The recovered gabbros are characterized by variably evolved chemical compositions, ranging from olivine gabbros to gabbronorites and oxide gabbros, and lack the most primitive gabbroic endmembers (troctolites, dunites). Notably, the numerous recovered gabbronorites show up to 20 vol. % of coarse-grained orthopyroxene. Although covariations in mineral and bulk-rock chemical compositions of the olivine and oxide gabbros define trends of crystallization from a common parental melt, the gabbronorites show elevated light over heavy rare earth elements (LREE/HREE) ratios in both bulk-rock and mineral compositions. These features are not consistent with a petrological evolution driven solely by fractional crystallization, which cannot produce the preferential enrichments in highly incompatible elements documented in the orthopyroxene-bearing lithologies. We suggest that gabbronorites crystallized from evolved melts percolating and partly assimilating a pre-existing olivine gabbro matrix. Saturation in orthopyroxene and selective enrichments in LREE relative to M-HREE are both triggered by an increase in assimilated crystal mass, which ranges from negligible in the oxide-gabbros to abundant in the gabbronorites. This melt–rock reaction process has been related to lateral melt migration beneath ridge-transform intersections, where variably evolved melts injected from the peripheral parts of the melting region towards the transform zone may interact with a gabbroic crystal mush to form abundant oxide-bearing gabbronoritic associations.
    Description: Published
    Description: egac086
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1927-1943, https://doi.org/10.1175/jpo-d-21-0124.1.
    Description: The Galápagos Archipelago lies on the equator in the path of the eastward flowing Pacific Equatorial Undercurrent (EUC). When the EUC reaches the archipelago, it upwells and bifurcates into a north and south branch around the archipelago at a latitude determined by topography. Since the Coriolis parameter (f) equals zero at the equator, strong velocity gradients associated with the EUC can result in Ertel potential vorticity (Q) having sign opposite that of planetary vorticity near the equator. Observations collected by underwater gliders deployed just west of the Galápagos Archipelago during 2013–16 are used to estimate Q and to diagnose associated instabilities that may impact the Galápagos Cold Pool. Estimates of Q are qualitatively conserved along streamlines, consistent with the 2.5-layer, inertial model of the EUC by Pedlosky. The Q with sign opposite of f is advected south of the Galápagos Archipelago when the EUC core is located south of the bifurcation latitude. The horizontal gradient of Q suggests that the region between 2°S and 2°N above 100 m is barotropically unstable, while limited regions are baroclinically unstable. Conditions conducive to symmetric instability are observed between the EUC core and the equator and within the southern branch of the undercurrent. Using 2-month and 3-yr averages, e-folding time scales are 2–11 days, suggesting that symmetric instability can persist on those time scales.
    Description: This work was supported by the National Science Foundation (Grants OCE-1232971 and OCE-1233282), the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443), and the Global Ocean Monitoring and Observing Program of the National Oceanographic and Atmospheric Administration (NA13OAR4830216). Color maps are from Thyng et al. (2016).
    Description: 2023-02-01
    Keywords: Currents ; In situ oceanic observations ; Instability ; Mixing ; Ocean dynamics ; Pacific Ocean ; Potential vorticity ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(8), (2022): 1183-1198, https://doi.org/10.1175/jtech-d-21-0068.1.
    Description: Horizontal kinematic properties, such as vorticity, divergence, and lateral strain rate, are estimated from drifter clusters using three approaches. At submesoscale horizontal length scales O(1–10)km, kinematic properties become as large as planetary vorticity f, but challenging to observe because they evolve on short time scales O(hourstodays). By simulating surface drifters in a model flow field, we quantify the sources of uncertainty in the kinematic property calculations due to the deformation of cluster shape. Uncertainties arise primarily due to (i) violation of the linear estimation methods and (ii) aliasing of unresolved scales. Systematic uncertainties (iii) due to GPS errors, are secondary but can become as large as (i) and (ii) when aspect ratios are small. Ideal cluster parameters (number of drifters, length scale, and aspect ratio) are determined and error functions estimated empirically and theoretically. The most robust method—a two-dimensional, linear least squares fit—is applied to the first few days of a drifter dataset from the Bay of Bengal. Application of the length scale and aspect-ratio criteria minimizes errors (i) and (ii), and reduces the total number of clusters and so computational cost. The drifter-estimated kinematic properties map out a cyclonic mesoscale eddy with a surface, submesoscale fronts at its perimeter. Our analyses suggest methodological guidance for computing the two-dimensional kinematic properties in submesoscale flows, given the recently increasing quantity and quality of drifter observations, while also highlighting challenges and limitations.
    Description: This research was supported by the Office of Naval Research (ONR) Departmental Research Initiative ASIRI under Grant N00014-13-1-0451 (SE and AM) and Grant N00014-13-1-0477 (VH and LC). The authors thank the captain and crew of the R/V Roger Revelle, and Andrew Lucas with the Multiscale Ocean Dynamics group at the Scripps Institution for Oceanography for providing the FastCTD data collected in 2015, which was supported by ONR Grant N00014-13-1-0489, as well as Eric D’Asaro for helpful discussions and Lance Braasch for assistance with the drifter dataset. AM and SE further thank NSF (Grant OCE-I434788) and ONR (Grant N00014-16-1-2470) for support. VH and LC were additionally supported by ONR Grants N00014-15-1-2286, N00014-14-1-0183, N00014-19-1-26-91 and NOAA Global Drifter Program (GDP) Grant NA15OAR4320071.
    Description: 2023-02-01
    Keywords: Indian Ocean ; Eddies ; Frontogenesis/frontolysis ; Fronts ; Lagrangian circulation/transport ; Ocean circulation ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-02-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 35(17), (2022): 5465-5482, https://doi.org/10.1175/jcli-d-21-0671.1.
    Description: Understanding the contribution of ocean circulation to glacial–interglacial climate change is a major focus of paleoceanography. Specifically, many have tried to determine whether the volumes and depths of Antarctic- and North Atlantic–sourced waters in the deep ocean changed at the Last Glacial Maximum (LGM; ∼22–18 kyr BP) when atmospheric pCO2 concentrations were 100 ppm lower than the preindustrial. Measurements of sedimentary geochemical proxies are the primary way that these deep ocean structural changes have been reconstructed. However, the main proxies used to reconstruct LGM Atlantic water mass geometry provide conflicting results as to whether North Atlantic–sourced waters shoaled during the LGM. Despite this, a number of idealized modeling studies have been advanced to describe the physical processes resulting in shoaled North Atlantic waters. This paper aims to critically assess the approaches used to determine LGM Atlantic circulation geometry and lay out best practices for future work. We first compile existing proxy data and paleoclimate model output to deduce the processes responsible for setting the ocean distributions of geochemical proxies in the LGM Atlantic Ocean. We highlight how small-scale mixing processes in the ocean interior can decouple tracer distributions from the large-scale circulation, complicating the straightforward interpretation of geochemical tracers as proxies for water mass structure. Finally, we outline promising paths toward ascertaining the LGM circulation structure more clearly and deeply.
    Description: S.K.H. was supported by the Investment in Science Fund at WHOI and the John E. and Anne W. Sawyer Endowed Fund in Support of Scientific Staff. F.J.P. was supported by a Stanback Postdoctoral Fellowship at Caltech.
    Description: 2023-02-01
    Keywords: Diapycnal mixing ; Meridional overturning circulation ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Communications, Springer Nature, 14(1), 4 p., pp. 1-4, ISSN: 2041-1723
    Publication Date: 2023-04-12
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-04-25
    Description: In this study, we utilize a generalization of Monin–Obukhov similarity theory to construct first order turbulent closures for single-column models of the atmospheric boundary layer (ABL). A set of widely used universal functions for dimensionless gradients is evaluated. Two test cases based on Large-Eddy Simulations (LES) experimental setups are considered – weakly stable ABL (GABLS1; Beare et al. in Bound Layer Meteorol 118(2):247–272,2006), and very strongly stratified ABL (van der Linden et al. in Bound Layer Meteorol 173(2):165–192, 2019). The comparison shows that approximations obtained using a linear dimensionless velocity gradient tend to match the LES data more closely. In particular, the EFB (Energy- and Flux- Budget) closure proposed by Zilitinkevich et al. (Bound Layer Meteorol 146(3):341–373, 2013) has the best performance for the tests considered here. We also test surface layer “bulk formulas” based on these universal functions. The same LES data are utilized for comparison. The setup showcases the behavior of surface scheme, when one assumes that the velocity and temperature profiles in ABL are represented correctly. The advantages and disadvantages of different surface schemes are revealed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-04-26
    Description: Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project was established in 2016 (www.ac3-tr.de/). It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, shipborne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data. For example, a distinct atmospheric moistening, an increase of regional storm activities, an amplified winter warming in the Svalbard and North Pole regions, and a decrease of sea ice thickness in the Fram Strait and of snow depth on sea ice have been identified. A positive trend of tropospheric bromine monoxide (BrO) column densities during polar spring was verified. Local marine/biogenic sources for cloud condensation nuclei and ice nucleating particles were found. Atmospheric–ocean and radiative transfer models were advanced by applying new parameterizations of surface albedo, cloud droplet activation, convective plumes and related processes over leads, and turbulent transfer coefficients for stable surface layers. Four modes of the surface radiative energy budget were explored and reproduced by simulations. To advance the future synthesis of the results, cross-cutting activities are being developed aiming to answer key questions in four focus areas: lapse rate feedback, surface processes, Arctic mixed-phase clouds, and airmass transport and transformation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-06-21
    Description: The zooplankter Calanus finmarchicus is a member of the so-called “Calanus Complex”, a group of copepods that constitutes a key element of the Arctic polar marine ecosystem, providing a crucial link between primary production and higher trophic levels. Climate change induces the shift of C. finmarchicus to higher latitudes with currently unknown impacts on its endogenous timing. Here we generated a daily transcriptome of C. finmarchicus at two high Arctic stations, during the more extreme time of Midnight Sun, the summer solstice. While the southern station (74.5 °N) was sea ice-free, the northern one (82.5 °N) was sea ice-covered. The mRNAs of the 42 samples have been sequenced with an average of 126 ± 5 million reads (mean ± SE) per sample, and aligned to the reference transcriptome. We detail the quality assessment of the datasets and the complete annotation procedure, providing the possibility to investigate daily gene expression of this ecologically important species at high Arctic latitudes, and to compare gene expression according to latitude and sea ice-coverage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-06-21
    Description: Krill and salps are important for carbon flux in the Southern Ocean, but the extent of their contribution and the consequences of shifts in dominance from krill to salps remain unclear. We present a direct comparison of the contribution of krill and salp faecal pellets (FP) to vertical carbon flux at the Antarctic Peninsula using a combination of sediment traps, FP production, carbon content, microbial degradation, and krill and salp abundances. Salps produce 4-fold more FP carbon than krill, but the FP from both species contribute equally to the carbon flux at 300 m, accounting for 75% of total carbon. Krill FP are exported to 72% to 300 m, while 80% of salp FP are retained in the mixed layer due to fragmentation. Thus, declining krill abundances could lead to decreased carbon flux, indicating that the Antarctic Peninsula could become a less efficient carbon sink for anthropogenic CO2 in future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 12(12), ISSN: 1942-2466
    Publication Date: 2023-06-21
    Description: Ocean models at eddy-permitting resolution are generally overdissipative, damping the intensity of the mesoscale eddy field. To reduce overdissipation, we propose a simplified, kinematic energy backscatter parametrization built into the viscosity operator in conjunction with a new flow-dependent coefficient of viscosity based on nearest neighbor velocity differences. The new scheme mitigates excessive dissipation of energy and improves global ocean simulations at eddy-permitting resolution. We find that kinematic backscatter substantially raises simulated eddy kinetic energy, similar to an alternative, previously proposed dynamic backscatter parametrization. While dynamic backscatter is scale aware and energetically more consistent, its implementation is more complex. Furthermore, it turns out to be computationally more expensive, as it applies, among other things, an additional prognostic subgrid energy equation. The kinematic backscatter proposed here, by contrast, comes at no additional computational cost, following the principle of simplicity. Our primary focus is the discretization on triangular unstructured meshes with cell placement of velocities (an analog of B-grids), as employed by the Finite-volumE Sea ice-Ocean Model (FESOM2). The kinematic backscatter scheme with the new viscosity coefficient is implemented in FESOM2 and tested in the simplified geometry of a zonally reentrant channel as well as in a global ocean simulation on a 1/4° mesh. This first version of the new kinematic backscatter needs to be tuned to the specific resolution regime of the simulation. However, the tuning relies on a single parameter, emphasizing the overall practicality of the approach.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), 13(10), ISSN: 1942-2466
    Publication Date: 2023-06-21
    Description: We propose to make the damping time scale, which governs the decay of pseudo-elastic waves in the Elastic Viscous Plastic (EVP) sea-ice solvers, independent of the external time step and large enough to warrant numerical stability for a moderate number of internal time steps. A necessary condition is that the forcing on sea ice varies slowly on the damping time scale, in which case an EVP solution may still approach a Viscous Plastic one, but on a time scale longer than a single external time step. In this case, the EVP method becomes very close to the recently proposed modified EVP (mEVP) method in terms of stability and simulated behavior. In a simple test case dealing with sea ice breaking under the forcing of a moving cyclone, the EVP method with an enlarged damping time scale can simulate linear kinematic features which are very similar to those from the traditional EVP implementation, although a much smaller number of internal time steps is used. There is more difference in sea-ice thickness and linear kinematic features simulated in a realistic Arctic configuration between using the traditional and our suggested choices of EVP damping time scales, but it is minor considering model uncertainties associated with choices of many other parameters in sea-ice models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(22), ISSN: 0094-8276
    Publication Date: 2023-06-21
    Description: Based on the ERA5 reanalysis, we report on statistically significant impacts of transient cyclones on sea ice concentration (SIC) in the Atlantic sector of the Arctic Ocean in winter under “New Arctic” conditions (2000–2020). This includes a pattern of reduced SIC prior to and during cyclones for the whole study domain, while a regional difference between increased SIC in the Barents Sea and reduced SIC in the Greenland Sea is found as the net effect from 3 days prior to 5 days after the cyclone passage. Generally, locally low to medium SIC conditions combined with intense cyclones drive highest SIC changes. There are indications that both thermodynamic and dynamic effects contribute to the SIC changes, but a detailed quantification is required in future research. We provide evidence that cyclone impacts on SIC have amplified compared to the “Old Arctic” (1979–1999), particularly in the Barents Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-07-03
    Description: The 79 CE eruption of Vesuvius is the first documented Plinian eruption, also famous for the archaeological ruins of Pompeii and Herculaneum. Although much is known regarding the eruption dynamics and magma reservoir, little is known about the reservoir shape and growth, and related ground deformation. Numerical modelling by Finite Element Method was carried out, aimed at simulating the reservoir growth and ground deformation with respect to the reservoir shape (prolate, spherical, oblate) and magma overpressure. The modelling was tuned with volcanological, petrological and paleoenvironmental ground deformation con straints. Results indicate that the highest magma overpressure is achieved considering a prolate reservoir, making it as the most likely shape that led to eruption. Similar deformations but lower overpressures are obtained considering spherical and oblate reservoirs. These results demonstrate that ground deformation may not be indicative of eruption probability, style/size, and this has direct implications on surveillance at active explosive volcanoes
    Description: Published
    Description: 211
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Pompeii eruption ; ground deformation ; surveillance ; magma reservoir
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-10-19
    Description: The dynamic mass loss of ice sheets constitutes one of the biggest uncertainties in projections of ice-sheet evolution. One central, understudied aspect of ice flow is how the bulk orientation of the crystal orientation fabric translates to the mechanical anisotropy of ice. Here we show the spatial distribution of the depth-averaged horizontal anisotropy and corresponding directional flow-enhancement factors covering a large area of the Northeast Greenland Ice Stream onset. Our results are based on airborne and ground-based radar surveys, ice-core observations, and numerical ice-flow modelling. They show a strong spatial variability of the horizontal anisotropy and a rapid crystal reorganisation on the order of hundreds of years coinciding with the ice-stream geometry. Compared to isotropic ice, parts of the ice stream are found to be more than one order of magnitude harder for along-flow extension/compression while the shear margins are potentially softened by a factor of two for horizontal-shear deformation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-10-03
    Description: In this paper, the advantages achievable from the use of two prototype systems that are being developed to increase safety and security in ports are shown. Both systems start by monitoring environmental parameters in harbors, and then process data acquired. The first system has been conceived to be helpful to port communities (port authorities, pilots) to optimize harbor waterside management (ship’s navigation and cargo, dock performances, boat moorings, refloating of stranded ships, water quality control). By monitoring and processing sea level and atmospheric pressure in port areas, it can help port communities, e.g., to choose the best time when a ship with a certain draft can enter or leave a harbor, or to plan the best route inside the basin for that vessel (port safety). The second system, instead, has been designed for port protection purposes: by monitoring and processing the Earth’s magnetic field below the sea surface in harbors (where the natural field is disturbed by a high artificial component), it is able to detect the possible presence of intruders (e.g., divers) swimming underwater in prohibited areas (port security). Here, the results of monitoring and processing activities of the two systems performed in Livorno and La Spezia harbors are shown (Italy). The processing procedures and the graphical interfaces of the systems are based on applications under development by the research team the author belongs to, by using C# and C++ languages; Matlab environment has been employed for simulations.
    Description: Published
    Description: 647–658
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 4A. Oceanografia e clima
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 127(10), ISSN: 2169-8953
    Publication Date: 2023-06-21
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro-, meso- and macrozooplankton) in the ocean biogeochemical model FESOM-REcoM. In the presented model, microzooplankton is a fast-growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow-growing group with a low temperature optimum. Meso- and macrozooplankton produce fast-sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light-controlled Sverdrup system to a dilution-controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on-going and future environmental change in model projections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Nature Reviews Earth & Environment, Springer Nature, 4(3), pp. 141-141, ISSN: 2662-138X
    Publication Date: 2024-01-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2024-01-18
    Description: The North Atlantic Basin is a major sink for atmospheric carbon dioxide (CO2) due in part to the extensive plankton blooms which form there supported by nutrients supplied by the three-dimensional ocean circulation. Hence, changes in ocean circulation and/or stratification may influence primary production and biological carbon export. In this study, we assess this possibility by evaluating inorganic nutrient budgets for 2004 and 2010 in the North Atlantic based on observations from the transatlantic A05-24.5°N and the Greenland-Portugal OVIDE hydrographic sections, to which we applied a box inverse model to solve the circulation and estimate the across-section nutrient transports. Full water column nutrient budgets were split into upper and lower meridional overturning circulation (MOC) limbs. According to our results, anomalous circulation in early 2010, linked to extreme negative NAO conditions, led to an enhanced northward advection of more nutrient-rich waters by the upper overturning limb, which resulted in a significant nitrate and phosphate convergence north of 24.5°N. Combined with heaving of the isopycnals, this anomalous circulation event in 2010 favored an enhancement of the nutrient consumption (5.7 ± 4.1 kmol-P s−1) and associated biological CO2 uptake (0.25 ± 0.18 Pg-C yr−1, upper-bound estimate), which represents a 50% of the mean annual sea–air CO2 flux in the region. Our results also suggest a transient state of deep silicate divergence in both years. Both results are indicative of a MOC-driven modulation of the biological carbon uptake (by the upper MOC limb) and nutrient inventories (by the lower MOC limb) in the North Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2024-01-19
    Description: We performed seismic ambient noise tomography to investigate the shallow crustal structure around the Ivrea geophysical body (IGB) in the Ivrea-Verbano Zone (IVZ). We achieved higher resolution with respect to previous tomographic works covering the Western Alps, by processing seismic data collected by both permanent and temporary seismic networks (61 broad-band seismic stations in total). This included IvreaArray, a temporary, passive seismic experiment designed to investigate the IVZ crustal structure. Starting from continuous seismic ambient noise recordings, we measured and inverted the dispersion of the group velocity of surface Rayleigh waves (fundamental mode) in the period range 4–25 s. We obtained a new, 3-D vS model of the IVZ crust via the stochastic neighbourhood algorithm (NA), with the highest resolution between 3 to 40 km depth. The fast and shallow shear wave velocity anomaly associated with the IGB presents velocities of 3.6 km s−1 directly at the surface, in remarkable agreement with the location of the exposed lower-to-middle crustal and mantle outcrops. This suggests a continuity between the surface geological observations and the subsurface geophysical anomalies. The fast IGB structure reaches vS of 4 km s−1 at 20–25 km depth, at the boundary between the European and Adriatic tectonic plates, and in correspondence with the earlier identified Moho jump in the same area. The interpretation of a very shallow reaching IGB is further supported by the comparison of our new results with recent geophysical investigations, based on receiver functions and gravity anomaly data. By combining the new geophysical constraints and the geological observations at the surface, we provide a new structural interpretation of the IGB, which features lower crustal and mantle rocks at upper crustal depths. The comparison of the obtained vS values with the physical properties from laboratory analysis of local rock samples suggests that the bulk of the IGB consists of a combination of mantle peridotite, ultramafic and lower crustal rocks, bound in a heterogeneous structure. These new findings, based on vS tomography, corroborate the recent interpretation for which the Balmuccia peridotite outcrops are continuously linked to the IGB structure beneath. The new outcomes contribute to a multidisciplinary framework for the interpretation of the forthcoming results of the scientific drilling project DIVE. DIVE aims at probing the lower continental crust and its transition to the mantle, with two ongoing and one future boreholes (down to 4 km depth) in the IVZ area, providing new, complementary information on rock structure and composition across scales. In this framework, we constrain the upper crustal IGB geometries and lithology based on new evidence for vS, connecting prior crustal knowledge to recent active seismic investigations.
    Description: Published
    Description: 1089–1105
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2024-01-22
    Description: Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground collapse, and reshaping of landscapes. This threatens Arctic peoples' infrastructure, cultural sites, and land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic nearshore environments. These changes may affect coastal processes, food web dynamics and marine resources on which many traditional ways of life rely. Here, we examine how future projected increases in runoff and permafrost thaw from two permafrost-dominated Siberian watersheds—the Kolyma and Lena, may alter carbon turnover rates and OC distributions through river networks. We demonstrate that the unique composition of terrestrial permafrost-derived OC can cause significant increases to aquatic carbon degradation rates (20 to 60% faster rates with 1% permafrost OC). We compile results on aquatic OC degradation and examine how strengthening Arctic hydrological cycles may increase the connectivity between terrestrial landscapes and receiving nearshore ecosystems, with potential ramifications for coastal carbon budgets and ecosystem structure. To address the future challenges Arctic coastal communities will face, we argue that it will become essential to consider how nearshore ecosystems will respond to changing coastal inputs and identify how these may affect the resiliency and availability of essential food resources.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), ISSN: 2169-897X
    Publication Date: 2024-01-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geochemistry Geophysics Geosystems, American Geophysical Union (AGU), 24(12), ISSN: 1525-2027
    Publication Date: 2024-01-22
    Description: In the Fram Strait, mid-ocean ridge spreading is represented by the ultra-slow system of the Molloy Ridge, the Molloy Transform Fault and the Knipovich Ridge. Sediments on oceanic and continental crust are gas charged and there are several locations with documented seafloor seepage. Sedimentary faulting shows recent stress release in the sub-surface, but the drivers of stress change and its influence on fluid flow are not entirely understood. We present here the results of an 11-month-long ocean bottom seismometer survey conducted over the highly faulted sediment drift northwards from the Knipovich Ridge to monitor seismicity and infer the regional state of stress. We obtain a detailed earthquake catalog that improves the spatial resolution of mid-ocean ridge seismicity compared with published data. Seismicity at the Molloy Transform Fault is occurring southwards from the bathymetric imprint of the fault, as supported by a seismic profile. Earthquakes in the northern termination of the Knipovich Ridge extend eastwards from the ridge valley, which together with syn-rift faulting identified in seismic reflection data, suggests that a portion of the currently active spreading center is buried under sediments away from the bathymetric expression of the rift valley. This hints at the direct link between crustal rifting processes and faulting in shallow sediments. Two earthquakes occur close to the seepage system of the Vestnesa Ridge further north from the network. We suggest that deeper rift structures, reactivated by gravity and/or post-glacial subsidence, may lead to accommodation of stress through shallow extensional faults, therefore impacting seepage dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(20), ISSN: 0094-8276
    Publication Date: 2023-11-20
    Description: Surface processes alter the water stable isotope signal of the surface snow after deposition. However, it remains an open question to which extent surface post-depositional processes should be considered when inferring past climate information from ice core records. Here, we present simulations for the Greenland Ice Sheet, combining outputs from two climate models with an isotope-enabled snowpack model. We show that surface vapor exchange and associated fractionation imprint a climate signal into the firn, resulting in an increase in the annual mean value of δ18O by +2.3‰ and a reduction in d-excess by −6.3‰. Further, implementing isotopic fractionation during surface vapor exchange improves the representation of the observed seasonal amplitude in δ18O from 65.0% to 100.2%. Our results stress that surface vapor exchange is important in the climate proxy signal formation and needs consideration when interpreting ice core climate records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-11-23
    Description: Krill (Euphausia superba) and salps (Salpa thompsoni) are key macrozooplankton grazers in the Southern Ocean ecosystem. However, due to differing habitat requirements, both species previously exhibited little spatial overlap. With ongoing climate change-induced seawater temperature increase and regional sea ice loss, salps can now extend their spatial distribution into historically krill-dominated areas and increase rapidly due to asexual reproduction when environmental conditions are favorable. Understanding the potential effects on krill is crucial, since krill is a species of exceptional trophic significance in the Southern Ocean food web. Negative impacts on krill could trigger cascading effects on its predators and prey. To address this question, we combined two individual-based models on salps and krill, which describe the whole life cycle of salp individuals and the dynamic energy budget of individual krill. The resulting new model PEKRIS (PErformance of KRIll vs. Salps) simulates a krill population for 100 years under varying chlorophyll-a concentrations in the presence or absence of salps. All of the investigated krill population properties (abundance, mean length, and yearly egg production) were significantly impacted by the presence of salps. On the other hand, salp density was not impacted if krill were present. The medians of krill population properties deviated during variable maximum chlorophyll-a density per year when salps were introduced by − 99.9% (− 234 individuals per 1000 m3) for krill density, − 100% (− 22,062 eggs per 1000 m3) for krill eggs and − 0.9% (− 0.3 mm) for mean length of krill. If both species compete for the same food resource in a closed space, salps seem to inhibit krill populations. Further simulation studies should investigate whether this effect prevails if different phytoplankton sizes and consumption preferences of krill are implemented. Furthermore, direct predation of the two species or consumption of krill fecal pellets by salps could change the impact size of the food competition.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2024-01-30
    Description: In contrast to the well-recognized permafrost carbon (C) feedback to climate change, the fate of permafrost nitrogen (N) after thaw is poorly understood. According to mounting evidence, part of the N liberated from permafrost may be released to the atmosphere as the strong greenhouse gas (GHG) nitrous oxide (N2O). Here, we report post-thaw N2O release from late Pleistocene permafrost deposits called Yedoma, which store a substantial part of permafrost C and N and are highly vulnerable to thaw. While freshly thawed, unvegetated Yedoma in disturbed areas emit little N2O, emissions increase within few years after stabilization, drying and revegetation with grasses to high rates (548 (133–6286) μg N m−2 day−1; median with (range)), exceeding by 1–2 orders of magnitude the typical rates from permafrost-affected soils. Using targeted metagenomics of key N cycling genes, we link the increase in in situ N2O emissions with structural changes of the microbial community responsible for N cycling. Our results highlight the importance of extra N availability from thawing Yedoma permafrost, causing a positive climate feedback from the Arctic in the form of N2O emissions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Springer Nature
    In:  EPIC3Scientific Reports, Springer Nature, 12(1), pp. 7123-7123, ISSN: 2045-2322
    Publication Date: 2024-01-30
    Description: Beavers were not previously recognized as an Arctic species, and their engineering in the tundra is considered negligible. Recent findings suggest that beavers have moved into Arctic tundra regions and are controlling surface water dynamics, which strongly influence permafrost and landscape stability. Here we use 70 years of satellite images and aerial photography to show the scale and magnitude of northwestward beaver expansion in Alaska, indicated by the construction of over 10,000 beaver ponds in the Arctic tundra. The number of beaver ponds doubled in most areas between ~ 2003 and ~ 2017. Earlier stages of beaver engineering are evident in ~ 1980 imagery, and there is no evidence of beaver engineering in ~ 1952 imagery, consistent with observations from Indigenous communities describing the influx of beavers over the period. Rapidly expanding beaver engineering has created a tundra disturbance regime that appears to be thawing permafrost and exacerbating the effects of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2024-01-30
    Description: In the context of global warming, the melting of arctic permafrost raises the threat of a re-emergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here we present a metagenomics analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia, and Kamchatka, including 9 permafrost samples collected at various depths. These large datasets (9.2 1011 total bp) were assembled (525,313 contigs 〉 5kb), their encoded protein contents predicted, then used to perform taxonomical assignments of bacterial, archaeal, and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of β-lactamase genes, almost 0.9 copy/bacterial genome. In addition of known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. β-lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...