ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.〈/p〉
    Description: Plain Language Summary: Methane plays an important role in atmospheric chemistry and physics as it contributes to global warming and to the destruction of ozone in the stratosphere. Knowing the sources and sinks of methane in the environment is a prerequisite for understanding the global atmospheric methane cycle but also to better predict future climate change. Measurements of the stable carbon isotope composition of carbon—the ratio between the heavy and light stable isotope of carbon—help to identify methane sources in the environment and to distinguish them from other formation processes. We identified the carbon isotope fingerprint of methane released from phytoplankton including algal and cyanobacterial species. The observed isotope signature improves our understanding of methane cycling in the surface layers of aquatic environments helping us to better estimate methane emissions to the atmosphere.〈/p〉
    Description: Key Points: Stable carbon isotope values of methane emitted from six phytoplankton cultures incubated in the laboratory. Isotope fractionation between methane source signature and biomass of widespread algal and cyanobacterial species. Isotopic patterns of methane released by phytoplankton may be clearly distinguished from methane formed by methanogenic archaea.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Spanish Ministry of Universities
    Description: https://doi.org/10.11588/data/YYLEKU
    Keywords: ddc:551.9 ; methane ; stable isotopes ; phytoplankton ; algae ; cyanobacteria ; methane paradox
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-11-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-26
    Description: When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-03
    Description: Methane plays an important role as a radiatively and chemically active gas in our atmosphere. Until recently, sources of atmospheric methane in the biosphere have been attributed to strictly anaerobic microbial processes during degradation of organic matter. However, a large fraction of methane produced in the anoxic soil layers does not reach the atmosphere due to methanotrophic consumption in the overlaying oxic soil. Although methane fluxes from aerobic soils have been observed an alternative source other than methanogenesis has not been identified thus far. Here we provide evidence for non-microbial methane formation in soils under oxic conditions. We found that soils release methane upon heating and other environmental factors like ultraviolet irradiation, and drying-rewetting cycles. We suggest that chemical formation of methane during degradation of soil organic matter may represent the missing soil source that is needed to fully understand the complete methane cycle within the pedosphere. Although the emission fluxes are relatively low when compared to those from wetlands, they may be important in warm and wet regions subjected to ultraviolet radiation. We suggest that this methane source is highly sensitive to global change.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-23
    Description: When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-20
    Description: Methane plays an important role as a radiatively and chemically active gas in our atmosphere. Until recently, sources of atmospheric methane in the biosphere have been attributed to strictly anaerobic microbial processes during degradation of organic matter. However, a large fraction of methane produced in the anoxic soil layers does not reach the atmosphere due to methanotrophic consumption in the overlaying oxic soil. Although methane fluxes from aerobic soils have been observed, an alternative source other than methanogenesis has not been identified thus far. Here we provide evidence for non-microbial methane formation in soils under oxic conditions. We found that soils release methane upon heating and other environmental factors like ultraviolet irradiation, and drying-rewetting cycles. We suggest that chemical formation of methane during degradation of soil organic matter may represent the missing soil source that is needed to fully understand the methane cycle in aerobic soils. Although the emission fluxes are relatively low when compared to those from wetlands, they may be important in warm and wet regions subjected to ultraviolet radiation. We suggest that this methane source is highly sensitive to global change.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 50(12), ISSN: 0094-8276
    Publication Date: 2023-09-01
    Description: Aquatic ecosystems play an important role in global methane cycling and many field studies have reported methane supersaturation in the oxic surface mixed layer (SML) of the ocean and in the epilimnion of lakes. The origin of methane formed under oxic condition is hotly debated and several pathways have recently been offered to explain the “methane paradox.” In this context, stable isotope measurements have been applied to constrain methane sources in supersaturated oxygenated waters. Here we present stable carbon isotope signatures for six widespread marine phytoplankton species, three haptophyte algae and three cyanobacteria, incubated under laboratory conditions. The observed isotopic patterns implicate that methane formed by phytoplankton might be clearly distinguished from methane produced by methanogenic archaea. Comparing results from phytoplankton experiments with isotopic data from field measurements, suggests that algal and cyanobacterial populations may contribute substantially to methane formation observed in the SML of oceans and lakes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...