ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Conservation Physiology, Oxford University Press, 9(1), ISSN: 2051-1434
    Publication Date: 2024-01-01
    Description: We studied the ontogeny of osmoregulation of the Asian shore crab Hemigrapsus sanguineus at an invaded area in the North Sea. H. sanguineus is native to Japan and China but has successfully invaded the Atlantic coast of North America and Europe. In the invaded areas, H. sanguineus is becoming a keystone species as driver of community structure and the adults compete with the shore crab Carcinus maenas. Strong osmoregulatory abilities may confer the potential to use and invade coastal areas already earlier in the life cycle. We reared larvae and first juveniles at 24°C in seawater from hatching to intermoult of each developmental stage (zoea I-V, megalopa, crab I). We exposed each stage to a range of salinities (0–39 ppt) for 24 h, and then we quantified haemolymph osmolality, using nano-osmometry. In addition, we quantified osmolality in field-collected adults after acclimation to the test salinities for 6 days. Larvae of H. sanguineus were able to hyper-osmoregulate at low salinities (15 and 20 ppt) over the complete larval development, although the capacity was reduced at the zoeal stage V; at higher salinities (25–39 ppt), all larval stages were osmoconformers. The capacity to slightly hypo-regulate at high salinity appeared in the first juvenile. Adults were able to hyper-osmoregulate at low salinities and hypo-regulate at concentrated seawater (39 ppt). H. sanguineus showed a strong capacity to osmoregulate as compared to its native competitor C. maenas, which only hyper-regulates at the first and last larval stages and does not hypo-regulate at the juvenile-adult stages. The capacity of H. sanguineus to osmoregulate over most of the life cycle should underpin the potential to invade empty niches in the coastal zone (characterized by low salinity and high temperatures). Osmoregulation abilities over the whole life cycle also constitute a strong competitive advantage over C. maenas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...