ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (832,647)
  • Elsevier  (699,339)
  • Oxford University Press  (65,867)
  • National Academy of Sciences  (28,197)
  • International Union of Crystallography  (27,298)
  • Annual Reviews
  • 2020-2023  (322)
  • 2000-2004  (488,161)
  • 1980-1984  (235,420)
  • 1965-1969  (94,132)
  • 1935-1939
  • 1925-1929
Collection
Publisher
Years
Year
Journal
  • 101
    Publication Date: 2021-12-06
    Description: Supported by evidence of deep crustal sources for the observed magnetic anomalies in Central Italy and by outcropping gabbros in the Croatian archipelago, we model the observed gravity and magnetic anomalies in the Central Adriatic Sea and surroundings. We suggest that the major magnetic anomalies in the area are related to a wide underplating and propose that this volume represents the first stage of the back-arc Adria continental breakup in Early Permian times. During the Palaeotethys-Adria collision, underplating has controlled topography and palaeogeographic domains resulting in the observed asymmetrical sedimentary evolution since the Triassic across the Adria microplate. Finally, we propose that the Palaeotethys-Adria boundary in the Early Permian was similar to the current Pacific-Okhotsk plate boundary.
    Description: Published
    Description: 105470
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2021-12-24
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Ambient-noise records from the AlpArray network are used to measure Rayleigh wave phase velocities between more than 150,000 station pairs. From these, azimuthally anisotropic phase-velocity maps are obtained by applying the Eikonal tomography method. Several synthetic tests are shown to study the bias in the Ψ2 anisotropy. There are two main groups of bias, the first one caused by interference between refracted/reflected waves and the appearance of secondary wavefronts that affect the phase travel-time measurements. This bias can be reduced if the amplitude field can be estimated correctly. Another source of error is related to the incomplete reconstruction of the travel-time field that is only sparsely sampled due to the receiver locations. Both types of bias scale with the magnitude of the velocity heterogeneities. Most affected by the spurious Ψ2 anisotropy are areas inside and at the border of low-velocity zones. In the isotropic velocity distribution, most of the bias cancels out if the azimuthal coverage is good. Despite the lack of resolution in many parts of the surveyed area, we identify a number of anisotropic structures that are robust: in the central Alps, we find a layered anisotropic structure, arc-parallel at midcrustal depths and arc-perpendicular in the lower crust. In contrast, in the eastern Alps, the pattern is more consistently E-W oriented which we relate to the eastward extrusion. The northern Alpine forleand exhibits a preferential anisotropic orientation that is similar to SKS observations in the lowermost crust and uppermost mantle.
    Description: German Science Foundation (SPP-2017, Project Ha 2403/21-1); Swiss National Science Foundation SINERGIA Project CRSII2-154434/1 (Swiss-AlpArray); Progetto Pianeta Dinamico, finanziamento MUR-INGV, Task S2 – 2021
    Description: Published
    Description: 151–170
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Seismic anisotropy ; Seismic interferometry ; Seismic tomography ; Wave propagation ; Continental tectonics: compressional ; 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2021-12-14
    Description: questionnaire to survey the common petrological monitoring procedures adopted by volcano monitoring insti- tutions has been developed, aimed at identifying prevailing techniques and rating their suitability in terms of costs versus benefits. The collected information resulted from a sample of eighteen participating institutions, which include countries with some of the most important active volcanic provinces worldwide. The participating institutions also offer insights into volcanoes with a variety of volcanic activity, providing a comprehensive pic- ture of the state of art of petrological monitoring. The final purposes are (i) to promote the advancement that pet- rologic monitoring brings in the comprehension of the eruptive processes, providing the only “signals” (i.e., rock samples) concerning the physico-chemical properties of the magma feeding the eruption; (ii) to design best practices, and (iii) to define the minimum requirements needed to perform an efficient petrological monitoring during ongoing eruptions. The survey also highlighted the main problems to overcome to have a profitable pet- rological monitoring infrastructure, including (i) the time required to accomplish both field survey and labora- tory works (sampling, sample preparation, and analyses), (ii) the lack of onsite analytical facilities, (iii) the shortage of qualified staff. Starting from the state of the art of petrological monitoring, how it is performed by the different institutions worldwide, and what participants considered as the major problems, we identified the Best Practices in Petrolog- ical Monitoring as the best compromise between fast and easy analyses and the relevance of the acquired results.
    Description: Eurovolc
    Description: Published
    Description: 107365
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: JCR Journal
    Keywords: Petrology ; Best Practices ; Petrological Monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2021-12-15
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: To understand the seismotectonics and the seismic hazard of the study sector of the Northern Apennines (Italy), one of the most important earthquakes of magnitude Mw = 6.5 which struck the Lunigiana and Garfagnana areas (Tuscany) on 7 September 1920 should be studied. Given the early instrumental epoch of the event, neither geometric and kinematic information on the fault-source nor its fault-plane solution were available. Both areas were candidates for hosting the source fault and there was uncertainty between a normal fault with Apenninic direction or an anti-Apenninic strike-slip. We retrieved 11 focal parameters (including the fault-plane solution) of the 1920 earthquake. Only macroseismic intensity information (from 499 inhabited centres) through the KF-NGA inversion technique was used. This technique uses a Kinematic model of the earthquake source and speeds up the calculation by a Genetic Algorithm with Niching. The result is a pure dip-slip focal solution. The intrinsic ambiguities of the KF-NGA method (±180° on the rake angle; choice of the fault plane between the two nodal planes) were solved with field and seismotectonic evidence. The earthquake was generated by a normal fault (rake angle = 265° ± 8°) with an Apennine direction (114° ± 5°) and dipping 38° ± 6° towards SW. The likely candidate for hosting the source-fault in 1920 is the Compione-Comano fault that borders the NE edge of the Lunigiana graben. The KF-NGA algorithm proved to be invaluable for studying the kinematics of early instrumental earthquakes and allowed us to uniquely individuate, for the first time ever, the seismogenic source of the 1920 earthquake. Our findings have implications in hazard computation and seismotectonic contexts.
    Description: Published
    Description: 1465–1477
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Inverse theory ; Body waves ; Earthquake source observations ; Seismicity and tectonics ; Dynamics: seismotectonics ; Fractures, faults, and high strain deformation zones ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-02-11
    Description: Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/ heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance considerations,we showhydrothermal pressurization is causing energy transfer from the fluids to the host rocks, ultimately triggering low magnitude earthquakes within a seismogenetic volume containing the hydrothermal system. This mechanism is probably common to other worldwide calderas in similar hydrothermal activity state.
    Description: MIUR project n. PRIN2017-2017LMNLAW“Connect4Carbon”
    Description: Published
    Description: 107245
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: CO2 emission ; Campi Flegrei ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2021-12-23
    Description: Machine learning is becoming increasingly important in scientific and technological progress, due to its ability to create models that describe complex data and generalize well. The wealth of publicly-available seismic data nowadays requires automated, fast, and reliable tools to carry out a multitude of tasks, such as the detection of small, local earthquakes in areas characterized by sparsity of receivers. A similar application of machine learning, however, should be built on a large amount of labeled seismograms, which is neither immediate to obtain nor to compile. In this study we present a large dataset of seismograms recorded along the vertical, north, and east components of 1487 broad-band or very broad-band receivers distributed worldwide; this includes 629,095 3-component seismograms generated by 304,878 local earthquakes and labeled as EQ, and 615,847 ones labeled as noise (AN). Application of machine learning to this dataset shows that a simple Convolutional Neural Network of 67,939 parameters allows discriminating between earthquakes and noise single-station recordings, even if applied in regions not represented in the training set. Achieving an accuracy of 96.7, 95.3, and 93.2% on training, validation, and test set, respectively, we prove that the large variety of geological and tectonic settings covered by our data supports the generalization capabilities of the algorithm, and makes it applicable to real-time detection of local events. We make the database publicly available, intending to provide the seismological and broader scientific community with a benchmark for time-series to be used as a testing ground in signal processing.
    Description: Published
    Description: 1-10
    Description: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Description: N/A or not JCR
    Keywords: Physics - Geophysics; Physics - Geophysics ; dataset for machine learning in seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2021-12-23
    Description: After the 2004 Indian Ocean (IOT) and the 2011 Tohoku-oki tsunamis, new research in tsunami-related fields was strongly stimulated worldwide and also in the Mediterranean. This research growth yields substantial advancements in tsunami knowledge. Among these advancements is the “Paleotsunami” research that has marked particular progress on the reconstruction of the tsunami history of a region. As an integration of the historical documentation available in the Mediterranean and the Gulf of Cadiz areas, geological and geoarchaeological records provide the insights to define the occurrence, characteristics, and impact of tsunamis of the past. Here, we present the recent advancements done for both the onshore and offshore realms. As for the onshore, we discuss case studies dealing with recent high-resolution works based on: a) direct push in situ sensing techniques, applied to identification and characterization of typical paleotsunami deposits features; b) combined XRF- X-CT approach, implemented for the identification of fine-scale sedimentary structures useful for the definition of the causative flow dynamics; c) the geoarchaeological “new field” contribution, with the development of specific diagnostic criteria in search for tsunami impact traces in archaeological strata; d) comparison of multiple dating methods and of different modeling codes for the definition of the potential source for the displacement of boulders of exceptional dimension, identified by 3D size calculation. As for the offshore advancements, we present case studies focusing on the recognition of tsunami deposits and their sedimentary traces in the geological record from the nearshore, thanks to diver-operated coring equipment, down to the continental slope, by means of vibracorer and long gravity core sampling in deeper areas. The examples provided show a multiproxy approach with a high potential of retrieving a complete record of paleotsunami traces at least during the Holocene. This is based on the combination of multidisciplinary approaches including X-ray imaging, high-resolution measurement of physical properties, X- ray fluorescence data, grain-size analysis, micropaleontology, palynological content, isotopic and optically stimulated luminescence dating methods.
    Description: Published
    Description: 103578
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Paleotsunami deposits ; Mediterranean Sea ; High-resolution studies ; Archeology ; backwash wave ; Geology ; tsunami ; paleotsunami deposits ; Mediterranean Sea
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2022-02-03
    Description: This work presents the first 3D geological model of the Rome coastal area that integrates available subsurface geological, stratigraphic and geophysical data with surface geochemical data obtained both from the literature and new surveys. The model provides new insights into the stratigraphic and tectonic setting of the area and the geological factors controlling both natural and human-induced gas emissions. This sector of the Italian Tyrrhenian margin has been historically affected by natural emissions of deep CO2 and thermogenic CH4, stored in permeable layers but with local migration to the surface along buried normal faults. In addition to natural processes, human activities can also cause leakage and serious health risks, such as the abrupt gas release in August 2013, that was triggered by borehole drillings near the Rome international airport. The presented 3D reconstruction unveils the link between faults, stratigraphy, lithology and the distribution of the soil gas anomalies. It provides information about the depth of the reservoir that can potentially trap endogenous gases, and the location and geometry of the main faults along which the gas migrates towards the surface. Furthermore, reconstruction of the distribution and thickness of important clay layers better constrains the low permeable areas that prevent gas escape. The 3D model, coupled with the geochemical information, can serve as a useful tool for the local administration to perform land-use planning and manage the local geological and degassing hazards that affect this highly urbanized area near Rome. Furthermore, we estimate that the large amount of CO2 broadly released in the area also provides a contribution to the budget of natural greenhouse gases in the atmosphere.
    Description: Published
    Description: 106527
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: 3D geological model ; Soil gas ; Active faults ; Surface degassing ; Geological hazards ; Tiber delta ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-02-02
    Description: Ion temperature data recorded by Millstone Hill incoherent scatter radar (42.61 N, 288.51 E) over four full solar cycles (from 1970 to 2018) are analyzed to depict its climatological behavior in the range of altitudes between 100 and 550 km. The ion temperature dependencies on altitude, local time, month of the year, and solar activity level are studied through a climatological analysis based on binning and boxplot representation of statistical values. Binned observations of ion temperature are compared with International Reference Ionosphere (IRI) modeled values (IRI-2016 version). This comparison reveals several shortcomings in the IRI modeling of the ion temperature at ionosphere altitudes, in particular for the altitudinal, diurnal, seasonal, and solar activity description. The main finding of this study is that the overall IRI overestimation of the ion temperature can be probably ascribed to the long-term ionosphere cooling. Moreover, the study suggests that the IRI ion temperature model needs to implement the seasonal and solar activity dependence, and introduce a more refined diurnal description to allow multiple diurnal maxima seen in observations. The IRI ion temperature anchor point at 430 km is investigated in more detail to show how also a better description of the altitude dependence is desirable for modeling purposes. Some hints and clues are finally given to improve the IRI ion temperature model.
    Description: Published
    Description: 2186-2203
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-02-02
    Description: TITIPy (Topside Ionosphere Turbulence Indices with Python) is a stand-alone Python tool developed for the calculation and mapping of RODI, ROTI, and ROTEI indices, for the characterization of the turbulent state of the topside ionosphere. Data gathered by Langmuir Probes and Precise Orbit Determination antennas on-board ESA Swarm satellites constellation are used to calculate topside ionosphere indices with a high time rate and a global coverage. From the study of these topside indices, information on physical mechanisms involved in the formation of small-scale irregularities (both spatial and temporal) can be drawn, particularly at high and low latitudes. TITIPy provides outputs as time series of calculated indices in text files, and figures as maps in geographic and magnetic coordinates. TITIPy is particularly suited for the investigation of the topside ionosphere irregularities, and for the identification of peculiar spatial and temporal patterns. The paper describes the TITIPy design and code workflow along with a detailed explanation of RODI, ROTI, and ROTEI indices calculation. Furthermore, an example of application based on data collected during the St. Patrick 2015 geomagnetic storm is also shown. TITIPy is open-source and freely downloadable at https://github.com/pignalberi/TITIPy.
    Description: Published
    Description: 104675
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2021-12-22
    Description: Systematic variations in the crystal cargo and whole-rock isotopic compositions of mantle-derived basalts in the intraplate Dunedin Volcano (New Zealand) indicate the influence of a complex mantle-to-crust polybaric plumbing system. Basaltic rocks define a compositional spectrum from low-alkali basalts through mid-alkali basalts to high-alkali basalts. High-alkali basalts display clinopyroxene crystals with sector (hourglass) and oscillatory zoning (Mg#61–82) as well as Fe-rich green cores (Mg#43–69), whereas low-alkali basalts are characterized by clinopyroxenes with unzoned overgrowths (Mg#69–83) on resorbed mafic cores (Mg#78–88), coexisting with reversely zoned plagioclase crystals (An43–68 to An60–84 from core to rim). Complex magma dynamics are indicated by distinctive compositional variations in clinopyroxene phenocrysts, with Cr-rich zones (Mg#74–87) indicating continuous recharge by more mafic magmas. Crystallization of olivine, clinopyroxene and titanomagnetite occurred within a polybaric plumbing system extending from upper mantle to mid-crustal depths (485–1059 MPa and 1147–1286°C), whereas crystallization of plagioclase with subordinate clinopyroxene and titanomagnetite proceeded towards shallower crustal levels. The compositions of high-alkali basalts and mid-alkali basalts resemble those of ocean island basalts and are characterized by FOZO-HIMU isotopic signatures (87Sr/86Sri = 0.70277–0.70315, 143Nd/144Ndi = 0.51286–0.51294 and 206Pb/204Pb = 19.348–20.265), whereas low-alkali basalts have lower incompatible element abundances and isotopic compositions trending towards EMII (87Sr/86Sri = 0.70327–70397, 143Nd/144Ndi = 0.51282–0.51286 and 206Pb/204Pb = 19.278–19.793). High- and mid-alkali basalt magmas mostly crystallized in the lower crust, whereas low-alkali basalt magma recorded deeper upper mantle clinopyroxene crystallization before eruption. The variable alkaline character and isotope composition may result from interaction of low-alkaline melts derived from the asthenosphere with melts derived from lithospheric mantle, possibly initiated by asthenospheric melt percolation. The transition to more alkaline compositions was induced by variable degrees of melting of metasomatic lithologies in the lithospheric mantle, leading to eruption of predominantly small-volume, high-alkali magmas at the periphery of the volcano. Moreover, the lithosphere imposed a filtering effect on the alkalinity of these intraplate magmas. As a consequence, the eruption of low-alkali basalts with greater asthenospheric input was concentrated at the centre of the volcano, where the plumbing system was more developed.
    Description: Published
    Description: egab062
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: alkali basalts ; Dunedin Volcano ; thermobarometry ; primary magma ; lithospheric mantle filter ; Igneous Petrology ; Thermobarometry ; Mantle melting and metasomatism ; Magmatic plumbing systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2021-10-13
    Description: Landslides are widespread natural phenomena that play an important role in landscape evolution and are responsible for several casualties and damages. Slope instability is linked to the combination of geological, geomorphological, and climatic factors with various triggering mechanisms; among these, seismic shaking can induce relevant changes in the landscape, leading to coseismic and post-seismic phenomena such as landslide events. The Abruzzo Region (Central Italy) is severely affected by Earthquake-Induced Landslides (EILs), linked to the geomorphological dynamics and the severe seismicity of the area. The distribution, mechanisms, and typology of landslides are strictly related to the different physiographic and geological-structural settings. This paper focuses on the realisation of an EILs susceptibility map, following a heuristic approach combined with a statistical analysis, integrated using GIS technology. This approach led to the identification of nine instability factors. These factors were analysed for the construction of thematic maps. Hence, each factor was assigned proper expert-based ranks and weights based on the critical evaluation of literature data as well as on available landslide inventories and combined in a preliminary map wherein high/low numerical values correspond to a high/low propensity of the slope to fail; furthermore, a statistical analysis of these values was performed to derive suitable susceptibility classes. Results presented herein highlight the robustness of the approach; remarkably, the applied methodology is suitable even in areas where a detailed landslide catalogue is lacking, when the same classification and weighting of available parameters is performed. The statistical analyses and the adoption of an absolute scale ranging from minimum to maximum potential values, finally, ensures the comparability of results among different study areas. Finally, this work represents a scientific and multidisciplinary tool for better defining situations that could lead to hazards (such as landslides) following an earthquake to develop sustainable territorial planning, emergency management, and loss-reduction measures.
    Description: Published
    Description: 105729
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2021-10-13
    Description: The needs of society and the emerging blue economy require access and integration of data and information for the construction of dedicated products. A “transparent and accessible ocean” is one of the key objectives of the Ocean Decade 2021–30. In this context, marine infrastructures become significant components of a global knowledge environment, enabling environmental assessment and providing the necessary data for scientifically valid actions to protect and restore ocean health, to use marine resources in a sustainable way. The data is collected, analyzed, organized, and used by people and their good use/reuse can be obtained with social practices, technological and physical agreements aimed at facilitating collaborative knowledge, decision-making, inference. The vision is a digital ocean data ecosystem made up of multiple, interoperable, and scalable components. The huge amount of data and the resulting products can drive the development of new knowledge as well as new applications and services. Predictive capabilities that derive from the digital ecosystem enable the implementation of services for real-time decision-making, multihazard warning systems, and advance marine space planning. The chapter develops following the progressive complexity and information content of products deriving from oceanic data: data cycle and data collections, data products, oceanic reanalysis. The chapter discusses the new challenges of data products and the complexity of deriving them.
    Description: Published
    Description: 197-280
    Description: 4A. Oceanografia e clima
    Keywords: 03.02. Hydrology ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2021-11-26
    Description: Lava flows are recurring and widespread hazards that affect areas around active volcanoes, having the potential to cause significant social and economic loss. The ongoing demographic congestion around volcanoes increases the potential risk and leads to a growing demand for faster and more accurate systems to safeguard the population. The main mitigation action for slowing down and possibly diverting lava flows is the building of artificial barriers, that can limit their destructive effects and reduce losses. Here we present a Particle Swarm Optimization algorithm for the configuration of artificial barriers, in terms of location and geometric features. The goal is to minimize the lava flow impact based on the spatial distribution of exposed elements, using the physics-based MAGFLOW model to run the lava flow scenarios for each barrier configuration. Our algorithm has been tested on Etna (Italy), showing how it can effectively safeguard the threatened areas, diverting lava away from them.
    Description: Published
    Description: 105023
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2021-11-25
    Description: Between 9 March and 18 May 2020, strict lockdown measures were adopted in Italy for containing the COVID-19 pandemic: in Rome, despite vehicular traffic on average was more than halved, it was not observed a evident decrease of the airborne particulate matter (PM) concentrations, as assessed by air quality data. In this study, daily PM10 filters were collected from selected automated stations operated in Rome by the regional network of air quality monitoring: their magnetic properties - including magnetic susceptibility, hysteresis parameters and FORC (first order reversal curves) diagrams - were compared during and after the lockdown, for outlining the impact of the COVID-19 measures on airborne particulate matter. In urban traffic sites, the PM10 concentrations did not significantly change after the end of the lockdown, when vehicular traffic promptly returned to its usual levels; conversely, the average volume and mass magnetic susceptibilities approximately doubled, and the linear correlation between volume magnetic susceptibility and PM10 concentration became significant, pointing out the link between PM10 concentrations and the increasing levels of traffic-related magnetic emissions. Magnetite-like minerals, attributed to non-exhaust brakes emissions, dominated the magnetic fraction of PM10 near urban traffic sites, with natural magnetic components emerging in background sites and during exogenous dusts atmospheric events. Magnetic susceptibility constituted a fast and sensitive proxy of vehicular particulate emissions: the magnetic properties can play a relevant role in the source apportionment of PM10, especially when unsignificant variations in its concentration levels may mask important changes in the traffic-related magnetic fraction. As a further hint, increasing attention should be drawn to the reduction of brake wear emissions, that are overcoming by far fuel exhausts as the main particulate pollutant in traffic contexts.
    Description: Published
    Description: 118191
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Airborne particulate matter; Brakes emissions; COVID-19 lockdown; Magnetic monitoring; PM(10) filters; Urban traffic
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2021-12-06
    Description: The youngest (last 1500 years) volcanic eruptions of Lipari, within the Aeolian Archipelago, produced the prominent pumice cone of Monte Pilato and the obsidian lava flows of Rocche Rosse and Forgia Vecchia, concentrated in the north-eastern sector of the island as well as highly dispersed white-coloured, fine-grained tephra layers of rhyolitic composition in terrestrial and marine settings on the regional scale. Here we describe in detail the stratigraphy of pyroclastic successions and lava flows erupted by different vents - Monte Pilato, Forgia Vecchia, Lami, and Rocche Rosse - combining field observations, sedimentological characteristics of the tephra deposits, and major and trace element compositions of the volcanic glass. All the pyroclastic materials consist of aphyric pumice lapilli and ash with a largely homogeneous rhyolitic composition. The Monte Pilato and Forgia Vecchia deposits primarily consist of highly vesicular pumice fragments and subordinate obsidian clasts, whilst Rocche Rosse and Lami are characterized by moderately vesicular juvenile fragments with a more significant fraction of obsidian. The Lami tephra also contains peculiar pumice clasts with a fibrous texture and breadcrust bombs. Stratigraphic relationships, and paleomagnetic and 14C ages of the lava and pyroclastic deposits are combined with the archaeological information and historical reports, enabling us to provide an accurate chrono-stratigraphic framework for the youngest eruptions of Lipari. Following the 8th century CE eruption of Monte Pilato, which produced a pumice cone and a obsidian lava flow, activity resumed in the second half of 13th century CE with the explosive eruption of Forgia Vecchia that culminated in the emission of a bilobate obsidian lava flow. This eruption was shortly followed by the explosive eruptions of Lami and Rocche Rosse, the latter concluded with the emission of the widely renowned obsidian lava flow. By integrating stratigraphy and geochemistry of tephra deposits with a new chronological scheme, our work facilitates the refinement of proximal-to-distal correlation of Lipari's rhyolitic tephra in continental marine environments of the central Mediterranean area in the last 1500 years. A fine-grained, rhyolitic ash found on Stromboli (~40 km NE from Lipari) has an origin from the Monte Pilato and thus, constrains tephra dispersion towards the NE. Very similar ash beds dispersed southwards and interlayered within the near-source deposits of La Fossa, Vulcano island (~10 km from Lipari) exhibit features that are consistent with the younger activities of the Rocche Rosse eruption. A possible link between previously identified rhyolitic ash layers identified in marine cores of the Ionian Sea and the Forgia Vecchia eruption are postulated, although the age and textural characteristics of these distal tephra are not univocal in indicating a correlation to either Monte Pilato or Forgia Vecchia.
    Description: Published
    Description: 107397
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2021-11-26
    Description: Volcanic gas dispersal can be a serious threat to people living near active volcanoes since it can have short- and long-term effects on human health, and severely damage crops and agricultural land. In recent decades, reliable computational models have significantly advanced, and now they may represent a valuable tool to make quan- titative and testable predictions, supporting gas dispersal forecasting and hazard assessments for public safety. Before applying a specific modelling tool into hazard quantification, its calibration and its sensitivity to initial and boundary conditions should be carefully tested against available data, in order to produce unbiased hazard quantifications. In this study, we provided a number of prototypical tests aimed to validate the modelling of gas dispersal from a hazard perspective. The tests were carried out at La Soufrière de Guadeloupe volcano, one of the most active gas emitters in the Lesser Antilles. La Soufrière de Guadeloupe has shown quasi-permanent degassing of a low-temperature hydrothermal nature since its last magmatic eruption in 1530 CE, when the current dome was emplaced. We focused on the distribu- tion of CO2 and H2S discharged from the three main present-day fumarolic sources at the summit, using the mea- surements of continuous gas concentrations collected in the period March–April 2017. We developed a new probabilistic implementation of the Eulerian code DISGAS-2.0 for passive gas dispersion coupled with the mass-consistent Diagnostic Wind Model, using local wind measurements and atmospheric stability information from a local meteorological station and ERA5 reanalysis data. We found that model outputs were not significantly affected by the type of wind data but rather upon the relative positions of fumaroles and measurement stations. Our results reproduced the statistical variability in daily averages of observed data over the investigated period within acceptable ranges, indicating the potential usefulness of DISGAS-2.0 as a tool for reproducing the observed fumarolic degassing and for quantifying gas hazard at La Soufrière. The adopted testing procedure allows for an aware application of simulation tools for quantifying the hazard, and thus we think that this kind of testing should actually be the first logical step to be taken when applying a simulator to assess (gas) hazard in any other volcanic contexts.
    Description: Published
    Description: 107312
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Passive gas dispersion ; Numerical modelling ; ERA5 reanalysis ; Mass consistent wind model ; La Soufrière de Guadeloupe
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2021-11-29
    Description: In this work, we propose a wavelet-based filtering for soil CO2 flux time series. The filter relies on the detection of the periodic components achieved by means of the long-term time-frequency characterization of the time series. For this purpose, we exploited the vast data set coming from the monitoring network installed at Mt. Etna volcano (Italy). The network provides hourly measure of CO2 flux together with the measure of the climatic variables. These data allow to investigate the relationships between CO2 time series and the potentially influencing meteorological factors. This has been assessed calculating the wavelet coherence between CO2 time series against air temperatures, atmospheric pressure, and relative humidity in all the sites where these information were available. Results highlight the occurrence of marked cycles at about ∼1 year for the most of the sites while shorter cycles occur only at some sites. From these cycles a periodic signal can be calculated, and therefore opportunely removed from the time CO2 series to enhance the volcano-related anomalies. We found also common cycles among CO2 and the climatic variables, which synchronicity is constant over time but it is site-specific. Starting from this consideration, we calculated a reference signal for CO2 combining analytically the temperature, the pressure, and the humidity cycles: this model of the climatic effect has been used to predict the seasonal trend of the CO2 output.
    Description: Published
    Description: 107421
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Soil CO2 ; Continuous wavelet transform ; Spectral analysis ; Etna
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2021-12-14
    Description: Seismic stations are usually used to record seismic event and, therefore, they are recommended to be installed far from railways and traffic roads in order to avoid the superposition of ambient noise signals to those provoked by an earthquake. In this paper, instead, seismic stations, placed intentionally in areas near railway and traffic roads, are used to characterize the subsoil spectral properties and to assess the effect of vibrations due to trains and vehicles. A cemetery in the green countryside near Florence is chosen as a reference case study to deal with this topic. Most of the buildings in the cemetery area are affected by an extensive crack pattern. In January 2020 five seismic stations were installed in order to evaluate if the trains running in the tunnels of the regional and high-speed railway lines located below and in the vicinity of the cemetery and the vehicles traveling on the nearby A1 highway and regional road can produce vibrations in the ground that justify the observed damage pattern. Collected data are analyzed using the Nakamura technique in order to estimate the dynamic properties of the ground and compared to the limits provided by the current regulations. Furthermore, the trend of the Root Mean Square average over the entire recording period is computed as well. From the obtained results, it is possible to highlight that the average daily oscillation level increases from early morning until 7 p.m. and then it decreases, and also that the highest am­ plitudes of transients are concentrated in the late evening and during the night, when the background noise is lower. Furthermore, the computed values of the maximum and average amplitudes are lower than those that can cause damage to buildings as defined by the guidelines, the eigenfrequency of the ground falls in a range far from that ascribable to the cemetery buildings, so that the resonance effects can be excluded. In order to confirm these results, the amplitude of ground shaking due to recorded transients is compared to that produced by two earthquakes (a 3.4 Mw local earthquake at more than 100 km and a Mw 6.6 teleseism from Turkey) which occurred during the monitoring period. One can conclude that it seems unlikely that the shaking produced by nearby vehicles and trains could be responsible for the observed damage.
    Description: The study was partially funded by the Municipality of Figline-Incisa Valdarno.
    Description: Published
    Description: e00623
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Ambient vibrations ; Soil amplification
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2021-12-23
    Description: The eruptive activity of a volcano modifies its surface topography through morphological changes generated by the deposition of emitted volcanic material and resulting gravity-driven processes,which can form accumulation of material in addition to the most common erosional phenomena. Mapping and quantifying such morphological changes allow to derive new data useful to better describe and understand the eruptive history of the volcano itself. Nowadays, one of the mostly used method to identify such morphological changes consists of comparing Digital Elevation Models (DEM) of the volcanic area before and after an eruptive event. If the eruptive event is referred to periods prior to 1980's, the only method to reproduce DEMs consists of elaborating the historical cartography that is often available only in paper format. In thisworkwe aimto prove the reliability of this approach, presenting a study on the morphological changes (from 1876 to 1944) of the summit caldera of the Somma–Vesuvio volcano (Italy). For the first time, we compare DEMs derived from historical maps (1876, 1906 and1929) and a DEM dated 2012 obtained by remote sensing. The four models of the caldera, digitally reproducedat the same spatial resolution, are morphologically investigated through specific maps derived from the DEMs and a set of height profiles. In addition, further morphometric analyses and accurate quantifications in volume and surface are presented and discussed for a portion of the Somma-Vesuvio summit caldera, represented by the Gran Cono edifice. Considering the different typology of the source data used in this study, it is also provided a discussion on the respective accuracies that, especially for the historical maps, represent a crucial point for obtaining DEMs able to reproduce topographies more realistic as possible. For this reason, despite data source were processed following rigours criteria, the calculations of volume, surface and distance related to the morphological changes of the volcano are associated to an accurate quantification of the error. Following this, the main results obtained in this study are: i) the identification of several past volcanic deposits and the estimation of the related thicknesses, both in good agreement with published literature; ii) the quantification of the morphological changes of theGran Cono from 1876 to 1944 resulting in a volume and surface growth of 133 ×106m3(±5%) and ~0.14 km2, respectively; iii) the identification of a possible migration path of the centroid of the Gran Cono crater along the SW-NE preferential direction during the investigated period.
    Description: Published
    Description: 107624
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Digital Elevation Model, Historical cartography,Airborne Laser Scanning technology, Somma-Vesuvio volcano, Morphological changes quantifications
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-02-11
    Description: Prior to the 2018 lower East Rift Zone (ERZ) eruption and summit collapse of Kīlauea Volcano, Hawai‘i, continuous gravimeters operated on the vent rims of ongoing eruptions at both the summit and Pu‘u ‘Ō‘ō. These instruments captured the onset of the 2018 lower ERZ eruption and the effects of lava withdrawal from both locales, providing constraints on the timing and style of activity and the physical properties of the lava lakes at both locations. At the summit, combining gravity, lava level, and a three-dimensional model of the vent indicates that the upper ∼200 m of the lava lake had a density of about 1700 kg m−3, slightly greater than estimates from 2011–2015 and possibly indicating a gradual densification over time. At Pu‘u ‘Ō‘ō, gravity and vent geometry were used to model both the density and the rate of crater collapse, which was unknown owing to a lack of visual observations. Results suggest the withdrawal of at least m3 of lava over the course of two hours, and a material density of 1800–1900 kg m−3. In addition, gravity data at Pu‘u ‘Ō‘ō captured a transient decrease and increase about an hour prior to crater collapse and that was probably related to a small, short-lived fissure eruption on the west flank of the cone and possibly to dike intrusion beneath Pu‘u ‘Ō‘ō. The fissure was the first event in the subsequent cascade that ultimately led to the extrusion of over 1 km3 of lava from lower ERZ vents, collapse of the summit caldera floor by more than 500 m, and the destruction of over 700 homes and other structures. These results emphasize the importance of continuous gravity in operational monitoring of active volcanoes.
    Description: Published
    Description: 117003
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-02-11
    Description: Extensive geophysical and geodetic measurements were carried out to evaluate the groundwater aquifer, trace the basement relief, as well as detect the igneous intrusions and structural elements (mainly faults) that affect the occurrence of groundwater in the study area. The fieldwork included resistivity sounding, a geomagnetic survey, and Global Positioning System measurements. The magnetic results showed the presence of a group of main faults in East-west trend at the western part of the area and major fault at the northern part of the area of NW-SW trend. The findings also showed the presence of two igneous rock intrusions located in the middle of the eastern part of the valley. Pronounced differences in the depths of basement rocks have been identified, ranging between 0 and 900 m from the surface. Both high horizontal movements and high shear strain rates have been found to be concentrated at the southeast of the study area and it was noted that high stress was accumulated along the main observed faults and at the main groundwater aquifers. The geoelectrical results confirmed the presence of two aquifers; a shallow aquifer (Quaternary aquifer) that narrows northwards and a Nubian sandstone aquifer, which considered the main aquifer. The Nubian sandstone aquifer carries groundwater in the region, which overlies the last geoelectric unit represented by the basement complex layer and geological structures affecting the potential availability of groundwater in the study area, as proved by the geomagnetic survey and stress accumulation.
    Description: Researchers Supporting Project number (RSP-2021/351), King Saud University, Riyadh, Saudi Arabia
    Description: Published
    Description: 101549
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GPS ; stress ; strain ; geomagnetic ; geoelectric ; groundwater ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-02-11
    Description: This work describes the data used in the EPSL research article "Quantifying strong seismic propagation effects in the upper volcanic edifice using sensitivity kernels". The dataset is generated in order to investigate to what extent the seismic signals recorded on volcanoes are affected by near surface velocity structure. Data were calculated using the computational spectral elements scheme SPECFEM2D, where the wave propagation beneath Mount Etna volcano, Italy, was simulated in both homogeneous and heterogeneous models. The heterogeneous model comprises a low-velocity superficial structure (top several hundred meters) based on the previously published studies. Several different source mechanisms and locations were used in the simulations. The seismic wavefield was "recorded" by 15 surface receivers distributed along the surface of the volcano. The associated sensitivity kernels were also computed. These kernels highlight the region of the velocity model that affects the recorded seismogram within a desired time window. The text files describing the velocity models used in the simulations are also provided. The data may be of interest to volcano seismologists, as well as earthquake seismologists studying path effects and wave propagation through complex media.
    Description: European Union Seventh Framework Programme (FP7/2007 2013) under the project NEMOH, grand agreement no. 289976.
    Description: Published
    Description: 106673
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Near surface velocity structure; Numerical simulations; Sensitivity kernels; Specfem2d; Volcanic edifice; Volcano seismic sources
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2022-02-11
    Description: In volcanic environments, the correct interpretation of the signals recorded by a seismic station is critical for a determination of the internal state of the volcano. Those signals contain information about both the seismic source and the properties of the path travelled by the seismic wave. Therefore, understanding the path effect is necessary for both source inversions and geophysical investigation of the volcanoes' properties at depth. We present an application of the seismic adjoint methodology and sensitivity kernel analysis to investigate seismic wave propagation effects in the upper volcanic edifice. We do this by performing systematic numerical simulations to calculate synthetic seismograms in two-dimensional models of Mount Etna, Italy, considering different wave velocity properties. We investigate the relationship between different portions of a seismogram and different parts of the structural volcano model. In particular, we examine the influence of known near-surface low-velocity volcanic structure on the recorded seismic signals. Results improve our ability to understand path effects highlighting the importance of the shallowest velocity structure in shaping the recorded seismograms and support recent studies that show that, although long-period seismic events are commonly associated with magma movements in resonant conduits, these events can be reproduced without the presence of fluids. We conclude that edifice heterogeneities impart key signatures on volcano seismic traces that must be considered when investigating volcano seismic sources.
    Description: Published
    Description: 116683
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2022-02-14
    Description: High-elevation plateaus that are positioned in between topographic barriers are common orogenic features in the South American continent, formed under a range of evolving environmental conditions. For example, in the central Andes (Bolivia-Argentina), the Puna-Altiplano is arid and endorheic with a poorly developed fluvial system, while in the northern Andes (Colombia) the Chiquinquirà and Tunja highlands are characterized by a humid equatorial exorheic fluvial system. In addition to a plateau-like low-relief surface at 2500 m, the landscape of the northern Eastern Cordillera and SantanderMassif (northern Colombia) displays a lower elevation (~1500m) low-relief landscape (Mesas) comprising river captures, windgaps, and a disconnected alluvial fan that collectively record a transient state. This configuration has been achieved through a combination of compressive deformation and sub-crustal processes. The compressive shortening started to occur in the Paleogene and is still active, whereas regional surface uplift related to slab flattening andmantlewedge hydration startedintheLateMiocene/Pliocene.To disentangle the crustal vs sub-crustal forcing and to investigate the relative timing of drainage network evolutionwe combine the analysis of topography, hydrography (river longitudinal profiles, morphometric parameters, drainage divide stability), knickpoint migration (celerity model), paleo-longitudinal profile modeling, satellite images, and field observations. In particular, we show that during the development of the low-relief Mesas landscape the older Chiquinquirà highland was a closed drainage and that the lower portion of the Suárez River flowed northward into the Bucaramanga depression forced by the Los Cobardes Anticline topographic barrier. The Suárez River collected waters from the southern SantanderMassif and the upper reach of the Chicamocha River, which was draining the Tunja highland. An abandoned windgap deposit on the eastern edge of the Mesa de Barichara suggests that the lower portion of the Chicamocha Riverwas not yet formed. Subsequent to the Chiquinquirà highland drainage opening, two main tributaries of the Magdalena River, the Lebrija and Sogamoso, captured the Suárez River in a short temporal sequence. A knickpoint celerity model allows us to date the Lebrija capture of the Bucaramanga depression at ~260–270 ka and the subsequent Sogamoso capture at 190–220 ka. Only during this final stage, the lowermost Chicamocha River section formed and the drainage network developed to its present configuration. Finally,we suggest that the early Cenozoic rift inversion has controlled the drainage network pattern and the late Miocene sub-crustal-induced surface uplift has driven the main fluvial network reorganization.
    Description: Published
    Description: 107847
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2022-02-11
    Description: The evolution of volcanic activity observed at the New South East Crater (NSEC) and Voragine (VOR) between July 2019 and January 2020 has been deciphered by taking into account the changes of textures and chemical zoning of plagioclase and olivine crystals from the erupted lavas and tephra. The petrological observations have been integrated with analyses of the amplitude and source location of volcanic tremor and infrasound data. Characteristics of crystals erupted on July 2019 at the NSEC reflect protracted intrusions of magma into the mid-upper section of the plumbing system, approximately within 290–120 MPa, which acted as the main zone of magma accumulation and crystallization before the beginning of the eruptive activity. Textures and compositions of crystals erupted at VOR emphasize the beginning of volcanic activity driven by recharge/discharge phases that mostly affect the shallowest portion of the Mt. Etna plumbing system (〈40 MPa). At the end of 2019, mineral compositions and zoning patterns changed again in accordance with eruption dynamics. The observed changes reflect the transition from an early phase, between November and December 2019, characterized by substantial equilibrium during magma storage and transport toward higher disequilibrium conditions and eruptive frequency, in January 2020. This has been associated to episodes of deep replenishment of mafic magmas displacing the resident one. Diffusion chronometry applied to zoned olivines shows that most of the episodes of magma intrusion correlate temporally with changes in the features of both volcanic tremor and infrasonic events in terms of amplitude and source location, providing evidence that such geophysical signals are directly related to the magma dynamics in the upper plumbing system.
    Description: Published
    Description: 107350
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2022-02-14
    Description: Shallow water equations are widely used in the simulation of those geophysical flows for which the flow horizontal length scale is much greater than the vertical one. Inspired by the example of lava flows, we consider here a modified model with an additional transport equation for a scalar quantity (e.g., temperature), and the derivation of the shallow water equations from depth-averaging the Navier-Stokes equations is presented. The assumption of constant vertical profiles for some of the model variables is relaxed allowing the presence of vertical profiles, and it follows that the non-linearity of the flux terms results in the introduction of appropriate shape coefficients. The space discretization of the resulting system of hyperbolic partial differential equations is obtained with a modified version of the finite volume central-upwind scheme introduced by Kurganov and Petrova in 2007. The time discretization is based on an implicit-explicit Runge-Kutta method which couples properly the hyperbolic part and the stiff source terms, avoiding the use of a very small time step; the use of complex arithmetic increases accuracy in the implicit treatment of stiff terms. The whole scheme is proved to preserve the positivity of flow thickness and the stationary steady-states. Some numerical experiments are performed to validate the proposed method and to show the incidence on the numerical solutions of shape coefficients introduced in the model.
    Description: Published
    Description: 482-505
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Shallow water equations ; Viscous fluids ; Finite Volume ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2022-02-11
    Description: In this work, a partitioned fluid-structure interaction solver is presented. Fluid flow problem is solved with time-discontinuous deforming domain stabilized space-time finite element method. Flow is computed with pressure primitive variables which permit to use the same numerical technique for both compressible and incompressible regimes. Elastic deformation of the structure is modelled in the Lagrangian frame of reference with Saint-Venant Kirchhoff and Neo-Hookean material models - both are non-linear and valid for large deformations. Structure equations are discretized with Galerkin finite element method for space and with generalized-alpha method for the time. Mesh motion is modelled with the elastic deformation method. An implicit algorithm is presented to couple the different solvers. The details are provided on the implementation of the solvers in parallel software. The numerical code is verified and validated on several compressible and incompressible flow benchmarks widely used in the literature. The results demonstrate that the developed solver successfully detects the accurate interaction between fluid and structure.
    Description: Published
    Description: 182-195
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2022-02-11
    Description: The Tolhuaca hydrothermal system is one of the few attested geothermal resources in Chile. While recent investigations provided some insights into the depth and temperature of the geothermal reservoirs and the chemical and mineralogical evolution of the hydrothermal system, little is still known about the CO2 degassing of the system and the local and shallow control of fluid pathways. Here, we document the soil CO2 degassing and soil temperature distributions in the southern part of the Tolhuaca hydrothermal system and at one of its northern fumaroles, and provide a first estimate of its total CO2 release. The surveyed area is responsible for a total CO2 emission of up to 30 t d-1. Hydrothermal CO2 emissions (~ 4-27 t d-1) are mostly restricted to the thermal manifestations or generally distributed along NNW trending lineaments, sharing the same orientation as the volcanic vents and thermal springs and fumaroles. Hydrothermal CO2 fluxes, fumaroles and thermal springs are generally encountered in topographic lows, in close vicinity of streams and often in clay-rich pyroclastic units, highlighting a relation between landscape evolution and the activity of the hydrothermal system. We suggest that glacial unloading and incision of the stream inside the clay-rich units have likely enhanced locally the permeability, creating a preferential pathway for the migration of deeper fluid to the surface. As several hydrothermal systems in the Andes are found on the flank of volcanoes hosting glaciers, we propose that they could have had a similar development to that of the Tolhuaca hydrothermal system.
    Description: Published
    Description: 107316
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: CO2 emission ; Tolhuaca volcano
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2022-02-14
    Description: Exposure to styrene is a major safety concern in the fibreglass processing industry. This compound is classified by the International Agency for Research on Cancer as a possible human carcinogen. Several types of analytical equipment exist for detecting volatile organic compounds (VOCs) in the atmosphere; however, most of them operate ex-situ or do not provide easy discrimination between different molecules. This work introduces an improved and portable method based on FTIR spectroscopy to analyse toxic gaseous substances in working sites down to a concentration of less than 4 ppm. Styrene and a combination of VOCs typically associated with it in industrial processes, such as acetone, ethanol, xylene and isopropanol, have been used to calibrate and test the methodology. The results demonstrate that the technique offers the possibility to discriminate between different gaseous compounds in the atmosphere with a high degree of confidence and obtain very accurate quantitative information on their concentration, down to the ppm level, even when different VOCs are present in a mixture.
    Description: Published
    Description: 122510
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Environmental sensors; Infrared spectroscopy; Volatile organic compounds
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2022-02-14
    Description: This paper deals with the first geochemical data from an unexplored sector of the Cordón de Inacaliri Volcanic Complex (Central Andes, Chile). The site is located at ∼5,150-5,200 m a.s.l., inside the Pabelloncito graben where, at about 9 km NW of the studied area, the only currently working geothermal power plant of South America, named Cerro Pabellón, occurs. Diffuse soil CO2 and soil temperature measurements were carried out to unravel the structural control on the rising fluids and estimate the total CO2 output, the heat flow rate and the heat flux, aimed at assessing a preliminary evaluation of the geothermal potential of the area. The study area is characterized by a pervasive hydrothermal mineralogical alteration, CO2 flux values of up to ∼4,400 g m-2 d-1 and soil temperatures up to the boiling point of water at that altitude. All these features are likely related to an endogenous source. Spatial distribution of both soil CO2 flux and temperature depict an ENE-striking lineament, whose intersection with the NW-striking Pabelloncito graben forms a favourable structural setting for the discharge of hydrothermal fluids. The total CO2 output emission of the studied area (∼0.0179 km2) was ∼0.53 t d-1, with an associated discharge of steam of 6.45 t d-1 (CO2/H2O ratio = 0.08). An electric capacity potential of 1.08 MWe km-2 was computed from the heat flow rate and heat flux values. Our results suggest that this part of the Pabelloncito graben is an interesting geothermal prospect and a good candidate for further exploration studies.
    Description: Published
    Description: 101961
    Description: 1TR. Georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2022-02-11
    Description: Grooves represent the evidence of tectonic activity that deformed Ganymede surface during its geologic evolution. In this work, we investigate the main characteristics of Ganymede's groove populations on four different areas located at the equatorial region of the satellite (Uruk Sulcus, Babylon Sulci, Phrygia Sulcus and Mysia Sulci). Specifically, we analyse i) the grooves length distribution to provide a framework for their evolution and ii) the grooves self-similar clustering to infer their vertical penetration inside Ganymede icy shell. For each dataset, we find that the grooves distribution is well fitted by an exponential-law and a power-law distribution depending on the structure length. This implies the presence of confined structures in a shallow layer of the icy crust (relatively shorter, exponentially-fitted structures) and crustal-scale structures that could theoretically reach the crust-ocean interface (relatively longer, power law-fitted structures). In addition, the existence of two exponential distributions for few datasets suggest that there could be two different system of structure confined within specific mechanical crust layers. The thickness of the penetrated icy shell is retrieved through the self-similar clustering analysis and ranges between 105 and 130 km for the examined datasets. This value agrees with independent estimates of the icy shell thickness, ranging between 80 and 150 km. Moreover, our results support the hypothesis that a large number of grooves penetrate the brittle icy crust, with sets of fractures vertically confined in different mechanical layers, while the penetration of few interconnected faults underlying longer grooves may interest the whole icy crust above the liquid ocean.
    Description: Published
    Description: 105140
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: GALILEAN SATELLITES ; DARK TERRAIN ; FAULT EVOLUTION ; TECTONICS ; PATTERNS GEOMETRY ; JUPITER
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Journal of Sea Research, Elsevier, 187, pp. 102245, ISSN: 13851101
    Publication Date: 2022-07-15
    Description: Foraminifera nourishing on fresh organic matter often exhibit an epibiotic or even an epizoic lifestyle. This study investigates the colonization of sponges by foraminifera. For this purpose, 12 siliceous sponges of different genera (Asconema, Geodia, Lissodendoryx and Schaudinnia) and order Haplosclerida were collected in 2018 with a ROV in water depths of 223 to 625 m in the Norwegian-Greenland Sea. Sponges were stained with a Rose Bengal/ ethanol mixture to allow a differentiation between foraminifera that had been recently alive and empty tests. Each sponge sample contained 3–42 dead and 1–10 living foraminiferal individuals per cm3 and summarizing up to 78 different taxa on one single sponge (Geodia phlegraei). Even on Geodia barretti, which is able to release barrettin (an alkaloid) to avoid colonialization by other organisms, living foraminiferal individuals (1 ind./cm3) were observed. The highest foraminiferal densities (living and dead individuals) were recorded on Haplosclerida sp. (49 ind./cm3) and Geodia sp. (45 ind./cm3). The lowest densities of foraminifera were found on G. barretti (3–14 ind./cm3) and on Lissodendoryx complicata (9 ind./cm3). The foraminiferal diversity ranges from 7.04 to 17.38 for Fisher α and from 2.40 to 3.33 (Shannon-Wiener (H)S). The highest diversity was found on G. phlegraei and the lowest one on L. complicata. This study is highlighting the ecosystem engineering role of sponges providing niche habitats for a high number of foraminifera.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2022-07-14
    Description: Forest destruction by ‘a‘ ̄a lava flow is common. However, mechanical and thermal interactions between the invading lava and the invaded forest are poorly constrained. We complete mapping, thermal image and sample analyses of a channel-fed ‘a‘a ̄ lava flow system that invaded forest on the NE flank of Mt. Etna (Italy) in 2002. These lava flows destroyed 231,000 trees, only 2% of which are still visible as felled trunks on the levees or at the channel-levee contact. The remaining 98% were first felled by the flow front, with the trunks then buried by the flow. Rare tree molds can be found at the rubble levee base where trees were buried by avalanching hot breccia and then burnt through, with a time scale for total combustion being a few days. Protruding trunks fell away from the flow, if felled by blocks avalanching down the levee flank, or became aligned with the flow if falling onto the moving stream. Estimated cooling rates (0.1–5.5 ◦C km− 1) are normal for well-insulated ‘a‘a ̄ flow, suggesting no thermal interaction. We find the highest phenocryst concentrations (of 50–60%, above an expected value of 30–40%) in low velocity (〈0.5 m s− 1) locations. These low velocity zones are also characterized by high trunk concentrations. Thus, the common factor behind crystal and trunk deposition is velocity. That is, when the lava slows down, crystal settling occurs and trunks are preferentially deposited. Thus, although we find no thermal or textural effects due to the presence of the forest, we do find mechanical and environmental in- teractions where the trees are consumed to become part of the flow.
    Description: This research was financed by the Agence National de la Recherche through the project LAVA (Program: DS0902 2016; Project: ANR-16 CE39-0009). We very much thank Sean I. Peters and an anonymous reviewer for their extremely constructive advice and support. This is ANR-LAVA contribution no. 23 and Laboratory of Excellence ClerVolc contribution no. 552.
    Description: Published
    Description: 107621
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Channelized ‘a‘ ̄a lava flow ; thermal imagery ; lava flows ; 2002-03 eruption ; forest destruction ; tree molds ; Etna volcano ; cooling rates ; Interaction lava and trees ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2022-06-24
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Page, H. N., Bahr, K. D., Cyronak, T., Jewett, E. B., Johnson, M. D., & McCoy, S. J. Responses of benthic calcifying algae to ocean acidification differ between laboratory and field settings. Ices Journal of Marine Science, 79(1), (2022): 1–11, https://doi.org/10.1093/icesjms/fsab232.
    Description: Accurately predicting the effects of ocean and coastal acidification on marine ecosystems requires understanding how responses scale from laboratory experiments to the natural world. Using benthic calcifying macroalgae as a model system, we performed a semi-quantitative synthesis to compare directional responses between laboratory experiments and field studies. Variability in ecological, spatial, and temporal scales across studies, and the disparity in the number of responses documented in laboratory and field settings, make direct comparisons difficult. Despite these differences, some responses, including community-level measurements, were consistent across laboratory and field studies. However, there were also mismatches in the directionality of many responses with more negative acidification impacts reported in laboratory experiments. Recommendations to improve our ability to scale responses include: (i) developing novel approaches to allow measurements of the same responses in laboratory and field settings, and (ii) researching understudied calcifying benthic macroalgal species and responses. Incorporating these guidelines into research programs will yield data more suitable for robust meta-analyses and will facilitate the development of ecosystem models that incorporate proper scaling of organismal responses to in situ acidification. This, in turn, will allow for more accurate predictions of future changes in ecosystem health and function in a rapidly changing natural climate.
    Description: We would like to thank the Ocean Carbon and Biogeochemistry Program for organizing the fourth U.S. Ocean Acidification Principal Investigators meeting, which is where this synthesis was conceived. HNP was a postdoctoral research fellow at Mote Marine Laboratory. MDJ is a postdoctoral scholar at Woods Hole Oceanographic Institution. SJM is a Norma J. Lang early career fellow of the Phycological Society of America.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2022-06-10
    Description: In fold and thrust belts developing at convergent margins, the migration of the advancing wedge is accompanied by bulging of the downgoing plate, followed by the development of a foredeep basin filled by a thick succession of syn-orogenic sediments. The transition from forebulge to foredeep marks a key moment in the evolution of the orogenic system. In deep water environments, the record of this transition is typically complete and progressive. Conversely, in the shallow-water/continental environment of many collisional systems, the uplift of the forebulge area can imply emersion and erosion, obliterating the stratigraphic record of key steps of the evolution of the orogenic system. The southern Apennines constitute one of these collisional fold and thrust belts where the development of the forebulge has implied emersion and erosion, with the development of a Miocene forebulge erosional unconformity, accompanied by extensional deformation associated with the bending of the lithosphere during the forebulge stage. In this paper, we use strontium isotope stratigraphy to constrain with unprecedented time-resolution the age of the forebulge unconformity in areas presently incorporated in the northern sector of the southern Apennines fold and thrust belt. Integration of our results and those of previous studies indicates, at the regional scale, a younging toward the foreland of the forebulge unconformity across the belt. Our highresolution ages also reveal a diachronous onset of the flexural subsidence over short distances, associated with the occurrence of horst and graben structures, possibly resulting from inherited paleotopography along with forebulge extension. This work highlights how high-resolution dating is critical to unravel the evolution of foreland basin systems at different scales.
    Description: Published
    Description: 105634
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Foreland basin system ; Forebulge unconformity ; Strontium isotope stratigraphy ; Forebulge extension ; Miocene ; Southern Apennines (Italy)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2022-06-22
    Description: In this paper we simulate the earthquake that hit the city of L'Aquila on the 6th of April 2009 using SPEED (SPectral Elements in Elastodynamics with Discontinuous Galerkin), an open-source code able to simulate the propagation of seismic waves in complex three-dimensional (3D) domains. Our model includes an accurate 3D recon- struction of the Quaternary deposits, according to the most up-to-date data obtained from the Microzonation studies in Central Italy and a detailed model of the topography incorporated using a newly developed tool (May et al. 2021). The sensitivity of our results with respect to dfferent kinematic seismic sources is inves- tigated. The results obtained are in good agreement with the recordings at the available seismic stations at epicentral distances within a range of 20km. Finally, a blind source prediction scenario application shows a reasonably good agreement between simulations and recordings can be obtained by simulating stochastic rupture realizations with basic input data. These results, although limited to nine simulated scenarios, demonstrate that it is possible to obtain a satisfactory reconstruction of a ground shaking scenario employing a stochastic source constrained on a limited amount of ex-ante information. A similar approach can be used to model future and past earthquakes for which little or no information is typically available, with potential relevant implications for seismic risk assessment.
    Description: Published
    Description: 29–49
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2022-06-06
    Description: Magmatic and sub-solidus fabrics in intrusive rocks are frequently used to infer the relative timing of deformation with respect to magma emplacement and cooling. Here, we describe the relationships between strain and fabric development in leucogranite sheets (pegmatite, aplite) emplaced into shear zones that localized post-thermal peak deformation in the contact aureole of an upper crustal pluton (〈0.2 GPa) on the Island of Elba, Italy. The leucogranite sheets present igneous, mylonitic, and cataclastic fabrics. Detailed meso- and microscopic structural analysis suggests that the dykes emplaced in the shear zones behaved as competent, rigid bodies during mylonitic deformation of the host rocks. Thermal modelling indicates that emplacement and cooling of the sheets occurred very rapidly (a few days to years) compared to typical tectonic strain rates and strain accumulation timescales in the host rocks. Such a fast cooling does not allow melt or magma-induced thermal softening in the host rocks during deformation. The development of mylonitic and cataclastic fabrics in the dykes was controlled by the localized activation of fluid-controlled reaction softening mechanisms (mylonitic fabric) and embrittlement during cooling in sites of high-strain (cataclastic fabric). We show that a broad spectrum of fabrics can form in igneous sheet intrusions emplaced at the same time and crustal level. The coexistence of isotropic (non-foliated igneous) versus anisotropic (mylonitic and cataclastic) fabrics in igneous sheet intrusions should therefore be evaluated in terms of tectonic strain rates, cooling rates, thermal state of the host, distribution of heterogeneous strain, and activation of strain softening mechanisms. Our observations highlight that the concepts of pre-, syn-, late- and post-tectonic fabrics in intrusive igneous rocks should be used with caution when interpreting relative timing relationships between deformation and magmatism.
    Description: Published
    Description: 104600
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Shear zones ; Igneous sheets Magma emplacementGranite deformationPegmatite ; Magma emplacement ; Granite deformation ; Pegmatite ; Elba Island ; Emplacement of a felsic dyke swarm during progressive heterogeneous deformation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2022-06-16
    Description: Magnetic biomonitoring methodologies were applied at Villa Farnesina, Rome, a masterpiece of the Italian Renaissance, with loggias frescoed by renowned artists such as Raffaello Sanzio. Plant leaves were sampled in September and December 2020 and lichen transplants were exposed from October 2020 to early January 2021 at increasing distances from the main trafficked road, Lungotevere Farnesina, introducing an outdoor vs. indoor mixed sampling design aimed at assessing the impact of vehicular particulate matter (PM) on the Villa Loggias. The magnetic properties of leaves and lichens - inferred from magnetic susceptibility values, hysteresis loops and first order reversal curves - showed that the bioaccumulation of magnetite-like particles, associated with trace metals such as Cu, Ba and Sb, decreased exponentially with the distance from the road, and was mainly linked to metallic emission from vehicle brake abrasion. For the frescoed Halls, ca. 30 m from the road, the exposure to traffic-related emissions was very limited or negligible. Tree and shrub leaves of the Lungotevere and of the Villa's Gardens intercepted much traffic-derived PM, thus being able to protect the indoor cultural heritage and providing an essential conservation service. It is concluded that the joint use of magnetic and chemical analyses can profitably be used for evaluating the impact of particulate pollution on cultural heritage within complex metropolitan contexts as a preventive conservation measure.
    Description: Published
    Description: 153729
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Brake wear; Cultural heritage; Lichen transplants; Magnetic biomonitoring; Preventive conservation; Traffic-related particulate matter
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2022-06-22
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: On 29 December 2020, a shallow earthquake of magnitude Mw 6.4 struck northern Croatia, near the town of Petrinja, more than 24 hours after a strong foreshock (Ml 5). We formed a reconnaissance team of European geologists and engineers, from Croatia, Slovenia, France, Italy and Greece, rapidly deployed in the field to map the evidence of coseismic environmental effects. In the epicentral area, we recognized surface deformation, such as tectonic breaks along the earthquake source at the surface, liquefaction features (scattered in the fluvial plains of Kupa, Glina and Sava rivers), and slope failures, both caused by strong motion. Thanks to this concerted, collective and meticulous work, we were able to document and map a clear and unambiguous coseismic surface rupture associated with the main shock. The surface rupture appears discontinuous, consisting of multi-kilometer en échelon right stepping sections, along a NW-SE striking fault that we call the Petrinja-Pokupsko Fault (PPKF). The observed deformation features, in terms of kinematics and trace alignments, are consistent with slip on a right lateral fault, in agreement with the focal solution of the main shock. We found mole tracks, displacement on faults affecting natural features (e. g. drainage channels), scarplets, and more frequently breaks of anthropogenic markers (roads, fences). The surface rupture is observed over a length of ∼13 km from end-to-end, with a maximum displacement of 38 cm, and an average displacement of ∼10 cm. Moreover, the liquefaction extends over an area of nearly 600 km² around the epicenter. Typology of liquefaction features include sand blows, lateral spreading phenomenon along the road and river embankments, as well as sand ejecta of different grain size and matrix. Development of large and long fissures along the fluvial landforms, current or ancient, with massive ejections of sediments is pervasive. These features are sometimes accompanied by small horizontal displacements. Finally, the environmental effects of the earthquake appear to be reasonably consistent with the usual scaling relationships, in particular the surface faulting. This rupture of the ground occurred on or near traces of a fault that shows clear evidence of Quaternary activity. Further and detailed studies will be carried out to characterize this source and related faults in terms of future large earthquakes potential, for their integration into seismic hazard models.
    Description: Published
    Description: 1394–1418
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Seismicity and tectonics ; Earthquake hazards ; Coseismic effects ; M6.4 Petrinja earthquake (Croatia)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2022-06-09
    Description: Near-continuous monitoring both of gas emissions (CO2, CH4 and H2S) and of water temperature at Santa Venera al Pozzo thermal springs (SE foot of Mt. Etna volcano, Sicily, Italy) was conducted from December 2017 to April 2019, using a novel and cheaper Chromatography Monitoring System (CMS) coupled with a water temperature sensor. The results showed methane as predominant gas and temporal changes in gas concentrations that were in part due to daily fluctuations, which caused small amplitude variations, and in part due to non-environmental causes. These latter were correlated with the occurrence of strong earthquakes and slow tectonic events related to magmatic intrusions, but not with input of magmatic gases into the thermal aquifer, given the nonmagmatic origin of all monitored gases. Methane spikes were observed during many volcano-tectonic events and call for a deep source of this gas. H2S was detected only during the strongest local tectonic events, including a Mw 4.9 earthquake, suggesting that this gas has a common origin as CH4 (i.e., mixing between microbial and thermogenic gas), but it is released only when tectonic stress is applied for sufficiently long periods as to cause H2S oversaturation in the hydrothermal aquifer. Water temperature decreases were also observed immediately after the two strongest earthquakes in the area, which helped us produce a comprehensive model to explain the observed geochemical variations. Our approach allowed revealing the great sensitivity of gases such as CH4 and especially H2S to tectonic stress, thus making them valuable indicators of impending strong tectonic or volcanotectonic events.
    Description: Published
    Description: 229388
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Earthquakes ; Volcanic activity ; Geothermal systems ; Fluids ; Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2022-05-24
    Description: The assessment of potential radon-hazardous environments is nowadays a critical issue in planning, monitoring, and developing appropriate mitigation strategies. Although some geological structures (e.g., fault systems) and other geological factors (e.g., radionuclide content, soil organic or rock weathering) can locally affect the radon occurrence, at the basis of a good implementation of radon-safe systems, optimized modelling at territorial scale is required. The use of spatial regression models, adequately combining different types of predictors, represents an invaluable tool to identify the relationships between radon and its controlling factors as well as to construct Geogenic Radon Potential (GRP) maps of an area. In this work, two GRP maps were developed based on field measurements of soil gas radon and thoron concentrations and gamma spectrometry of soil and rock samples of the Euganean Hills (northern Italy) district. A predictive model of radon concentration in soil gas was reconstructed taking into account the relationships among the soil gas radon and seven predictors: terrestrial gamma dose radiation (TGDR), thoron (220Rn), fault density (FD), soil permeability (PERM), digital terrain model (SLOPE), moisture index (TMI), heat load index (HLI). These predictors allowed to elaborate local spatial models by using the Empirical Bayesian Regression Kriging (EBRK) in order to find the best combination and define the GRP of the Euganean Hills area. A second GRP map based on the Neznal approach (GRPNEZ) has been modelled using the TGDR and 220Rn, as predictors of radon concentration, and FD as predictor of soil permeability. Then, the two GRP maps have been compared. Results highlight that the radon potential is mainly driven by the bedrock type but the presence of fault systems and topographic features play a key role in radon migration in the subsoil and its exhalation at the soil/atmosphere boundary.
    Description: Published
    Description: 152064
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Euganean Hills ; Geogenic Radon Potential ; Geostatistics ; Natural radioactivity ; Radon ; Regression kriging ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2022-06-30
    Description: A full review of the 79 CE Plinian eruption of Vesuvius is presented through a multidisciplinary approach, exploiting the integration of historical, stratigraphic, sedimentological, petrological, geophysical, paleoclimatic, and modelling studies dedicated to this famous and devastating natural event. All studies have critically been reviewed and integrated with original data, spanning from proximal to ultradistal findings of the 79 CE eruption products throughout the Mediterranean. The work not only combines different investigation approaches (stratigraphic, petrological, geophysical, modelling), but also follows temporally the 79 CE eruptive and depo sitional events, from the magma chamber to the most distal tephras. This has allowed us first to compile a full database of all findings of those deposits, then to relate the products (the deposits) to the genetic thermo mechanical processes (the eruption), and lastly to better assess both the local and regional impacts of the 79 CE eruption in the environment. This information leads to a number of open issues (e.g., regional environmental impact vs. local pyroclastic current impact) that are worthy of further investigations, although the 79 CE eruption of Vesuvius is one of the best studied eruptions in volcanology. The structure of the work follows three macro-categories, the historical aspects, the products, and the processes of the 79 CE eruption. For each investigation approach (from stratigraphy to modelling), all dedicated studies and original data are discussed. The open issues are then synthesized in the discussion under a global view of Plinian eruptions, from the magma setting to its dispersion as pyroclasts flowing on the surface vs. falling from the volcanic plume. In this way, a lesson from the past, in particular from the well-studied 79 CE eruption of Vesuvius, will be of help for a better synchronization of processes and products in future developments. Lastly, various aspects for volcanic hazard assessment of Plinian eruptions are highlighted from the tephra distribution and modelling points of view, as these large natural phenomena can have a larger impact than previously thought, also at other active volcanoes.
    Description: Published
    Description: 104072
    Description: 1V. Storia eruttiva
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 79 CE eruption ; Vesuvius ; Plinian eruption ; Pompeii ; Multidisciplinary approach ; Pyroclastic succession ; Pyroclastic currents ; 79 CE tephra dispersal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2022-09-13
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nelson, R. K., Scarlett, A. G., Gagnon, M. M., Holman, A. I., Reddy, C. M., Sutton, P. A., & Grice, K. Characterizations and comparison of low sulfur fuel oils compliant with 2020 global sulfur cap regulation for international shipping. Marine Pollution Bulletin, 180, (2022): 113791, https://doi.org/10.1016/j.marpolbul.2022.113791.
    Description: The International Marine Organization 2020 Global Sulfur Cap requires ships to burn fuels with 〈0.50% S and some countries require 〈0.10% S in certain Sulfur Emission Control Areas but little is known about these new types of fuels. Using both traditional GC–MS and more advanced chromatographic and mass spectrometry techniques, plus stable isotopic, δ13C and δ2H, analyses of pristane, phytane and n-alkanes, the organic components of a suite of three 0.50% S and three 0.10% S compliant fuels were characterized. Two oils were found to be near identical but all of the remaining oils could be forensically distinguished by comparison of their molecular biomarkers and by the profiles of the heterocyclic parent and alkylated homologues. Oils could also be differentiated by their δ13C and δ2H of n-alkanes and isoprenoids. This study provides important forensic data that may prove invaluable in the event of future oil spills.
    Description: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. CMR and RKN were supported by the National Science Foundation (OCE-1634478 and OCE-1756242). GC × GC analysis support provided by WHOI's Investment in Science Fund.
    Keywords: International Maritime Organisation ; Biomarkers ; Fuel oil ; Heterocyclics ; GC × GC ; Mass spectrometry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2022-09-01
    Description: In the last years the scientific literature has been enriched with new models of the Moho depth in the Antarctica Continent derived by the seismic reflection technique and refraction profiles, receiver functions and seismic surface waves, but also by gravimetric observations over the continent. In particular, the gravity satellite missions of the last two decades have provided data in this remote region of the Earth and have allowed the investigation of the crust properties. Meanwhile, other important contributions in this direction has been given by the fourth International Polar Year (IPY, 2007–2008) which started seismographic and geodetic networks of unprecedented duration and scale, including airborne gravimetry over largely unexplored Antarctic frontiers. In this study, a new model for the Antarctica Moho depths is proposed. This new estimation is based on no satellite gravity measures, thanks to the availability of the gravity database ANTGG2015, that collects gravity data from ground-base, airborne and shipborne campaigns. In this new estimate of the Moho depths the contribution of the gravity measures has been maximized reducing any correction of the gravity measures and avoiding constraints of the solution to seismological observations and to geological evidence. With this approach a pure gravimetric solution has been determined. The model obtained is pretty in agreement with other Moho models and thanks to the use of independent data it can be exploited also for cross-validating different Moho depths solutions.
    Description: Published
    Description: 1404–1420
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Antarctica ; Moho ; Gravity inversion ; Collocation ; ANTGG2015
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2022-09-05
    Description: The chemical composition of gases emitted by active volcanoes reflects both magma degassing and shallower processes, such as fluid-rock hydrothermal interaction and mixing with atmospheric-derived fluids. Untangling the magmatic fluid endmember within surface gas emission is therefore challenging, even with the use of well-known magma degassing tracers such as noble gases. Here, we investigate the deep magmatic fluid composition at the Nisyros caldera (Aegean Arc, Greece) by measuring nitrogen and noble gas abundances and isotopes in naturally degassing fumaroles. Gas samples were collected from 32 fumarolic vents at water-boiling temperature between 2018 and 2021. These fumaroles are admixtures of magmatic fluids typical of subduction zones, groundwater (or air saturated water, ASW), and air. The N2, He, and Ar composition of the magmatic endmember is calculated by reverse mixing modeling and shows N2/He = 31.8 ± 4.5, N2/Ar = 281.6, d15N = +7 ± 3 ‰, 3He/4He = 6.2 Ra (where Ra is air 3He/4He), and 40Ar/36Ar = 551.6 ± 19.8. Although N2/He is significantly low with respect to typical values for arc volcanoes (1,000–10,000), the contribution of subducted sediments to the Aegean Arc magma generation is reflected by the positive d15N values of Nisyros fumaroles. The low N2/He ratio indicates N2-depletion due to solubility-controlled differential degassing of an upper-crustal silicic (dacitic/rhyodacitic) melt in a high-crystallinity reservoir. We compare our 2018–2021 data with N2, He, and Ar values collected from the same fumaroles during a hydrothermal unrest following the seismic crisis in 1996–1997. Results show additions of both magmatic fluid and ASW during this unrest. In the same period, fumarolic vents display an increase in magmatic species relative to hydrothermal gas, such as CO2/CH4 and He/CH4 ratios, an increase of 50 C in the equilibrium temperature of the hydrothermal system (up to 325 C), and greater amounts of vapor separation. These variations reflect an episode of magmatic fluid expulsion during the seismic crisis. The excess of heat and mass supplied by the magmatic fluid injection is then dissipated through boiling of deeper and peripheral parts of the hydrothermal system. Reverse mixing modeling of fumarolic N2-He-Ar has therefore important ramifications not only to disentangle the magmatic signature from gases emitted during periods of dormancy, but also to trace episodes of magmatic outgassing and better understand the state of the upper crustal reservoir.
    Description: Published
    Description: 68-84
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Noble gases ; Nitrogen isotope ; Mixing modeling ; Magmatic degassing ; High-crystallinity mush ; Caldera ; Unrest ; CO2 ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3Geophysical Journal International, Oxford University Press, 231, pp. 1959-1981
    Publication Date: 2022-09-16
    Description: Seismic reflection and refraction data were collected in 2007 and 2012 to reveal the crustal fabric on a single long composite profile offshore Prydz Bay, East Antarctica. A P-wave velocity model provides insights on the crustal fabric, and a gravity-constrained density model is used to describe the crustal and mantle structure. The models show that a 230-km- wide continent–ocean transition separates stretched continental from oceanic crust along our profile. While the oceanic crust close to the continent–ocean boundary is just 3.5–5 km thick, its thickness increases northwards towards the Southern Kerguelen Plateau to 12 km. This change is accompanied by thickening of a lower crustal layer with high P-wave velocities of up to 7.5 km s–1, marking intrusive rocks emplaced beneath the mid-ocean ridge under increasing influence of the Kerguelen plume. Joint interpretations of our crustal model, seismic reflection data and magnetic data sets constrain the age and extent of oceanic crust in the research area. Oceanic crust is shown to continue to around 160 km farther south than has been interpreted in previous data, with profound implications for plate kinematic models of the region. Finally, by combining our findings with a regional magnetic data compilation and regional seismic reflection data we propose a larger extent of oceanic crust in the Enderby Basin than previously known.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peredo, E. L., & Cardon, Z. G. Shared up-regulation and contrasting down-regulation of gene expression distinguish desiccation-tolerant from intolerant green algae. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 1(2020): 7438-17445, doi:10.1073/pnas.1906904117.
    Description: Among green plants, desiccation tolerance is common in seeds and spores but rare in leaves and other vegetative green tissues. Over the last two decades, genes have been identified whose expression is induced by desiccation in diverse, desiccation-tolerant (DT) taxa, including, e.g., late embryogenesis abundant proteins (LEA) and reactive oxygen species scavengers. This up-regulation is observed in DT resurrection plants, mosses, and green algae most closely related to these Embryophytes. Here we test whether this same suite of protective genes is up-regulated during desiccation in even more distantly related DT green algae, and, importantly, whether that up-regulation is unique to DT algae or also occurs in a desiccation-intolerant relative. We used three closely related aquatic and desert-derived green microalgae in the family Scenedesmaceae and capitalized on extraordinary desiccation tolerance in two of the species, contrasting with desiccation intolerance in the third. We found that during desiccation, all three species increased expression of common protective genes. The feature distinguishing gene expression in DT algae, however, was extensive down-regulation of gene expression associated with diverse metabolic processes during the desiccation time course, suggesting a switch from active growth to energy-saving metabolism. This widespread downshift did not occur in the desiccation-intolerant taxon. These results show that desiccation-induced up-regulation of expression of protective genes may be necessary but is not sufficient to confer desiccation tolerance. The data also suggest that desiccation tolerance may require induced protective mechanisms operating in concert with massive down-regulation of gene expression controlling numerous other aspects of metabolism.
    Description: Dr. Louise Lewis (University of Connecticut) provided F. rotunda and A. deserticola. Suzanne Thomas and Jordan Stark provided expert technical assistance. This work was supported by the NSF, Division of Integrative Organismal Systems (1355085 to Z.G.C.), and an anonymous donor (to Z.G.C.).
    Keywords: Aquatic green algae ; Desert-evolved green algae ; Extremophiles ; Microbiotic ; Crusts ; Scenedesmaceae
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Criswell, K. E., Roberts, L. E., Koo, E. T., Head, J. J., & Gillis, J. A. Hox gene expression predicts tetrapod-like axial regionalization in the skate, Leucoraja erinacea. Proceedings of the National Academy of Sciences of the United States of America, 118(51), (2021): e2114563118, https://doi.org/10.1073/pnas.2114563118.
    Description: The axial skeleton of tetrapods is organized into distinct anteroposterior regions of the vertebral column (cervical, trunk, sacral, and caudal), and transitions between these regions are determined by colinear anterior expression boundaries of Hox5/6, -9, -10, and -11 paralogy group genes within embryonic paraxial mesoderm. Fishes, conversely, exhibit little in the way of discrete axial regionalization, and this has led to scenarios of an origin of Hox-mediated axial skeletal complexity with the evolutionary transition to land in tetrapods. Here, combining geometric morphometric analysis of vertebral column morphology with cell lineage tracing of hox gene expression boundaries in developing embryos, we recover evidence of at least five distinct regions in the vertebral skeleton of a cartilaginous fish, the little skate (Leucoraja erinacea). We find that skate embryos exhibit tetrapod-like anteroposterior nesting of hox gene expression in their paraxial mesoderm, and we show that anterior expression boundaries of hox5/6, hox9, hox10, and hox11 paralogy group genes predict regional transitions in the differentiated skate axial skeleton. Our findings suggest that hox-based axial skeletal regionalization did not originate with tetrapods but rather has a much deeper evolutionary history than was previously appreciated.
    Description: This research was funded by a Natural Environment Research Council Grant (to J.J.H., J.A.G., and K.E.C.: NE/S000739/1) and a Royal Society University Research Fellowship (UF130182 and URF\R\191007), Royal Society Research Grant (RG140377), and University of Cambridge Sir Isaac Newton Trust Grant (14.23z) (to J.A.G.).
    Keywords: Hox genes ; Regionalization ; Chondrichthyan ; Vertebral column
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2022-10-31
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Northcutt, A. J., Kick, D. R., Otopalik, A. G., Goetz, B. M., Harris, R. M., Santin, J. M., Hofmann, H. A., Marder, E., & Schulz, D. J. Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis. Proceedings of the National Academy of Sciences of the United States of America, 116 (52) (2019): 26980-26990, doi: 10.1073/pnas.1911413116.
    Description: Understanding circuit organization depends on identification of cell types. Recent advances in transcriptional profiling methods have enabled classification of cell types by their gene expression. While exceptionally powerful and high throughput, the ground-truth validation of these methods is difficult: If cell type is unknown, how does one assess whether a given analysis accurately captures neuronal identity? To shed light on the capabilities and limitations of solely using transcriptional profiling for cell-type classification, we performed 2 forms of transcriptional profiling—RNA-seq and quantitative RT-PCR, in single, unambiguously identified neurons from 2 small crustacean neuronal networks: The stomatogastric and cardiac ganglia. We then combined our knowledge of cell type with unbiased clustering analyses and supervised machine learning to determine how accurately functionally defined neuron types can be classified by expression profile alone. The results demonstrate that expression profile is able to capture neuronal identity most accurately when combined with multimodal information that allows for post hoc grouping, so analysis can proceed from a supervised perspective. Solely unsupervised clustering can lead to misidentification and an inability to distinguish between 2 or more cell types. Therefore, this study supports the general utility of cell identification by transcriptional profiling, but adds a caution: It is difficult or impossible to know under what conditions transcriptional profiling alone is capable of assigning cell identity. Only by combining multiple modalities of information such as physiology, morphology, or innervation target can neuronal identity be unambiguously determined.
    Description: We thank members of the D.J.S., H.A.H., and E.M. laboratories for helpful discussions. We thank the Genomic Sequencing and Analysis Facility (The University of Texas [UT] at Austin) for library preparation and sequencing and the bioinformatics consulting team at the UT Austin Center for Computational Biology and Bioinformatics for helpful advice. This work was supported by National Institutes of Health grant R01MH046742-29 (to E.M. and D.J.S.) and the National Institute of General Medical Sciences T32GM008396 (support for A.J.N.) and National Institute of Mental Health grant 5R25MH059472-18 and the Grass Foundation (support for Neural Systems and Behavior Course at the Marine Biological Laboratory).
    Keywords: qPCR ; RNA-seq ; Stomatogastric ; Expression profiling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lasek-Nesselquist, E., & Johnson, M. D. A phylogenomic approach to clarifying the relationship of Mesodinium within the Ciliophora: a case study in the complexity of mixed-species transcriptome analyses. Genome Biology and Evolution, 11(11), (2019): 3218–3232, doi:10.1093/gbe/evz233.
    Description: Recent high-throughput sequencing endeavors have yielded multigene/protein phylogenies that confidently resolve several inter- and intra-class relationships within the phylum Ciliophora. We leverage the massive sequencing efforts from the Marine Microbial Eukaryote Transcriptome Sequencing Project, other SRA submissions, and available genome data with our own sequencing efforts to determine the phylogenetic position of Mesodinium and to generate the most taxonomically rich phylogenomic ciliate tree to date. Regardless of the data mining strategy, the multiprotein data set, or the molecular models of evolution employed, we consistently recovered the same well-supported relationships among ciliate classes, confirming many of the higher-level relationships previously identified. Mesodinium always formed a monophyletic group with members of the Litostomatea, with mixotrophic species of Mesodinium—M. rubrum, M. major, and M. chamaeleon—being more closely related to each other than to the heterotrophic member, M. pulex. The well-supported position of Mesodinium as sister to other litostomes contrasts with previous molecular analyses including those from phylogenomic studies that exploited the same transcriptomic databases. These topological discrepancies illustrate the need for caution when mining mixed-species transcriptomes and indicate that identifying ciliate sequences among prey contamination—particularly for Mesodinium species where expression from stolen prey nuclei appears to dominate—requires thorough and iterative vetting with phylogenies that incorporate sequences from a large outgroup of prey.
    Description: We thank David Beaudoin and Holly V. Moeller for their assistance in collecting cells and extracting RNA. We thank the Josephine Bay Paul Center for Comparative Molecular Biology and Evolution at the Marine Biological Laboratory for the generous use of their servers. This work was supported in part by a National Science Foundation grant to both authors (IOS 1354773).
    Keywords: Mesodinium ; Litostomatea ; ciliate phylogenomics ; mixed-species transcriptomes ; sequence contamination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Du, J., Park, K., Yu, X., Zhang, Y. J., & Ye, F. Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations. Science of the Total Environment, 704, (2019): 135364, doi: 10.1016/j.scitotenv.2019.135364.
    Description: Increasing frequency of extreme precipitation events under the future warming climate makes the storm-related pollutant release more and more threatening to coastal ecosystems. Hurricane Harvey, a 1000-year extreme precipitation event, caused massive pollutant release from the Houston metropolitan area to the adjacent Galveston Bay. 0.57 × 106 tons of raw sewage and 22,000 barrels of oil, refined fuels and chemicals were reportly released during Harvey, which would likely deteriorate the water quality and damage the coastal ecosystem. Using a Lagrangian particle-tracking method coupled with a validated 3D hydrodynamic model, we examined the retention, pathway, and fate of the released pollutants. A new timescale, local exposure time (LET), is introduced to quantitatively evaluate the spatially varying susceptibility inside the bay and over the shelf, with a larger LET indicating the region is more susceptible to the released pollutants. We found LET inside the bay is at least one order of magnitude larger for post-storm release than storm release due to a quick recovery in the system's flushing. More than 90% of pollutants released during the storm exited the bay within two days, while those released after the storm could stay inside the bay for up to three months. This implies that post-storm release is potentially more damaging to water quality and ecosystem health. Our results suggest that not only the amount of total pollutant load but also the release timing should be considered when assessing a storm's environmental and ecological influence, because there could be large amounts of pollutants steadily and slowly discharged after storm through groundwater, sewage systems, and reservoirs.
    Description: We like to acknowledge the Texas Coastal Management Program, the Texas General Land Office and NOAA for partial funding of this project through CMP Contract #19-040-000-B074. This work was performed using computing facilities at the College of William and Mary, which were provided by contributions from the National Science Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of Naval Research.
    Keywords: Storm discharge ; Retention ; Local exposure time ; Particle tracking ; SCHISM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mundl-Petermeier, A., Walker, R. J., Jackson, M. G., Blichert-Toft, J., Kurz, M. D., & Halldorsson, S. A. Temporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume. Chemical Geology, 525, (2019): 245-259. doi: 10.1016/j.chemgeo.2019.07.026.
    Description: Studies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
    Description: This study was supported by NSF grant EAR-1624587 (to RJW and AMP). AMP acknowledges FWF grant V659-N29. MJ acknowledges NSF grant EAR-1624840, and MK acknowledges OCE-1259218. We would like to thank Lotte M. Larsen and Asger K. Pedersen for providing the West Greenland samples, and Bernard Marty for the samples from East Greenland. We thank Catherine Chauvel for the editorial handling and Rita Parai, Dominique Weis, David Graham and an anonymous reviewer for the helpful and constructive comments on this and an earlier version of the manuscript.
    Keywords: μ182W ; Iceland ; Mantle plume ; 3He/4He ; Primordial reservoir
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wheat, C. G., Seewald, J. S., & Takai, K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount. Geochimica Et Cosmochimica Acta, 269, (2020): 413-428, doi: 10.1016/j.gca.2019.10.037
    Description: Natural fluids with a pH (25 °C) up to 12.3 were collected from a sub-seafloor borehole observatory (Ocean Drilling Program (ODP) Hole 1200C) on South Chamorro Seamount, a serpentinite mud volcano in the Mariana forearc. We used systematic differences in the chemical compositions of pore waters from drilling operations during ODP Leg 195 and borehole fluids collected subsequently from Hole 1200C to define two endmember solutions, one of which was a sulfate-rich fluid with a methane concentration of 50 mM that ascends from the subduction channel and the other was a low-sulfate fluid. The sequence of sample collection and fluid compositions constrain subsurface hydrologic conditions. Deep-sourced, sulfate- and methane-rich, sterile fluids from the subduction channel can reach the seafloor unchanged within the central conduit, whereas other fluid pathways likely intersect the pelagic sediment that underlies the serpentinite mud volcano, providing potentially suitable conditions and inoculum for microbial anaerobic oxidation of methane (AOM). These AOM-affected, low-sulfate fluids also make it to the seafloor where they discharge. The source of the sulfate- and methane-rich fluid in the subduction channel is attributed to abiotic methane production fueled by hydrogen production from serpentinization and carbonate dissolution. This methane production includes a mechanism to raise the pH above values from serpentinization alone. Results from South Chamorro Seamount represent an end member along a transect defined by the distance from the trench. Results from this site are applied to other serpentinite mud volcanoes along this transect to speculate on likely chemical conditions within shallower and cooler portions of the subduction channel.
    Description: The authors thank the entire shipboard parties of cruises NT09-01 and NT09-07 on the R/V Nastushima and the crews and pilots of the ROV HyperDolphin. We also thank Tom Pettigrew for removing the dummy plug and designing the insert for the borehole. This research was supported by the National Science Foundation (OCE-0727120 and 1439564 (CGW) and OCE--0725204 (JS)) and the Japan Agency for Marine-Earth Science and Technology. This is C-DEBI contribution 497.
    Keywords: Serpentinization ; Mud volcano ; Subduction ; Mariana forearc ; Dissolved gases ; Anaerobic methane oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Xu, X., Li, G., Li, C., Zhang, J., Wang, Q., Simmons, D. K., Chen, X., Wijesena, N., Zhu, W., Wang, Z., Wang, Z., Ju, B., Ci, W., Lu, X., Yu, D., Wang, Q., Aluru, N., Oliveri, P., Zhang, Y. E., Martindale, M. Q., & Liu, J. Evolutionary transition between invertebrates and vertebrates via methylation reprogramming in embryogenesis. National Science Review, 6(5), (2019):993-1003, doi:10.1093/nsr/nwz064.
    Description: Major evolutionary transitions are enigmas, and the most notable enigma is between invertebrates and vertebrates, with numerous spectacular innovations. To search for the molecular connections involved, we asked whether global epigenetic changes may offer a clue by surveying the inheritance and reprogramming of parental DNA methylation across metazoans. We focused on gametes and early embryos, where the methylomes are known to evolve divergently between fish and mammals. Here, we find that methylome reprogramming during embryogenesis occurs neither in pre-bilaterians such as cnidarians nor in protostomes such as insects, but clearly presents in deuterostomes such as echinoderms and invertebrate chordates, and then becomes more evident in vertebrates. Functional association analysis suggests that DNA methylation reprogramming is associated with development, reproduction and adaptive immunity for vertebrates, but not for invertebrates. Interestingly, the single HOX cluster of invertebrates maintains unmethylated status in all stages examined. In contrast, the multiple HOX clusters show dramatic dynamics of DNA methylation during vertebrate embryogenesis. Notably, the methylation dynamics of HOX clusters are associated with their spatiotemporal expression in mammals. Our study reveals that DNA methylation reprogramming has evolved dramatically during animal evolution, especially after the evolutionary transitions from invertebrates to vertebrates, and then to mammals.
    Description: This work was supported by the National Key Research and Development Program of China (2018YFC1003303), the Strategic Priority Research Program of the CAS (XDB13040200), the National Natural Science Foundation of China (91519306, 31425015), the Youth Innovation Promotion Association of the CAS and the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC016).
    Keywords: DNA methylation ; evolution ; development ; reprogramming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Diaz Quiroz, J. F., Montiel-Gonzalez, Maria F., Nemes, Sonya E., Rangan, K. J., Levinson, S. R., Eisenberg, E., & Rosenthal, J. J. C. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Research, (2020): gkaa172, doi: 10.1093/nar/gkaa172.
    Description: In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome’s blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (〉70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
    Description: National Science Foundation (NSF) [IOS1557748 to J.R.]; United States–Israel Binational Science Foundation [BSF2013094 to J.R. and E.E.]; The Grass Foundation grant in support of the Doryteuthis pealeii Genome Project, and a gift by Mr. Edward Owens. Funding for open access charge: United States–Israel Binational Science Foundation [BSF2013094].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lebrato, M., Garbe-Schönberg, D., Müller, M. N., Blanco-Ameijeiras, S., Feely, R. A., Lorenzoni, L., Molinero, J. C., Bremer, K., Jones, D. O. B., Iglesias-Rodriguez, D., Greeley, D., Lamare, M. D., Paulmier, A., Graco, M., Cartes, J., Barcelos E Ramos, J., de Lara, A., Sanchez-Leal, R., Jimenez, P., Paparazzo, F. E., Hartman, S. E., Westernströer, U., Küter, M., Benavides, R., da Silva, A. F., Bell, S., Payne, C., Olafsdottir, S., Robinson, K., Jantunen, L. M., Korablev, A., Webster, R. J., Jones, E. M., Gilg, O., Bailly du Bois, P., Beldowski, J., Ashjian, C., Yahia, N. D., Twining, B., Chen, X. G., Tseng, L. C., Hwang, J. S., Dahms, H. U., & Oschlies, A. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proceedings of the National Academy of Sciences of the United States of America, 117(36), (2020): 22281-22292, doi:10.1073/pnas.1918943117.
    Description: Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.
    Description: We thank the researchers, staff, students, and volunteers in all the expeditions around the world for their contributions. One anonymous referee and Bernhard Peucker-Ehenbrink, Woods Hole Oceanographic Institution, contributed significantly to the final version of the manuscript. This study was developed under a grant from the Federal Ministry of Education and Research to D.G.-S. under contract 03F0722A, by the Kiel Cluster of Excellence “The Future Ocean” (D1067/87) to A.O. and M.L., and by the “European project on Ocean Acidification” (European Community’s Seventh Framework Programme FP7/2007-2013, grant agreement 211384) to A.O. and M.L. Additional funding was provided from project DOSMARES CTM2010-21810-C03-02, by the UK Natural Environment Research Council, to the National Oceanography Centre. This is Pacific Marine Environmental Laboratory contribution number 5046.
    Keywords: global ; seawater ; Mg:Ca ; Sr:Ca ; biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Melle, W., Klevjer, T., Strand, E., Wiebe, P. H., Slotte, A., & Huse, G. Fine-scale observations of physical and biological environment along a herring feeding migration route. Deep-Sea Research Part II: Topical Studies in Oceanography, 180, (2020): 104845, doi:10.1016/j.dsr2.2020.104845.
    Description: We observed herring horizontal and vertical distribution during feeding migration along a 128 km transect across the Arctic front of the Norwegian and Iceland seas, in early June, in relation to its physical, chemical and biological environment, distribution of prey organisms and pelagic and mesopelagic competitors. The Norwegian Spring Spawning herring is one of the largest and economically most important stocks of pelagic fish in the world and understanding what controls its feeding migration is, and has been for centuries, a major research question that also has major implications for management. High resolution ecosystem data were obtained by hull mounted multi-frequency acoustics and a towed platform undulating between 10 and 400 m equipped with multi-frequency acoustics, temperature, salinity and fluorescence sensors, an Optical Plankton Counter and a Video Plankton Recorder. Additional sampling was done by MOCNESS, Macroplankton trawl, and CTD equipped with water bottles for temperature, salinity, nutrients and chlorophyll at discrete stations along the transect. Biological characteristics and stomach content of the herring were obtained from samples at discrete trawl stations. The Arctic front proved to be an important transitional zone in zooplankton biomass, abundance and diversity. Phenology of phyto- and zooplankton also changed across the front, being somewhat delayed on the cold side. The herring were distributed all along the transect showing a shallow distribution on the warm side and both deep and shallow on the cold side, not clearly related to light and time of the day. The herring stomach content was higher on the cold side. There was no significant pattern in average age, weight, or body length of the herring along the transect. The herring were present and fed in the area of the transect during the time when the overwintering generation of Calanus finmarchicus dominated, before the development of the new generation of the year. We suggest that the phenology of C. finmarchicus can be an important driver of the herring feeding migration. While prey-availability was higher on the Arctic side of the front, light conditions for visual feeding at depth were probably better on the Atlantic side. The herring did not show classical dial vertical migration, but its prey did, and the herring's prey were probably available within the upper 100 m during the course of a 24 h cycle. With a general westward direction of migration, the herring along the transect moved towards lower temperatures and temperature did not seem to be a probable driver for migration. We conclude that fine-scale studies of herring migration and feeding can increase our understanding of the migratory processes and add to our understanding of large-scale distributional patterns, changes therein, and herring trophodynamics and ecological role. The fine-resolution parameters can also be important as input to ecosystem models.
    Description: We would also like to acknowledge the funding from Euro-BASIN, EU FP7, Grant agreement No 264933, HARMES, Research Council of Norway project number 280546 and MEESO, EU H2020 research and innovation programme, Grant Agreement No 817669.
    Keywords: Herring ; Feeding migration ; Environment ; Prey distribution ; Fine-scale observation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339.
    Description: During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady-state” model shows increases from 0.5 ± 8.5 dpm m−2 d−1 to 68.2 ± 4.2 dpm m−2 d−1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (〉0.8 μm) and particulate 210Po (〉0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C m− 2 d−1 on 20 May and 6.0 ± 1.6 mmol C m−2 d−1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m−2 d−1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m−2 d−1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m−2 d−1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered.
    Description: We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments.
    Keywords: Polonium-210 ; Lead-210 ; 210Po ; 210Pb ; North Atlantic ; Spring bloom ; POC flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.
    Description: Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
    Description: The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003.
    Keywords: Canadian Beaufort Sea ; Mackenzie Canyon ; Boundary currents ; Canyon circulation ; Ice-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H., Tarnas, J. D., Mustard, J. F., Zhang, X., Wei, Y., Wan, W., Klein, F., & Kellner, J. R. Dynamic aperture factor analysis/target transformation (DAFA/TT) for Mg-serpentine and Mg-carbonate mapping on Mars with CRISM near-infrared data. Icarus, 355, (2021): 114168, https://doi.org/10.1016/j.icarus.2020.114168.
    Description: Serpentine and carbonate are products of serpentinization and carbonation processes on Earth, Mars, and other celestial bodies. Their presence implies that localized habitable environments may have existed on ancient Mars. Factor Analysis and Target Transformation (FATT) techniques have been applied to hyperspectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) to identify possible serpentine and Mg-carbonate-bearing outcrops. FATT techniques are capable of suggesting the presence of individual spectral signals in complex spectral mixtures. Applications of FATT techniques to CRISM data thus far only evaluate whether an entire analyzed image (≈ 3 × 105 pixels) may contain spectral information consistent with a specific mineral of interest. The spatial distribution of spectral signal from the possible mineral is not determined, making it difficult to validate a reported detection and also to understand the geologic context of any purported detections. We developed a method called Dynamic Aperture Factor Analysis/Target Transformation (DAFA/TT) to highlight the locations in a CRISM observation (or any similar laboratory or remotely acquired data set) most likely to contain spectra of specific minerals of interest. DAFA/TT determines the locations of possible target mineral spectral signals within hyperspectral images by performing FATT in small moving windows with different geometries, and only accepting pixels with positive detections in all cluster geometries as possible detections. DAFA/TT was applied to a hyperspectral image of a serpentinite from Oman for validation testing in a simplified laboratory setting. The mineral distribution determined by DAFA/TT application to the laboratory hyperspectral image was consistent with Raman analysis of the serpentinite sample. DAFA/TT also successfully mapped the spatial distribution of Mg-serpentine and Mg-carbonate previously detected in CRISM data using band parameter mapping and extraction of ratioed spectra. We applied DAFA/TT to CRISM images in some olivine-rich regions of Mars to characterize the spatial distribution of Mg-serpentine and Mg-carbonate-bearing outcrops.
    Description: This work was supported by the National Natural Science Foundation of China (grant no. 41671360, 41525016, 41902318). JFM and JDT acknowledge NASA support through a subcontract from the Applied Physics Lab for CRISM investigations. H. Lin also acknowledges the support from the key research Program of the Institute of Geology and Geophysics, CAS (IGGCAS-201905). The Headwall imaging spectrometer was acquired using funds to JRK from The Institute at Brown for Environment and Society and Brown University. The DAFA/TT codes are available on GitHub (https://github.com/linhoml?tab=repositories).
    Keywords: Dynamic aperture ; Factor analysis and target transformation ; Serpentine ; Carbonate ; Mars
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chakraborty, A., Ruff, S. E., Dong, X., Ellefson, E. D., Li, C., Brooks, J. M., McBee, J., Bernard, B. B., & Hubert, C. R. J. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proceedings of the National Academy of Sciences of the United States of America, 117(20), (2020): 11029-11037, doi: 10.1073/pnas.2002289117.
    Description: Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
    Description: We wish to thank Jody Sandel as well as the crew of R/V GeoExplorer for collection of piston cores, onboard core processing, sample preservation, and shipment. Cynthia Kwan and Oliver Horanszky are thanked for assistance with amplicon library preparation. We also wish to thank Jayne Rattray, Daniel Gittins, and Marc Strous for valuable discussions and suggestions, and Rhonda Clark for research support. Collaborations with Andy Mort from the Geological Survey of Canada, and Richard Hatton from Geoscience Wales are also gratefully acknowledged. This work was financially supported by a Mitacs Elevate Postdoctoral Fellowship awarded to A.C.; an Alberta Innovates-Technology Futures/Eyes High Postdoctoral Fellowship to S.E.R.; and a Natural Sciences and Engineering Research Council Strategic Project Grant, a Genome Canada Genomics Applications Partnership Program grant, a Canada Foundation for Innovation grant (CFI-JELF 33752) for instrumentation, and Campus Alberta Innovates Program Chair funding to C.R.J.H.
    Keywords: Deep biosphere ; Microbiome ; Dispersal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in da Fonseca, R. R., Couto, A., Machado, A. M., Brejova, B., Albertin, C. B., Silva, F., Gardner, P., Baril, T., Hayward, A., Campos, A., Ribeiro, A. M., Barrio-Hernandez, I., Hoving, H. J., Tafur-Jimenez, R., Chu, C., Frazao, B., Petersen, B., Penaloza, F., Musacchia, F., Alexander, G. C., Osorio, H., Winkelmann, I., Simakov, O., Rasmussen, S., Rahman, M. Z., Pisani, D., Vinther, J., Jarvis, E., Zhang, G., Strugnell, J. M., Castro, L. F. C., Fedrigo, O., Patricio, M., Li, Q., Rocha, S., Antunes, A., Wu, Y., Ma, B., Sanges, R., Vinar, T., Blagoev, B., Sicheritz-Ponten, T., Nielsen, R., & Gilbert, M. T. P. A draft genome sequence of the elusive giant squid, Architeuthis dux. Gigascience, 9(1), (2020): giz152. doi: 10.1093/gigascience/giz152.
    Description: Background: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea–dwelling species will allow several pending evolutionary questions to be unlocked. Findings: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. Conclusions: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.
    Description: R.R.F. thanks the Villum Fonden for grant VKR023446 (Villum Fonden Young Investigator Grant), the Portuguese Science Foundation (FCT) for grant PTDC/MAR/115347/2009; COMPETE-FCOMP-01-012; FEDER-015453, Marie Curie Actions (FP7-PEOPLE-2010-IEF, Proposal 272927), and the Danish National Research Foundation (DNRF96) for its funding of the Center for Macroecology, Evolution, and Climate. H.O. thanks the Rede Nacional de Espectrometria de Massa, ROTEIRO/0028/2013, ref. LISBOA-01-0145-FEDER-022125, supported by COMPETE and North Portugal Regional Operational Programme (Norte2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). A.C. thanks FCT for project UID/Multi/04423/2019. M.P. acknowledges the support from the Wellcome Trust (grant number WT108749/Z/15/Z) and the European Molecular Biology Laboratory. M.P.T.G. thanks the Danish National Research Foundation for its funding of the Center for GeoGenetics (grant DNRF94) and Lundbeck Foundation for grant R52–5062 on Pathogen Palaeogenomics. S.R. was supported by the Novo Nordisk Foundation grant NNF14CC0001. A.H. is supported by a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (fellowship reference: BB/N020146/1). T.B. is supported by the Biotechnology and Biological Sciences Research Council-funded South West Biosciences Doctoral Training Partnership (training grant reference BB/M009122/1). This work was partially funded by the Lundbeck Foundation (R52-A4895 to B.B.). H.J.T.H. was supported by the David and Lucile Packard Foundation, the Netherlands Organization for Scientific Research (#825.09.016), and currently by the Deutsche Forschungsgemeinschaft (DFG) under grant HO 5569/2-1 (Emmy Noether Junior Research Group). T.V. and B. Brejova were supported by grants from the Slovak grant agency VEGA (1/0684/16, 1/0458/18). F.S. was supported by a PhD grant (SFRH/BD/126560/2016) from FCT. A.A. was partly supported by the FCT project PTDC/CTA-AMB/31774/2017. C.C. and Y.W. are partly supported by grant IIS-1526415 from the US National Science Foundation. Computation for the work described in this article was partially supported by the DeiC National Life Science Supercomputer at DTU.
    Keywords: Cephalopod ; Invertebrate ; Genome assembly
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MBL Hernandez, C. M., van Daalen, S. F., Caswell, H., Neubert, M. G., & Gribble, K. E. A demographic and evolutionary analysis of maternal effect senescence. Proceedings of the National Academy of Sciences of the United States of America, 17(28), (2020):16431-16437, doi: 10.1073/pnas.1919988117.
    Description: Maternal effect senescence—a decline in offspring survival or fertility with maternal age—has been demonstrated in many taxa, including humans. Despite decades of phenotypic studies, questions remain about how maternal effect senescence impacts evolutionary fitness. To understand the influence of maternal effect senescence on population dynamics, fitness, and selection, we developed matrix population models in which individuals are jointly classified by age and maternal age. We fit these models to data from individual-based culture experiments on the aquatic invertebrate, Brachionus manjavacas (Rotifera). By comparing models with and without maternal effects, we found that maternal effect senescence significantly reduces fitness for B. manjavacas and that this decrease arises primarily through reduced fertility, particularly at maternal ages corresponding to peak reproductive output. We also used the models to estimate selection gradients, which measure the strength of selection, in both high growth rate (laboratory) and two simulated low growth rate environments. In all environments, selection gradients on survival and fertility decrease with increasing age. They also decrease with increasing maternal age for late maternal ages, implying that maternal effect senescence can evolve through the same process as in Hamilton’s theory of the evolution of age-related senescence. The models we developed are widely applicable to evaluate the fitness consequences of maternal effect senescence across species with diverse aging and fertility schedule phenotypes.
    Description: K.E.G. was supported by Grant 5K01AG049049 from the National Institute on Aging and by the Bay and Paul Foundations. H.C. and S.F.v.D. were supported by the European Research Council through Advanced Grants 322829 and 788195 and by the Dutch Research Council through Grant ALWOP.2015.100. C.M.H. was supported by a National Science Foundation Graduate Research Fellowship. M.G.N. received funding from The Paul MacDonald Fye Chair for Excellence in Oceanography at the Woods Hole Oceanographic Institution.
    Keywords: Aging ; Demography ; Fitness ; Maternal effects ; Selection gradients
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirst, W. G., Biswas, A., Mahalingan, K. K., & Reber, S. Differences in intrinsic tubulin dynamic properties contribute to spindle length control in Xenopus species. Current Biology, 30(11), (2020): 2184-2190.e5, doi: 10.1016/j.cub.2020.03.067.
    Description: The function of cellular organelles relates not only to their molecular composition but also to their size. However, how the size of dynamic mesoscale structures is established and maintained remains poorly understood [1, 2, 3]. Mitotic spindle length, for example, varies several-fold among cell types and among different organisms [4]. Although most studies on spindle size control focus on changes in proteins that regulate microtubule dynamics [5, 6, 7, 8], the contribution of the spindle’s main building block, the αβ-tubulin heterodimer, has yet to be studied. Apart from microtubule-associated proteins and motors, two factors have been shown to contribute to the heterogeneity of microtubule dynamics: tubulin isoform composition [9, 10] and post-translational modifications [11]. In the past, studying the contribution of tubulin and microtubules to spindle assembly has been limited by the fact that physiologically relevant tubulins were not available. Here, we show that tubulins purified from two closely related frogs, Xenopus laevis and Xenopus tropicalis, have surprisingly different microtubule dynamics in vitro. X. laevis microtubules combine very fast growth and infrequent catastrophes. In contrast, X. tropicalis microtubules grow slower and catastrophe more frequently. We show that spindle length and microtubule mass can be controlled by titrating the ratios of the tubulins from the two frog species. Furthermore, we combine our in vitro reconstitution assay and egg extract experiments with computational modeling to show that differences in intrinsic properties of different tubulins contribute to the control of microtubule mass and therefore set steady-state spindle length.
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We thank Jeff Woodruff (UT Southwestern), David Drechsel (IMP), and Marcus J. Taylor (MPI IB) for constructive criticism and comments on the manuscript and Helena Jambor for constructive comments on figure design. We thank the AMBIO imaging facility (Charité, Berlin) and Nikon at MBL for imaging support, Aliona Bogdanova and Barbara Borgonovo (MPI CBG) for their help with protein purification, and Francois Nedelec (University of Cambridge) for help with Cytosim. We are grateful to the Görlich lab (MPI BPC), in particular Bastian Hülsmann and Jens Krull, and the NXR for supply with X. tropicalis frogs. We thank Antonina Roll-Mecak (National Institute of Neurological Disorders and Stroke) for help with mass spectrometry analysis and discussions and Duck-Yeon Lee in the Biochemistry Core (National Heart, Lung and Blood Institute) for access to mass spectrometers. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank all former and current members of the Reber lab for discussion and helpful advice, in particular, Christoph Hentschel and Soma Zsoter for technical assistance and Sebastian Reusch for help with tubulin purification. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.G.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University. K.K.M. was supported by funds in the Roll-Mecak lab, intramural program of the National Institute of Neurological Disorders and Stroke.
    Keywords: Spindle scaling ; Tubulin ; Microtubule dynamics ; Xenopus ; Spindle length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2022-10-27
    Description: Author Posting. © National Academy of Sciences, 2021. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 118(11), (2021): e2020025118, https://doi.org/10.1073/pnas.2020025118.
    Description: For organisms to have robust locomotion, their neuromuscular organization must adapt to constantly changing environments. In jellyfish, swimming robustness emerges when marginal pacemakers fire action potentials throughout the bell’s motor nerve net, which signals the musculature to contract. The speed of the muscle activation wave is dictated by the passage times of the action potentials. However, passive elastic material properties also influence the emergent kinematics, with time scales independent of neuromuscular organization. In this multimodal study, we examine the interplay between these two time scales during turning. A three-dimensional computational fluid–structure interaction model of a jellyfish was developed to determine the resulting emergent kinematics, using bidirectional muscular activation waves to actuate the bell rim. Activation wave speeds near the material wave speed yielded successful turns, with a 76-fold difference in turning rate between the best and worst performers. Hyperextension of the margin occurred only at activation wave speeds near the material wave speed, suggesting resonance. This hyperextension resulted in a 34-fold asymmetry in the circulation of the vortex ring between the inside and outside of the turn. Experimental recording of the activation speed confirmed that jellyfish actuate within this range, and flow visualization using particle image velocimetry validated the corresponding fluid dynamics of the numerical model. This suggests that neuromechanical wave resonance plays an important role in the robustness of an organism’s locomotory system and presents an undiscovered constraint on the evolution of flexible organisms. Understanding these dynamics is essential for developing actuators in soft body robotics and bioengineered pumps.
    Description: This research was funded by the NSF Division of Mathematical Sciences, under Faculty Early Career Development Program Grant 1151478 (to L.A.M.).
    Description: 2021-09-16
    Keywords: Jellyfish ; Propulsion ; Neuromechanics ; Fluid-structure interaction ; Maneuverability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kanso, E. A., Lopes, R. M., Strickler, J. R., Dabiri, J. O., & Costello, J. H. Teamwork in the viscous oceanic microscale. Proceedings of the National Academy of Sciences of the United States of America, 118(29), (2021): e2018193118, https://doi.org/10.1073/pnas.2018193118.
    Description: Nutrient acquisition is crucial for oceanic microbes, and competitive solutions to solve this challenge have evolved among a range of unicellular protists. However, solitary solutions are not the only approach found in natural populations. A diverse array of oceanic protists form temporary or even long-lasting attachments to other protists and marine aggregates. Do these planktonic consortia provide benefits to their members? Here, we use empirical and modeling approaches to evaluate whether the relationship between a large centric diatom, Coscinodiscus wailesii, and a ciliate epibiont, Pseudovorticella coscinodisci, provides nutrient flux benefits to the host diatom. We find that fluid flows generated by ciliary beating can increase nutrient flux to a diatom cell surface four to 10 times that of a still cell without ciliate epibionts. This cosmopolitan species of diatom does not form consortia in all environments but frequently joins such consortia in nutrient-depleted waters. Our results demonstrate that symbiotic consortia provide a cooperative alternative of comparable or greater magnitude to sinking for enhancement of nutrient acquisition in challenging environments.
    Description: We are grateful to Y. Garcia for help with organism sampling and sorting. E.A.K. is funded by NSF-2100209, NSF RAISE IOS-2034043 and NIH R01 HL 153622-01A1. R.M.L. is a CNPq research fellow (grant # 310642/2017-5). J.H.C. and J.O.D. are funded by Grant NSF-2100705.
    Keywords: Phytoplankton ; Nutrient limitation ; Symbiosis ; Diffusion limitation ; Cell size
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tassia, M. G., David, K. T., Townsend, J. P., & Halanych, K. M. TIAMMAt: leveraging biodiversity to revise protein domain models, evidence from innate immunity. Molecular Biology and Evolution, 38(12), (2021): 5806–5818, https://doi.org/10.1093/molbev/msab258.
    Description: Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.
    Description: This work was supported by The National Science Foundation (Grant No. IOS—1755377 to K.M.H., Rita Graze, and Elizabeth Hiltbold Schwartz), and K.T.D. was supported by The National Science Foundation’s Graduate Research Fellowship Program.
    Keywords: Protein evolution ; Domain annotation ; Animal evolution ; Innate immunity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2022-10-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molines, A. T., Lemière, J., Gazzola, M., Steinmark, I. E., Edrington, C. H., Hsu, C.-T., Real-Calderon, P., Suhling, K., Goshima, G., Holt, L. J., Thery, M., Brouhard, G. J., & Chang, F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Developmental Cell, 57(4), (2022): 466-479.e6, https://doi.org/10.1016/j.devcel.2022.02.001.
    Description: The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
    Description: This work was supported by grants to F.C. (NIH GM115185, NIH GM056836, NIH GM146438), to L.J.H. (American Cancer Society RSG-19-073-01-TBE, Pershing Square Sohn Cancer Award, Chan Zuckerberg Initiative, NIH GM132447 and NIH CA240765), to G.G. (JSPS KAKENHI 17H06471 and 18KK0202), to K.S. (UK’s Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/R004803/1) and to M.T. (ERC Consolidator Grant 771599). I.E.S. was supported by King’s College London through a LIDo (London Interdisciplinary Doctoral programme) iCASE studentship.
    Keywords: Cytoskeleton dynamics ; Microtubules ; Cytoplasm ; Crowding ; Viscosity ; Diffusion ; Density ; Rheology ; Mitosis ; Fission yeast Schizosaccharomyces pombe
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.
    Description: This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.
    Description: All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892.
    Keywords: Coastal morphodynamics ; Extreme storms ; Coastal modeling ; Sandy coasts ; Waves ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2022-10-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Shoshan, Y., Liscovitch-Brauer, N., Rosenthal, J. J. C., & Eisenberg, E. Adaptive proteome diversification by nonsynonymous A-to-I RNA editing in coleoid cephalopods. Molecular Biology and Evolution, 38(9), (2021): 3775–3788, https://doi.org/10.1093/molbev/msab154.
    Description: RNA editing by the ADAR enzymes converts selected adenosines into inosines, biological mimics for guanosines. By doing so, it alters protein-coding sequences, resulting in novel protein products that diversify the proteome beyond its genomic blueprint. Recoding is exceptionally abundant in the neural tissues of coleoid cephalopods (octopuses, squids, and cuttlefishes), with an over-representation of nonsynonymous edits suggesting positive selection. However, the extent to which proteome diversification by recoding provides an adaptive advantage is not known. It was recently suggested that the role of evolutionarily conserved edits is to compensate for harmful genomic substitutions, and that there is no added value in having an editable codon as compared with a restoration of the preferred genomic allele. Here, we show that this hypothesis fails to explain the evolutionary dynamics of recoding sites in coleoids. Instead, our results indicate that a large fraction of the shared, strongly recoded, sites in coleoids have been selected for proteome diversification, meaning that the fitness of an editable A is higher than an uneditable A or a genomically encoded G.
    Description: This research was supported by a grants from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel (BSF2017262 to J.J.C.R. and E.E.), the Israel Science Foundation (3371/20 to E.E.) and the National Science Foundation (IOS 1827509 and 1557748 to J.J.C.R).
    Keywords: RNA editing ; Adaptation ; Evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2020. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 117(22), (2020): 12215-12221, doi: 10.1073/pnas.1918439117.
    Description: Picophytoplankton are the most abundant primary producers in the ocean. Knowledge of their community dynamics is key to understanding their role in marine food webs and global biogeochemical cycles. To this end, we analyzed a 16-y time series of observations of a phytoplankton community at a nearshore site on the Northeast US Shelf. We used a size-structured population model to estimate in situ division rates for the picoeukaryote assemblage and compared the dynamics with those of the picocyanobacteria Synechococcus at the same location. We found that the picoeukaryotes divide at roughly twice the rate of the more abundant Synechococcus and are subject to greater loss rates (likely from viral lysis and zooplankton grazing). We describe the dynamics of these groups across short and long timescales and conclude that, despite their taxonomic differences, their populations respond similarly to changes in the biotic and abiotic environment. Both groups appear to be temperature limited in the spring and light limited in the fall and to experience greater mortality during the day than at night. Compared with Synechococcus, the picoeukaryotes are subject to greater top-down control and contribute more to the region’s primary productivity than their standing stocks suggest.
    Description: We thank E. T. Crockford, E. E. Peacock, J. Fredericks, Z. Sandwith, the MVCO Operations Team, and divers of the Woods Hole Oceanographic Institution diving program. This work was supported by NSF Grants OCE-0119915 (to R.J.O. and H.M.S.) and OCE-1655686 (to M.G.N., R.J.O., A.R.S., and H.M.O.); NASA Grants NNX11AF07G (to H.M.S.) and NNX13AC98G (to H.M.S.); Gordon and Betty Moore Foundation Grant GGA#934 (to H.M.S.); and Simons Foundation Grant 561126 (to H.M.S.).
    Description: 2020-11-15
    Keywords: Picoeukaryotes ; Flow cytometry ; Matrix model ; Primary productivity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2022-10-26
    Description: © The Author(s), 202. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McDermott, J. M., Sylva, S. P., Ono, S., German, C. R., & Seewald, J. S. Abiotic redox reactions in hydrothermal mixing zones: decreased energy availability for the subsurface biosphere. Proceedings of the National Academy of Sciences of the United States of America, 117(34), (2020): 20453-20461, doi:10.1073/pnas.2003108117.
    Description: Subseafloor mixing of high-temperature hot-spring fluids with cold seawater creates intermediate-temperature diffuse fluids that are replete with potential chemical energy. This energy can be harnessed by a chemosynthetic biosphere that permeates hydrothermal regions on Earth. Shifts in the abundance of redox-reactive species in diffuse fluids are often interpreted to reflect the direct influence of subseafloor microbial activity on fluid geochemical budgets. Here, we examine hydrothermal fluids venting at 44 to 149 °C at the Piccard hydrothermal field that span the canonical 122 °C limit to life, and thus provide a rare opportunity to study the transition between habitable and uninhabitable environments. In contrast with previous studies, we show that hydrocarbons are contributed by biomass pyrolysis, while abiotic sulfate (SO42−) reduction produces large depletions in H2. The latter process consumes energy that could otherwise support key metabolic strategies employed by the subseafloor biosphere. Available Gibbs free energy is reduced by 71 to 86% across the habitable temperature range for both hydrogenotrophic SO42− reduction to hydrogen sulfide (H2S) and carbon dioxide (CO2) reduction to methane (CH4). The abiotic H2 sink we identify has implications for the productivity of subseafloor microbial ecosystems and is an important process to consider within models of H2 production and consumption in young oceanic crust.
    Description: Financial support was provided by the National Aeronautics and Space Administration (NASA) Astrobiology program (Awards NNX09AB75G and 80NSSC19K1427 to C.R.G. and J.S.S.) and the NSF (Award OCE-1061863 to C.R.G. and J.S.S.). Ship and vehicle time for cruise FK008 was provided by the Schmidt Ocean Institute. We thank the ROV Jason II and HROV Nereus groups, and the captain, officers, and crew of R/V Atlantis (AT18-16) and R/V Falkor (FK008) for their dedication to skillful operations at sea. We thank our scientific colleagues from both cruises, as well as Meg Tivey, Frieder Klein, and Scott Wankel for insightful discussions. We are grateful to the editor and two anonymous reviewers for providing helpful comments and suggestions.
    Keywords: Hydrothermal vent ; Subsurface biosphere ; Bioenergetics ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marty, B., Almayrac, M., Barry, P. H., Bekaert, D., V., Broadley, M. W., Byrne, D. J., Ballentine, C. J., & Caracausi, A. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 551, (2020): 116574, doi:10.1016/j.epsl.2020.116574.
    Description: The terrestrial carbon to nitrogen ratio is a key geochemical parameter that can provide information on the nature of Earth's precursors, accretion/differentiation processes of our planet, as well as on the volatile budget of Earth. In principle, this ratio can be determined from the analysis of volatile elements trapped in mantle-derived rocks like mid-ocean ridge basalts (MORB), corrected for fractional degassing during eruption. However, this correction is critical and previous attempts have adopted different approaches which led to contrasting C/N estimates for the bulk silicate Earth (BSE) (Marty and Zimmermann, 1999; Bergin et al., 2015). Here we consider the analysis of CO2-rich gases worldwide for which a mantle origin has been determined using noble gas isotopes in order to evaluate the C/N ratio of the mantle source regions. These gases experienced little fractionation due to degassing, as indicated by radiogenic 4He / 40Ar* values (where 4He and 40Ar* are produced by the decay of U+Th, and 40K isotopes, respectively) close to the mantle production/accumulation values. The C/N and C/3 He ratios of gases investigated here are within the range of values previously observed in oceanic basalts. They point to an elevated mantle C/N ratio (∼350-470, molar) higher than those of potential cosmochemical accretionary endmembers. For example, the BSE C/N and 36 Ar / N ratios (160-220 and 75 x 10-7, respectively) are higher than those of CM-CI chondrites but within the range of CV-CO groups. This similarity suggests that the Earth accreted from evolved planetary precursors depleted in volatile and moderately volatile elements. Hence the high C / N composition of the BSE may be an inherited feature rather than the result of terrestrial differentiation. The C / N and 36 Ar / N ratios of the surface (atmosphere plus crust) and of the mantle cannot be easily linked to any known chondritic composition. However, these compositions are consistent with early sequestration of carbon into the mantle (but not N and noble gases), permitting the establishment of clement temperatures at the surface of our planet.
    Description: M.A, D.V.B, M.W.B, D.J.B and B.M were supported by the European Research Council (PHOTONIS project, grant agreement No. 695618 to B.M.). Samples were collected as part of Study # YELL-08056 - Xenon anomalies in the Yellowstone Hotspot. We would like to thank Annie Carlson and all of the rangers at the Yellowstone National Park for providing invaluable advice and help when collecting the samples. This work was partially supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B as well as NSF award 2015789 to P.H.B.. Sampling at Mt. Etna and gas analysis was supported by Instituto Nazionale di Geofisica e Vulcanologia Palermo. Fruitful discussions with Marc Hirschmann helped us to shape the ideas presented in this work. We acknowledge detailed and insightful reviews by Sami Mikhail and an anonymous reviewer, and efficient editing by Frederic Moynier. This is CRPG contribution 2741.
    Keywords: Carbon ; Nitrogen ; Earth ; Mantle ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reysenbach, A. L., St John, E., Meneghin, J., Flores, G. E., Podar, M., Dombrowski, N., Spang, A., L'Haridon, S., Humphris, S. E., de Ronde, C. E. J., Caratori Tontini, F., Tivey, M., Stucker, V. K., Stewart, L. C., Diehl, A., & Bach, W. Complex subsurface hydrothermal fluid mixing at a submarine arc volcano supports distinct and highly diverse microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 117(51), (2020): 202019021, doi:10.1073/pnas.2019021117.
    Description: Hydrothermally active submarine volcanoes are mineral-rich biological oases contributing significantly to chemical fluxes in the deep sea, yet little is known about the microbial communities inhabiting these systems. Here we investigate the diversity of microbial life in hydrothermal deposits and their metagenomics-inferred physiology in light of the geological history and resulting hydrothermal fluid paths in the subsurface of Brothers submarine volcano north of New Zealand on the southern Kermadec arc. From metagenome-assembled genomes we identified over 90 putative bacterial and archaeal genomic families and nearly 300 previously unknown genera, many potentially endemic to this submarine volcanic environment. While magmatically influenced hydrothermal systems on the volcanic resurgent cones of Brothers volcano harbor communities of thermoacidophiles and diverse members of the superphylum “DPANN,” two distinct communities are associated with the caldera wall, likely shaped by two different types of hydrothermal circulation. The communities whose phylogenetic diversity primarily aligns with that of the cone sites and magmatically influenced hydrothermal systems elsewhere are characterized predominately by anaerobic metabolisms. These populations are probably maintained by fluids with greater magmatic inputs that have interacted with different (deeper) previously altered mineral assemblages. However, proximal (a few meters distant) communities with gene-inferred aerobic, microaerophilic, and anaerobic metabolisms are likely supported by shallower seawater-dominated circulation. Furthermore, mixing of fluids from these two distinct hydrothermal circulation systems may have an underlying imprint on the high microbial phylogenomic diversity. Collectively our results highlight the importance of considering geologic evolution and history of subsurface processes in studying microbial colonization and community dynamics in volcanic environments.
    Description: We thank the captain and crew of the R/V Thompson and the engineers from Woods Hole Oceanographic Institution for the successful operation of ROV Jason. The project was funded by NSF grants OCE‐1558356 (Principal Investigator S.E.H.) and OCE-1558795 (Principal Investigator A.-L.R.). S.L. received a grant from the University of Brest to work in the A.-L.R. laboratory. A travel fund from Interridge enabled A.D. to participate on the R/V Thompson cruise. Funding for this work for C.E.J.d.R., F.C.T., V.K.S., and L.C.S. was provided by the New Zealand government. A.S. was supported by the Swedish Research Council (Vetenskapsrådet starting grant 2016-03559 to A.S.) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Dutch Research Council) Foundation of the Netherlands Organization for Scientific Research (Women In Science Excel [WISE] fellowship to A.S.). A.-L.R. and E.S.J. thank Rika Anderson for helpful methodological discussions and Sean Sylva for assistance in shipboard geochemical analysis.
    Keywords: Metagenomics ; Deep-sea hydrothermal ; Thermophiles ; Archaea ; Volcanics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coesel, S. N., Durham, B. P., Groussman, R. D., Hu, S. K., Caron, D. A., Morales, R. L., Ribalet, F., & Armbrust, E. V. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proceedings of the National Academy of Sciences of the United States of America, 118(6), (2021): e2011038118, https://doi.org/10.1073./pnas.2011038118.
    Description: The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.
    Description: This work was supported by a grant from the Simons Foundation (SCOPE Award 329108 [to E.V.A.]) and XSEDE Grant Allocation OCE160019 (to R.D.G.).
    Keywords: Photoreceptors ; Microbial eukaryotes ; Oligotrophic gyre ; Diel cycles ; Metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jonell, T., Giosan, L., Clift, P., Carter, A., Bretschneider, L., Hathorne, E., Barbarano, M., Garzanti, E., Vezzoli, G., & Naing, T. No modern Irrawaddy River until the late Miocene-Pliocene. Earth and Planetary Science Letters, 584, (2022): 117516, https://doi.org/10.1016/j.epsl.2022.117516.
    Description: The deposits of large Asian rivers with unique drainage geometries have attracted considerable attention due to their explanatory power concerning tectonism, surface uplift and upstream drainage evolution. This study presents the first petrographic, heavy mineral, Nd and Sr isotope geochemistry, and detrital zircon geochronology results from the Holocene Irrawaddy megadelta alongside modern and ancient sedimentary provenance datasets to assess the late Neogene evolution of the Irrawaddy River. Contrary to models advocating a steady post-middle Miocene river, we reveal an evolution of the Irrawaddy River more compatible with regional evidence for kinematic reorganization in Myanmar during late-stage India-Asia collision. Quaternary sediments are remarkably consistent in terms of provenance but highlight significant decoupling amongst fine and coarse fraction 87Sr/86Sr and due to hydraulic sorting. Only well after the late Miocene do petrographic, heavy mineral, isotope geochemistry, and detrital zircon U–Pb results from the trunk Irrawaddy and its tributaries achieve modern-day signatures. The primary driver giving rise to the geometry and provenance signature of the modern Irrawaddy River was regional late Miocene (≤10 Ma) basin inversion coupled with uplift and cumulative displacement along the Sagaing Fault. Middle to late Miocene provenance signatures cannot be reconciled with modern river geometries, and thus require significant loss of headwaters feeding the Chindwin subbasin after ∼14 Ma and the northern Shwebo subbasin after ∼11 Ma. Large-scale reworking after ∼7 Ma is evidenced by modern Irrawaddy River provenance, by entrenchment of the nascent drainage through Plio-Pleistocene inversion structures, and in the transfer of significant sediment volumes to the Andaman Sea.
    Description: TNJ was supported in initial stages of this project by a Postdoctoral Research Fellowship at UQ and software support by LSU. LG thanks support from the Andrew W. Mellon Foundation via Woods Hole Oceanographic Institution. The Charles T. McCord chair at LSU funded coring and detrital zircon U–Pb geochronology essential to the study.
    Keywords: Provenance ; Sediment ; Irrawaddy ; Zircon ; Isotope geochemistry ; Petrography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dommain, R., Riedl, S., Olaka, L. A., deMenocal, P., Deino, A. L., Owen, R. B., Muiruri, V., Müller, J., Potts, R., & Strecker, M. R. Holocene bidirectional river system along the Kenya Rift and its influence on East African faunal exchange and diversity gradients. Proceedings of the National Academy of Sciences of the United States of America, 119(28),(2022): e2121388119, https://doi.org/10.1073/pnas.2121388119.
    Description: East Africa is a global biodiversity hotspot and exhibits distinct longitudinal diversity gradients from west to east in freshwater fishes and forest mammals. The assembly of this exceptional biodiversity and the drivers behind diversity gradients remain poorly understood, with diversification often studied at local scales and less attention paid to biotic exchange between Afrotropical regions. Here, we reconstruct a river system that existed for several millennia along the now semiarid Kenya Rift Valley during the humid early Holocene and show how this river system influenced postglacial dispersal of fishes and mammals due to its dual role as a dispersal corridor and barrier. Using geomorphological, geochronological, isotopic, and fossil analyses and a synthesis of radiocarbon dates, we find that the overflow of Kenyan rift lakes between 12 and 8 ka before present formed a bidirectional river system consisting of a “Northern River” connected to the Nile Basin and a “Southern River,” a closed basin. The drainage divide between these rivers represented the only viable terrestrial dispersal corridor across the rift. The degree and duration of past hydrological connectivity between adjacent river basins determined spatial diversity gradients for East African fishes. Our reconstruction explains the isolated distribution of Nilotic fish species in modern Kenyan rift lakes, Guineo-Congolian mammal species in forests east of the Kenya Rift, and recent incipient vertebrate speciation and local endemism in this region. Climate-driven rearrangements of drainage networks unrelated to tectonic activity contributed significantly to the assembly of species diversity and modern faunas in the East African biodiversity hotspot.
    Description: R.D. was funded by a Smithsonian Human Origins Postdoctoral Fellowship and by Geo.X—the Research Network for Geosciences in Berlin and Potsdam. Fig. 1 D, E, and G and SI Appendix, Figs. S1 and S3 are based on the TanDEM-X Science DEM granted to L.A.O. and S.R. by the German Aerospace Center (DLR) in 2017. L.A.O. acknowledges the Volkswagen Foundation for funding this study with Grant No. 89369. M.R.S. and S.R. were supported by funds from Potsdam University and the Geothermal Development Company of Kenya, and R.B.O. and V.M. were supported by the Hong Kong General Research Fund. We acknowledge support from the National Museums of Kenya and the Kenya Government permission granted by the Ministry of Sports, Culture and the Arts, and by the National Commission for Science, Technology and Innovation (NACOSTI) Permits P/14/7709/683 (to R.P.) and P/16/11924/11448 (to L.A.O.). This work is a contribution of the Olorgesailie Drilling Project, for which support from the National Museums of Kenya, the Oldonyo Nyokie Group Ranch, the Peter Buck Fund for Human Origins Research (Smithsonian Institution), the William H. Donner Foundation, the Ruth and Vernon Taylor Foundation, Whitney and Betty MacMillan, and the Smithsonian Human Origins Program is gratefully acknowledged. LacCore is acknowledged for support in drilling and core storage.
    Keywords: East Africa ; Biogeography ; Biodiversity ; Hydrological connectivity ; Holocene
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2022-10-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Våge, K., Semper, S., Valdimarsson, H., Jónsson, S., Pickart, R., & Moore, G. Water mass transformation in the Iceland Sea: contrasting two winters separated by four decades. Deep Sea Research Part I: Oceanographic Research Papers, 186, (2022): 103824, https://doi.org/10.1016/j.dsr.2022.103824.
    Description: Dense water masses formed in the Nordic Seas flow across the Greenland–Scotland Ridge and contribute substantially to the lower limb of the Atlantic Meridional Overturning Circulation. Originally considered an important source of dense water, the Iceland Sea gained renewed interest when the North Icelandic Jet — a current transporting dense water from the Iceland Sea into Denmark Strait — was discovered in the early 2000s. Here we use recent hydrographic data to quantify water mass transformation in the Iceland Sea and contrast the present conditions with measurements from hydrographic surveys conducted four decades earlier. We demonstrate that the large-scale hydrographic structure of the central Iceland Sea has changed significantly over this period and that the locally transformed water has become less dense, in concert with a retreating sea-ice edge and diminished ocean-to-atmosphere heat fluxes. This has reduced the available supply of dense water to the North Icelandic Jet, but also permitted densification of the East Greenland Current during its transit through the presently ice-free western Iceland Sea in winter. Together, these changes have significantly altered the contribution from the Iceland Sea to the overturning in the Nordic Seas over the four decade period.
    Description: Support for this work was provided by the Trond Mohn Foundation, Norway under grant BFS2016REK01 (K.V. and S.S.), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101022251 (S.S.), the US National Science Foundation under grants OCE-1259618 and OCE- 1948505 (R.S.P), and the Natural Sciences and Engineering Research Council of Canada (G.W.K.M).
    Keywords: Iceland Sea ; Water mass transformation ; North Icelandic Jet ; Iceland–Faroe Slope Jet ; East Greenland Current ; Denmark Strait overflow water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2022-10-12
    Description: Author Posting. © The Author(s), 2022. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Integrative & Comparative Biology 62(3), (2022): 805-816, https://doi.org/10.1093/icb/icac108.
    Description: Skates are a diverse group of dorso-ventrally compressed cartilaginous fish found primarily in high-latitude seas. These slow-growing oviparous fish deposit their fertilized eggs into cases, which then rest on the seafloor. Developing skates remain in their cases for 1–4 years after they are deposited, meaning the abiotic characteristics of the deposition sites, such as current and substrate type, must interact with the capsule in a way to promote long residency. Egg cases are morphologically variable and can be identified to species. Both the gross morphology and the microstructures of the egg case interact with substrate to determine how well a case stays in place on a current-swept seafloor. Our study investigated the egg case hydrodynamics of eight North Pacific skate species to understand how their morphology affects their ability to stay in place. We used a flume to measure maximum current velocity, or “break-away velocity,” each egg case could withstand before being swept off the substrate and a tilt table to measure the coefficient of static friction between each case and the substrate. We also used the programing software R to calculate theoretical drag on the egg cases of each species. For all flume trials, we found the morphology of egg cases and their orientation to flow to be significantly correlated with break-away velocity. In certain species, the morphology of the egg case was correlated with flow rate required to dislodge a case from the substrate in addition to the drag experienced in both the theoretical and flume experiments. These results effectively measure how well the egg cases of different species remain stationary in a similar habitat. Parsing out attachment biases and discrepancies in flow regimes of egg cases allows us to identify where we are likely to find other elusive species nursery sites. These results will aid predictive models for locating new nursery habitats and protective policies for avoiding the destruction of these nursery sites.
    Description: This work was supported by the NSF-REU and FHL Blinks-Beacon for funding JNE. And the Stephen and Ruth Wainwright Endowed Fellowship, BEACON and Hoag Awards, Robert T. Paine Experimental and Field Ecology Award, FHL Award, FHL Marine Science Fund, FHL Student Fund (Kohn), Patricia L. Dudley Endowment for funding KCH.
    Description: 2023-07-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Pold, G., Kwiatkowski, B. L., Rastetter, E. B., & Sistla, S. A. Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model. Soil Biology & Biochemistry, 165, (2022): 108489, https://doi.org/10.1016/j.soilbio.2021.108489.
    Description: Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
    Description: This work was funded by the National Science Foundation Signals in the Soil grant number 1841610 to SAS and EBR.
    Keywords: Stoichiometry ; Modeling ; Microbial physiology ; Tundra ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tamborski, J., Cai, P., Eagle, M., Henderson, P., & Charette, M. Revisiting 228Th as a tool for determining sedimentation and mass accumulation rates. Chemical Geology, 607, (2022): 121006, https://doi.org/10.1016/j.chemgeo.2022.121006.
    Description: The use of 228Th has seen limited application for determining sedimentation and mass accumulation rates in coastal and marine environments. Recent analytical advances have enabled rapid, precise measurements of particle-bound 228Th using a radium delayed coincidence counting system (RaDeCC). Herein we review the 228Th cycle in the marine environment and revisit the historical use of 228Th as a tracer for determining sediment vertical accretion and mass accumulation rates in light of new measurement techniques. Case studies comparing accumulation rates from 228Th and 210Pb are presented for a micro-tidal salt marsh and a marginal sea environment. 228Th and 210Pb have been previously measured in mangrove, deltaic, continental shelf and ocean basin environments, and a literature synthesis reveals that 228Th (measured via alpha or gamma spectrometry) derived accumulation rates are generally equal to or greater than estimates derived from 210Pb, reflecting different integration periods. Use of 228Th is well-suited for shallow (〈15 cm) cores over decadal timescales. Application is limited to relatively homogenous sediment profiles with minor variations in grain size and minimal bioturbation. When appropriate conditions are met, complimentary use of 228Th and 210Pb can demonstrate that the upper layers of a core are undisturbed and can improve spatial coverage in mapping accumulation rates due to the higher sample throughput for sediment 228Th.
    Description: This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, through the Ocean Frontier Institute. This project was supported by U.S. Geological Survey Coastal and Marine Hazards and Resources Program. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. PC acknowledges the support of the Natural Science Foundation of China (NSFC) through Grants No. 92058205.
    Keywords: Sedimentation ; Mass accumulation ; Thorium isotopes ; Lead-210 ; Wetlands ; Sea level rise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2022-10-20
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bell, T. W., & Siegel, D. A. Nutrient availability and senescence spatially structure the dynamics of a foundation species. Proceedings of the National Academy of Sciences of the United States of America, 119(1), (2021): e2105135118, https://doi.org/10.1073/pnas.2105135118.
    Description: Disentangling the roles of the external environment and internal biotic drivers of plant population dynamics is challenging due to the absence of relevant physiological and abundance information over appropriate space and time scales. Remote observations of giant kelp biomass and photosynthetic pigment concentrations are used to show that spatiotemporal patterns of physiological condition, and thus growth and production, are regulated by different processes depending on the scale of observation. Nutrient supply was linked to regional scale (〉1 km) physiological condition dynamics, and kelp forest stands were more persistent where nutrient levels were consistently high. However, on local scales (〈1 km), internal senescence processes related to canopy age demographics determined patterns of biomass loss across individual kelp forests despite uniform nutrient conditions. Repeat measurements of physiology over continuous spatial fields can provide insights into complex dynamics that are unexplained by the environmental drivers thought to regulate abundance. Emerging remote sensing technologies that provide simultaneous estimates of abundance and physiology can quantify the roles of environmental change and demographics governing plant population dynamics for a wide range of aquatic and terrestrial ecosystems.
    Description: This work was supported by the US NSF (Grants OCE 1232779 and 1831937), by the US Department of Energy (Cooperative Agreement DE-AR0000922), and by NASA (Grant NNX14AR62A) and the NASA Earth and Space Sciences Fellowship program in support of T.W.B.
    Keywords: Physiology ; Population ; Biomass ; Hyperspectral ; Giant kelp
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2020. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences (2020): 201913625, doi: 10.1073/pnas.1913625117.
    Description: Oceanic transform faults display a unique combination of seismic and aseismic slip behavior, including a large globally averaged seismic deficit, and the local occurrence of repeating magnitude (M) ∼6 earthquakes with abundant foreshocks and seismic swarms, as on the Gofar transform of the East Pacific Rise and the Blanco Ridge in the northeast Pacific Ocean. However, the underlying mechanisms that govern the partitioning between seismic and aseismic slip and their interaction remain unclear. Here we present a numerical modeling study of earthquake sequences and aseismic transient slip on oceanic transform faults. In the model, strong dilatancy strengthening, supported by seismic imaging that indicates enhanced fluid-filled porosity and possible hydrothermal circulation down to the brittle–ductile transition, effectively stabilizes along-strike seismic rupture propagation and results in rupture barriers where aseismic transients arise episodically. The modeled slow slip migrates along the barrier zones at speeds ∼10 to 600 m/h, spatiotemporally correlated with the observed migration of seismic swarms on the Gofar transform. Our model thus suggests the possible prevalence of episodic aseismic transients in M ∼6 rupture barrier zones that host active swarms on oceanic transform faults and provides candidates for future seafloor geodesy experiments to verify the relation between aseismic fault slip, earthquake swarms, and fault zone hydromechanical properties.
    Description: We thank Joan Gomberg, Ruth Harris, Steve Hickman, Shane Detweiler, Mike Diggles, and two anonymous external reviewers for their thoughtful comments that helped to improve the manuscript. This study was supported by Natural Sciences and Engineering Research Council of Canada Discovery Grants RGPIN/418338-2012 and RGPIN-2018-05389; and NSF Grants OCE-10-61203 and OCE-18-33279.
    Description: 2020-10-28
    Keywords: Oceanic transform faults ; Earthquake rupture segmentation ; Aseismic transients ; Seismic swarms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proceedings of the National Academy of Sciences of the United States of America, (2020): 201918114, doi: 10.1073/pnas.1918114117.
    Description: The biological carbon pump (BCP) comprises wide-ranging processes that set carbon supply, consumption, and storage in the oceans’ interior. It is becoming increasingly evident that small changes in the efficiency of the BCP can significantly alter ocean carbon sequestration and, thus, atmospheric CO2 and climate, as well as the functioning of midwater ecosystems. Earth system models, including those used by the United Nation’s Intergovernmental Panel on Climate Change, most often assess POC (particulate organic carbon) flux into the ocean interior at a fixed reference depth. The extrapolation of these fluxes to other depths, which defines the BCP efficiencies, is often executed using an idealized and empirically based flux-vs.-depth relationship, often referred to as the “Martin curve.” We use a new compilation of POC fluxes in the upper ocean to reveal very different patterns in BCP efficiencies depending upon whether the fluxes are assessed at a fixed reference depth or relative to the depth of the sunlit euphotic zone (Ez). We find that the fixed-depth approach underestimates BCP efficiencies when the Ez is shallow, and vice versa. This adjustment alters regional assessments of BCP efficiencies as well as global carbon budgets and the interpretation of prior BCP studies. With several international studies recently underway to study the ocean BCP, there are new and unique opportunities to improve our understanding of the mechanistic controls on BCP efficiencies. However, we will only be able to compare results between studies if we use a common set of Ez-based metrics.
    Description: We thank the many scientists whose ideas and contributions over the years are the foundation of this paper. This includes A. Martin, who led the organization of the BIARRITZ group (now JETZON) workshop in July 2019, discussions at which helped to motivate this article. We thank D. Karl for pointing us in the right direction for this paper format at PNAS and two thoughtful reviewers who through their comments helped to improve this manuscript. Support for writing this piece is acknowledged from several sources, including the Woods Hole Oceanographic Institution’s Ocean Twilight Zone project (K.O.B.); NASA as part of the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program (K.O.B. and D.A.S.). E.E.B. was supported by a postdoctoral fellowship through the Ocean Frontier Institute at Dalhousie University. P.W.B. was supported by the Australian Research Council through a Laureate (FL160100131).
    Keywords: Biological carbon pump ; Twilight zone ; Particle flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., Lindsay, K., & Wu, L. Remineralization dominating the δ13 C decrease in the mid-depth Atlantic during the last deglaciation. Earth and Planetary Science Letters, 571, (2021): 117106, https://doi.org/10.1016/j.epsl.2021.117106.
    Description: δ 13 C records from the mid-depth Atlantic show a pronounced decrease during the Heinrich Stadial 1 (HS1), a deglacial episode of dramatically weakened Atlantic Meridional Ocean Circulation (AMOC). Proposed explanations for this mid-depth decrease include a greater fraction of δ 13 C -depleted southern sourced water (SSW), a δ 13 C decrease in the North Atlantic Deep Water (NADW) end-member, and accumulation of the respired organic carbon. However, the relative importance of these proposed mechanisms cannot be quantitatively constrained from current available observations alone. Here we diagnose the individual contributions to the deglacial Atlantic mid-depth δ 13 C change from these mechanisms using a transient simulation with carbon isotopes and idealized tracers. We find that although the fraction of the low- δ 13 C SSW increases in response to a weaker AMOC during HS1, the water mass mixture change only plays a minor role in the mid-depth Atlantic δ 13 C decrease. Instead, increased remineralization due to the AMOC-induced mid-depth ocean ventilation decrease is the dominant cause. In this study, we differentiate between the deep end-members, which are assigned to deep water regions used in previous paleoceanography studies, and the surface end-members, which are from the near-surface water defined from the physical origin of deep water masses. We find that the deep NADW end-member includes additional remineralized material accumulated when sinking from the surface (surface NADW end-member). Therefore, the surface end-members should be used in diagnosing mechanisms of changes. Furthermore, our results suggest that remineralization in the surface end-member is more critical than the remineralization along the transport pathway from the near-surface formation region to the deep ocean, especially during the early deglaciation.
    Description: This work is supported by US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432), and the National Science Foundation of China No. 41630527. S.G. is supported by Shanghai Pujiang program.
    Keywords: δ13 C ; Water mass composition ; Remineralization ; End-member ; HS1
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fachon, E., Pickart, R. S., Lin, P., Fischer, A. D., Richlen, M. L., Uva, V., Brosnahan, M. L., McRaven, L., Bahr, F., Lefebvre, K., Grebmeier, J. M., Danielson, S. L., Lyu, Y., & Fukai, Y. Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic. Proceedings of the National Academy of Sciences of the United States of America, 118(41) (2021): e2107387118, https://doi.org/10.1073/pnas.2107387118.
    Description: Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.
    Description: Funding for D.M.A., R.S.P., E.F., P.L., A.D.F., V.U., M.L.B., L.M., F.B., and M.L.R. was provided by grants from the NSF Office of Polar Programs (Grants OPP-1823002 and OPP-1733564) and the National Ocanic and Atmospheric Administration (NOAA) Arctic Research program (through the Cooperative Institute for the North Atlantic Region [CINAR; Grants NA14OAR4320158 and NA19OAR4320074]), for J.M.G. through CINAR 22309.07 UMCES (University of Maryland Center for Environmental Science), and for D.M.A. and K.L. through NOAA’s Center for Coastal and Ocean Studies Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Program (NA20NOS4780195). Funding for D.M.A., M.L.R., M.L.B., E.F., V.U., and A.D.F. was also provided by NSF (Grant OCE-1840381) and NIH (Grant 1P01-ES028938-01) through the Woods Hole Center for Oceans and Human Health. S.L.D. was supported by North Pacific Research Board IERP Grants A91-99a and A91-00a. This is IERP publication ArcticIERP-41 and ECOHAB Contribution No. ECO983.
    Keywords: Harmful algal bloom ; HAB ; Alexandrium ; Alaskan Arctic ; Climate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2022-10-26
    Description: Author Posting. © National Academy of Sciences, 2021. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 118(8), (2021): e1918605118, https://doi.org/10.1073/pnas.1918605118.
    Description: Changes in chromium (Cr) isotope ratios due to fractionation between trivalent [Cr(III)] and hexavalent [Cr(VI)] are being utilized by geologists to infer oxygen conditions in past environments. However, there is little information available on Cr in the modern ocean to ground-truth these inferences. Transformations between the two chromium species are important processes in oceanic Cr cycling. Here we present profiles of hexavalent and trivalent Cr concentrations and stable isotope ratios from the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) which support theoretical and experimental studies that predict that lighter Cr is preferentially reduced in low-oxygen environments and that residual dissolved Cr becomes heavier due to removal of particle-reactive Cr(III) on sinking particles. The Cr(III) maximum dominantly occurs in the upper portion of the ODZ, implying that microbial activity (dependent on the sinking flux of organic matter) may be the dominant mechanism for this transformation, rather than a simple inorganic chemical conversion between the species depending on the redox potential.
    Description: We thank chief scientist Gabrielle Rocap for accommodating us on cruises Roger Revelle 1804-5 and Kilo Moana 19-20 (sponsored by NSF Grant DEB-1542240 to G. Rocap, A. Devol, R. Kiel, and C. Deutch), Jim Moffett for helping with sampling on these cruises, and Mark Altabet and Frank Stewart for collecting the samples from station 2T on cruise New Horizon 1410. This research was supported by NSF Grant OCE-1736996 (to E.A.B.) and by a fellowship from the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in Oceanography.
    Keywords: Chromium isotopes ; Oxygen-deficient zones ; Trace elements ; Trivalent chromium ; Hexavalent ; Chromium
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tyne, R., Barry, P., Cheng, A., Hillegonds, D., Kim, J.-H., McIntosh, J., & Ballentine, C. Basin architecture controls on the chemical evolution and 4He distribution of groundwater in the Paradox Basin. Earth and Planetary Science Letters, 589, (2022):117580, https://doi.org/10.1016/j.epsl.2022.117580.
    Description: Fluids such as 4He, H2, CO2 and hydrocarbons accumulate within Earth's crust. Crustal reservoirs also have potential to store anthropogenic waste (e.g., CO2, spent nuclear fuel). Understanding fluid migration and how this is impacted by basin stratigraphy and evolution is key to exploiting fluid accumulations and identifying viable storage sites. Noble gases are powerful tracers of fluid migration and chemical evolution, as they are inert and only fractionate by physical processes. The distribution of 4He, in particular, is an important tool for understanding diffusion within basins and for groundwater dating. Here, we report noble gas isotope and abundance data from 36 wells across the Paradox Basin, Colorado Plateau, USA, which has abundant hydrocarbon, 4He and CO2 accumulations. Both groundwater and hydrocarbon samples were collected from 7 stratigraphic units, including within, above and below the Paradox Formation (P.Fm) evaporites. Air-corrected helium isotope ratios (0.0046 - 0.127 RA) are consistent with radiogenic overprinting of predominantly groundwater-derived noble gases. The highest radiogenic noble gas concentrations are found in formations below the P.Fm. Atmosphere-derived noble gas signatures are consistent with meteoric recharge and multi-phase interactions both above and below the P.Fm, with greater groundwater-gas interactions in the shallower formations. Vertical diffusion models, used to reconstruct observed groundwater helium concentrations, show the P.Fm evaporite layer to be effectively impermeable to helium diffusion and a regional barrier for mobile elements but, similar to other basins, a basement 4He flux is required to accumulate the 4He concentrations observed beneath the P.Fm. The verification that evaporites are regionally impermeable to diffusion, of even the most diffusive elements, is important for sub-salt helium and hydrogen exploration and storage, and a critical parameter in determining 4He-derived mean groundwater ages. This is critical to understanding the role of basin stratigraphy and deformation on fluid flow and gas accumulation.
    Description: This work was supported by a Natural Environment Research Council studentship to R.L. Tyne (Grant ref. NE/L002612/1). We gratefully acknowledge the William F. Keck Foundation for support of this research, and the National Science Foundation (NSF EAR #2120733). J.C. McIntosh and C.J. Ballentine are fellows of the CIFAR Earth4D Subsurface Science and Exploration Program. The authors would like to acknowledge the U.S. Bureau of Reclamation, Paradox Resources, Navajo Petroleum, US Oil and Gas INC, Anson Resources, Lantz Indergard (Lisbon Valley Mining Co.), Ambria Dell'Oro and Mohammad Marza for help with sampling.
    Keywords: Noble gases ; Helium ; Paradox Basin ; Crustal fluid dating ; Groundwater migration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Broadley, M., Byrne, D., Ardoin, L., Almayrac, M., Bekaert, D., & Marty, B. High precision noble gas measurements of hydrothermal quartz reveal variable loss rate of Xe from the Archean atmosphere. Earth and Planetary Science Letters, 588, (2022): 117577, https://doi.org/10.1016/j.epsl.2022.117577.
    Description: Determining the composition of the Archean atmosphere and oceans is vital to understanding the environmental conditions that existed on the surface of the early Earth. The analysis of atmospheric remnants in fluid inclusions trapped in Archean-aged samples has shown that the Xe isotopic signature of the Archean atmosphere progressively evolved via mass-dependent fractionation, arriving at a modern atmospheric composition around the Archean-Proterozoic transition. The mechanisms driving this evolution are however not well constrained, and it is not yet clear whether the evolution proceeded continuously or via episodic bursts. Providing further constraints on the evolution of Xe in the Archean atmosphere is hampered by the limited amounts of atmospheric gas trapped within fluid inclusions during mineral formation, which impacts the precision at which the Archean atmosphere can be determined. Here, we develop a new crush-and-accumulate extraction technique that enables the heavy noble gases (Ar, Kr and Xe) released from crushing large quantities of hydrothermal quartz to be accumulated and analysed to a higher precision than was previously possible. Using this new technique, we re-evaluate the composition of atmospheric gases trapped within fluid inclusions of 3.3 Ga quartz samples from Barberton, South Africa. We find that the Xe isotopic signature is fractionated by +10.3 ± 1.0‰u−1 (2 SE) relative to modern atmosphere, which is within uncertainty of, but slightly lower than, the previous determination of 12.9 ± 2.4‰u−1 for this sample (Avice et al., 2017). We show for the first time that the Kr/Xe ratio measured within Archean quartz samples is enriched in Xe compared to the modern atmosphere, demonstrating that the atmosphere has lost Xe since the Archean. This further reinforces the proposal of atmospheric escape as the primary mechanism for Earth's Xe loss. We further show that the atmospheric Kr/Xe and Xe isotope fractionation recorded in the Barberton quartz at 3.3 Ga is incompatible with a model describing atmospheric loss at a continuous rate under a constant fractionation factor. This gives credence to numerical models of hydrodynamic escape, which suggest that Xe was lost from the Archean atmosphere in episodic bursts rather than at a constant rate. Refining the evolution curve of atmospheric Xe isotopes using the new technique presented here has the potential to shed light on discrete atmospheric events that punctuated the evolution of the Archean Earth and accompanied the evolution of life.
    Description: This study was supported by the European Research Council (PHOTONIS project, grant agreement No. 695618). This is CRPG contribution #2820.
    Keywords: Archean atmosphere ; Noble gases ; Xenon ; Atmospheric escape
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M., Landsberg, J. H., Lefebvre, K. A., Provoost, P., Richlen, M. L., Smith, J. L., Solow, A. R., & Trainer, V. L. Marine harmful algal blooms (HABs) in the united states: history, current status and future trends. Harmful Algae, 102, (2021): 101975, https://doi.org/10.1016/j.hal.2021.101975.
    Description: Harmful algal blooms (HABs) are diverse phenomena involving multiple. species and classes of algae that occupy a broad range of habitats from lakes to oceans and produce a multiplicity of toxins or bioactive compounds that impact many different resources. Here, a review of the status of this complex array of marine HAB problems in the U.S. is presented, providing historical information and trends as well as future perspectives. The study relies on thirty years (1990–2019) of data in HAEDAT - the IOC-ICES-PICES Harmful Algal Event database, but also includes many other reports. At a qualitative level, the U.S. national HAB problem is far more extensive than was the case decades ago, with more toxic species and toxins to monitor, as well as a larger range of impacted resources and areas affected. Quantitatively, no significant trend is seen for paralytic shellfish toxin (PST) events over the study interval, though there is clear evidence of the expansion of the problem into new regions and the emergence of a species that produces PSTs in Florida – Pyrodinium bahamense. Amnesic shellfish toxin (AST) events have significantly increased in the U.S., with an overall pattern of frequent outbreaks on the West Coast, emerging, recurring outbreaks on the East Coast, and sporadic incidents in the Gulf of Mexico. Despite the long historical record of neurotoxic shellfish toxin (NST) events, no significant trend is observed over the past 30 years. The recent emergence of diarrhetic shellfish toxins (DSTs) in the U.S. began along the Gulf Coast in 2008 and expanded to the West and East Coasts, though no significant trend through time is seen since then. Ciguatoxin (CTX) events caused by Gambierdiscus dinoflagellates have long impacted tropical and subtropical locations in the U.S., but due to a lack of monitoring programs as well as under-reporting of illnesses, data on these events are not available for time series analysis. Geographic expansion of Gambierdiscus into temperate and non-endemic areas (e.g., northern Gulf of Mexico) is apparent, and fostered by ocean warming. HAB-related marine wildlife morbidity and mortality events appear to be increasing, with statistically significant increasing trends observed in marine mammal poisonings caused by ASTs along the coast of California and NSTs in Florida. Since their first occurrence in 1985 in New York, brown tides resulting from high-density blooms of Aureococcus have spread south to Delaware, Maryland, and Virginia, while those caused by Aureoumbra have spread from the Gulf Coast to the east coast of Florida. Blooms of Margalefidinium polykrikoides occurred in four locations in the U.S. from 1921–2001 but have appeared in more than 15  U.S. estuaries since then, with ocean warming implicated as a causative factor. Numerous blooms of toxic cyanobacteria have been documented in all 50  U.S. states and the transport of cyanotoxins from freshwater systems into marine coastal waters is a recently identified and potentially significant threat to public and ecosystem health. Taken together, there is a significant increasing trend in all HAB events in HAEDAT over the 30-year study interval. Part of this observed HAB expansion simply reflects a better realization of the true or historic scale of the problem, long obscured by inadequate monitoring. Other contributing factors include the dispersion of species to new areas, the discovery of new HAB poisoning syndromes or impacts, and the stimulatory effects of human activities like nutrient pollution, aquaculture expansion, and ocean warming, among others. One result of this multifaceted expansion is that many regions of the U.S. now face a daunting diversity of species and toxins, representing a significant and growing challenge to resource managers and public health officials in terms of toxins, regions, and time intervals to monitor, and necessitating new approaches to monitoring and management. Mobilization of funding and resources for research, monitoring and management of HABs requires accurate information on the scale and nature of the national problem. HAEDAT and other databases can be of great value in this regard but efforts are needed to expand and sustain the collection of data regionally and nationally.
    Description: Support for DMA, MLR, and DMK was provided through the Woods Hole Center for Oceans and Human Health (National Science Foundation grant OCE-1840381 and National Institutes of Health grants NIEHS‐1P01-ES028938–01) and the U.S. National Office for Harmful Algal Blooms with funding from NOAA's National Centers for Coastal Ocean Science (NCCOS) through the Cooperative Institute for the North Atlantic Region (CINAR) (NA14OAR4320158, NA19OAR4320074). Funding for KAL and DMA was provided by the National Oceanic and Atmospheric Administration National Centers for Coastal Ocean Science Competitive Research Program under award NA20NOS4780195 to the Woods Hole Oceanographic Institution and NOAA's Northwest Fisheries Science Center. We also acknowledge support for A.H. from the National Oceanic and Atmospheric Administration [NOAA] Office of Ocean and Coastal Resource Management Award NA19NOS4780183, C.J.G from NOAA-MERHAB (NA19NOS4780186) and (NA16NOS4780189) for VLT Support was also received for JLS, CJG, and VLT from NOAA-NCCOS-ECOHAB under awards NA17NOS4780184 and NA19NOS4780182. This is ECOHAB publication number ECO972.
    Keywords: HAB ; Harmful algal bloom ; Red tide ; Eutrophication ; Time series ; HAEDAT
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rzucidlo, C. L., Sperou, E. S., Holser, R. R., Khudyakov, J., Costa, D. P., & Crocker, D. E. Changes in serum adipokines during natural extended fasts in female northern elephant seals. General and Comparative Endocrinology, 308, (2021): 113760, https://doi.org/10.1016/j.ygcen.2021.113760.
    Description: Adipose tissue is essential to endotherms for thermoregulation and energy storage as well as functioning as an endocrine organ. Adipose derived hormones, or adipokines, regulate metabolism, energy expenditure, reproduction, and immune function in model systems but are less well studied in wildlife. Female northern elephant seals (NES) achieve high adiposity during foraging and then undergo natural fasts up to five weeks long during haul-outs associated with reproduction and molting, resulting in large changes in adipose reserves. We measured circulating levels of four adipokines: leptin, resistin, adiponectin, and kisspeptin-54, in 196 serum samples from female NES at the beginning and end of their breeding and molting fasts. We examined the relationships between these adipokines and life-history stage, adiposity, mass, cortisol, and an immune cytokine involved in the innate immune response interleukin 6 (IL-6). All four adipokines varied with life-history stage. Leptin concentrations were highest at the beginning of the breeding haul-out. Resistin concentrations were higher throughout the breeding haul-out compared to the molt haul-out. Adiponectin concentrations were highest at the beginning of both haul-outs. Kisspeptin-54 concentrations were highest at the end of the breeding haul-out. Leptin, resistin, and adiponectin were associated with measures of body condition, either adiposity, mass, or both. Resistin, adiponectin, and kisspeptin-54 were associated with circulating cortisol concentrations. Resistin was strongly associated with circulating IL-6, a multifunctional cytokine. Adiponectin was associated with glucose concentrations, suggesting a potential role in tissue-specific insulin sensitivity during life-history stages categorized by high adiposity. Increased cortisol concentrations late in lactation were associated with increased kisspeptin-54, suggesting a link to ovulation initiation in NES. This study suggests dramatic changes in circulating adipokines with life-history and body condition that may exert important regulatory roles in NES. The positive relationship between adiponectin and adiposity as well as the lack of a relationship between leptin and kisspeptin-54 differed from model systems. These differences from biomedical model systems suggest the potential for modifications of expression and function of adipose-derived hormones in species that undergo natural changes in adiposity as part of their life-history.
    Description: This project was supported by a grant from the Office of Naval Research (#N00014-18-1-2822) to DPC and DEC and the Marine Life Joint Industry Program of the IAGOP. We thank the Año Nuevo State Reserve rangers for logistical support.
    Keywords: Adipokine ; Blubber ; Fasting ; Northern elephant seal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Foppe, K. S., Kujawinski, E. B., Duvallet, C., Endo, N., Erickson, T. B., Chai, P. R., & Matus, M. Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS. Journal of Chromatography B, 1176, (2021): 122747, https://doi.org/10.1016/j.jchromb.2021.122747.
    Description: Pharmaceutical compounds ingested by humans are metabolized and excreted in urine and feces. These metabolites can be quantified in wastewater networks using wastewater-based epidemiology (WBE) methods. Standard WBE methods focus on samples collected at wastewater treatment plants (WWTPs). However, these methods do not capture more labile classes of metabolites such as glucuronide conjugates, products of the major phase II metabolic pathway for drug elimination. By shifting sample collection more upstream, these unambiguous markers of human exposure are captured before hydrolysis in the wastewater network. In this paper, we present an HPLC-MS/MS method that quantifies 8 glucuronide conjugates in addition to 31 parent and other metabolites of prescription and synthetic opioids, overdose treatment drugs, illicit drugs, and population markers. Calibration curves for all analytes are linear (r2 〉 0.98), except THC (r2 = 0.97), and in the targeted range (0.1–1,000 ng mL−1) with lower limits of quantification (S/N = 9) ranging from 0.098 to 48.75 ng mL−1. This method is fast with an injection-to-injection time of 7.5 min. We demonstrate the application of the method to five wastewater samples collected from a manhole in a city in eastern Massachusetts. Collected wastewater samples were filtered and extracted via solid-phase extraction (SPE). The SPE cartridges are eluted and concentrated in the laboratory via nitrogen-drying. The method and case study presented here demonstrate the potential and application of expanding WBE to monitoring labile metabolites in upstream wastewater
    Description: This work was supported by the National Institute on Drug Abuse of the National Institutes of Health award number R44DA051106 to MM and PC. TE, PC and MM are funded by research grants from the Massachusetts Consortium on Pathogen Readiness and NIH R44DA051106. PRC is funded by NIH K23DA044874, independent research grants from e-ink corporation and Hans and Mavis Lopater Psychosocial Foundation.
    Keywords: HPLC-MS/MS ; Opioid ; Metabolite ; Glucuronide ; Sewage ; Wastewater-based ; Epidemiology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Clark, S., Hubbard, K. A., McGillicuddy Jr, D. J., Ralston, D. K., & Shankar, S. Investigating Pseudo-nitzschia australis introduction to the Gulf of Maine with observations and models. Continental Shelf Research, 228, (2021): 104493, https://doi.org/10.1016/j.csr.2021.104493.
    Description: In 2016, an unprecedented Pseudo-nitzschia australis bloom in the Gulf of Maine led to the first shellfishery closures due to domoic acid in the region's history. In this paper, potential introduction routes of P. australis are explored through observations, a hydrodynamic model, and a Lagrangian particle tracking model. Based on particle tracking experiments, the most likely source of P. australis to the Gulf of Maine was the Scotian Shelf. However, in 2016, connectivity between the Scotian Shelf and the bloom region was not significantly different from the other years between 2012 and 2019, nor were temperature conditions more favorable for P. australis growth. Observations indicated changes on the Scotian Shelf in 2016 preceded the introduction of P. australis: increased bottom salinity and decreased surface salinity. The increased bottom salinity on the shelf may be linked to anomalously saline water observed near the coast of Maine in 2016 via transport through Northeast Channel. The changes in upstream water mass properties may be related to the introduction of P. australis, and could be the result of either increased influence of the Labrador Current or increased outflow from the Gulf of St. Lawrence. The ultimate source of P. australis remains unknown, although the species has previously been observed in the eastern North Atlantic, and connectivity across the ocean is possible via a subpolar route. Continued and increased monitoring is warranted to track interannual Pseudo-nitzschia persistence in the Gulf of Maine, and sampling on the Scotian Shelf should be conducted to map upstream P. australis populations.
    Description: This research was funded by the National Science Foundation (Grant Number OCE-1840381), the National Institute of Environmental Health Sciences (Grant Number 1P01ES028938), the Woods Hole Center for Oceans and Human Health, and the Academic Programs Office of the Woods Hole Oceanographic Institution.
    Keywords: Gulf of Maine ; Pseudo-nitzschia australis ; Harmful algal blooms ; Lagrangian particle tracking ; ROMS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Almayrac, M. G., Broadley, M. W., Bekaert, D. V., Hofmann, A., & Marty, B. Possible discontinuous evolution of atmospheric xenon suggested by Archean barites. Chemical Geology, 581, (2021): 120405, https://doi.org/10.1016/j.chemgeo.2021.120405.
    Description: The Earth's atmosphere has continually evolved since its formation through interactions with the mantle as well as through loss of volatile species to space. Atmospheric xenon isotopes show a unique and progressive evolution during the Archean that stopped around the Archean-Proterozoic transition. The Xe isotope composition of the early atmosphere has been previously documented through the analysis of fluid inclusions trapped within quartz and barite. Whether this evolution was continuous or not is unclear, requiring additional analyses of ancient samples, which may potentially retain remnants of the ancient atmosphere. Here we present new argon, krypton and xenon isotopic data from a suite of Archean and Proterozoic barites ranging in age from 3.5 to 1.8 Ga, with the goal of providing further insights in to the evolution of atmospheric Xe, whilst also outlining the potential complications that can arise when using barites as a record of past atmospheres. Xenon released by low temperature pyrolysis and crushing of two samples which presumably formed around 2.8 and 2.6 Ga show Xe isotope mass dependent fractionation (MDF) of 11‰.u−1 and 3.4‰.u−1, respectively, relative to modern atmosphere. If trapped Xe is contemporaneous with the respective formation age, the significant difference in the degree of fractionation between the two samples provides supporting evidence for a plateau in the MDF-Xe evolution between 3.3 Ga and 2.8 Ga, followed by a rapid evolution at 2.8–2.6 Ga. This sharp decrease in MDF-Xe degree suggests the potential for a discontinuous temporal evolution of atmospheric Xe isotopes, which could have far reaching implications regarding current physical models of the early evolution of the Earth's atmosphere.
    Description: This work was funded by the ERC grant No. 695618 to B.M. We thank the S.A.R.M for providing elemental bulk analyses of the barites. We thank Laurent Zimmerman for technical mentorship and assistance.
    Keywords: Archean barite ; Noble gases ; Xenon anomalies ; Archean atmosphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Karolyte, R., Barry, P. H., Hunt, A. G., Kulongoski, J. T., Tyne, R. L., Davis, T. A., Wright, M. T., McMahon, P. B., & Ballentine, C. J. Noble gas signatures constrain oil-field water as the carrier phase of hydrocarbons occurring in shallow aquifers in the San Joaquin Basin, USA. Chemical Geology, 584, (2021): 120491, https://doi.org/10.1016/j.chemgeo.2021.120491.
    Description: Noble gases record fluid interactions in multiphase subsurface environments through fractionation processes during fluid equilibration. Water in the presence of hydrocarbons at the subsurface acquires a distinct elemental signature due to the difference in solubility between these two fluids. We find the atmospheric noble gas signature in produced water is partially preserved after hydrocarbons production and water disposal to unlined ponds at the surface. This signature is distinct from meteoric water and can be used to trace oil-field water seepage into groundwater aquifers. We analyse groundwater (n = 30) and fluid disposal pond (n = 2) samples from areas overlying or adjacent to the Fruitvale, Lost Hills, and South Belridge Oil Fields in the San Joaquin Basin, California, USA. Methane (2.8 × 10−7 to 3 × 10−2 cm3 STP/cm3) was detected in 27 of 30 groundwater samples. Using atmospheric noble gas signatures, the presence of oil-field water was identified in 3 samples, which had equilibrated with thermogenic hydrocarbons in the reservoir. Two (of the three) samples also had a shallow microbial methane component, acquired when produced water was deposited in a disposal pond at the surface. An additional 6 samples contained benzene and toluene, indicative of interaction with oil-field water; however, the noble gas signatures of these samples are not anomalous. Based on low tritium and 14C contents (≤ 0.3 TU and 0.87–6.9 pcm, respectively), the source of oil-field water is likely deep, which could include both anthropogenic and natural processes. Incorporating noble gas analytical techniques into the groundwater monitoring programme allows us to 1) differentiate between thermogenic and microbial hydrocarbon gas sources in instances when methane isotope data are unavailable, 2) identify the carrier phase of oil-field constituents in the aquifer (gas, oil-field water, or a combination), and 3) differentiate between leakage from a surface source (disposal ponds) and from the hydrocarbon reservoir (either along natural or anthropogenic pathways such as faulty wells).
    Description: This work was supported by the U.S. Geological Survey as part of the California State Water Resources Control Board's Oil and Gas Regional Monitoring Program.
    Keywords: Noble gases ; Hydrocarbons ; Oil-field water ; Reservoir ; Multi-phase fluids ; Isotope geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bandara, K., Varpe, O., Maps, F., Ji, R., Eiane, K., & Tverberg, V. Timing of Calanus finmarchicus diapause in stochastic environments. Ecological Modelling, 460, (2021): 109739, https://doi.org/10.1016/j.ecolmodel.2021.109739.
    Description: In environments with strong seasonality, many herbivorous zooplankton remain active only during the productive season and undergo a period of inactivity and suppressed development termed ‘diapause’ during the unproductive season. The ability to time the diapause entry and exit in response to the seasonality of the environment is thus essential for their survival. However, timing of diapause may become challenging when environmental conditions vary stochastically across shorter and longer timescales, and particularly when zooplankton lack external cues to predict these variations. In this study, we used a novel individual-based model to study the emerging patterns of diapause timing of the high-latitude marine herbivorous copepod Calanus finmarchicus under shorter- (6-h) and longer-term (interannual) environmental stochasticity. The model simulated growth, development, survival and reproduction (income breeding) of a C. finmarchicus population over multiple calendar years and traced the emergence of behavioral responses and life history strategies. The emergent timing of diapause entry and exit were robust to shorter-term environmental stochasticity, which was manifested through morphological (i.e., body and energy reserve sizes) and behavioral plasticity (i.e., diel vertical migration). Longer-term stochastic variations of temperature and food environments altered the timing of diapause entry, which occurred earlier in warmer years with higher growth potential and vice versa. Irrespective of the modelled environmental variability, diapause exit occurred asynchronously throughout the year. This appeared to be a consequence of a diversified bet hedging strategy, where parents spread the starvation mortality risk of ascending to the upper pelagial at food-deprived times of the year among their offspring. This was a potent strategy, particularly in simulations where the timing of the algal bloom varied stochastically between years, since a fraction of the population was present in the upper pelagial year-round and those that coincided with the emergence of the pelagic primary production survived and produced the next generation.
    Description: This work was funded by the project GLIDER, financed by The Research Council of Norway Demo2000 and ConocoPhillips Norge (Grant no. 269188/E30).
    Keywords: Environmental heterogeneity ; Bet hedging ; Phenotypic plasticity ; Overwintering ; Oversummering ; Copepods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, F., Lozier, M. S., Holliday, N. P., Johns, W. E., Le Bras, I. A., Moat, B. I., Cunningham, S. A., & de Jong, M. F. Observation-based estimates of heat and freshwater exchanges from the subtropical North Atlantic to the Arctic. Progress in Oceanography, 197, (2021): 102640, https://doi.org/10.1016/j.pocean.2021.102640.
    Description: Continuous measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) array yield the first estimates of trans-basin heat and salinity transports in the subpolar latitudes. For the period from August 2014 to May 2018, there is a poleward heat transport of 0.50 ± 0.05 PW and a poleward salinity transport of 12.5 ± 1.0 Sv across the OSNAP section. Based on the mass and salt budget analyses, we estimate that a surface freshwater input of 0.36 ± 0.05 Sv over the broad subpolar-Arctic region is needed to balance the ocean salinity change created by the OSNAP transports. The overturning circulation is largely responsible for setting these heat and salinity transports (and the derived surface freshwater input) derived from the OSNAP array, while the gyre (isopycnal) circulation contributes to a lesser, but still significant, extent. Despite its relatively weak overturning and heat transport, the Labrador Sea is a strong contributor to salinity and freshwater changes in the subpolar region. Combined with trans-basin transport estimates at other locations, we provide new estimates for the time-mean surface heat and freshwater divergences over a wide domain of the Arctic-North Atlantic region to the north and south of the OSNAP line. Furthermore, we estimate the total heat and freshwater exchanges across the surface area of the extratropical North Atlantic between the OSNAP and the RAPID-MOCHA (RAPID Meridional Overturning Circulation and Heat-flux Array) arrays, by combining the cross-sectional transports with vertically-integrated ocean heat and salinity content. Comparisons with the air-sea heat and freshwater fluxes from atmospheric reanalysis products show an overall consistency, yet with notable differences in the magnitudes during the observation time period.
    Description: F.L. and M.S.L. were supported by the National Science Foundation (OCE-1948335). W.E.J. was supported by the National Science Foundation grants RAPID (OCE-1332978 and OCE-1926008) and OSNAP (OCE-1756231 and OCE-1948198). I.A.L.B. was supported by the National Science Foundation (OCE-1756272 and OCE-2038481). B.M. was supported by the UK Natural Environment Research Council for the RAPID-AMOC program and the ACSIS program (NE/N018044/1). S.A.C. and N.P.H. were supported by UK NERC National Capability programmes the Extended Ellett Line and CLASS (NE/R015953/1), NERC grants UK OSNAP (NE/K010875/1, NE/K010875/2, NE/K010700/1), UK OSNAP Decade (NE/T00858X/1, NE/T008938/1). S.A.C. received additional supports from the Blue-Action project (European Union’s Horizon 2020 research and innovation program, grant 727852) and the iAtlantic project (European Union’s Horizon 2020 research and innovation program, grant 210522255).
    Keywords: Oceanic heat and salinity transports ; Surface heat and freshwater exchange ; Overturning and gyre circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Menezes, V. V. Advective pathways and transit times of the Red Sea Overflow Water in the Arabian Sea from Lagrangian simulations. Progress in Oceanography, 199, (2021): 102697, https://doi.org/10.1016/j.pocean.2021.102697.
    Description: The present study investigates the advective pathways and transit times of virtual particles released in the Red Sea outflow area as a proxy for the poorly understood spreading of the Red Sea Overflow Water (RSOW) in the Arabian Sea. This work uses the Parcels toolbox, a Lagrangian framework, to simulate tens of thousands of trajectories under different initial conditions. Six different Lagrangian simulations are performed at isobaric and isopycnal surfaces within the RSOW layer. All simulations are based on the eddy-rich GLORYS12 reanalysis that merges almost all in-situ (temperature–salinity) and satellite observations collected over the last two decades into a dynamical framework. This study shows that GLORYS12 reproduces relatively well the climatological seasonal cycle of the RSOW to the Gulf of Aden and essential characteristics of the exchange at the Strait of Bab al-Mandab. Statistical comparisons between synthetic trajectories and RAFOS floats in the Gulf of Aden corroborate the quality of GLORYS12 velocity fields used for the Lagrangian simulations. Six main advective pathways are uncovered (by order of preference): Southwest, Northwest, Socotra Passage, Central, Eastern, and Southern. Trajectories from Argo floats give observational support for some of these paths. Although most particles are exported out of the Arabian Sea off Somalia, the simulations reveal robust connectivity of the RSOW to the Arabian Sea interior and its eastern boundary. The fact that particles have long trajectories in the interior increases the potential of RSOW mixing with the fresher and oxygen-poor ambient waters. Thus, these pathways may have profound implications for the salt and oxygen budgets in the Arabian Sea and beyond since the RSOW is also part of the global overturning circulation and exported out of the Indian Ocean via the Agulhas Current. Transit time distributions indicate that it takes about six months for outflow-originated particles to spread over the entire Gulf of Aden and one to three years to be exported along the western boundary, toward Somalia (Socotra Passage and Southwest pathways) and off the Yemeni–Omani coast (Northwest Pathway). In contrast, reaching the eastern boundary takes much longer. North of 14N, the most frequent time is around 10–15 years, and about 20–25 years at the southeastern Arabian Sea. Hence, the RSOW can often carry oxygen to the western boundary but not to the eastern basin. This may contribute to the eastern shift of the Arabian Sea Oxygen Minimum Zone, a subject that deserves investigation.
    Description: This research was supported by the National Science Foundation (NSF) grant number OCE-1736823.
    Keywords: Salinity ; Northwest Indian Ocean ; Parcels toolbox ; Trajectories ; Oxygen ; Particles
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2022-05-27
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Burnham, K. A., Nowicki, R. J., Hall, E. R., Pi, J., & Page, H. N. Effects of ocean acidification on the performance and interaction of fleshy macroalgae and a grazing sea urchin. Journal of Experimental Marine Biology and Ecology, 547, (2022): 151662, https://doi.org/10.1016/j.jembe.2021.151662.
    Description: When predicting the response of marine ecosystems to climate change, it is increasingly recognized that understanding the indirect effects of ocean acidification on trophic interactions is as important as studying direct effects on organism physiology. Furthermore, comprehensive studies that examine these effects simultaneously are needed to identify and link the underlying mechanisms driving changes in species interactions. Using an onshore ocean acidification simulator system, we investigated the direct and indirect effects of elevated seawater pCO2 on the physiology and trophic interaction of fleshy macroalgae and the grazing sea urchin Lytechinus variegatus. Macroalgal (Dictyota spp.) biomass increased despite decreased photosynthetic rates after two-week exposure to elevated pCO2. Algal tissue carbon content remained constant, suggesting the use of alternative carbon acquisition pathways beneficial to growth under acidification. Higher C:N ratios driven by a slight reduction in N content in algae exposed to elevated pCO2 suggest a decrease in nutritional content under acidification. Urchin (L. variegatus) respiration, biomass, and righting time did not change significantly after six-week exposure to elevated pCO2, indicating that physiological stress and changes in metabolism are not mechanisms through which the trophic interaction was impacted. Correspondingly, urchin consumption rates of untreated macroalgae (Caulerpa racemosa) were not significantly affected by pCO2. In contrast, exposure of urchins to elevated pCO2 significantly reduced the number of correct foraging choices for ambient macroalgae (Dictyota spp.), indicating impairment of urchin chemical sensing under acidification. However, exposure of algae to elevated pCO2 returned the number of correct foraging choices in similarly exposed urchins to ambient levels, suggesting alongside higher C:N ratios that algal nutritional content was altered in a way detectable by the urchins under acidification. These results highlight the importance of studying the indirect effects of acidification on trophic interactions simultaneously with direct effects on physiology. Together, these results suggest that changes to urchin chemical sensing and algal nutritional quality are the driving mechanisms behind surprisingly unaltered urchin foraging behavior for fleshy macroalgae under joint exposure to ocean acidification. Consistent foraging behavior and consumption rates suggest that the trophic interaction between L. variegatus and fleshy macroalgae may be sustained under future acidification. However, increases in fleshy macroalgal biomass driven by opportunistic carbon acquisition strategies have the potential to cause ecological change, depending on how grazer populations respond. Additional field research is needed to determine the outcome of these results over time and under a wider range of environmental conditions.
    Description: This work was supported by Mote Marine Laboratory Postdoctoral Fellowships (RJN and HNP), Becker Internship Funding, and philanthropic funds to ERH.
    Keywords: Climate change ; Elevated pCO2 ; Direct effects ; Physiology ; Indirect effects ; Herbivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...