ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The E-W-opening Tyrrhenian Sea developed after the Cretaceous-Palaeogene Alpine collision, nearly perpendicular to the motion of the African plate, as a back-arc of the Adria-Ionian westward subduction. Three driving mechanisms have been proposed to explain the dynamic evolution of the Tyrrhenian-Apennine system: (1) the northward indentation of the African plate; (2) the retreating subduction of the Adria-Ionian lithosphere; and (3) the gravitational collapse of the Alpine post-collisional wedge. In order to define the relative contribution of each of these mechanisms in the Neogene dynamic of the Tyrrhenian-Apennine system, we performed 3-D laboratory experiments, in which we simulated a retreating subduction process in a compressional regime oriented perpendicularly to the direction of subduction; in this framework we also tested the influence of the gravitational collapse of the overriding plate. Experiments were constructed using dry sand and silicone putties to simulate brittle upper crust and ductile lower crust/upper mantle, respectively; these layers floated on a high-density, low-viscosity glucose syrup which simulated the asthenosphere. The main conclusion of our experiments is that large-scale continental extension, similar to that observed in the Tyrrhenian area, could be reproduced perpendicular to the shortening direction induced by the indentation of the African plate; in this framework, extensional processes are indeed possible if the trench retreat velocity is higher than the rate of shortening induced by the advancing African plate. Our experimental results indicate that this high trench retreat velocity could be explained by the coexistence of the gravitational collapse of the post-Alpine wedge with a slab-pull process, linked to the retreating subduction of the Adria-Ionian plate. While the first mechanism is predominant in the Northern Tyrrhenian area, the second one seems to be important in the latest stage of extension and oceanic accretion of the Southern Tyrrhenian area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Terra nova 9 (1997), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: In the Central Mediterranean two back-arc basins, the Liguro-Provençal (LPb) and the Tyrrhenian basin (Tb), opened progressively and consecutively from the late Eocene–Oligocene to the present. Evolution in space and time of rifting and drifting processes, along three different transects across these basins, shows differences in the style of extension: LPb opened with the formation of a narrow, single rift, while in the Tb deformation and magmatism is spread over a wide area. Moreover at the Northern end of the Tb the locus of extension progressively migrated towards the east whereas in the Southern Tb the locus of extension and magmatism migrated inside the basin, inducing continental break-up and drifting of the previously formed older conjugate basins. We propose that these different styles of back-arc extension depend upon internal conditions, such as prerift rheology linked with its geological heritage, and external conditions, e.g. the style of subduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The ratio between the thickness of the sedimentary sequences offscraped from the subducting plate (Hc) and the average thickness of the backstop (Hb) is expected to significantly influence vergence partitioning in thrust wedges. A series of simple sandbox experiments was performed to study the role of the Hc/Hb ratio in model thrust wedges. The results obtained show that thrust wedges with Hc/Hb values lower than 1 are essentially pro-ward verging, with minor retro-ward faulting; Hc/Hb values greater than 1 imply an increase of vergence partitioning. When a threshold value is exceeded, fully partitioned, doubly vergent thrust wedges develop. Comparison with natural submarine thrust wedges suggests that these experimental results may provide useful insights on the evolution of structural architecture at convergent margins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-04-30
    Description: The Apennine belt represents a typical orogenic segment of the western Mediterranean, characterized by the tectonic convergence between European and Africa plates after oceanic subduction. Both oceanic- and continent-derived metamorphic complexes, considered as the remnants of the subduction-exhumation cycle, crop out in the inner sectors of the Apennine belt, where extensional deformation has dominated since the Early Oligocene. We review the available structural, metamorphic and geochronological data coming from these metamorphic complexes in order to provide a kinematics reconstruction accounting for the tectono-metamorphic evolution of the Apennines, from oceanic subduction to final extensional reworking. During the Eocene, oceanic rocks were progressively subducted down to eclogite-facies conditions following a subduction-type metamorphic gradient. The transition from oceanic- to continental-subduction was coeval with a transition from subduction-type to Barrovian-type metamorphic gradient. Continental collision, at the Eocene-Oligocene boundary, post-dated the syn-orogenic exhumation of HP-rocks and was synchronous with the onset of post-orogenic extension in the hinterland domains. Extensional deformation migrated to the east, following the forelandward migration of the thrust system at the trench. The concomitance of extension and compression is here related to fast rollback of the subducting plate and delamination of the lithospheric mantle below the subducted continental crust. Implications on how the subduction tectonics, syn-orogenic exhumation and post-orogenic extension could have controlled the circulation of HP-rocks in the developing Apennines are also discussed.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-01
    Description: In the western Mediterranean area, after a long period (late Paleogene-Neogene) of Nubian (W-Africa) northward subduction beneath Eurasia, subduction has almost ceased, as well as convergence accommodation in the subduction zone. With the progression of Nubia-Eurasia convergence, a tectonic reorganization is therefore necessary to accommodate future contraction. Previously-published tectonic, seismological, geodetic, tomographic, and seismic reflection data (integrated by some new GPS velocity data) are reviewed to understand the reorganization of the convergent boundary in the western Mediterranean. Between northern Morocco, to the west, and northern Sicily, to the east, contractional deformation has shifted from the former subduction zone to the margins of the two back-arc oceanic basins (Algerian-Liguro-Provencal and Tyrrhenian basins) and it is now mainly active in the south-Tyrrhenian (northern Sicily), northern Liguro-Provencal, Algerian, and Alboran (partly) margins. Onset of compression and basin inversion has propagated in a scissor-like manner from the Alboran (c. 8 Ma) to the Tyrrhenian (younger than c. 2 Ma) basins following a similar propagation of the cessation of the subduction, i.e., older to the west and younger to the east. It follows that basin inversion is rather advanced on the Algerian margin, where a new southward subduction seems to be in its very infant stage, while it has still to really start in the Tyrrhenian margin, where contraction has resumed at the rear of the fold-thrust belt and may soon invert the Marsili oceanic basin. Part of the contractional deformation may have shifted toward the north in the Liguro-Provencal basin possibly because of its weak rheological properties compared with those of the area between Tunisia and Sardinia, where no oceanic crust occurs and seismic deformation is absent or limited. The tectonic reorganization of the Nubia-Eurasia boundary in the study area is still strongly controlled by the inherited tectonic fabric and rheological attributes, which are strongly heterogeneous along the boundary. These features prevent, at present, the development of long and continuous thrust faults. In an extreme and approximate synthesis, the evolution of the western Mediterranean is inferred to follow a Wilson Cycle (at a small scale) with the following main steps : (1) northward Nubian subduction with Mediterranean back-arc extension (since ~35 Ma); (2) progressive cessation, from west to east, of Nubian main subduction (since ~15 Ma); (3) progressive onset of compression, from west to east, in the former back-arc domain and consequent basin inversion (since ~8-10 Ma); (4) possible future subduction of former back-arc basins.
    Print ISSN: 0037-9409
    Electronic ISSN: 0037-9409
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-06-29
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-01
    Description: The East Tenda Shear Zone is the regional structure that marks the Alpine overthrusting of the Ligurian–Piedmontese ocean onto the Variscan Corsica. We present the first report of a Na-pyroxene (acmite)–rutile-bearing assemblage from a phyllonitic shear zone that occurs within the gneissic lithologies of the East Tenda Shear Zone. Acmite hosts inclusions of Na-amphibole and titanite, and is rimmed by retrogressive biotite. Forward modelling of the shear zone assemblages in the NCKFMASTHO chemical system indicates a cold burial–exhumation path (palaeogeothermal gradient
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2018-03-01
    Description: Slab-slab interaction is a characteristic feature of tectonically complex areas. Outward dipping double-sided subduction is one of these complex cases, which has several examples on Earth, most notably the Molucca Sea and Adriatic Sea. This study focuses on developing a framework for linking plate kinematics and slab interactions in an outward dipping subduction geometry. We used analog and numerical models to better understand the underlying subduction dynamics. Compared to a single subduction model, double-sided subduction exhibits more time-dependent and vigorous toroidal flow cells that are elongated (i.e., not circular). Because both the Molucca and Adriatic Sea exhibit an asymmetric subduction configuration, we also examine the role that asymmetry plays in the dynamics of outward dipping double-sided subduction. We introduce asymmetry in two ways; with variable initial depths for the two slabs (“geometric” asymmetry), and with variable buoyancy within the subducting plate (“mechanical” asymmetry). Relative to the symmetric case, we probe how asymmetry affects the overall slab kinematics, whether asymmetric behavior intensifies or equilibrates as subduction proceeds. While initial geometric asymmetry disappears once the slabs are anchored to the 660 km discontinuity, the mechanical asymmetry can cause more permanent differences between the two subduction zones. In the most extreme case, the partly continental slab stops subducting due to the unequal slab pull force. The results show that the slab-slab interaction is most effective when the two trenches are closer than 10–8 cm in the laboratory, which is 600–480 km when scaled to the Earth. © 2018. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-12
    Description: The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench. ©2018. The Authors.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...